北师大版八年级数学上册第五章二元一次方程组与一次函数常考题型(有答案)
- 格式:doc
- 大小:495.50 KB
- 文档页数:20
二元一次方程与一次函数必做题●二元一次方程与一次函数的关系基础题1. 如图所示是一次函数y=ax-b的图像,则关于x的方程ax-1=b的解为x=_______2. 若二元一次方程3x-2y=1所对应的直线是L,则下列各点不在直线L上的是())A. (1, 1)B. (-1, 1)C. (-3, -5)D. (2, 523. 已知直线y=ax+7, y=4-3x, y=2x-11相交于一点,求a的值能力题4. 若一次函数y=3x+7的图像与y轴的交点在直线-2x+by=18上,则b=______5. 已知正比例函数y=2x的图象与一次函数y=x+2的图象相交于点P, 点A是x轴上一点,且SΔPOA=6,则点A坐标是_________6. 如图,直线L1: y1=2x+3与直线L2: y2=kx-1交于点A, 点A横坐标为-1,且直线L1与x轴交于点B, 与y轴交于点D, 直线L2与y轴交于点C, 连接BC① 求点A坐标及直线L2的函数表达式② 求ΔABC面积x+1分别与x轴,y轴交于点A, B, 直线CD: y=x+b分别与x轴,y轴交于点C, D,且直7. 如图,已知直线AB: y=12线AB与CD相交于点p, SΔABD=2① 求b的值和点P的坐标② 求ΔADP面积●二元一次方程组与一次函数的关系基础题8. 如图,过点A的一次函数的图象与正比例函数y=2x的图象相交于点B, 则这个一次函数的表达式是_______9. 如图,已知直线L1: y=3x+1与y轴交于点A, 且和直线L2: y=mx+1交于点P(-2,a),根据以上信息解答下列问题① 求a的值②不解关于x, y的方程组y=3x+1y=mx+n 请你直接写出它的解③ 若直线L1, L2表示的两个一次函数都大于0,此时恰好x>3, 求直线L2的函数表达式10. 若点A(2, -3), B(4, 3), C(5, a)在同一条直线上,则实数a=_______11. 已知y=kx+b(k≠0)的图象过点(0,2)且与两坐标轴围成的三角形面积是2,则此一次函数表达式为____12. 甲,乙两车从A城出发匀速行驰至B城,在整个行驰过程中,甲,乙两车离开A城的距离y(单位:km)与甲车行驰时间x(单位;h)之间的函数关系如图所示,根据图象提供的信息,解答下列问题① A, B两城相距多少千米?②分别求甲,乙两车离开A城的距离y与x的关系式③求乙车出发后几小时追上甲车?能力题13. 甲,乙两车分别从A, B两地同时出发,沿同一条公路相向行驰,相遇后,甲车继续以原速行驰到B地,乙车立即以原速原路返回到B地,甲,乙两车距B地的路程y(km)与各自行驰的时间x(h)之间的关系如图所示① m=________ n=________② 求乙车距B地的路程y关于x的函数表达式,并写出自变量x的取值范围③ 当甲车到达B地时,求乙车距B地的路程14. 如图L A, L B分别表示A步行与B骑车在同一路上行驰的路程s(单位;km)与时间t(单位:h)的关系① B出发时与A相距_____km, B骑了一段路后,自行车发生故障,进行修理,所用的时间是_______h, B初始出发后,_____h与A相遇② 求出A行走的路程S与时间t的函数关系式③ 若B的不发生故障,保持出发时的速度前进,则B出发多少小时与A相遇,相遇时距离B的出发点多少千米?并在图上表示出这个相遇点x+4与x轴,y轴分别交于点A, 点B, 点D在y轴的负半轴上,若将Δ15. 如图,在平面直角坐标系中,直线y=-43DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处① 求线段AB的长和点C坐标② 求直线CD的表达式SΔOCD, 若存在,请求出点P坐标,若不存在,说明理由③ y轴上是否存在一点p, 使SΔPAB=1216. 某地植物园从正门到侧门有一条小路,甲徒步从正门出发匀速走向侧门,出发一段时间开始休息,休息了0.6h 后仍按原速继续行走,乙与甲同时出发,骑自行车从侧门匀速前往正门,到达正门后休息0.2h, 然后按原路原速匀速返回侧门,甲,乙到侧门的距离y(km)与出发时间x(h)之间的函数关系如图所示,根据图象信息解答下列问题① 求甲在休息前,y与x之间的函数关系式,并写出自变量x的取值范围② 求甲,乙第一次相遇的时间③ 直接写出乙回到侧门时,甲到侧门距离17. 如图,直线L1经过A, B两点(1)求出直线L1的表达式(2)若直线L2经过点C, D, 且直线L1, L2交于点P① 求出直线L2的解析式② 求出ΔBPC面积18. 已知一次函数图象过点(2,2),它与两坐标轴围成的三角形的面积等于1,求这个一次函数的解析式19. 已知A(8, 0)及在第一象限的动点P(x, y), 且x+y=0, 设ΔOPA面积为S,(1) 求S关于x的函数解析式(2)求x的取值范围(3)求S=12时P点坐标。
二元一次方程(组)与一次函数课前测试【题目】课前测试已知一次函数y1=2x+m与y2=2x+n(m≠n)的图象如图所示,则关于x与y 的二元一次方程组的解的个数为()A.0个B.1个C.2个D.无数个【答案】A【解析】由图象可知,一次函数y1=2x+m与y2=2x+n(m≠n)是两条互相平行的直线,所以关于x与y的二元一次方程组无解.解:∵一次函数y1=2x+m与y2=2x+n(m≠n)是两条互相平行的直线,∴关于x与y的二元一次方程组无解.故选:A.本题考查了一次函数与二元一次方程(组),方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.【难度】3【题目】课前测试甲、乙两人沿着一条笔直的公路进行长跑比赛,两人同时同地同向起跑,甲匀速跑完全程,并始终领先乙,甲到终点后原地休息.乙先匀速跑了4分钟后将速度提高至原来的1.5倍,再经过2分钟,乙又将速度降低至出发时的速度,并以这一速度完成余下的比赛.甲、乙两人的距离y(米)与乙出发的时间x(分钟)之间的关系如图所示,则比赛的全程为米.【答案】2000【解析】设甲的速度为x米/分钟,乙初始速度为y米/分钟,则比赛的全程为10x米,观察函数图象,找出关于x、y的二元一次方程组,解之即可得出x的值,将其代入10x中即可得出比赛全程的长度.解:设甲的速度为x米/分钟,乙初始速度为y米/分钟,则比赛的全程为10x米,根据题意得:,解得:,∴10x=2000.故答案为:2000.本题考查了二元一次方程组的应用以及一次函数图象,观察函数图象,列出关于x、y的二元一次方程组是解题的关键.【难度】3知识定位适用范围:北师大版,八年级知识点概述:本章重点部分是二元一次方程组与一次函数。
了解,掌握二元一次方程组与一次函数之间的关系,以及二元一次方程组与图像之间的联系适用对象:成绩中等偏下的学生注意事项:熟练掌握二元一次方程组与一次函数的关系重点选讲:①二元一次方程(组)与一次函数②二元一次方程组确定一次函数表达式③二元一次方程与一次函数的应用知识梳理知识梳理1:二元一次方程与一次函数二元一次方程与一次函数的图像的关系:(1)以二元一次方程的解为坐标的点都在相应的函数图像上(2)一次函数图像上的点的坐标都适合相应的二元一次方程二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法:(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.用二元一次方程组来确定一次函数的表达式:先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得出函数表达式,叫做待定系数法例题精讲题型1:二元一次方程(组)与一次函数若以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣1上,则常数b=()A.B.2 C.﹣1 D.1【答案】B【解析】直线解析式乘以2后和方程联立解答即可.解:因为以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣1上,直线解析式乘以2得2y=﹣x+2b﹣2,变形为:x+2y﹣2b+2=0所以﹣b=﹣2b+2,解得:b=2,故选:B.此题考查一次函数与二元一次方程问题,关键是直线解析式乘以2后和方程联立解答.【难度】3【题目】题型1变式练习1:二元一次方程(组)与一次函数用图象法解二元一次方程组时,小英所画图象如图所示,则方程组的解为()A.B.C. D.【答案】D【解析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.解:∵直线y=kx+b与y=x+2的交点坐标为(1,3),∴二元一次方程组的解为,故选:D.本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.【难度】3【题目】题型1变式练习2:二元一次方程(组)与一次函数若直线y=kx+b(k、b为常数,k≠0且k≠﹣2)经过点(2,﹣3),则方程组的解为.【答案】【解析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.解:∵直线y=kx+b(k、b为常数,k≠0且k≠﹣2)经过点(2,﹣3),∴方程组的解为.故答案为.本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.【难度】3题型2:待定系数法求一次函数表达式如图,过点Q(0,3)的一次函数与正比例函数y=2x的图象交于点P,能表示这个一次函数图象的方程是()A.3x﹣2y+3=0 B.3x﹣2y﹣3=0 C.x﹣y+3=0 D.x+y﹣3=0【答案】D【解析】如果设这个一次函数的解析式为y=kx+b,那么根据这条直线经过点P(1,2)和点Q(0,3),用待定系数法即可得出此一次函数的解析式.解:设这个一次函数的解析式为y=kx+b.∵这条直线经过点P(1,2)和点Q(0,3),∴,解得.故这个一次函数的解析式为y=﹣x+3,即:x+y﹣3=0.故选:D.本题主要考查了一次函数与方程组的关系及用待定系数法求一次函数的解析式.两个一次函数图象的交点坐标就是对应的二元一次方程组的解,反之,二元一次方程组的解就是对应的两个一次函数图象的交点坐标.【难度】3【题目】题型2变式练习1:待定系数法求一次函数表达式如图中的两直线l1、l2的交点坐标可以看作哪个方程组的解()A.B.C.D.【答案】A【解析】因为函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应该先用待定系数法求出两条直线的解析式,联立两直线解析式所组成的方程组即为所求的方程组.解:由于直线l1经过点(0,﹣1),(3,﹣2);因此直线l1的解析式为y=﹣x﹣1;同理可求得直线l2的解析式为y=﹣2x+4;因此直线l1,l2的交点坐标可以看作方程组的解.故选:A.方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.【难度】2【题目】题型2变式练习2:待定系数法求一次函数表达式已知和是二元一次方程ax+by+3=0的两个解,则一次函数y=ax+b (a≠0)的解析式为()A.y=﹣2x﹣3 B.C.y=﹣9x+3 D.【答案】D【解析】由已知方程的解,可以把这对数值代入方程,得到两个含有未知数a,b的二元一次方程,联立方程组求解,从而可以求出a,b的值,进一步得出解析式即可.解:∵和是二元一次方程ax+by+3=0的两个解,∴,解得:,∴一次函数y=ax+b(a≠0)的解析式为y=﹣x﹣.故选:D.此题考查了方程的解的意义和二元一次方程组的解法.解题关键是把方程的解代入原方程,使原方程转化为以系数a和b为未知数的方程,再求解.【难度】3【题目】题型2变式练习3:待定系数法求一次函数表达式如图,点A的坐标可以看成是方程组的解.【答案】【解析】先利用待定系数法分别求出两直线的解析式,然后根据函数图象交点坐标为两函数解析式组成的方程组的解即可得到答案.解:设过点(0,5)和点(2,3)的解析式为y=kx+b,则,解得,所以该一次函数解析式为y=﹣x+5;设过点(0,﹣1)和点(2,3)的解析式为y=mx+n,则,解得,所以该一次函数解析式为y=2x﹣1,所以点A的坐标可以看成是方程组解.故答案为.本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.也考查了待定系数法求次函数解析式.【难度】3题型3:二元一次方程组和一次函数的应用学校准备五一组织老师去隆中参加诸葛亮文化节,现有甲、乙两家旅行社表示对老师优惠,设参加文化节的老师有x人,甲、乙两家旅行社实际收费为y1、y2,且它们的函数图象如图所示,根据图象信息,请你回答下列问题:(1)当参加老师的人数为多少时,两家旅行社收费相同?(2)当参加老师的人数为多少人时,选择甲旅行社合算?(3)如果全共有50人参加时,选择哪家旅行社合算?【答案】30人;当有30人以下时,y1<y2,所以选择甲旅行社合算;当有50人参加时,y1>y2,所以选择乙旅行社合算;【解析】(1)当两函数图象相交时,两家旅行社收费相同,由图象即可得出答案.(2)由图象比较收费y1、y2,即可得出答案.(3)当有50人时,比较收费y1、y2,即可得出答案.解:(1)当两函数图象相交时,两家旅行社收费相同,由图象知为30人;(2)由图象知:当有30人以下时,y1<y2,所以选择甲旅行社合算;(3)由图象知:当有50人参加时,y1>y2,所以选择乙旅行社合算;本题考查了一次函数与二元一次方程组,属于基础题,关键正确理解图象的几何意义.【难度】3【题目】题型3变式练习1:二元一次方程组和一次函数的应用如图,直线l1过点A(8,0)、B(0,﹣5),直线l2过点C(0,﹣1),l1、l2相交于点D,且△DCB的面积等于8.(1)求点D的坐标;(2)点D的坐标是哪个二元一次方程组的解.【答案】D(4,﹣);点D的坐标是方程组的解.【解析】(1)由待定系数法求出直线l1的解析式,得出B的坐标,求出BC的长,由三角形的面积求出点D的横坐标,即可得出点D的纵坐标;(2)由待定系数法求出直线l1的解析式,即可得出结果.解:(1)设直线l1的解析式为y=kx+b,根据题意得:,解得:,∴直线l1的解析式为y=x﹣5,当x=0时,y=﹣5,∴B(0,﹣5),∴OB=5,∵点C(0,﹣1),∴OC=1,∴BC=5﹣1=4,设D(x,y),则△DCB的面积=×4×|x|=8,解得:x=±4(负值舍去),∴x=4,代入y=x﹣5得:y=﹣,∴D(4,﹣);(2)设直线l2的解析式为y=ax+c,根据题意得:,解得:,∴直线l2的解析式为y=﹣x﹣1,∵l1、l2相交于点D,∴点D的坐标是方程组的解.本题主要考查了一次函数与二元一次方程组的关系、两直线相交的问题,待定系数法求直线解析式;由待定系数法求出直线解析式是解决问题的关键.【难度】3【题目】题型3变式练习2:二元一次方程组和一次函数的应用如图,在平面直角坐标系中,直线a与x轴,y轴分别交于A、B两点,且直线a上所有点的坐标(x,y)都是二元一次方程4x﹣3y=﹣6的解,直线b与x轴,y轴分别交于C、D两点,且直线b上所有点的坐标(x,y)都是二元一次方程x﹣2y=1的解,直线a与b交于点E.(1)分别求出点A,点D的坐标;(2)求四边形AODE的面积.【答案】A(﹣,0),D(0,﹣);【解析】(1)根据一次函数图象上点的坐标特征求出点A的坐标和点D的坐标;(2)求出两条直线的交点E的坐标,根据四边形AODE的面积=四边形AOHE 的面积﹣△EDH的面积进行计算即可.解:(1)∵直线a上所有点的坐标(x,y)都是二元一次方程4x﹣3y=﹣6的解,∴当y=0时,x=﹣,∴点A的坐标为:(﹣,0),∵直线b上所有点的坐标(x,y)都是二元一次方程x﹣2y=1的解,∴x=0时,y=﹣,∴点D的坐标为:(0,﹣);(2)作EH⊥y轴于H,,解得,∴点E的坐标为(﹣3,﹣2),则四边形AODE的面积=四边形AOHE的面积﹣△EDH的面积=×(+3)×2﹣××3=.