第四章 高阶微分方程
- 格式:ppt
- 大小:2.15 MB
- 文档页数:66
第四章 高阶微分方程§4.1 线性微分方程的一般理论习题4.11.设)(t x 和)(t y 是区间[]b a ,上的连续函数,证明:若在区间[]b a ,上有≠)()(t y t x 常数或≠)()(t x t y 常数,则)(t x 和)(t y 在区间[]b a ,上线性无关.(提示:用反证法) 证明 )(t x 和)(t y 是区间[]b a ,上线性相关,则存在不全为0的常数21,c c 使得0)()(21≡+t y c t x c ,[]b a t ,∈,若)0(,021≠≠c c 或得12)()(c c t y t x -≡(或21)()(c c t x t y -≡)[]b a t ,∈∀成立。
与假设矛盾,故)(t x 和)(t y 在区间[]b a ,上线性无关.2.证明非齐次线性方程的叠加原理:设)(1t x ,)(2t x 分别是非齐次线性方程)()()(1111t f x t a dt xd t a dt x d n n n n n =+++-- (1) )()()(2111t f x t a dtxd t a dt x d n n n nn =+++-- (2) 的解,则)()(21t x t x +是方程)()()()(21111t f t f x t a dtxd t a dt x d n n n n n +=+++-- (3) 的解.证明 因为)(1t x ,)(2t x 分别是方程(1)、(2)的解,所以)()()(1111111t f x t a dt x d t a dt x d n n n n n =+++-- , )()()(2212112t f x t a dtx d t a dt x d n n n nn =+++-- , 二式相加得,)()())(()()()(21211211121t f t f x x t a dt x x d t a dt x x d n n n n n +=++++++-- ,即)()(21t x t x +是方程(3)的解.3.(1).试验证022=-x dt x d 的基本解组为tt e e -,,并求方程t x dtx d cos 22=-的通解。
第四章高阶微分方程[教学目标]1. 理解高阶线性微分方程的一般理论,n阶齐次(非齐次)线性微分方程解的性质与结构,熟练掌握n阶常系数齐次线性微分方程的待定指数函数解法。
2.掌握n阶非齐次线性微分方程的常数变易法,理解n阶常系数非齐次线性微分方程特解的待定系数法和Laplce变换法。
3.熟练欧拉方程与高阶方程的降阶法和幂级数解法。
4.掌握高阶方程的应用。
[教学重难点]重点是线性微分方程解的性质与结构,高阶方程的各种解法。
难点是待定系数法求特解。
[教学方法] 讲授,实践。
[教学时间] 16学时[教学内容]线性微分方程的一般理论,齐次(非齐次)线性微分方程解的性质与结构,非齐次线性微分方程的常数变量易法;常系数线性方程与欧拉方程的解法,非齐线性方程的比较系数法与拉氏变换法;高阶方程的降阶法和幂级数解法及高阶方程的应用。
[考核目标]1.理解高阶线性微分方程的一般理论,能够求解高阶常系数线性微分方程。
2.掌握n阶非齐次线性微分方程的常数变易法。
3.n阶常系数非齐次线性微分方程特解的待定系数法和Laplce变换法。
4.熟练高阶方程的降阶法和幂级数解法及高阶方程的应用。
§4.1线性微分方程的一般理论4.1.1引言讨论n阶线性微分方程1111()()()()n n n n n n d x d x dxa t a t a t x f t dt dt dt---++++= (4.1) 其中()(1,2,,)i a t i n = 及()f t 都是区间a t b ≤≤上的连续函数 如果()0f t ≡,则方程(4.1)变为:1111()()()0n n n n n n d x d x dxa t a t a t x dt dt dt---++++= (4.2) 称它为n 阶齐线性微分方程,而称一般的方程(4.1)为n 阶非齐线性微分方程,并且通常把方程(4.2)叫对应于方程(4.1)的齐线性方程。
定理1 如果()(1,2,,)i a t i n = 及()f t 都是区间a t b ≤≤上的连续函数,则对于任一[]0,t a b ∈ (1)(1)000,,,n x x x - ,方程(4.1)存在唯一解()x t ϕ=,定义于区间a t b ≤≤上,且满足初始条件:1(1)(1)0000001()()(),,,n n n d t d t t x x x dt dtϕϕϕ---=== (4.3) 从这个定理可以看出,初始条件唯一地确定了方程(4.1)的解,而且这个解在所有()(1,2,,)i a t i n = 及()f t 连续的整个区间a t b ≤≤上有定义。
第四章 高阶微分方程一.一般的概念和性质 一般的n 阶线性微分方程具有如下的形式:)()()()(1111t f x t a dt dx t a dt xd t a dtx d n n n n n n=++++--- ,(4.1)0)()()(1111=++++---x t a dtdx t a dtxdt a dtx d n n n n nn .(4.2)其中),,2,1()(n i t a i =和)(t f 都是某区间],[b a 上的连续函数. (4.2)称为齐线性(微分)方程, (4.1)称为非齐线性(微分)方程. (4.2)也称为(4.1)的对应齐方程.1.函数组的线性相关与线性无关. 区间],[b a 上的k 个函数)(),(),(21t x t x t x k 称为是线性相关的, 如果存在不全为零的常数k c c c ,,21, 使得在],[b a 上恒成立0)()()(2211≡+++t x c t x c t x c k k .如果这样的常数不存在, )(),(),(21t x t x t x k 称为是线性无关的.2.(伏)郎斯基行列式. 如果函数)(),(),(21t x t x t x k 还有直到1-k 阶的导数, 行列式)()()()()()()()()()](),(),([)()1()1(2)1(1212121t x t x t x t x t x t x t x t x t x t x t x t x W t W k kk k k k k ---'''==称为这些函数的伏郎斯基行列式或郎斯基行列式.典型例题:已知123()4,()4,()xy x y x x y x e x ==-=+是某一三阶齐线性方程的解, 试求 )(),(21x y x y 和)(3x y 的伏朗斯基行列式123[,,]()W y y y x . (见模拟试题)3.基本解组. 齐线性方程(4.2)的n 个线性无关解称为(4.2)的一个基本解组。