工程电磁场第八版课后答案
- 格式:pdf
- 大小:237.14 KB
- 文档页数:11
E2-9 在中心点位于原点,边长为L的媒质立方体内的极化强度矢量为()0e x y z P P e x e y e z =++,(a) 计算面和体束缚电荷密度; (b) 证明总束缚电荷为零。
解:据题,体束缚电荷密度为:03v e P P ρ=-∇⋅=- (公式y x zE E E E x y z∂∂∂∇⋅=++∂∂∂) 在2L x =的面002s x e L e P P x P ρ=⋅== 在2L x =-的面00()2s x e Le P P x P ρ=-⋅=-= 同理,在2Ly =和2L y =-的面,02s L P ρ=在2L z =和2L z =-的面,02s LP ρ=∴(a )六个面上的面束缚电荷密度均为:0/2P L ρ=s体束缚电荷密度为:03v P ρ=-∴ (b) 总束缚电荷为:23006()302s v LQ Q Q L P P L =+=-=E2-13 半径为a 的球内充满体电荷密度为f ρ的电荷。
已知球内外的电场强度是⎪⎩⎪⎨⎧≥+≤+=-)()()(24523a r rAa a a r Ar r E r求体电荷密度(全部空间的介电常数均为0ε)。
解:0f E ρε∇⋅=(1)在r a ≤的区域内:23221[()]E r r Ar r r∂∇⋅=⋅+∂ 254r Ar =+ 20(54)f r Ar ρε∴=+(2)在r a ≥的区域内:254221[()]E r a Aa r r r-∂∇⋅=⋅⋅+∂ = 0 0f ρ∴=∴体电荷密度为:20(54),(),()f r Ar r a r a ερ⎧+≤=⎨≥⎩E2-17 两媒质分界面为z=0面,已知1223r r εε==和,如果已知区域1中的123(5)x y z E e y e x e z =-++我们能求出区域2中哪些地方的2E 和2D 呢?能求出区域2中任意点的2E 和2D 吗? 解:(1)在两种媒质的分解面z=0上,由于没有电荷的存在,电位移矢量的法线方向连续。
习题1-10解:首先物理概念上分析电场强度为零的点一定是A 点,因为0<q<1,A 离-qp 近,离q 远,则二者即产生的AE v 会抵消,而B 点不行,这是因为离q 近离-pq 远,即产生的E v一大一小无法抵消。
令x 如图,则两点电荷在A 点产生的场强分别为:q: ()r x d q q E rv 2014+=π, -pq: ()r x pq E v v 2024πε−= 令A E v=021=+E E v r ,有()221xp x d =+ ()22x x d p =+ 两边开方取正值:d pp x −=1习题1-11解:分析知,只可能是A 点,Q 12q q >,∴A 点必须离1q 近、离2q 远才行 令x 如图示,据题意有()2231x d x +=,x=1.37d习题1-12解:在直角坐标系中,取棒中心在原点处,棒沿z 轴放置。
①因为求的点在y 轴上,所以棒上下的对称性决定了E r的z 分量被抵消了,只剩了y 分量,而且可只计算一半棒上的电荷在p 点产生的场强,乘2即为所求。
设棒长2L ,显然dz Lqdz dq 2==τ()∫+=Lr z dz L q E 02/32201.041.022πε()()2/122201.01.081.02Lz ZL q +×=πε课后答案网ww w.kh da w .c om=()⎥⎥⎦⎤⎢⎢⎣⎡−+01.01.0*42/1220LLL qεπ 3.0*40πεq=m V /5.5994= y E v r 5.5994=∴②近似计算棒是无限长而保持电场线密度不变,计算结果是:m V q L qr E /9.59971.022200=⋅⋅==πεπτ L 并非无限长,还是取以前的31.0322≈−=L 它与上述的相对误差%0567.0%100*5.59945.59949.5997=−习题1-13解:已知一圆环产生的场强()i x r q qx E v v 232204+=π 此圆环可分为无数半径为r 的细圆环,其上微电荷 rdr dS dq πσσ2⋅==其产生的微元电场 ()i x r x rdr E d vv 2322042+⋅⋅=πεπσ 故r 从1R 到2R 积分即所有圆环产生的场强:()i x r x rdr E R R v v ∫+⋅⋅=212322042πεπσ()()i x r x r d x R R v ∫++=2123222204εσ()i x r x R R v 122122024+−=εσ课后ww w.kh da w .c om()()i x R xR x v ⎥⎥⎦⎤⎢⎢⎣⎡+−+=21222212210112εσ 讨论:1)σ不变,01→R ,得()⎥⎦⎤⎢⎢⎣⎡+−=21222012x R xE εσ 2)又∞→xR 2得 02εσ=E 这相当于∞→2R 比x 快的多,即变成无限大带电平板。