本题考查的是一次函数与二元一次方程组,一次函数图象上点的坐标特征,两条直线的交点的求法以及四边形的面积,正确求出E点坐标是解题的关键.【难度】3【题目】兴趣篇1如图,l1、l2分别是甲、乙二人运动的路程与时间关系图.根据图中信息,完成下列问题:(1)确定直线l1、l2的表达式;(2)请设计一个可以用二元一次方程组解决的实际问题.【答案】(1)直线l1的解析式为y=﹣20x+100,直线l2的解析式为y=15x;(2)A、B两地相距100km,甲、乙二人骑自行车分别从A、B出发,甲的速度为15km/h,乙的速度为20km/h,问经过多少小时他们相遇?【解析】(1)利用待定系数法求直线l1、l2的表达式;(2)利用题中的数据可设计:A、B两地相距100km,甲、乙二人骑自行车分别从A、B出发,甲的速度为15km/h,乙的速度为20km/h,问经过多少小时他们相遇?此问题可列二元一次方程组求解.解:(1)设直线l1的解析式为y=kx+b,把(0,100),(1,80)代入得,解得,所以直线l1的解析式为y=﹣20x+100,设直线l2的解析式为y=ax,把(2,30)代入得30=2a,解得a=15,所以直线l2的解析式为y=15x;(2)A、B两地相距100km,甲、乙二人骑自行车分别从A、B出发,甲的速度为15km/h,乙的速度为20km/h,问经过多少小时他们相遇?本题主要考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.【难度】3【题目】兴趣篇2(1)请在如图的直角坐标系中作出y=2x+1,y=3x的图象;(2)利用你所画的图象,直接写出方程组的解.【答案】【解析】根据函数图象的画法:描点、连线分别画出两个一次函数的图象.解:(1)函数y=2x+1经过点(0,1)、(﹣,0);函数y=3x经过(0,0)点,(1,3).作图如下:(2)根据图象可得:方程组的解为.本题主要考查了一次函数的图象,考查了函数图象的画法:列表、描点、连线.【难度】3【题目】备选题目1在直角坐标系中,若一点的纵横坐标都是整数,则称该点为整点.设k为整数,当直线y=x﹣2与y=kx+k的交点为整点时,k的值可以取()A.4个B.5个C.6个D.7个【答案】A【解析】让这两条直线的解析式组成方程组,求得整数解即可.解:①当k=0时,y=kx+k=0,即为x轴,则直线y=x﹣2和x轴的交点为(2,0)满足题意,∴k=0②当k≠0时,,∴x﹣2=kx+k,∴(k﹣1)x=﹣(k+2),∵k,x都是整数,k≠1,k≠0,∴x==﹣1﹣是整数,∴k﹣1=±1或±3,∴k=2或k=4或k=﹣2;综上,k=0或k=2或k=4或k=﹣2.故k共有四种取值.故选:A.本题考查了一次函数与二元一次方程组,属于基础题,解决本题的难点是根据分数的形式得到相应的整数解.【难度】3【题目】备选题目2一次函数y1=kx+b和y2=kx的图象上一部分点的坐标见下表:x …0 1 2 3 …y1…﹣4 ﹣1 3 5 ……x …﹣4 1 23…y2… 4 ﹣1 ﹣2 ﹣3则方程组的解为.【答案】【解析】根据函数与方程组的关系解答即可.解:由图表可知,一次函数y1=kx+b和y2=kx的图象交点为(1,﹣1),所以方程组的解为,故答案为:,此题考查函数与方程组的关系,关键是根据两个函数的交点即为方程组的解集.【难度】3【题目】备选题目3如图,直线l1:y=x﹣1与直线l2:y=﹣x+2在同一直角坐标中交于点A(2,1).(1)直接写出方程组的解是.(2)请判断三条直线y=x﹣1,y=﹣x+2,y=x+是否经过同一个点,请说明理由.【答案】;(2,1).【解析】(1)根据两函数图象的交点坐标就是两函数组成的二元一次方程组的解可得答案.(2)先求得两直线的交点坐标,再判断该交点坐标是否满足第三条直线即可.解:(1)由图可得,直线l1:y=x﹣1与直线l2:y=﹣x+2在同一直角坐标中交于点A(2,1),∴出方程组的解是,故答案为:;(2)解方程组,可得,把代入y=x+成立,∴三条直线y=x﹣1,y=﹣x+2,y=x+经过同一个点(2,1).此题主要考查了二元一次方程组与一次函数的关系,关键是掌握两函数图象的交点就是两函数组成的二元一次方程组的解.【难度】4。
北师大版八年级数学上册第五章《二元一次方程组》综合练习题(含答案)一、单选题1.如果方程3x y -=与下面方程中的一个组成的方程组的解为41x y =⎧⎨=⎩,那么这个方程可以是( ) A .3416x y -= B .1254x y +=C .1382x y +=D .2()6x y y -=2.在同一平面直角坐标系中,直线4y x =-+与2y x m =+相交于点(3,)P n ,则关于x ,y 的方程组4020x y x y m +-=⎧⎨-+=⎩的解为( )A .15x y =-⎧⎨=⎩B .13x y =⎧⎨=⎩C .31x y =⎧⎨=⎩D .95x y =⎧⎨=-⎩3.已知方程组23133530.9a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩,则()()()()2213313230.951x y x y ⎧-=++⎪⎨-=-+⎪⎩的解是( )A .8.31.2x y =⎧⎨=⎩B .10.32.2x y =⎧⎨=⎩C . 6.32.2x y =⎧⎨=⎩D .10.30.2x y =⎧⎨=⎩4.已知关于x ,y 的二元一次方程组24,2x y kx y -=⎧⎨+=⎩,的解为2,x y =⎧⎨=♥⎩,其中“♥”是不小心被墨水涂的,则k 的值为( ) A .1B .1-C .2D .2-5.如图,直线y =x +5和直线y =ax +b 相交于点P ,观察其图象可知方程x +5=ax +b 的解( )A .x =15B .x =25C .x =10D .x =206.五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为( ) A .30B .26C .24D .227.如图,直线2y x =与y kx b =+相交于点(),2P m ,则关于x 的方程2kx b +=的解是( )A .12x =B .1x =C .2x =D .4x =8.某体育比赛的门票分A 票和B 票两种,A 票每张x 元,B 票每张y 元.已知10张A 票的总价与19张B 票的总价相差320元,则( ) A .1032019xy= B .1032019yx= C .1019320x y -= D .1910320x y -=9.《九章算术》是我国古代著名的数学专著,其“方程”章中给出了“遍乘直除”的算法解方程组.比如对于方程组323923342326x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩,将其中数字排成长方形形式,然后执行如下步骤(如图);第一步,将第二行的数乘以3,然后不断地减第一行,直到第二行第一个数变为0;第二步,对第三行做同样的操作,其余步骤都类似.其本质就是在消元.那么其中的a ,b 的值分别是( )A .24,4B .17,4C .24,0D .17,010.如图,在方格纸中,点P ,Q ,M 的坐标分别记为(0,2),(3,0),(1,4).若MN ∥PQ ,则点N 的坐标可能是( )A .(2,3)B .(3,3)C .(4,2)D .(5,1)11.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是( )A .9B .10C .11D .1212.如图,直线11y k x b =+和直线22y k x b =+相交于点2,23M ⎛⎫- ⎪⎝⎭,则关于x ,y 的方程组1122y k x b y k x b =+⎧⎨=+⎩,的解为( )A .2,32x y ⎧=⎪⎨⎪=-⎩B .2,23x y =-⎧⎪⎨=⎪⎩C .2,32x y ⎧=⎪⎨⎪=⎩D .2,23x y =-⎧⎪⎨=-⎪⎩二、填空题13.关于x 、y 的二元一次方程组2354343x y mx y m -=-⎧⎨+=+⎩的解满足55x y +=,则m 的值是______.14.若()225240x y x y +-++=,则x y -的值是________.15.某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元,则有______种购买方案.16.若方程组()23312y kx y k x =-⎧⎨=-+⎩无解,则2y kx =-图象不经过第________象限.17.如图点D 、E 分别在ABC 的边AC 、AB 上,2,,3AD AE EB BD DC ==与CE 交于点F ,40ABC S =△,则AEFD S =_______.18.如图,直线3y kx =-与x 轴、y 轴分别交于点B 与点A ,13OB OA =,点C 是直线AB上的一点,且位于第二象限,当△OBC 的面积为3时,点C 的坐标为______.三、解答题19.已知点(4,0)A 及在第一象限的动点(,)P x y ,且6x y +=,O 为坐标原点,设OPA 面积为S .(1)求S 关于x 的函数解析式; (2)求x 的取值范围; (3)当6S =时,求P 点坐标.20.某商场同时购进甲、乙两种商品共100件,其进价和售价如表:商品名称甲乙进价(元/件)40 90售价(元/件)60 120设其中甲种商品购进x件,商场售完这批商品的总利润为y元.(1)写出y关于x的函数关系式;(2)若获得的利润恰好为2800元,求该商场购进甲、乙两种商品各多少件?21.如图,一次函数y=x+3的图象1l与x轴交于点B,与过点A(3,0)的一次函数的图象2l交于点C(1,m).(1)求m的值;(2)求一次函数图象2l相应的函数表达式;(3)求ABC的面积.22.已知0k ≠,将关于x 的方程0kx b +=记作方程☆. (1)当3k =,2b =-时,方程☆的解为______.(2)若方程☆的解为5x =-,写出一组满足条件的k ,b 值:k =______,b =______; (3)若方程☆的解为3x =,求关于y 的方程()250k y b --=的解.23.A ,B 两地相距300km ,甲、乙两人分别开车从A 地出发前往B 地,其中甲先出发1h ,如图是甲,乙行驶路程(km),(km)y y 甲乙随行驶时间(h)x 变化的图象,请结合图象信息.解答下列问题:(1)填空:甲的速度为___________km /h ; (2)分别求出,y y 甲乙与x 之间的函数解析式; (3)求出点C 的坐标,并写点C 的实际意义.24.数学乐园:解二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩①②,21b ⨯-⨯①②b 得:()12211221a b a b x c b c b -=-,当12210a b a b -≠时,12211221c b c b x a b a b -=-,同理:12211221a c a c y ab a b -=-;符号a b c d称之为二阶行列式,规定:a b ad bc c d=-,设1122a b D a b =,1122x c b D c b =,1122y a c D a c =,那么方程组的解就是x y D x DD y D⎧=⎪⎪⎨⎪=⎪⎩ (1)求二阶行列式3456的值;(2)解不等式:2224x x -≥--;(3)用二阶行列式解方程组3262317x y x y -=⎧⎨+=⎩;(4)若关于x 、y 的二元一次方程组362317x my x y -=⎧⎨+=⎩无解,求m 的值.25.在新年联欢会上,同学们组织了精彩的猜谜活动,为了奖励猜对的同学,老师决定购买笔袋或彩色铅笔作为奖品,已知1个笔袋和2筒彩色铅笔原价共需44元;2个笔袋和3筒彩色铅笔原价共需73元.(1)求每个笔袋、每筒彩色铅笔的原价各多少元?(2)时逢新年期间,商店举行“优惠促销”活动,具体办法如下:笔袋“九折”优惠;彩色铅笔不超过10筒不优惠,超出10筒的部分“八折”优惠.如果买m 个笔袋需要1y 元,买n 筒彩色铅笔需要2y 元.请用含m ,n 的代数式分别表示1y 和2y ;(3)如果在(2)的条件下一共购买同一种奖品95件,请分析买哪种奖品省钱.26.如图1,在平面直角坐标xOy 中,直线1l :1y x =+与x 抽交于点A ,直线2l :33y x =-与x 轴交于点B ,与1l 相交于C 点.(1)请直接写出点A ,点B ,点C 的坐标:A _________,B ________,C _______. (2)如图2,动直线x t =分别与直线1l 、2l 交于P 、Q 两点. ①若2PQ =,求t 的值;②若存在2AQC ABC S S =△△,求出此时点Q 的坐标;若不存在,请说明理由.27.小华从家里出发到学校去上学,前15路段小华步行,其余路段小华骑自行车. 已知小华步行的平均速度为60m/min ,骑自行车的平均速度为200m/min ,小华从家里到学校一共用了22min .(1)小红同学提出问题:小华家里离学校有多少m ? 前15路段小华步行所用时间是多少min ? 请你就小红同学提出的问题直接设出未知数列方程组进行解答.(2)请你再根据题目的信息,就小华走的“路程”或“时间”,提出一个能用二元一次方程组解答但与第(1)问不完全相同的问题,并设出未知数、列出方程组。
第五章二元一次方程组易错点剖析易错点一对二元一次方程(组)的定义理解不彻底【例1】下列方程中,是二元一次方程的是().A. 3x−2y=4zB. 6xy+9=0C. 1x +4y=6 D. 4x=y−24本题容易受6xy+9=0中的xy影响导致误选,二元一次方程(组)必须符合以下三个条件:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数;(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1,注意xy的次数是2;(3)二元一次方程的左边和右边都必须是整式.跟踪练习1. 下列方程中,是二元一次方程的是().A. xy=2B. 3x+4y=0C. x+1y=2 D. x2+2y=4易错点二解方程组时不注意项的符号导致错误【例2】解方程组:{x−2y=2,①x−y=−2.②用加减消元法中减法消元时,易出现符号错误,所以要特别细心.跟踪练习2. 解方程组:{2x−5y=−3,①2x−3y=−1.②易错点三不理解待定系数法而出错【例3】已知一次函数图象经过点(0,3),(3,0),写出它的表达式: .本题容易把待定的系数与变量混为一谈,直接误认为k=3,b=3,做出错误的答案.因此,用待定系数法解题,要牢牢把握准所求的系数.跟踪练习3. 已知一次函数的图象经过点(1,3)和点(−2,−3),则此一次函数的表达式是 .易错点四列方程组解应用题时不能正确理解题意【例4】现有食盐水两种,一种含盐12%,另一种含盐20%,分别取这两种盐水a kg和b kg,将其混合成18%的盐水100kg,求a,b的值.在列方程时,对背景不熟而出错,如:列方程12%a+20%b=100×18 %,方程左边表示混合之前两种食盐水的含盐量之和,而右边表示最后盐水中的含盐量.因此,解题时,要深刻理解题意,找准等量关系.跟踪练习4. 今年“五一”小长假期间,某市外来与外出旅游总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.重难点突破重难点一 二元一次方程(组)的有关概念注意理解定义中“元”是指未知数,“二元”就是指方程中有且只有两个未知数,且“未知数的次数为1”是指含有未知数的项(单项式)的次数是1.1. 下列四个方程中是二元一次方程的是( ).A. 4x−1=xB. x +1x =2C. 2x−3y =1D. xy =82. 已知2x 3−k +y =0是二元一次方程,那么k 的值为( ).A. 3 B. 0 C. 2 D. 43. 