工程电磁场__课后答案(王泽忠_全玉生_卢斌先_著)超清晰_清华大学出版社
- 格式:pdf
- 大小:4.78 MB
- 文档页数:41
12-1 一点电荷q放在无界均匀介质中的一个球形空腔中心■设介质的介电常数为一空腔的半径为S求空腔表面的极化电荷面密度。
解由高斯定律,介质中的电场强度为-P(SM- e r) =KT 二——_- E4πer2*r由关系式n = e0E+P,得电极化强度为P-(E - Eo)E = ---- --- -4 Tter因此,空腔表面的极化电荷面密度为1-3-1从静堪场基本方程出发‘证明当电介质均匀时*极化电荷密度P P 存在的条件是自由电荷的体密度P不为零,且有关系式P P- - (I-^)P O解均匀介质的E为常数C t从关系式D= ε0E + P Xr> = εE1得介质中的电极化强度P=D-ε0E-D-E0≤ = (l扱化电荷密度PP =-V -P= - V *[(1 -~)D \=〜D灼(1 一“)Tl )V ・!>εε由円・DP和Sl -号)=仇故上式成为P P=-学)卩1-4-3 IJillF列静电场的边值问题:(0电荷体密度分别为角和他,半径分别为G的双层同心带电球体(如题1 - 4 - 3 图(a));(2)在两同心导体球壳间,左半部和右半部分别填充介电常数为引与∈2 的均匀介质,内球壳带总电荷量为外球売接地(如题1-4-3图(b));(3)半径分别为α与B的两无限也空心同轴圆柱面导体,内圆柱表面上单位长度的电量为厂外圆柱面导休接地(如题I -3图(C))O仅供用于学习版权所有郑州航院电气工程及其自动化邓燕博倾力之作J⅛ t -4- 3 图解(1)选球坐标系,球心与原点重合寸数,故有如下静电场边值问题:由对称性町知,电位护仅为厂的函y1 d zd7σ豁-EO(0≤r< α)⅜d / 不&豁-(a<r<b)I Y Ct ( 乔& (XY 8:r = a=⅞¾’r ≡αιL严翠f P2F = A =拓I lr = A—金一e⅛r =⅛卄L呦=有限值,P-I rf 8-0(2)选球坐标乘*球心与原点重介。