工程电磁场课后题答案1.a、b、c、d分别是一个菱形的四个顶点,O为菱形中心,∠abc=120°。
现将三个等量的正点电荷+Q分别固定在a、b、c三个顶点上,下列说法正确的有()[单选题] *A.d点电场强度的方向由d指向OB.O点电场强度的方向由d指向OC.O点的电场强度大于d点的电场强度(正确答案)D.O点的电场强度小于d点的电场强度2.如图所示,平行板电容器与电动势为E的电源连接,上极板A接地,一带负电的油滴固定于电容器中的P点,现将平行板电容器的下极板B竖直向下移动一小段距离,则() [单选题] *A.带电油滴所受静电力不变B.P点的电势将升高(正确答案)C.带电油滴在P点时的电势能增大D.电容器的电容减小,极板带电荷量增大3.如图为三根通电平行直导线的断面图,若它们的电流大小都相同,且,则A点的磁感应强度的方向是() [单选题] *A.垂直纸面指向纸外B.垂直纸面指向纸里C.沿纸面由A指向BD.沿纸面由A指向D(正确答案)4.如图所示,伏安法测电阻的电路中,电压表的量程为,内阻为,测量时发现电压表的量程过小,在电压表上串联一个阻值为的定值电阻,最后电压表示数为,电流表示数为,关于的阻值下列说法正确的是()[单选题] *A.Rx大于60Ω(正确答案)B.Rx等于60ΩC.Rx大于20ΩD.Rx等于20Ω5.在研究微型电动机的性能时,应用如图所示的实验电路,当调节滑动变阻器R使电动机停止转动时,电流表和电压表的示数分别为0.5A和2.0V。
重新调节R使电动机恢复正常运转,此时电流表和电压表的示数分别为2.0A和24.0V。
则这台电动机正常运转时输出功率为() [单选题] *A.47WB.44WC.32W(正确答案)D.18W6.用两只完全相同的电流表分别改装成一只电流表和一只电压表。
将它们串联起来接入电路中,如图所示,此时() [单选题] *A.电流表指针的偏转角小于电压表指针的偏转角(正确答案)B.两只电表的指针都不偏转C.两只电表的指针偏转角相同D.电流表指针的偏转角大于电压表指针的偏转角7.一带负电油滴在场强为E的匀强电场中的运动轨迹如图中虚线所示,电场方向竖直向下.若不计空气阻力,则此带电油滴从A运动到B的过程中,下列判断正确的是() [单选题] *A.油滴的电势能减少(正确答案)B.A点电势高于B点电势C.油滴所受电场力小于重力D.油滴重力势能减小8.如图所示,直线A为电源的U—I图线,直线B为电阻R的U—I图线,用该电源和电阻组成闭合电路时,电源的输出功率和电路的总功率分别是()[单选题] *A.4W,8WB.2W,4WC.4W,6W(正确答案)D.2W,3W9.电流表的内阻是,满刻度电流值是,现欲把这个电流表改装成量程为1.0V的电压表,正确的方法是() [单选题] *A.应串联一个0.1Ω的电阻B.应并联一个0.1Ω的电阻C.应串联一个1800Ω的电阻(正确答案)D.应并联一个1800Ω的电阻10.如图所示,带电粒子(不计重力)以初速度v0从a点垂直于y轴进入匀强磁场,运动过程中经过b点,Oa=Ob。
习题4-16解:B 只有x 分量,从平面图可见x =0时l Id v 与r r 垂直,x ≠0时l Id v 与r r垂直 απμπμRd dl R IRdlR R R Idl dB x ===∴,443'0'2'0()()3222032220203'202424X RIR X R IR d R IR B +=+==∴∫μππμαπμπ习题4-18解:dbd Ia dr r I S d r I S d B b d d S S +==⋅=⋅=Φ∫∫∫+ln2220000πμπμαπμv v v v习题4-19解:αcos 22221ab b =a R −+ααπcos 2)cos(2222222ab b a ab b =a R ++=−−+任一点xIB πμ20=1200ln 222221R Ra I adx r I R R AB πμπμ=⋅=Φ∴∫习题4-20解:由安培环路定律10R r <<时,取单位长,22102r R I r B ππμπ=⋅,r R IB 2102πμ=21R r R <<时,I r B 02μπ=⋅,rIB πμ20=32R r R <<时,)()([])()([22223222022232220R R R r I I R R R r I I r B −−−=−−−=⋅μππμπ课后答案网ww w.kh da w .c om)()(222232230R R r R r I B −−=πμ 3R r >时,02=⋅r B π,0=B习题4-21解:任意点:j x D Ix I