在下列方程组:①{x +y =5,3y−x =1,②{xy =1,x +2y =3,③{1x +1y =1,x +y =1,④{x =1,y =3中,是二元一次方程组的是( ).A. ①③B. ①④C. ①②D. 只有①4. 已知3x a−1−5y b +2=1是关于x ,y 的二元一次方程,则a +b = .5. 若方程组{x +y ∣a∣−2=0,(a−3)x +9=0是二元一次方程组,求a 的值.重难点二 求解二元一次方程组解二元一次方程组的基本方法:代入消元法和加减消元法,核心思想是“消元”.6. 方程组{x +y =5,x−y =1的解是( ).A. {x =3,y =2 B. {x =−2,y =−3 C. {x =4,y =1 D. {x =4,y =37. 方程组{x +y =10,2x +y =16的解是( ).A. {x =7,y =3B. {x =6,y =4C. {x =5,y =5D. {x =1,y =98. [2023·深圳期末]解方程组:(1) {y =2x ,x +y =12;(2) {3x +5y =21,2x−5y =−11.重难点三 二元一次方程组的应用利用二元一次方程(组)解决实际问题的一般步骤:(1)审,(2)设,(3)找,(4)列,(5)解,(6)答.9. 某配餐公司需用甲、乙两种食材为在校午餐的同学配置营养餐,两种食材的蛋白质含量和碳水化合物含量如下表所示:甲食材乙食材每克所含蛋白质0.3单位0.7单位每克所含碳水化合物0.6单位0.4单位若每位中学生每餐需要21单位蛋白质和40单位碳水化合物,那么每餐甲、乙两种食材各多少克恰好满足一个中学生的需要?设每餐需要甲食材x克,乙食材y克,那么可列方程组为().A. {0.3x+0.6y=21,0.7x+0.4y=40 B. {0.6x+0.3y=21, 0.4x+0.7y=40C. {0.3x+0.7y=21,0.6x+0.4y=40 D. {0.3x+0.7y=40, 0.6x+0.4y=2110. [2023·东莞校考]某车间有60名工人,每人平均每天可加工螺栓14个或螺母20个,要使每天加工的螺栓和螺母配套(1个螺栓配2个螺母),设分配x 人生产螺母,y人生产螺栓,依题意列方程组为某商店购买商品A,B共三次,只有其中一次购买时,商品A,B同时打折,其余两次均按标价购买,三次购买商品A,B的数量和费用如表所示:购买商品A的数量/个购买商品B的数量/个购买总费用/元第一次购物65 1 140第二次购物37 1 110第三次购物98 1 062(1)在这三次购物中,第次购物打了折扣;(2)求出商品A,B的标价.12. 某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车.据了解,2辆A型汽车和3辆B型汽车的进价共计80万元;3辆A型汽车和2辆B型汽车的进价共计95万元.(1)求A,B两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,请直接写出该公司的采购方案.重难点四二元一次方程与一次函数的综合一般地,以一个二元一次方程的解为坐标的点组成的图象与相应的一次函数的图象相同,是一条直线.13. 如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x,y 的二元一次方程组{kx−y=−b,y−x=2的解是().A. {x=3,y=4 B. {x=2,y=4 C.{x=1.8,y=4 D.{x=2.4,y=414. 若关于x,y的二元一次方程组{y=kx+b,y=mx+n的解为{x=2,y=5,则一次函数y=kx+b与y=mx+n的图象的交点坐标为().A. (2,5)B. (5,2)C. (−2,−5)D. (1,5)15. 如图是函数y=−x+4与y=x+2的图象,则方程组{y=−x+4,y=x+2的解是 .16. 如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b),分别与x 轴交于A,B两点.(1)求b,m的值,并结合图象写出关于x,y的方程组{2x−y=−1,mx−y=−4的解;(2)求△ABP的面积;(3)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD的长为2,直接写出a的值.第五章二元一次方程组易错点剖析易错点一对二元一次方程(组)的定义理解不彻底跟踪练习1.B本题容易受6xy+9=0中的xy影响导致误选,二元一次方程(组)必须符合以下三个条件:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数;(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1,注意xy的次数是2;(3)二元一次方程的左边和右边都必须是整式.【例1】 D易错点二解方程组时不注意项的符号导致错误跟踪练习2.解:①−②,得−2y=−2,解得y=1,把y=1代入②,得2x −3=−1,解得x=1,所以原方程组的解为{x=1,y=1.用加减消元法中减法消元时,易出现符号错误,所以要特别细心.【例2】解:①−②,得−y=4,∴y=−4.把y=−4代入②,得x −(−4)=−2,解得x=−6,所以原方程组的解为{x=−6,y=−4.易错点三不理解待定系数法而出错跟踪练习3.y=2x+1本题容易把待定的系数与变量混为一谈,直接误认为k=3,b= 3,做出错误的答案.因此,用待定系数法解题,要牢牢把握准所求的系数.【例3】y=−x+3易错点四列方程组解应用题时不能正确理解题意跟踪练习4.解:设去年外来旅游的人数为x万人,外出旅游的人数为y万人,由题意得{x−y=20,(1+30%)x+(1+20%)y=226,解得{x=100, y=80,所以(1+30%)x=(1+30%)×100=130,(1+20%)y=(1+20%)×80=96.答:该市今年外来和外出旅游的人数分别是130万人和96万人.在列方程时,对背景不熟而出错,如:列方程12%a+20%b= 100×18%,方程左边表示混合之前两种食盐水的含盐量之和,而右边表示最后盐水中的含盐量.因此,解题时,要深刻理解题意,找准等量关系.【例4】解:根据题意得{a+b=100,12%a+20%b=100×18%,解得{a=25, b=75.答:a,b的值分别为25,75.重难点突破重难点一二元一次方程(组)的有关概念1.C2.C3.B4.15.解:∵方程组{x+y∣a∣−2=0,(a−3)x+9=0是二元一次方程组,∴|a|−2=1且a−3≠0,∴a=−3.重难点二求解二元一次方程组6.A7.B8.(1)解:{y=2x①,x+y=12②,将①代入②,得3x=12,解得x=4.将x=4代入①,得y=8,∴原方程组的解为{x=4,y=8.(2){3x+5y=21①,2x−5y=−11②,①+②,得5x=10,解得x=2,将x=2代入①,得6+5y=21,∴5y=15,解得y=3,∴原方程组的解为{x=2,y=3.重难点三二元一次方程组的应用9.C10.{x+y=60,20x=2×14y11.(1)三解:∵第三次购买的数量最多,总费用最少,∴小明以折扣价购买商品A,B是第三次购物.故答案为三.(2)设商品A的标价为x元,商品B的标价为y元,根据题意,得{6x+5y=1140,3x+7y=1110,解得{x=90,y=120.答:商品A的标价为90元,商品B的标价为120元.12.(1)解:设A,B两种型号的汽车每辆进价分别为x万元,y万元.依题意,得{2x+3y=80,3x+2y=95,解得{x=25, y=10,答:A,B两种型号的汽车每辆进价分别为25万元,10万元.(2)设购进A型汽车m辆,购进B型汽车n辆,m<n,依题意,得25m+10n=200,∴m=8−25n.∵m,n均为正整数,∴n为5的倍数,∴m=6,n=5或m=4,n=10或m=2,n=15,∵m<n,∴m=6,n=5不合题意,舍去,∴共有2种购买方案.方案一:购进A型汽车4辆,B型汽车10辆;方案二:购进A型汽车2辆,B型汽车15辆.重难点四二元一次方程与一次函数的综合13.B14.A15.{x=1,y=316.(1)解:把点P(1,b)的坐标代入y=2x+1,得b=2+1= 3,把点P(1,3)的坐标代入y=mx+4,得m+4=3,∴m=−1.∵直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,3),∴关于x,y的方程组{2x−y=−1,mx−y=−4的解为{x=1, y=3.(2)∵l1:y=2x+1,l2:y=−x+4,∴A (−12,0),B(4,0),∴AB=4−(−12)=92.设点P到x轴的距离为ℎ,则ℎ=3,∴S △ABP =12AB ⋅ℎ=12×92×3=274.(3) 直线x =a 与直线l 1 的交点C 的坐标为(a ,2a +1),与直线l 2 的交点D 的坐标为(a,−a +4).∵CD =2,∴|2a +1−(−a +4)|=2,即|3a−3|=2,∴3a−3=2 或3a−3=−2,∴a =53或a =13.。
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯用二元一次方程组确定一次函数表达式练习一、选择题1. 如图,已知函数y =x +1和y =ax +3图象交于点P ,点P的横坐标为1,则关于x ,y 的方程组{x −y =−1ax −y =−3的解是( )A. {x =1y =2B. {x =2y =1 C.{x =1y =−2D. {x =−2y =12. 如图,直线l 1、l 2的交点坐标可以看作方程组( )的解.A. {x −2y =−22x −y =2 B. {y =−x +1y =2x −2 C. {x −2y =−12x −y =−2 D. {y =2x +1y =2x −23. 若方程组{x +y =22x +2y =3没有解,由此一次函数y =2−x 与y =32−x 的图像必定( ).A. 重合B. 平行C. 相交D. 无法判断4. 下面四条直线,其中直线上的每一个点的坐标都是二元一次方程2x −3y =6的解的是( )A.B.C.D.5. 直线y =−2x −1关于y 轴对称的直线与直线y =−2x +m 的交点在第四象限,则m的取值范围是( )A. m >−1B. m <1C. −1<m <1D. −1≤m ≤16. 以方程2x +y =14的解为坐标的点组成的图象是一条直线,这条直线对应的一次函数表达式为( )A. y =2x +14B. y =2x −14C. y =−2x +14D. y =−x +77. 直线y =2x −3和直线y =−x +1的交点坐标是( )A. (13,43)B. (43,−13)C. (−43,13)D. (−43,−13)8. 如图,已知函数y =x +1和y =ax +3图象交于点P ,点P的横坐标为1,则关于x ,y 的方程组{x −y =−1ax −y =−3的解是( )A. {x =1y =2B. {x =2y =1C. {x =1y =−2D. {x =−2y =19. 直线y =mx −2和y =nx −6相交于x 轴上同一点,则mn 的值为( )A. 13B. −13C. 3D. −310. 如图,已知函数y =x +1和y =ax +3图象交于点P ,点P的横坐标为1,则关于x ,y 的方程组{x −y =−1ax −y =−3的解是( )A. {x =1y =2B. {x =2y =1C. {x =1y =−2D. {x =−2y =111. 如果函数y =3x −2与y =2x +3k 的图象相交于y 轴上,那么k 的值为( ).A. −2B. −23C. 23D. −3212. 如图,在Rt △ABO 中,∠OBA =90°,A(4,4),点C 在边AB上,且ACCB =13,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为( )A. (2,2)B. (52,52)C. (83,83)D. (3,3)13. 若直线L 1经过(0,4),L 2经过点(2,6),且L 1与L 2关于y 轴对称,则L 1与L 2的交点坐标是( )A. (3,2)B. (2,3)C. (0,4)D. (4,0)二、填空题14. 若直线y =kx +b(k 、b 为常数,k ≠0且k ≠−2)经过点(2,−3),则方程组{kx −y =−b2x +y =1的解为______. 15. 若方程组{y =2kx −3y =(3k −1)x +2无解,则y =kx −2图象不经过第_____象限.16. 如图,已知一次函数y =2x +b 和y =kx −3(k ≠0)的图象交于点P ,则二元一次方程组{2x −y =−bkx −y =3的解是______.17. 若以二元一次方程x +2y −b =0的解为坐标的点(x,y)都在直线y =−12x +b −1上,则常数b =____.18. 若直线y =x +b 与直线y =−2x +4的交点在x 轴上,则b =__________. 三、解答题19. 如图,已知直线l 1:y 1=2x +1与坐标轴交于A 、C 两点,直线l 2:y 2=−x −2与坐标轴交于B 、D 两点,两直线的交点为P 点.(1)求P 点的坐标; (2)求△APB 的面积;(3)x 轴上存在点T ,使得S △ATP =S △APB ,求出此时点T 的坐标.20. 已知一次函数y =kx +b 的图象经过点(−1,−5),且与正比例函数y =12x 的图象相交于点(2,a),求 (1)a 的值; (2)k ,b 的值;(3)这两个函数图象与x 轴所围成的三角形的面积.21. 已知直线l 平行于直线y =−3x ,且经过点M(1,3).(1)求直线l 的解析式;(2)试说明点P(2a,−6a +8)是否在直线l 上.22. 如图,已知函数y =x +1和y =ax +3的图象交于点P ,点P 的横坐标为1,(1)关于x ,y 的方程组{x −y =−1ax −y =−3的解是______;(2)a =______;(3)求出函数y =x +1和y =ax +3的图象与x 轴围成的几何图形的面积.23. 如图,已知直线l 1:y 1=2x +1与坐标轴交于A 、C 两点,直线l 2:y 2=−x −2与坐标轴交于B 、D 两点,两直线的交点为P 点.(1)求P点的坐标;(2)求△APB的面积;(3)x轴上存在点T,使得S△ATP=S△APB,求出此时点T的坐标.答案和解析1.【答案】A【解答】解:把x =1代入y =x +1,得出y =2, 函数y =x +1和y =ax +3的图象交于点P(1,2), 即x =1,y =2同时满足两个一次函数的解析式. 所以关于x ,y 的方程组{x −y =−1ax −y =−3的解是{x =1y =2.故选A .2.【答案】A【解析】解:设l 1的解析式为y =kx +b , ∵图象经过的点(1,0),(0,−2), ∴{b =−20=k +b,解得:{b =−2k =2,∴l 1的解析式为y =2x −2, 可变形为2x −y =2, 设l 2的解析式为y =mx +n , ∵图象经过的点(−2,0),(0,1), ∴{n =10=−2m +n,解得:{n =1m =12,∴l 2的解析式为y =12x +1, 可变形为x −2y =−2,∴直线l 1、l 2的交点坐标可以看作方程组{x −2y =22x −y =2的解.3.【答案】B【解答】解:∵方程组{x +y =22x +2y =3没有解,∴一次函数y =2−x 与y =32−x 的图象没有交点, ∴一次函数y =2−x 与y =32−x 的图象必定平行.故选B .4.【答案】D【解析】解:∵2x −3y =6, ∴y =23x −2,∴当x =0,y =−2;当y =0,x =3,∴一次函数y =23x −2,与y 轴交于点(0,−2),与x 轴交于点(3,0), 即可得出选项D 符合要求,5.