工程力学——第3章(力系的平衡)
- 格式:pdf
- 大小:3.47 MB
- 文档页数:62
1第三章力系的平衡§3–1 平面力系的平衡方程§3–2 空间力系的平衡方程§3–3 物体系统的平衡方程§3–4 静定与静不定的基本概念§3-1 平面力系的平衡方程由于=0 为力平衡M O =0 为力偶也平衡所以平面任意力系平衡的充要条件为:力系的主矢F R 和主矩M O 都等于零,即:)()(22=+=∑∑Y X F R 0)(==∑i O O F m M 1、平面任意力系的平衡方程R F=∑X 0)(=∑i A F m 0)(=∑i B F m ②二矩式条件:x 轴不AB连线⊥0)(=∑i A F m 0)(=∑i B F m 0)(=∑i C F m ③三矩式条件:A ,B ,C 不在同一直线上上式有三个独立方程,只能求出三个未知数。
=∑X 0=∑Y 0)(=∑i O F m ①一矩式①平面汇交力系=∑xF 0=∑yF2、平面特殊力系的平衡方程②平面力偶系=∑M ③平面平行力系=∑y F 0)(=∑F M O 0)(=∑F MB0)(=∑F M A AB 不x 轴⊥[例] 已知:P , a , 求:A 、B 两点的支座反力?解:①选AB 梁研究②画受力图(以后注明解除约束,可把支反力直接画在整体结构的原图上))(=∑i A F m 由32 ,032PN a N a P B B =∴=⋅+⋅-0=∑X 0=A X 0=∑Y 3,0PY P N Y A B B =∴=-+解除约束,0==∑A X X 由022;0)(=⋅-+⋅⋅+⋅=∑a P m aa q a R F m B A 0=∑Y 0=--+∴P qa R Y B A )kN (122028.01628.02022=⨯+-⨯-=+--=P a m qa R B )kN (24128.02020=-⨯+=-+=B A R qa P Y [例] 已知:P =20kN, m =16kN·m, q =20kN/m, a =0.8m求:A 、B 的支反力。
第3章 力系的平衡(一)(平面汇交力系的平衡)3-1 各种支架如题3-1图(a )、(b )、(c )和(d )所示,由杆AB 与AC 组成,A 、B 与C 均为铰链,在销钉A 上悬挂重量为W 的重物。
试求图示4种情况下,杆AB 与AC 所受的力。
题3-1解:情况如题3-1图(a )所示,取铰A 为研究对象,作受力图如题3-1图(a1)所示.由平衡方程 0X=∑,cos 600AB AC S S -+=0Y=∑,sin 600A C S W --=得 1.155sin 30A C WS W==(压力)cos 60 1.155cos 600.577AB AC S S W W===(拉力)情况(b )如题3-1图(b )所示,取铰A 为研究对象,作受力图如题3-1图(b 1)所示.由平衡方程 0X =∑,cos 700AC AB S S -=0Y=∑,sin 700AB S W -=得 1.064sin 30A B WS W==(拉力)cos 70 1.064cos 700.364AC AB S S W W===(压力)情况(c )如题3-1图(c )所示,取铰A 为研究对象,作受力图如题3-1图(c 1)所示.由平衡方程 0X=∑,cos 300AC S W -=0Y=∑,sin 300AB S W -=得 cos 300.866AC S W W == (拉力)sin 300.5AB S W W==(压力)情况(d )如题3-1图(d )所示,取铰A 为研究对象,作受力图如题3-1图(d 1)所示.由平衡方程 0X =∑,sin 30sin 300AC AB S S -+=0Y=∑,cos 30cos 300AC AB S S W +-=得 0.5772cos 30A C AB W S S W===(拉力)3-2 题3-2图(a )所示的电动机重5W kN =,放在水平梁AC 的中间,A 和B 为固定铰链,C 为中间铰链。