B v v ))(22(00−+=πμπμ习题4-22解:电流反向,则磁力线反向j x D I x I B v v )(22(00−−=πμπμ习题4-23解:I r B μωπ=⋅2,rIB πμω2=wb R R Ib dr r Ib R R 31210973.0ln 2221−×==⋅=Φ∴∫πμωπμω习题4-24解:P176例中,)(220a d d I −−=Φμ本题,wb a d d I 322109696.0))((−×=−−=Φωμ习题4-25解:B 1、B 2只有t 分量,由边界条件H 1t =H 2tT H B t 2.10024.050000111===μμμ习题4-26解:...1)2(0201122232232223223=−−∂∂=−−∂∂∂∂∂∂=×∇z z r e r R R r R r I r R R r R r I z re r e e r H v v v v v ππαα课后答案网ww w.kh da w .c om习题4-27解:0点上下的m ϕ,0=∞m ϕ 带I 圆导线线圈在轴线上产生的2/32)(2x R IR BH +==μ I l d H BAB A =⋅=−∫vv ϕϕ习题4-28解:忽略边缘效应,H 是圆线m ϕ仅与α有关,D C m +=αϕ令0=α是障碍面,且0|0==αϕm 所以0=D 由安培定律∫∫∫+==πθθπω2020Hdl Hdl I Hdl在(0,2π)中,μ->∞,H 只有法线分量,B 1n =B 2n ,知00==μμHH t 所以02=∫πθdl H t所以00||==−==∫αθαθϕϕωm m Hdl ICQ I =ω,QIC ω=αωϕQIm =0000001αωμααϕμϕμμvv v v Qr I r H B m m −=∂∂−=∇−==习题4-29解:x e z y x F v v 1222)(−++= k z y x yj z y x z z y x z y xkj iF v v v v vv 222222221222)(2)(20)(++−++=++∂∂∂∂∂∂=×∇− 课后答案网ww w.kh da w .c om习题4-30解:∫⋅=Φ∴SS d B vvr<a ,22a rIB πμ=r>a ,rIB πμ2=]2ln 21[2ln 222222202+=+=+=⋅=Φ∴∫∫∫πμπμπμπμπμr Iaa a aI a a I adr r I adr a rI S d B a a a S v v习题4-32解:H R d l L 30010*119.2ln −==πμ习题4-34解:铜:0μμ=,钢:0200μμ=(1)算每公里长自感铜e i L L L +=其中km H L i /10100010008270−×=××=πμ km H l R DL e /1027631ln 700−×=⋅=πμ km mH L L L e i /863.2=+=钢:km H L i /102000010008270−×=××=πμ km H L e /10228157−×=km mH L L L e i /286.22=+=(2)互感:根据方向判断'11Φ+Φ=Φ∴km mH l M /036.02'1'12'2'112ln 20=⋅⋅⋅=πμ习题4-35 解:r I B πμω21=,21102−×=Φdr rId πμω 2122102−×=Φ=Ψdr rId d πωμωω课后答案网ww w.kh da w .c om67ln 10210221276212−−×=×=Ψ∫πωμωπωμωI dr r IH I M 0148.067ln 102212=×=−πωμω习题4-36 解:由题意得...2)(212)2(212)2(212121322112223223020021022=−−++===∫∫∫∫∫∫R R R R R v rdr I R R r R rdr r I rdr R Ir dVH LI W πμππμππμμ...22==I WL习题4-37解:C I mW M =∂∂=|αααcos 21max 21I I M I MI W m ==ααsin 21max I I M M −=∴o 45=α,m N M ⋅×−=∴−310035.0α习题4-38解:1220022102ln 21212)2(21211R R I rdr R Ir dV H W R v πμππμμ===∫∫∫∫ l r V 2π=,l R dR dV112π= 212201212212084|R I dV dR R R R R I V W f C I mg πμπμ−=−=∂∂==测验题4-39解:将其分段考虑,与0点在一条线上的两直线段上的电流不在0点产生磁场,仅两段圆弧上的电流在0点产生磁场。