【答案】C【解析】解:联立{y =2x −1y =−2x +m ,解得{x =m+14y =m−12,∵交点在第四象限,∴{m+14>0①m−12<0②, 解不等式①得,m >−1, 解不等式②得,m <1,所以,m 的取值范围是−1<m <1.6.【答案】C【解答】解:在方程2x +y =14中, 可得:y =−2x +14,所以这条直线对应的一次函数表达式为y =−2x +14; 故选:C .7.【答案】B【解答】解:联立两函数的解析式,可得:{y =2x −3y =−x +1, 解得{x =43y =−13即直线y =x 与抛物线y =−3x 2的交点坐标是(43,−13), 故选:B .8.【答案】A【解析】解:把x =1代入y =x +1,得出y =2, 函数y =x +1和y =ax +3的图象交于点P(1,2), 即x =1,y =2同时满足两个一次函数的解析式. 所以关于x ,y 的方程组{x −y =−1ax −y =−3的解是{x =1y =2.9.【答案】A【解答】解:因为两个一次函数的图象都为直线且交点在x 轴上, 根据y =mx −2,令y =0,得x =2m ; y =nx −6,令y =0,得x =6n ,直线y =mx −2和y =nx −6相交于x 轴上同一点,所以2m =6n , 可得mn =13. 故选A .10.【答案】A【解答】解:把x =1代入y =x +1,得出y =2, 函数y =x +1和y =ax +3的图象交于点P(1,2), 即x =1,y =2同时满足两个一次函数的解析式, 所以关于x ,y 的方程组{x −y =−1ax −y =−3的解是{x =1y =2.故选A .11.【答案】B【解答】解:y =3x −2与y 轴交点的坐标是(0,−2), ∵y =3x −2与y =2x +3k 的图象相交于y 轴, ∴y =2x +3k 与y 轴交点的坐标是(0,−2), 即−2=3k , ∴k =−23.故选B .12.【答案】C【解答】解:∵在Rt △ABO 中,∠OBA =90°,A(4,4), ∴AB =OB =4,∠AOB =45°, ∵ACCB =13,点D 为OB 的中点, ∴BC =3,OD =BD =2, ∴D(2,0),C(4,3),作D 关于直线OA 的对称点E ,连接EC 交OA 于P ,则此时,四边形PDBC 周长最小,E(0,2), ∵直线OA 的解析式为y =x , 设直线EC 的解析式为y =kx +b , ∴{b =24k +b =3,解得:{k =14b =2, ∴直线EC 的解析式为y =14x +2,解{y =x y =14x +2得,{x =83y =83,∴P(83,83),故选:C .13.【答案】C【解答】解:∵直线l 1经过点(0,4),l 2经过点(2,6),且l 1与l 2关于y 轴对称, ∴两直线相交于y 轴上, ∴l 1与l 2的交点坐标是(0,4);故选C .14.【答案】{x =2y =−3【解析】解:∵直线y =kx +b(k 、b 为常数,k ≠0且k ≠−2)经过点(2,−3),∴方程组{kx −y =−b 2x +y =1的解为{x =2y =−3. 故答案为{x =2y =−3. 15.【答案】二【解答】解:∵方程组无解,∴直线y =2kx −3与y =(3k −1)x +2平行,∴2k =3k −1,解得k =1,∴y =kx −2=x −2中k =1>0,−2<0,∴直线y =kx −2经过第一、三、四象限,不经过第二象限.故答案为二.16.【答案】{x =4y =−6【解析】解:∵一次函数y =2x +b 和y =kx −3(k ≠0)的图象交于点P(4,−6),∴点P(4,−6)满足二元一次方程组{2x −y =−b kx −y =3, ∴方程组的解是{x =4y =−6. 故答案为{x =4y =−6. 17.【答案】2【解答】解:因为以二元一次方程x +2y −b =0的解为坐标的点(x,y)都在直线y =−12x +b −1上,直线解析式乘以2得2y =−x +2b −2,变形为:x +2y −2b +2=0所以−b =−2b +2,解得:b =2,故答案为2.18.【答案】−2【解答】解:∵直线y =−2x +4与直线y =x +b 的交点在x 轴上, ∴y =0,∴−2x +4=0,解得:x =2,∴2+b =0,∴b =−2,故答案为−2.19.【答案】解:(1)由解得{x =−1y =−1,所以P(−1,−1);(2)令x =0,得y 1=1,y 2=−2,∴A(0,1),B(0,−2),则S ΔAPB =12 ×(1+2)×1=32;(3)在直线l 1:y 1=2x +1中,令y =0,解得x =−12,∴C(−12,0),设T(x,0),,∵S ΔATP =S ΔAPB ,,,解得x =1或−2,∴T(1,0)或(−2,0).20.【答案】解:(1)由题知,把(2,a)代入y =12x ,解得a =1;(2)由题意知,把点(−1,−5)及点(2,a)代入一次函数解析式得: −k +b =−5,2k +b =a ,又由(1)知a =1,解方程组得:k =2,b =−3;(3)由(2)知一次函数解析式为:y =2x −3,直线y =2x −3与x 轴交点坐标为(32,0)∴所求三角形面积=12×1×32=34. 21.【答案】解:(1)设直线解析式为y =kx +b ,∵平行于直线y =−3x ,∴k =−3,∴y =−3x +b ,∵过点(1,3),∴−3+b =3,∴b =6,∴直线l 解析式是y =−3x +6;(2)把x =2a 代入y =−3x +6得,y =−6a +6≠−6a +8, ∴点P(2a,−6a +8)不在直线l 上.22.【答案】解:(1){x =1y =2;(2)−1;(3)∵函数y =x +1与x 轴的交点为(−1,0),y =−x +3与x 轴的交点为(3,0),∴这两个交点之间的距离为3−(−1)=4,∵P(1,2),∴函数y =x +1和y =ax +3的图象与x 轴围成的几何图形的面积为:12×4×2=4.【解答】解:(1)把x =1代入y =x +1,得出y =2,函数y =x +1和y =ax +3的图象交于点P(1,2),即x =1,y =2同时满足两个一次函数的解析式.所以关于x ,y 的方程组{x −y =−1ax −y =−3的解是{x =1y =2. 故答案为{x =1y =2; (2)把P(1,2)代入y =ax +3,得2=a +3,解得a =−1.故答案为−1;(3)见答案.23.【答案】解:(1)由{y =2x +1y =−x −2,解得{x =−1y =−1,所以P(−1,−1);(2)令x =0,得y 1=1,y 2=−2 ∴A(0,1),B(0,−2), 则 S △APB =12×(1+2)×1=32;(3)在直线l 1:y 1=2x +1中,令y =0,解得x =−12, ∴C(−12,0),设T(x,0),∴CT =|x +12|,∵S △ATP =S △APB ,S △ATP =S △ATC +S △PTC =12⋅|x +12|⋅(1+1)=|x +12|,∴|x +12|=32,解得x =1或−2, ∴T(1,0)或(−2,0).。
.八(上) 第五章二元一次方程组 分节练习第 1 节 认识二元一次方程组01、【基础题】若方程 3x 3m+2 y n=4 是二元一次方程,那么 m + n 的值是 ______. 02、【基础题】下面 4 组数值中,哪些是二元一次方程 2x + y =10 的解?x -2 x 3 x 4 ( 1) 6 ( 2) 4 (3) ( 4)y y y 3x + = 2.1 、【基础题】二元一次方程组2 y 10y 的解是 ______.=2xx 6y -2x 4 ( 2) x 3x 2x4( 1)3y (3)y 4( 4)2 y6y= + x 3m 1 是二元一次方程 4x -3y =10 的一个解,求 m 的值 .2.2 、【基础题】若= - y 2 2m 3、根据题意列方程组:( 1)小明从邮局买了面值 50 分和 80 分的邮票共 9 枚,花了 6.3 元,小明买了两种邮票各多少枚?( 2)周末, 8 个人去红山公园玩,买门票一共花了 34 元,已知每张成人票 5 元,每张儿童票 3 元,请问8个人中有几个成人、几个儿童?( 3)某班共有学生45 人,其中男生比女生的 2 倍少 9 人,则该班男生、女生各多少人?( 4)老牛比小马多驮了 2 个包裹,如果把小马驮的其中 1 个包裹放到老牛背上,那么老牛的包裹是小马的 2 倍,请问老牛和小马开始各驮了多少包裹?( 5)将一摞笔记本分给若干同学 . 每个同学 5 本,则剩下 8 本;每个同学 8 本,又差了 7 本 . 共有多少本笔记本、多少个同学?第 2 节 求解二元一次方程组4、【基础题】 用代入消元法解下列方程组:y =2 x (1) (2) x +y =12 x =y -52( 3)x +y =11 x -y 7 (4)3x -2y =9 x +2 y 3x -3 y =2 ( 5) (6)y x3x +2 y =14 (9) (10) x y +34x +3y =65x +y =52x +y 82x +3y =16x +4 y 13 ( 7)4x +3 y =5 x -2y 4( 8)m - n =222m +3n 125、【基础题】用加减消元法解下列方程组:..(1) 7x -2y =3 ; ( 2) 6x -5y =3 ; ( 3) + 2 y - 6x + y -9x 19 152x + = - = + 3y 12 ( 6)3( x 1) y 5( 5) + ; - ;3x 4 y 17 5( y +1) 3( x 5)+ = ; ( 4) 5x-= 9 ; 4s 3t 5 6 y - - 7x - 4 y - 5 2s t 55.1 、【基础题】用加减消元法解下列方程组:- 3y =- 5y =- 21 + =- ( 1) 4 x 14( 2) 2x 4x 7 y 19; + ;+ ; (3) ; (4)31 3y 23 -17 5x 3y4x 4x 5 y( 5) 3x -5 y =3(6)y +1= x +2 ; ( 7) x - y ; 4 31 x -(3y - x)=12 35.2 、【综合Ⅰ】 如果 x 1 是二元一次方程组ax by 1) y 2 bx ay 的解,那么 a ,b 的值是(2 ( A ). a 1( B ). a1 a 0 a 0 bb0 ( C ). 1 ( D ).1bb第 3 节 应用二元一次方程组 —— 鸡兔同笼6、【综合Ⅰ】 列方程解应用题:( 1)小梅家有鸡也有兔,鸡和兔共有头 16 个,鸡和兔共有脚 44 只,问:小梅家的鸡与兔各有多少只? ( 2)今有雉(鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?( 3)今有牛五、羊二,直金十两;牛二、羊五,直金八两 . 请问牛、羊各直金几何? 题目大意是: 5 头牛和2 只羊共价值 10 两金子, 2 头牛和 5 只羊共价值 8 两金子,每头牛、每只羊各价值多少两金子 .( 4)《孙子算经》中记载了一道题,大意是: 100 匹马恰好拉了 100 片瓦,已知 1 匹大马能拉 3 片瓦, 3 匹小马能拉 1 片瓦,问有多少匹大马、多少匹小马?( 5)《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出 8 元,多 3 元;每人出 7 元,少 4 元 . 问有多少人?该物品价值多少元? 6.1 、【综合Ⅱ】列方程解应用题:( 1)以绳测井,若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺 . 请问,绳长、井深各几何? ( 2)用一根绳子环绕一棵大树,若环绕大树 3 周,则绳子还多 4 尺;若环绕大树 4 周,则绳子又少了3 尺, 那么这根绳子有多长?环绕大树一周需要多少尺?第 4 节应用二元一次方程组——增收节支..7、【综合Ⅱ】列方程解应用题:( 1)某工厂去年的利润(总产值减总支出)为200 万元 . 今年总产值比去年增加20%,总支出比去年减少 10%,今年的利润为 780 万元 . 去年的总产值、总支出是多少万元?( 2)一、二班共有100 名学生,他们的体育达标率(达到标准的百分率)为81%,如果一班学生的体育达标率是 87.5%,二班学生的体育达标率为75%,那么一、二两班各有多少名学生?( 3)医院用甲、乙两种原料为手术后的病人配制营养品,每克甲原料含0.5 单位蛋白质和1 单位铁质,每克乙原料含 0.7 单位蛋白质和 0.4 单位铁质,若病人每餐需要 35 单位蛋白质和 40 单位铁质,那么每餐甲、乙两种原料各多少克恰好满足病人的需要?( 4)甲、乙两人从相距36 km 的两地相向而行,如果甲比乙先走 2 h ,那么他们在乙出发2.5 h 后相遇;如果乙比甲先走 2 h ,那么他们在甲出发3 h 后相遇,请问甲、乙两人的速度各是多少?7.1 、【综合Ⅱ】列方程解应用题:( 1)某旅馆的客房有三人间和两人间两种,三人间每人每天25 元,两人间每人每天 35 元,一个 50 人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510 元,请问两种客房各租住了多少间?(2)某体育场的环形跑道长 400 m,甲、乙分别以一定的速度练习长跑和自行车,如果反向而行,那么他们每隔 30 s 相遇一次;如果同向而行,那么每隔80 s 乙就追上甲一次 .甲、乙的速度分别是多少?( 3)某一天,蔬菜经营户花 90 元从蔬菜批发市场批发了黄瓜和茄子共40 kg ,到市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:品名黄瓜茄子批发价 / (元 /kg ) 2.4 2零售价 / (元 /kg ) 3.6 2.8他当天卖完这些黄瓜和茄子可赚多少元?第 5 节应用二元一次方程组——里程碑上的数8、【综合Ⅱ】列方程解应用题:( 1)小明和小亮做加法游戏,小明在一个加数后面多写了一个 0,得到的和为 242;而小亮在另一个加数后面多写了一个 0,得到的和为 341,原来的两个加数分别是多少?( 2)有一个两位数,个位上的数字比十位上的数字的 3 倍多 2,若把个位数字与十位数字对调,所得新的两位数比原来的两位数的 3 倍少 2,求原来的两位数.( 3)两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边接着写较小的两位数,也得到一个四位数. 已知前一个四位数比后一个四位数大2178,求这两个两位数 .( 4)一个两位数,减去它的各位数字之和的 3 倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是 1. 这个两位数是多少?8.1 、【综合Ⅱ】列方程解应用题:( 1)小颖家离学校1880 m,其中有一段为上坡路,另一段为下坡路,她跑步去学校共用了16 min ,已知小颖在上坡路上的平均速度是 4.8 km/h ,在下坡路上的平均速度是12 km/h. 请问小颖上坡、下坡各用了多长时间?..(2)某商店准备用两种价格分别为36 元 / kg 和 20 元 / kg 的糖果混合成杂拌糖果出售,混合后糖果的价格是28 元/ kg 。
二元一次方程组的应用一.选择题1.某公园门票的价格为:成人票10元/张,儿童票5元/张.现有x名成人、y名儿童,买门票共花了75元.据此可列出关于x、y的二元一次方程为()A.10x+5y=75B.5x+10y=75C.10x﹣5y=75D.10x=75+5y2.某家具生产厂生产某种配套桌椅(一张桌子,两把椅子),已知每块板材可制作桌子1张或椅子4把,现计划用120块这种板材生产一批桌椅(不考虑板材的损耗),设用x块板材做桌子,用y块板材做椅子,则下列方程组正确的是()A.B.C.D.3.通过对一份中学生营养快餐的检测,得到以下信息:①快餐总质量为300g;②快餐的成分:蛋白质、碳水化合物、脂肪、矿物质;③蛋白质和脂肪含量占50%;矿物质的含量是脂肪含量的2倍;蛋白质和碳水化合物含量占85%.若设一份营养快餐中含蛋白质x(g),含脂肪y(g),则可列出方程组()A.B.C.D.4.为了绿化校园,某班学生参与共种植了144棵树苗.其中男生每人种3棵,女生每人种2棵,且该班男生比女生多8人,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A.B.C.D.5.用一块A型钢板可制成2块C型钢板、3块D型钢板;用一块B型钢板可制成1块C型钢板、4块D 型钢板.某工厂现需14块C型钢板、36块D型钢板,设恰好用A型钢板x块,B型钢板y块,根据题意,则下列方程组正确的是()A.B.C.D.6.某中学八(1)班45名同学参加市“精准扶贫”捐款助学活动,共捐款400元,捐款情况记录表:捐款(元)35810人数2■■31表格中捐款5元和8元的人数不小心技墨水污染看不清楚.若设捐款5元的有x名同学,捐款8元的有y名同学,根据题意可得方程组()A.B.C.D.7.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为()A .B .C .D .8.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是()A .B .C .D .9.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x尺,绳子长为y尺,则下列符合题意的方程组是()A .B .C .D .10.甲,乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;若乙先跑2秒,则甲跑4秒就可追上乙.若设甲的速度为x米/秒,乙的速度为y米/秒,则下列方程组中正确的是()A .B .C .D .11.今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x人,商品的价格为y,依题意可列方程组为()A .B .C .D .12.为了迎接体育中考,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,若设每个排球x元,每个实心球y元,则根据题意列二元一次方程组得()A .B .C .D .13.某校八年级共有学生160人,已知男生人数比女生人数的2倍少50人,设男生、女生的人数分别为x、y人,根据题意可列方程组是()A.B.C.D.14.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x间、房客y人,下列方程组中正确的是()A.B.C.D.二.填空题15.体育馆的环形跑道长400米,甲、乙分别以一定的速度练习长跑和骑自行车.如果同向而行80秒乙追上甲一次;如果反向而行,他们每隔30秒相遇一次;求甲、乙的速度分别是多少?如果设甲的速度是x 米/秒,乙的速度是y米/秒,所列方程组是.16.《九章算术》是中国传统数学最重要的著作,方程术是《九章算术》最高的数学成就.《九章算术》中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?译文:假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少?若设每头牛值金x两,每只羊值金y两,可列方程组为.17.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为.18.甲、乙两人相距50千米,若同向而行,乙10小时可追上甲;若相向而行,2小时两人相遇.设甲、乙两人每小时分别走x千米,y千米,则可列出方程组.19.学完“里程碑上的数”之后有这样一个问题:“小明家离学校1000米,其中有一段为上坡路,另一段为下坡路.他跑步去学校共用时18分钟,已知小明上坡的平均速度为30米/分,下坡的平均速度为80米/分,小明上坡和下坡各用了多长时间?”小亮同学设出未知数x,y后列出了方程组,小颖也设出未知数后却列了和小亮不同的方程组:,则横线上应填的方程是.(写一个即可)20.弟弟对哥哥说:“我像你这么大的时候你已经20岁.”哥哥对弟弟说:“我像你这么大的时候你才5岁.”求弟弟和哥哥的年龄.设这一年弟弟x岁,哥哥y岁,根据题意可列出二元一次方程组是.21.小东在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图1所示.小林看见了说:“我也来试一试.”结果小林七拼八凑,拼成了如图2那样的正方形,中间还留下了一个恰好是边长为2cm的小正方形,则这个小长方形的面积为cm2.22.如图所示,8个相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的面积是.23.如图,三个一样大小的小长方形沿“横﹣竖﹣横”排列在一个长为10,宽为8的大长方形中,则图中一个小长方形的面积等于.24.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有袋.25.某电台组织知识竞赛,共设置20道选择题,各题分值相同,每题必答,下表记录了3个参赛者的得分情况.若参赛者D得82分,则他答对了道题.参赛者答对题数答错题数得分A200100B19194C14664三.解答题26.大型客车每辆能坐54人,中型客车每辆能坐36人,现有378人,问需要大、中型客车各几辆才能使每个人上车都有座位,且每辆车正好坐满?设需要大型客车x辆,中型客车y辆.27.某两位数,两个数位上的数之和为11.这个两位数加上45,得到的两位数恰好等于原两位数的两个数字交换位置所表示的数,求原两位数.(1)列一元一次方程求解.(2)设原两位数的十位数字为x,个位数字为y,列二元一次方程组.(3)检验(1)中求得的结果是否满足(2)中的方程组.28.在当地农业技术部门指导下,小明家种植的菠萝喜获丰收.去年菠萝的收入结余12000元,今年菠萝的收入比去年增加了20%,支出减少10%,结余今年预计比去年多11400元.请计算:(1)今年结余元;(2)若设去年的收入为x元,支出为y元,则今年的收入为元,支出为元.(以上两空用含x、y的代数式表示)(3)列方程组计算小明家今年种植菠萝的收入和支出.29.某县在创建省级卫生文明县城中,对县城内的河道进行整治.现有一段长为180米的河道整治任务由甲、乙两个工程队先后接力完成.甲工程队每天整治8米,乙工程队每天整治12米,共用时20天.要求整治任务完成后甲、乙工程队分别整治河道的长度.(1)小明、小华两位同学提出的解题思路如下:小明同学:设整治任务完成后甲工程队整治河道x米,乙工程队整治河道y米.根据题意,得小华同学:设整治任务完成后,m表示,n表示;得请你补全小明、小华两位同学的解题思路.(2)求甲、乙两工程队分别整治河道多少米?请从中任选一个方程组求解.(写出完整的解答过程)30.春节将至,一电商平台A对本年度最受消费者喜爱的某品牌辣椒酱进行促销,促销方式为:每人每次凡购买不超过15瓶的,每瓶4元,外加运费a元;超过15瓶的,超过的部分每瓶减少b元,并付运费a元,若设购买的瓶数为x瓶.(1)当x≤15时,请用含x和a的代数式表示购买所需费用:;当x>15时,请用含x和a,b 的代数式表示购买所需费用:.(2)王老师和李老师看到促销信息后拟打算在该平台分别购买20瓶和26瓶该品牌辣椒酱,①经过预算,两位老师在该平台购买分别花费82元和100元,请通过计算求出a,b的值.②你能帮两位老师设计一种更省钱的购买方案吗?31.某公司需要粉刷一些相同的房间,经调查3名师傅一天粉刷8个房间,还剩40m2刷不完;5名徒弟一天可以粉刷9个房间;每名师傅比徒弟一天多刷30m2的墙面.(1)求每个房间需要粉刷的面积;(2)该公司现有36个这样的房间需要粉刷,若只聘请1名师傅和2名徒弟一起粉刷,需要几天完成?(3)若来该公司应聘的有3名师傅和10名徒弟,每名师傅和每名徒弟每天的工资分别是240元和200元,该公司要求这36个房间要在2天内粉刷完成,问人工费最低是多少?32.某校七、八年级师生开展“一日游”活动,已知七年级师生共300人,八年级师生共220人.(1)已知七年级教师比八年级教师多6人,七年级学生比八年级学生多37%,求七年级教师与学生各有多少人;(2)参观某景点时、需要乘船游玩,现有A、B两种型号的游船,A型船的座位数是B型船的1.5倍,若七年级师生全部乘坐A型船若干艘,刚好坐满,八年级全部乘坐B型船,要比七年级乘坐的A型船多一艘且空20个座位,问:①A、B两种游船每艘分别有多少个座位;②若两个年级的师生联合租船,且每艘游船恰好全部坐满,请写出所有的租船方案.33.甲、乙两家商场同时出售同样的水瓶和水杯,且定价相同,请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(请列方程解应用题)(2)为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和12个水杯,请问选择哪家商场购买更合算,并说明理由(水瓶和水杯必须在同一家购买).34.“中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?35.在2月份“抗疫”期间,某药店销售A、B两种型号的口罩,已知销售800只A型和450只B型的利润为210元,销售400只A型和600只B型的利润为180元.求每只A型口罩和B型口罩的销售利润.36.某天,一蔬菜经营户用60元钱从蔬菜批发市场批发了萝卜和白菜共40kg到菜市场去卖,萝卜和白菜这天每千克的批发价与零售价如下表所示:品名萝卜白菜批发价/元 1.6 1.2零售价/元 2.5 1.8问:他当天卖完这些萝卜和白菜共能赚多少钱?37.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?38.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?参考答案一.选择题1.解:设x名成人、y名儿童,由题意得,10x+5y=75.故选:A.2.解:设用x块板材做桌子,用y块板材做椅子,∵用100块这种板材生产一批桌椅,∴x+y=120 ①,生产了x张桌子,4y把椅子,∵使得恰好配套,1张桌子2把椅子,∴2x=4y②,①和②联立得:,故选:D.3.解:设一份营养快餐中含蛋白质x(g),含脂肪y(g),根据题意得:,即,故选:D.4.解:由题意可得,,故选:B.5.解:设恰好用A型钢板x块,B型钢板y块,根据题意,得:,故选:A.6.解:设捐款5元的有x名同学,捐款8元的有y名同学,根据题意可得:,即.故选:A.7.解:设甲的钱数为x,乙的钱数为y,依题意,得:.故选:A.8.解:设有x人,物品价值y元,由题意得:,故选:C.9.解:由题意可得,,故选:B.10.解:根据乙先跑10米,则甲跑5秒就可以追上乙,得方程5x=5y+10;根据乙先跑2秒,则甲跑4秒就可追上乙,得方程4x=4y+2y.可得方程组.故选:A.11.解:设有x人,商品的价格为y,依题意,得.故选:D.12.解:设每个排球x元,每个实心球y元,则根据题意列二元一次方程组得:,故选:B.13.解:设男生、女生的人数分别为x,y人,依题意,得:.故选:D.14.解:设该店有客房x间,房客y人;根据题意得:,故选:A.二.填空题15.解:根据题意,得.故答案为:.16.解:根据题意得:,故答案为:,17.解:由题意可得,,故答案为:.18.解:设甲、乙两人每小时分别走x千米、y千米,根据题意得:,故答案为:.19.解:根据题意得出x,y分别表示上坡距离和下坡距离,由题意可得:横线上应填的方程是:8(或).故答案为:8(或).20.解:设这一年弟弟x岁,哥哥y岁,根据题意得:,故答案为:.21.解:设每个长方形的宽为xcn,长为ycm,那么可得出方程组为:,解得:,因此每个长方形的面积应该是xy=60cm2.故答案为:60.22.解:设一个小长方形的长为xcm,宽为ycm,则可列方程组,得.30×10=300cm2.答:每块小长方形地砖的面积是300cm2.故答案为:300cm2.23.解:设小长方形的长为x,宽为y,根据题意得:,解得:,∴xy=4×2=8.故答案为:8.24.解:设驴子原来所驮货物的袋数是x,骡子原来所驮货物的袋数是y.由题意得解得,即:驴子原来所驮货物的袋数是5,骡子原来所驮货物的袋数是7.故答案是:5.25.解:设答对一题得a分,答错一题得b分,依题意,得:,解得:.设参赛者D答对了x道题,则答错了(20﹣x)道题,依题意,得:5x﹣(20﹣x)=82,解得:x=17.故答案为:17.三.解答题26.解:设需要大型客车x辆,中型客车y辆,由题意得:54x+36y=378,则3x+2y=21,当x=1时,y=9;当x=2时,y=(不合题意);当x=3时,y=6;当x=4时,y=(不合题意);当x=5时,y=3;当x=6时,y=(不合题意);当x=7时,y=0;答:一共有4种符合题意的答案.27.解:(1)设原两位数的个位数字为m,则十位数字为(11﹣m),依题意,得:10×(11﹣m)+m+45=10m+(11﹣m),解得:m=8,∴11﹣m=3.答:原两位数为38.(2)设原两位数的十位数字为x,个位数字为y,依题意,得:.(3)结合(1),可知:x=3,y=8,∴x+y=11,10x+y+45=83=10y+x,∴(1)中求得的结果满足(2)中的方程组.28.解:(1)由题意可得,今年结余:12000+11400=23400(元),故答案为:23400;(2)由题意可得,今年的收入为:x(1+20%)=1.2x(元),支出为:y(1﹣10%)=0.9y(元),故答案为:1.2x,0.9y;(3)由题意可得,,解得,,则1.2x=1.2×42000=50400,0.9y=0.9×30000=27000,答:小明家今年种植菠萝的收入和支出分别为50400元、27000元.29.解:(1)小明、小华两位同学提出的解题思路如下:小明同学:设整治任务完成后甲工程队整治河道x米,乙工程队整治河道y米.根据题意得,小华同学:设整治任务完成后,m表示甲工程队整治河道用的天数,n表示乙工程队整治河道用时的天数;得;(2)选小明同学所列方程组解答如下:,由②×24得:3x+2y=480③,由①×2得:2x+2y=360④,由③﹣④得:x=120,x=120代入到①得:y=60,故甲工程队整治河道120米,乙工程队整治河道60米.30.解:(1)当x≤15时,购买所需费用(4x+a)元;当x>15时,购买所需费用4×15+(4﹣b)(x﹣15)+a=[60+a+(4﹣b)(x﹣15)]元.故答案为:(4x+a);[60+a+(4﹣b)(x﹣15)].(2)①依题意,得:,解得:.答:a的值为7,b的值为1.②两人可以合在一起在该平台一次购买46瓶.60+7+(46﹣15)×(4﹣1)=160(元).∵160<182,∴两人合在一起在该平台一次购买46瓶,比分开购买更省钱.31.解:(1)设每个房间需要粉刷的面积为xm2,每名徒弟一天粉刷ym2的墙面,则每名师傅一天粉刷(y+30)m2的墙面,依题意,得:,解得:.答:每个房间需要粉刷的面积为50m2.(2)由(1)可知:每名徒弟一天粉刷90m2的墙面,每名师傅一天粉刷120m2的墙面,∴50×36÷(120+90×2)=6(天).答:需要6天完成.(3)设聘请m名师傅和n名徒弟完成粉刷任务,依题意,得:120m+90n=36×50÷2,∴n=10﹣m.∵m,n均为非负整数,且0≤m≤3,0≤n≤10,∴,,∴该公司共有两种聘请方案,方案1:聘请10名徒弟完成粉刷任务;方案2:聘请3名师傅和6名徒弟完成粉刷任务.方案1所需人工费为200×10×2=4000(元),方案2所需人工费为(200×6+240×3)×2=3840(元).∵4000>3840,∴方案2聘请3名师傅和6名徒弟完成粉刷任务所需人工费最低,最低人工费为3840元.32.解:(1)设八年级教师有x人,学生有y人,依题意,得:,解得:,∴x+6=26,(1+37%)y=274.答:七年级教师有26人,学生有274人.(2)①设B型船每艘有m个座位,则A型船每艘有1.5m个座位,依题意,得:﹣=1,解得:m=40,经检验,m=40是原分式方程的解,且符合题意,∴1.5m=60.答:A型船每艘有60个座位,B型船每艘有40个座位.②设需租用A型船a艘,租用B型船b艘,依题意,得:60a+40b=300+220,∴b=13﹣a.又∵a,b均为非负整数,∴,,,,,∴共有5种租船方案,方案1:租用13艘B型船;方案2:租用2艘A型船,10艘B型船;方案3:租用4艘A型船,7艘B型船;方案4:租用6艘A型船,4艘B型船;方案5:租用8艘A型船,1艘B 型船.33.解:(1)设一个水瓶与一个水杯分别是x元y元,根据题意,得解得答:一个水瓶与一个水杯分别是40元和8元;(2)甲商场所需费用为:(40×5+8×12)×80%=236.8(元)乙商场所需费用为:5×40+(12﹣5×2)×8=216(元)236.8>216,所以选择乙商场购买更合算.34.解:设A型号的空调购买价为x元,B型号的空调购买价为y元,依题意得:,解得:.答:A型号的空调购买价为2120元,B型号的空调购买价为2320元.35.解:设每只A型口罩销售利润为a元,每只B型口罩销售利润为b元,根据题意得:,解得,答:每只A型口罩销售利润为0.15元,每只B型口罩销售利润为0.2元.36.解:设白菜的重量是xkg,萝卜的重量是ykg,依题意有解得:,10×(1.8﹣1.2)+30×(2.5﹣1.6)=33(元)答:他当天卖完这些白菜和萝卜能赚33元.37.解:(1)解分三种情况计算:①设购甲种电视机x台,乙种电视机y台.解得.②设购甲种电视机x台,丙种电视机z台.则,解得:.③设购乙种电视机y台,丙种电视机z台.则解得:(不合题意,舍去);(2)方案一:25×150+25×200=8750.方案二:35×150+15×250=9000元.答:购甲种电视机25台,乙种电视机25台;或购甲种电视机35台,丙种电视机15台.购买甲种电视机35台,丙种电视机15台获利最多.38.解:设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,,解得:.答:需安排25名工人加工大齿轮,安排60名工人加工小齿轮.。
二元一次方程组与一次函数综合复习一.选择题1.如图,射线OC的端点O在直线AB上,∠AOC的度数比∠BOC的2倍多10度.设∠AOC和∠BOC的度数分别为x,y,则下列正确的方程组为()A.B.C.D.2.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②甲行走的速度是乙的1.5倍;③b=960;④a=34.以上结论正确的有()A.①④B.①②③C.①③④D.①②④3.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人的车离开A城的距离y(千米)与行驶的时间t(小时)之间的函数关系如图所示.有下列结论;①A、B两城相距300千米;②小路的车比小带的车晚出发1小时,却早到1小时;③小路的车出发后2.5小时追上小带的车;④当小带和小路的车相距50千米时,t=或t=.其中正确的结论有()A.①②③④B.①②④C.①②D.②③④二.填空题4.方程组解的情况是,则一次函数y=2﹣2x与y=5﹣2x图象之间的位置关系是.5.如图所示,在直角坐标系中,矩形OABC的顶点B的坐标为(12,5),直线恰好将矩形OABC 分成面积相等的两部分.那么b=.6.如图,平面直角坐标系中,已知点P(2,2),C为y轴正半轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线OP交于点A,且BD=4AD,直线CD与直线OP交于点Q,则点Q的坐标为.7.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为.8.如图,在平面直角坐标系xOy中,直线与x轴交于点A,与y轴交于点B,将△AOB沿过点A 的直线折叠,使点B落在x轴负半轴上,记作点C,折痕与y轴交点交于点D,则点C的坐标为,点D的坐标为.三.解答题9.已知方程组,求:(1)当m为何值时,x,y的符号相反,绝对值相等;(2)当m为何值时,x比y大1.10.阅读下列解方程组的方法,然后回答问题.解方程组解:由①﹣②得2x+2y=2,即x+y=1,③③×16得16x+16y=16,④②﹣④得x=﹣1,从而可得y=2所以原方程组的解是.请你仿上面的解法解方程组.11.阅读材料:善于思考的小军在解方程组时,采用了一种“整体代入”的解法:解:由①得x﹣y=1③将③代入②得:4×1﹣y=5,即y=﹣1把y=﹣1代入③得x=0,∴方程组的解为请你模仿小军的“整体代入”法解方程组,解方程.12.如图所示,矩形OABC中,OA=4,OC=2,D是OA的中点,连接AC、DB,交于点E,以O为原点,OA所在的直线为x轴,建立坐标系.(1)分别求出直线AC和BD的解析式;(2)求E点的坐标;(3)求△DEA的面积.13.如图,直线l与x轴、y轴分别交于点A(3,0)、点B(0,2),以线段AB为直角边在第一象限内作等腰直角三角形ABC,∠BAC=90°,点P(1,a)为坐标系中的一个动点.(1)请直接写出直线l的表达式;(2)求出△ABC的面积;(3)当△ABC与△ABP面积相等时,求实数a的值.14.一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后他们的年龄和是子女6年后年龄和的3倍,问这对夫妇共有多少个子女?15.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元,问:(1)甲、乙两组单独工作一天,商店各付多少元?(2)设工作总量为单位1,单独请哪组,商店所付费用较少?(3)若装修完后,商店每天可盈利200元,你认为请哪个装修组施工能使商店的利益最大化?说说你的理由.16.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地如图,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数图象;折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数图象;请根据图象解答下列问题:(1)货车离甲地距离y(千米)与时间x(小时)之间的函数式为;(2)当轿车与货车相遇时,求此时x的值;(3)在两车行驶过程中,当轿车与货车相距20千米时,求x的值.17.甲、乙两车分别从A、B两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B地行驶,两车之间的路程y(千米)与出发后所用时间x(小时)之间的函数关系如图所示.(1)求甲、乙两车行驶的速度V甲、V乙.(2)求m的值.(3)若甲车没有故障停车,求可以提前多长时间两车相遇.18.张庄甲、乙两家草莓采摘园的草莓销售价格相同,“春节期间”,两家采摘园将推出优惠方案,甲园的优惠方案是:游客进园需购买门票,采摘的草莓六折优惠;乙园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,某游客的草莓采摘量为x(千克),在甲园所需总费用为y甲(元),在乙园所需总费用为y乙(元),y甲、y乙与x之间的函数关系如图所示,折线OAB表示y乙与x之间的函数关系.(1)甲采摘园的门票是元,两个采摘园优惠前的草莓单价是每千克元;(2)当x>10时,求y乙与x的函数表达式;(3)游客在“春节期间”采摘多少千克草莓时,甲、乙两家采摘园的总费用相同.19.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y (米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?20.温度与我们的生活息息相关,如图是一个温度计实物示意图,左边的刻度是摄氏温度(℃),右边的刻度是华氏温度(℉).设摄氏温度为x(℃)华氏温度为y(℉),则y是x的一次函数,通过观察我们发现,温度计上的摄氏温度为0℃时,华氏温度为32℉;摄氏温度为﹣20℃时,华氏温度为﹣4℉请根据以上信息,解答下列问题(1)仔细观察图中数据,试求出y与x的函数关系式;(2)当摄氏温度为﹣5℃时,华氏温度为多少?(3)当华氏温度为59℉时,摄氏温度为多少?21.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米.(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y (米)与登山时间x(分)之间的函数关系式.(3)登山多长时间时,甲、乙两人距地面的高度差为50米?22.某商店销售A型和B型两种型号的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的3倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y与x的关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售利润最大?(3)若限定商店最多购进A型电脑60台,则这100台电脑的销售总利润能否为13600元?若能,请求出此时该商店购进A型电脑的台数;若不能,请求出这100台电脑销售总利润的范围.23.如图,直线y=﹣x+1与x轴,y轴分别交于B,A两点,动点P在线段AB上移动,以P为顶点作∠OPQ=45°交x轴于点Q.(1)求点A和点B的坐标;(2)比较∠AOP与∠BPQ的大小,说明理由.(3)是否存在点P,使得△OPQ是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.24.甲、乙商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,顾客到哪家商场购物花费少?25.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC.(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.26.一辆客车从甲地开往乙地,一辆轿车从乙地开往甲地,两车同时出发,两车行驶x小时后,记客车离甲地的距离为y1千米,轿车离甲地的距离为y2千米,y1、y2关于x的函数图象如图.(1)根据图象,直接写出y1、y2关于x的函数关系式;(2)当两车相遇时,求此时客车行驶的时间;(3)两车相距200千米时,求客车行驶的时间.27.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=x+b过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.28.如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C 在y轴的正半轴上,OA=10OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处(1)求CE和OD的长;(2)求直线DE的表达式;(3)直线y=kx+b与DE平行,当它与矩形OABC有公共点时,直接写出b的取值范围.29.如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A 点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.30.如图,直线y=kx+6与x、y轴分别交于E、F.点E坐标为(﹣8,0),点A的坐标为(﹣6,0),P(x,y)是直线y=kx+6上的一个动点.(1)求k的值;(2)若点P是第二象限内的直线上的一个动点,当点P运动过程中,试写出三角形OP A的面积S与x 的函数关系式,并写出自变量x的取值范围;(3)探究:当P运动到什么位置时,三角形OP A的面积为,并说明理由.31.如图,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,以线段AB为边在第一象限内作等边△ABC.(1)求△ABC的面积;(2)如果在第二象限内有一点P(a,),请用含a的式子表示四边形ABPO的面积,并求出当△ABP 的面积与△ABC的面积相等时a的值.32.如图:在平面直角坐标系xOy中,已知正比例函数y=与一次函数y=﹣x+7的图象交于点A.(1)求点A的坐标;(2)在y轴上确定点M,使得△AOM是等腰三角形,请直接写出点M的坐标;(3)如图、设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交y=和y =﹣x+7的图象于点B、C,连接OC,若BC=OA,求△ABC的面积及点B、点C的坐标;(4)在(3)的条件下,设直线y=﹣x+7交x轴于点D,在直线BC上确定点E,使得△ADE的周长最小,请直接写出点E的坐标.33.如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.34.某天早晨,张强从家跑步去体育锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,张强跑到体育场后发现要下雨,立即按原路返回,遇到妈妈后两人一起回到家(张强和妈妈始终在同一条笔直的公路上行走).如图是两人离家的距离y(米)与张强出发的时间x(分)之间的函数图象,根据图象信息解答下列问题:(1)求张强返回时的速度;(2)妈妈比按原速返回提前多少分钟到家?(3)请直接写出张强与妈妈何时相距1000米?参考答案一.选择题1.解:根据∠AOC的度数比∠BOC的2倍多10°,得方程x=2y+10;根据∠AOC和∠BOC组成了平角,得方程x+y=180.列方程组为.故选:B.2.解:①当x=0时,y=1200,∴A、B之间的距离为1200m,结论①正确;②乙的速度为1200÷(24﹣4)=60(m/min),甲的速度为1200÷12﹣60=40(m/min),60÷40=1.5,∴乙行走的速度是甲的1.5倍,结论②错误;③b=(60+40)×(24﹣4﹣12)=800,结论③错误;④a=1200÷40+4=34,结论④正确.故结论正确的有①④.故选:A.3.解:由图象可知A、B两城市之间的距离为300km,小带行驶的时间为5小时,而小路是在甲出发1小时后出发的,且用时3小时,即比早小带到1小时,∴①②都正确;设小带车离开A城的距离y与t的关系式为y小带=kt,把(5,300)代入可求得k=60,∴y小带=60t,设小路车离开A城的距离y与t的关系式为y小路=mt+n,把(1,0)和(4,300)代入可得,解得:,∴y小路=100t﹣100,令y小带=y小路,可得:60t=100t﹣100,解得:t=2.5,即小带、小路两直线的交点横坐标为t=2.5,此时小路出发时间为1.5小时,即小路车出发1.5小时后追上小带车,∴③不正确;令|y小带﹣y小路|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y小带=50,此时小路还没出发,当t=时,小路到达B城,y小带=250;综上可知当t的值为或或或时,两车相距50千米,∴④不正确;故选:C.二.填空题4.解:方程组解的情况是无解,则一次函数y=2﹣2x与y=5﹣2x图象之间的位置关系是平行.故答案为无解,平行.5.解:∵将矩形OABC分成面积相等的两部分,∴直线经过矩形的中心,∵B点坐标为B(12,5),∴矩形中心的坐标为(6,),∴×6+b=,解得b=1.故答案为:1.6.解:过点P作PE⊥OC于E,EP的延长线交AB于F.∵AB⊥OB,∴∠OBF=∠EOB=∠FEO=90°,∴四边形EOBF是矩形,∵P(2,2),∴OE=PE=BF=2,∵∠CPD=90°,∴∠CPE+∠DPF=90°,∠ECP+∠CPE=90°,∴∠ECP=∠DPF,在△CPE和△PDF中,,∴△CPE≌△PDF(AAS),∴DF=PE=2,∴BD=BF+DF=4,∵BD=4AD,∴AD=1,AB=OB=5,∴CE=PF=3,∴D(5,4),C(0,5),设直线CD的解析式为y=kx+b则有,解得,∴直线CD的解析式为y=﹣x+5,由解得,∴点Q的坐标为(,).故答案为(,).7.解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴AC=4.∴A′C′=4.∵点C′在直线y=2x﹣6上,∴2x﹣6=4,解得x=5.即OA′=5.∴CC′=5﹣1=4.∴S▱BCC′B′=4×4=16.即线段BC扫过的面积为16.故答案为16.8.解:由折叠的性质得:△ADB≌△ADC,∴AB=AC,BD=CD,对于直线y=﹣x+3,令x=0,得到y=3;令y=0,得到x=4,∴OA=4,OB=3,在Rt△AOB中,根据勾股定理得:AB=5,∴OC=AC﹣OA=AB﹣OA=5﹣4=1,即C(﹣1,0);在Rt△COD中,设CD=BD=x,则OD=3﹣x,根据勾股定理得:x2=(3﹣x)2+1,解得:x=,∴OD=,即D(0,).故答案为:(﹣1,0);(0,)三.解答题9.解:方程组整理解得:x=﹣2,y=0.5m+3.5,(1)当x,y的符号相反,绝对值相等,可得0.5m+3.5=2,解得:m=﹣3;(2)当x比y大1,可得:0.5m+3.5=﹣3解得:m=﹣1310.解:①﹣②得:3x+3y=3,即x+y=1③,③×2013得:2013x+2013y=2013④,②﹣④得:x=﹣1,把x=﹣1代入③得:y=2,则方程组的解为.11.解:将①代入②得:1+2y=9,即y=4,将y=4代入①得:x=7,∴原方程组的解为:.12.解:(1)设直线AC的解析式为:y=kx+b,由题意可得:A(4,0),C(0,2),∴,解得:,∴直线AC的解析式为:y=﹣x+2,设直线BD的解析式为:y=mx+n,由题意可得:B(4,2),D(2,0),∴,解得:.∴直线BD的解析式为:y=x﹣2;(2)由题意得:,解得:,∴E点的坐标为(,);(3)△DEA的面积=×2×=.13.解:(1)设直线AB所在的表达式为:y=kx+b,则,解得:,故直线l的表达式为:;(2)在Rt△ABC中,由勾股定理得:AB2=OA2+OB2=32+22=13∵△ABC为等腰直角三角形,∴S△ABC=AB2=;(3)连接BP,PO,P A,则:①若点P在第一象限时,如图1:∵S△ABO=3,S△APO=a,S△BOP=1,∴S△ABP=S△BOP+S△APO﹣S△ABO=,即,解得;②若点P在第四象限时,如图2:∵S△ABO=3,S△APO=﹣a,S△BOP=1,∴S△ABP=S△AOB+S△APO﹣S△BOP=,即,解得a=﹣3;故:当△ABC与△ABP面积相等时,实数a的值为或﹣3.14.解:设夫妇现在的年龄和为x,子女年龄和为y,共有n个子女,由夫妇现在年龄的和是其子女年龄和的6倍可知:x=6y,由他们两年前年龄和是子女两年前年龄和的10倍可知:x﹣2×2=10×(y﹣2n),由6年后他们的年龄和是子女6年后年龄和的3倍可知:x+2×6=3×(y+6n),列出方程组,将x=6y代入方程组中解得:n=3.答:这对夫妇共有3个子女.15.解:(1)设甲组单独工作一天商店应付x元,乙组单独工作一天商店应付y元,由题意可得:,解得:,答:甲组单独工作一天商店应付300元,乙组单独工作一天商店应付140元,(2)设甲组每天工作效率为m,乙组每天工作效率为n,由题意可得:,解得:,∴甲组单独完成装修需(天),乙组单独完成装修需(天),∴单独请甲组需付300×12=3600(元),单独请乙组需付140×24=3360(元),∵3600>3360,答:单独请乙组费用较少,(3)由第(2)已求得:甲组单独做12天完成,商店需付款12×300=3600(元),乙组单独做24天完成,商店需付款24×140=3360(元),但甲组比乙组早12天完工,商店12天的利润为200×12=2400(元),即开支为3600﹣2400=1200元<3360元,答:选择甲装修组施工能使商店的利益最大化.16.解:(1)设货车离甲地距离y(干米)与时间x(小时)之间的函数式为y=k1x,根据题意得5k1=300,解得k1=60,∴y=60x,即货车离甲地距离y(干米)与时间x(小时)之间的函数式为y=60x;故答案为:y=60x;(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5);解方程组,解得,∴当x=3.9时,轿车与货车相遇;(3)80÷60=,即点B的坐标(,0),∴轿车开始的速度为:(千米/时),当x=2.5时,y货=150,两车相距=150﹣80=70>20,由题意或60x﹣(110x﹣195)=20或110x﹣195﹣60x=20,解得x=3.5或4.3小时.答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.17.解:(1)由图可得,,解得,,答:甲的速度是60km/h乙的速度是80km/h;(2)m=(1.5﹣1)×(60+80)=0.5×140=70,即m的值是70;(3)甲车没有故障停车,则甲乙相遇所用的时间为:180÷(60+80)=,若甲车没有故障停车,则可以提前:1.5﹣=(小时)两车相遇,即若甲车没有故障停车,可以提前小时两车相遇.18.解:(1)由图象可得,甲采摘园的门票是60元,两个采摘园优惠前的草莓单价是:300÷10=30(元/千克),故答案为:60,30;(2)当x>10时,设y乙与x的函数表达式是y乙=kx+b,,得,即当x>10时,y乙与x的函数表达式是y乙=12x+180;(3)由题意可得,y甲=60+30×0.6x=18x+60,当0<x<10时,令18x+60=30x,得x=5,当x>10时,令12x+180=18x+60,得x=20,答:采摘5千克或20千克草莓时,甲、乙两家采摘园的总费用相同.19.:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)当0≤x<2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=;(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x ≤20).当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.20.解:(1)设y关于x的函数关系式为y=kx+b,由温度计的示数得x=0,y=32;x=20时,y=68.所以,解得:.故y关于x的函数关系式为y=x+32;(2)当x=﹣5时,y=×(﹣5)+32=23.即当摄氏温度为﹣5℃时,华氏温度为23℉;(3)令y=59,则有x+32=59,解得:x=15.故当华氏温度为59℉时,摄氏温度为15℃.21.解:(1)(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30.(2)当0≤x≤2时,y=15x;当x>2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=.(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x ≤20).当10x+100﹣(30x﹣30)=50时,解得:x=4;当30x﹣30﹣(10x+100)=50时,解得:x=9;当300﹣(10x+100)=50时,解得:x=15.答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.22.解:(1)由题意可得:y=120x+140(100﹣x)=﹣20x+14000;(2)据题意得,100﹣x≤3x,解得x≥25,∵y=﹣20x+14000,﹣20<0,∴y随x的增大而减小,∵x为正整数,∴当x=25时,y取最大值,则100﹣x=75,即商店购进25台A型电脑和75台B型电脑的销售利润最大;(3)据题意得,y=120x+140(100﹣x),即y=﹣20x+14000 (25≤x≤60)当y=13600时,解得x=20,不符合要求y随x的增大而减小,∴当x=25时,y取最大值,即商店购进25台A型电脑和75台B型电脑的销售利润最大,此时y=13500元.当x=60时,y取得最小值,此时y=12800元故这100台电脑销售总利润的范围为12800≤y≤1350023.解:(1)∵直线y=﹣x+1与x轴,y轴分别交于A,B两点,令x=0,则y=0+1=1,∴A(0,1),令y=0,则0=﹣x+1,解得:x=1.∴B(1,0).(2)∠AOP=∠BPQ.理由如下:过P点作PE⊥OA交OA于点E,∵A(0,1),B(1,0).∴OA=OB=1,∴∠OAB=∠OBA=45°,∵PE⊥OA,∴∠APE=45°,∵∠OPQ=45°,∴∠OPE+∠BPQ=90°,∵∠AOP+∠OPE=90°,∴∠AOP=∠BPQ.(3)△OPQ可以是等腰三角形.理由如下:如图,过P点PE⊥OA交OA于点E,(ⅰ)若OP=OQ,则∠OPQ=∠OQP=∠OPQ,∴∠POQ=90°,∴点P与点A重合,∴点P坐标为(0,1),(ⅱ)若QP=QO,则∠OPQ=∠QOP=45°,所以PQ⊥QO,可设P(x,x)代入y=﹣x+1得x=,∴点P坐标为(,),(ⅲ)若PO=PQ∵∠OPQ+∠1=∠2+∠3,而∠OPQ=∠3=45°,∴∠1=∠2,又∵∠3=∠4=45°,∴△AOP≌△BPQ(AAS),PB=OA=1,∴AP=﹣1由勾股定理求得PE=AE=1﹣,∴EO=,∴点P坐标为(1﹣,),∴点P坐标为(0,1),(,)或(1﹣,)时,△OPQ是等腰三角形.24.解:设在甲商场购买x元的花费为W甲元,在乙商场购买的花费为W乙元,由题意,得W甲=100+(x﹣100)×0.9=0.9x+10(x≥100)W乙=50+0.95(x﹣50)=0.95x+2.5(x≥50).当W甲>W乙时,0.9x+10>0.95x+2.5,x<150W甲=W乙时,0.9x+10=0.95x+2.5,x=150W甲<W乙时,0.9x+10<0.95x+2.5,x>150.综上所述:当x<150时,在乙商场购买优惠些,当x=150时,在甲、乙两商场购买一样优惠,当x>150时,在甲商场购买优惠些.25.解:(1)如图1,作CQ⊥x轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=x+2;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∴DG=OB,∴△BOE≌△DGE,∴BE=DE;(3)如图3,直线BC:y=﹣x﹣,P(,k)是线段BC上一点,∴P(﹣,),由y=x+2知M(﹣6,0),∴BM=5,则S△BCM=.假设存在点N使直线PN平分△BCM的面积,则BN•=×,∴BN=,ON=,∵BN<BM,∴点N在线段BM上,∴N(﹣,0).26.解:(1)设y1=kx,则将(10,600)代入得出:600=10k,解得:k=60,∴y1=60x(0≤x≤10),设y2=ax+b,则将(0,600),(6,0)代入得出:解得:∴y2=﹣100x+600 (0≤x≤6);(2)当两车相遇时,y1=y2,即60x=﹣100x+600解得:;∴当两车相遇时,求此时客车行驶了小时;(3)若相遇前两车相距200千米,则y2﹣y1=200,∴﹣100x+600﹣60x=200,解得:,若相遇后相距200千米,则y1﹣y2=200,即60x+100x﹣600=200,解得:x=5∴两车相距200千米时,客车行驶的时间为小时或5小时.27.解;(1)∵点P(m,3)为直线l1上一点,∴3=﹣m+2,解得m=﹣1,∴点P的坐标为(﹣1,3),把点P的坐标代入y2=x+b得,3=×(﹣1)+b,解得b=;(2)∵b=,∴直线l2的解析式为y=x+,∴C点的坐标为(﹣7,0),①由直线l1:y1=﹣x+2可知A(2,0),∴当Q在A、C之间时,AQ=2+7﹣t=9﹣t,∴S=AQ•|y P|=×(9﹣t)×3=﹣t;当Q在A的右边时,AQ=t﹣9,∴S=AQ•|y P|=×(t﹣9)×3=t﹣;即△APQ的面积S与t的函数关系式为S=﹣t+或S=t﹣;②∵S<3,∴﹣t+<3或t﹣<3解得7<t<9或9<t<11.③存在;设Q(t﹣7,0),当PQ=P A时,则(t﹣7+1)2+(0﹣3)2=(2+1)2+(0﹣3)2∴(t﹣6)2=32,解得t=3或t=9(舍去),当AQ=P A时,则(t﹣7﹣2)2=(2+1)2+(0﹣3)2∴(t﹣9)2=18,解得t=9+3或t=9﹣3;当PQ=AQ时,则(t﹣7+1)2+(0﹣3)2=(t﹣7﹣2)2,∴(t﹣6)2+9=(t﹣9)2,解得t=6.故当t的值为3或9+3或9﹣3或6时,△APQ为等腰三角形.28.解:(1)依题意可知,折痕AD是四边形OAED的对称轴,∴在Rt△ABE中,AE=AO=10,AB=8,BE===6,∴CE=10﹣6=4,在Rt△DCE中,DC2+CE2=DE2,又∵DE=OD,∴(8﹣OD)2+42=OD2,∴OD=5.(2)∵CE=4,∴E(4,8).∵OD=5,∴D(0,5),设直线DE的解析式为y=mx+n,∴,解得,∴直线DE的解析式为y=x+5.(3)∵直线y=kx+b与DE平行,∴直线为y=x+b,∴当直线经过A点时,0=×10+b,则b=﹣,当直线经过C点时,则b=8,∴当直线y=kx+b与矩形OABC有公共点时,﹣≤b≤8且b≠5.29.解:(1)对于直线AB:,当x=0时,y=2;当y=0时,x=4,则A、B两点的坐标分别为A(4,0)、B(0,2);(2)∵C(0,4),A(4,0)∴OC=OA=4,当0≤t<4时,OM=OA﹣AM=4﹣t,S△OCM=×4×(4﹣t)=8﹣2t;当t>4时,OM=AM﹣OA=t﹣4,S△OCM=×4×(t﹣4)=2t﹣8;(3)分为两种情况:①当M在OA上时,OB=OM=2,△COM≌△AOB.∴AM=OA﹣OM=4﹣2=2∴动点M从A点以每秒1个单位的速度沿x轴向左移动2个单位,所需要的时间是2秒钟;M(2,0),②当M在AO的延长线上时,OM=OB=2,则M(﹣2,0),此时所需要的时间t=[4﹣(﹣2)]/1=6秒,即M点的坐标是(2,0)或(﹣2,0).30.解:(1)∵点E(﹣8,0)在直线y=kx+6上,∴0=﹣8k+6,∴k=;(2)∵k=,∴直线的解析式为:y=x+6,∵点P(x,y)是第二象限内的直线y=x+6上的一个动点,∴y=x+6>0,﹣8<x<0.∵点A的坐标为(﹣6,0),∴OA=6,∴S=OA•|y P|=×6×(x+6)=x+18.∴三角形OP A的面积S与x的函数关系式为:S=x+18(﹣8<x<0);(3)∵三角形OP A的面积=OA•|y|=,∴×6×|y|=,解得|y|=,∴y=±.当y=时,=x+6,解得x=﹣,故P(﹣,);当y=﹣时,﹣=x+6,解得x=﹣,故P(﹣,﹣);综上可知,当点P的坐标为P(﹣,)或P(﹣,﹣)时,三角形OP A的面积为.31.解:(1)y=﹣x+1与x轴、y轴交于A、B两点,∴A(,0),B(0,1).∵△AOB为直角三角形,∴AB=2.∴S△ABC=×2×sin60°=.(2)S四边形ABPO=S△ABO+S△BOP=×OA×OB+×OB×h=××1+×1×|a|.∵P在第二象限,∴S四边形ABPO=﹣=,S△ABP=S ABPO﹣S△AOP=(﹣)﹣×OA×.∴S△ABP=﹣﹣=﹣=S△ABC=.∴a=﹣.32.解:(1)联立得:,解得:,则点A的坐标为(3,4);(2)根据勾股定理得:OA==5,如图1所示,分四种情况考虑:当OM1=OA=5时,M1(0,5);当OM2=OA=5时,M2(0,﹣5);当AM3=OA=5时,M3(0,8);当OM4=AM4时,M4(0,),综上,点M为(0,5)、(0,﹣5)、(0,8)、(0,);(3)设点B(a,a),C(a,﹣a+7),∵BC=OA=×5=14,∴a﹣(﹣a+7)=14,解得:a=9,过点A作AQ⊥BC,如图2所示,∴S△ABC=BC•AQ=×14×(9﹣3)=42,当a=9时,a=×9=12,﹣a+7=﹣9+7=﹣2,∴点B(9,12)、C(9,﹣2);(4)如图3所示,作出D关于直线BC的对称点D′,连接AD′,与直线BC交于点E,连接DE,此时△ADE周长最小,对于直线y=﹣x+7,令y=0,得到x=7,即D(7,0),由(3)得到直线BC为直线x=9,∴D′(11,0),设直线AD′解析式为y=kx+b,把A与D′坐标代入得:,解得:,∴直线AD′解析式为y=﹣x+,令x=9,得到y=1,则此时点E坐标为(9,1).33.解:(1)解方程x2﹣6x+8=0可得x=2或x=4,∵BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC,∴BC=2,OC=4,∴B(﹣2,4),∵△ODE是△OCB绕点O顺时针旋转90°得到的,∴OD=OC=4,DE=BC=2,∴D(4,0),设直线BD解析式为y=kx+b,把B、D坐标代入可得,解得,∴直线BD的解析式为y=﹣x+;(2)由(1)可知E(4,2),设直线OE解析式为y=mx,把E点坐标代入可求得m=,∴直线OE解析式为y=x,令﹣x+=x,解得x=,∴H点到y轴的距离为,又由(1)可得F(0,),∴OF=,∴S△OFH=××=;(3)∵以点D、F、M、N为顶点的四边形是矩形,∴△DFM为直角三角形,①当∠MFD=90°时,则M只能在x轴上,连接FN交MD于点G,如图1,由(2)可知OF=,OD=4,则有△MOF∽△FOD,∴=,即=,解得OM=,∴M(﹣,0),且D(4,0),∴G(,0),设N点坐标为(x,y),则=,=0,解得x=,y=﹣,此时N点坐标为(,﹣);②当∠MDF=90°时,则M只能在y轴上,连接DN交MF于点G,如图2,则有△FOD∽△DOM,∴=,即=,解得OM=6,∴M(0,﹣6),且F(0,),∴MG=MF=,则OG=OM﹣MG=6﹣=,∴G(0,﹣),设N点坐标为(x,y),则=0,=﹣,解得x=﹣4,y=﹣,此时N(﹣4,﹣);③当∠FMD=90°时,则可知M点为O点,如图3,∵四边形MFND为矩形,∴NF=OD=4,ND=OF=,可求得N(4,);综上可知存在满足条件的N点,其坐标为(,﹣)或(﹣4,﹣)或(4,).34.解:(1)3000÷(50﹣30)=3000÷20=150(米/分),答:张强返回时的速度为150米/分;(2)(45﹣30)×150=2250(米),点B的坐标为(45,750),妈妈原来的速度为:2250÷45=50(米/分),妈妈原来回家所用的时间为:3000÷50=60(分),60﹣50=10(分),妈妈比按原速返回提前10分钟到家;(3)如图:设线段BD的函数解析式为:y=kx+b,把(0,3000),(45,750)代入得:,解得:,∴y=﹣50x+3000,线段OA的函数解析式为:y=100x(0≤x≤30),设线段AC的解析式为:y=k1x+b1,把(30,3000),(50,0)代入得:解得:,∴y=﹣150x+7500,(30<x≤50)当张强与妈妈相距1000米时,即﹣50x+3000﹣100x=1000或100x﹣(﹣50x+3000)=1000或(﹣150x+7500)﹣(﹣50x+3000)=1000,解得:x=35或x=或x=,∴当时间为35分或分或分时,张强与妈妈何时相距1000米.。
第五章二元一次方程组综合训练北师大版2024—2025学年八年级上册 夯实基础一.选择题(共6小题)1.已知下列方程组:(1)⎩⎨⎧-==23y y x ,(2)⎩⎨⎧=-=+4223y y x ,(3)⎪⎪⎩⎪⎪⎨⎧=--=+0131y x y x ,(4)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,其中属于二元一次方程组的个数为( )A. 1B. 2C. 3D. 42.已知a b y x 352+与b a y x 4224--是同类项,则a b 的值为( )A. 2B. -2C. 1D. -13.已知方程组⎩⎨⎧-=-=+1242m ny x n y mx 的解是1{ 1x y ==-,那么m 、n 的值为( ) A. 1{ 1m n ==- B. 2{1m n == C. 3{ 2m n == D. 3{ 1m n == 4.三元一次方程组⎪⎩⎪⎨⎧=+=+=+651x z z y y x 的解是( )A.⎪⎩⎪⎨⎧===501z y xB.⎪⎩⎪⎨⎧===421z y xC.⎪⎩⎪⎨⎧===401z y xD.⎪⎩⎪⎨⎧===014z y x5.若方程组⎩⎨⎧=+=-+14346)1(y x y a ax 的解y x ,的值相等,则a 的值为( )A. -4B. 4C. 2D. 16.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x 千克,乙种水果y 千克,则可列方程组为( )A .B .C .D .二.填空题(共6小题)7.31172y x =+中,若132x =-,则y=_______. 8.由11960x y --=,用x 表示y ,得y=_______,y 表示x ,得x=_______.9.如果21{ 232x y x y +=-=,那么2426923x y x y +--+=_______. 10.如果213262310a b a b x y -++--=是一个二元一次方程,则a =__________, b =___________。
二元一次方程组与一次函数一.选择题1.如图,直线y=kx(k≠0)与y=x+4在第二象限交于A,y=x+4交x轴,y轴分别于B、C两点.S:S△ACO=1:2,则方程组的解为()△ABOA.B.C.D.2.如图,函数y=ax+b和y=kx的图象交于点P,关于x,y的方程组的解是()A.B.C.D.3.已知直线y=2x与y=﹣x+b的交点的坐标为(1,a),则方程组的解是()A.B.C.D.4.已知m=2x﹣3,n=﹣x+6,若规定y=,则y的最大值为()A.0B.1C.﹣1D.25.若以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣1上,则常数b=()A.B.2C.﹣1D.1二.填空题6.在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则二元一次方程组的解为.7.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得方程组的解是.8.请从以下两个小题中任意选一个作答,若多选,则按所选的第一小题计分.(1)点P(3,﹣2)到x轴的距离为个单位长度.(2)如图,已知函数y=ax+b(a≠0)和y=kx(k≠0)的图象交于点P,则根据图象可得,关于x、y 的二元一次方程组的解是9.一次函数y=3x+7的图象与y轴的交点在二元一次方程﹣2x+by=18上,则b=.10.已知直线l1、l2的解析式分别为y1=ax+b,y2=mx+n(0<m<a),根据图中的图象填空:(1)方程组的解为;(2)当﹣1≤x≤2时,y2的范围是;(3)当﹣3≤y1≤3时,自变量x的取值范围是.三.解答题11.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x、y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.12.如图,直线l1:y=x+3与直线l2:y=ax+b相交于点A(m,4).(1)求出m的值;(2)观察图象,请你直接写出关于x,y的方程组的解和关于x的不等式x+3≤ax+b的解集.13.如图,直线l1的函数表达式为y=3x﹣2,且直线l1与x轴交于点D.直线l2与x轴交于点A,且经过点B(4,1),直线l1与l2交于点C(m,3).(1)求点D和点C的坐标;(2)求直线l2的函数表达式;(3)利用函数图象写出关于x,y的二元一次方程组的解.14.已知一次函数y=ax+2与y=kx+b的图象如图所示,且方程组的解为点B坐标为(0,﹣1).求这两个一次函数的表达式.15.阅读材料,回答以下问题:我们知道,二元一次方程有无数个解.在平面直角坐标系中,我们标出以这个方程的解为坐标的点,就会发现这些点在同一条直线上.例如:是方程x﹣y=﹣1的一个解,对应点M(1,2).如图所示,我们在平面直角坐标系中将其标出,另外方程的解还对应点(2,3)、(1,2)……将这些点连起来正是一条直线,反过来,在这条直线上任取一点,这个点的坐标也是方程x﹣y=﹣1的解,所以,我们就把这条直线就叫做方程x﹣y=﹣1的图象.一般的,任意二元一次方程解的对应点连成的直线就叫这个方程的图象.请问:(1)已知A(1,1)、B(﹣3,4)、C(,2),则点(填“A或B或C”)在方程2x﹣y=﹣1的图象上.(2)求方程2x+3y=9和方程3x﹣4y=5图象的交点坐标.(3)已知以关于x、y的方程组的解为坐标的点在方程x+y=5的图象上,当t>m时,化简﹣|1﹣7t|.16.已知二元一次方程x+y=5,通过列举将方程的解写成下列表格的形式:x﹣1m56y650n 如果将二元一次方程的解所包含的未知数x的值对应直角坐标系中一个点的横坐标,未知数y的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:方程x+y =5的解的对应点是(2,3).(1)表格中的m=,n=;(2)通过以上确定对应点坐标的方法,将表格中给出的五个解依次转化为对应点的坐标,并在所给的直角坐标系中画出这五个点;根据这些点猜想方程x+y=5的解的对应点所组成的图形是,并写出它的两个特征①,②;(3)若点P(﹣2a,a﹣1)恰好落在x+y=5的解对应的点组成的图形上,求a的值.17.小明同学在解方程组的过程中,错把b看成了6,其余的解题过程没有出错,解得此方程组的解为,又已知直线y=kx+b过点(3,1),则b的正确值应该是多少?18.用作图象的方法解方程组:.19.如图,直线l1:y1=x+1和直线l2:y2=ax+b相交于点P(1,m).(1)方程组的解是;(2)当0≤y1<3时,自变量x的取值范围是;(3)直线l3:y=bx+a是否经过点P?请说明理由.20.如图,过点(0,﹣2)的直线l1:y=kx+b(k≠0)与直线l2:y=x+1交于点P(2,m).(1)求点P的坐标和直线l1的表达式;(2)根据图象直接写出方程组的解.21.已知:一次函数y=x﹣1和y=x+.(1)在给出的平面直角坐标系中,画出这两个函数的图象,并写出交点的坐标;(2)结合图象:①写出方程组的解;②写出不等式x﹣1>x+的解集.22.利用函数图象解方程组:(1);(2).23.在直角坐标系中,直线L1的解析式为y=2x﹣1,直线L2过原点且L2与直线L1交于点P(﹣2,a).(1)试求a的值;(2)试问点(﹣2,a)可以看作是怎样的二元一次方程组所求得的?(结合题意给出解答)(3)设直线L1与x轴交于点A,你能求出△APO的面积吗?试试看.24.如图,直线y=2x+6与直线l:y=kx+b交于点P(﹣1,m)(1)求m的值;(2)方程组的解是;(3)直线y=﹣bx﹣k是否也经过点P?请说明理由.25.解方程组(1)(2)用图象法解方程组:.26.已知二元一次方程x+y=3,通过列举将方程的解写成下列表格的形式,x﹣3﹣1n备用备用备用y6m﹣如果将二元一次方程的解所包含的未知数x的值对应直角坐标系中一个点的横坐标,未知数y的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:解的对应点是(2,1).(1)①表格中的m=,n=;②根据以上确定对应点坐标的方法,将表格中给出的三个解依次转化为对应点A、B、C的坐标,并在所给的直角坐标系中画出这三个点.(2)试着再多列举几组不同的x+y=3的解,并在直角坐标系中画出对应点,根据结果猜想x+y=3的解对应的点所组成的图形,写出它的两个特征.(3)若点P(b,a﹣3),G(﹣a,b+3)恰好都落在x+y=3的解对应的点组成的图象上,求a,b的值.27.【数学活动回顾】:我们曾探究过“以方程x﹣y=0的解为坐标(x的值为横坐标、y的值为纵坐标)的点的特性”,了解了二元一次方程的解与其图象上点的坐标的关系.规定:以方程x﹣y=0的解为坐标的所有点的全体叫做方程x﹣y=0的图象;结论:一般的,任何一个二元一次方程的图象都是一条直线.示例:如图1,我们在画方程x﹣y=0的图象时,可以取点A(﹣1,﹣1)和B(2,2),作出直线AB.【解决问题】:1、请你在图2所给的平面直角坐标系中画出二元一次方程组中的两个二元一次方程的图象(提示:依据“两点确定一条直线”,画出图象即可,无需写过程)2、观察图象,两条直线的交点坐标为,由此你得出这个二元一次方程组的解是;【拓展延伸】:3、已知二元一次方程ax+by=6的图象经过两点A(﹣1,3)和B(2,0),试求a、b的值.28.如图,直线y1=2x﹣2与y轴交于点A,直线y2=﹣2x+6与y轴交于点B,两条直线交于点C.(1)方程组的解是.(2)当2x﹣2>0与﹣2x+6>0同时成立时,x的取值范围是.(3)求△ABC的面积;(4)在直线y1=2x﹣2的图象上存在异于点C的另一点P,使得△ABC与△ABP的面积相等,请求出点P的坐标.29.在平面直角坐标系中,一次函数y=ax+b的图象过点B(﹣1,),与x轴交于点A(4,0),与y轴交于点C,与直线y=kx交于点P,且PO=P A,(1)求a+b的值.(2)求k的值.(3)D为PC上一点,DF⊥x轴于点F,交OP于点E,若DE=2EF,求D点坐标.30.如图,直线l1过点A(8,0)、B(0,﹣5),直线l2过点C(0,﹣1),l1、l2相交于点D,且△DCB的面积等于8.(1)求点D的坐标;(2)点D的坐标是哪个二元一次方程组的解.31.在直角坐标系中,直线l1经过(2,3)和(﹣1,﹣3),直线l2经过原点O,且与直线l1交于点P(﹣2,a).(1)求a的值;(2)(﹣2,a)可看成怎样的二元一次方程组的解?(3)设直线l1与y轴交于点A,你能求出△APO的面积吗?参考答案一.选择题1.解:作AH⊥x轴于H,如图,当x=0时,y=x+4=4,则C(0,4),∵S△ABO:S△ACO=1:2,∴AB:AC=1:2,∵AH∥OC,∴==,∴AH=×4=,当y=时,x+4=,解得x=﹣4,∴A(﹣4,),∴方程组的解为.故选:C.2.解:由图可知,交点坐标为(﹣3,﹣2),所以方程组的解是.故选:D.3.解:∵直线y=2x经过(1,a)∴a=2,∴交点坐标为(1,2),∵方程组的解就是两个一次函数的交点坐标,∴方程组的解,故选:A.4.解:若m≥n,即2x﹣3≥﹣x+6,解得x≥3,y=2﹣2x+3﹣x+6=﹣3x+11,当x=3时,y有最大值,最大值=﹣3×3+11=2;若m<n,即2x﹣3<﹣x+6,解得x<3,y=2+2x﹣3+x﹣6=3x﹣7,y没有最大值,所以y的最大值为2.故选:D.5.解:因为以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣1上,直线解析式乘以2得2y=﹣x+2b﹣2,变形为:x+2y﹣2b+2=0 所以﹣b=﹣2b+2,解得:b=2,故选:B.二.填空题6.解:∵一次函数y=kx和y=﹣x+3的图象交于点(1,2),∴二元一次方程组的解为.故答案为:.7.解:因为函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),所以方程组的解为.故答案为.8.解:(1)点P(3,﹣2)到x轴的距离为2个单位长度;故答案为:2;(2)函数y=ax+b(a≠0)和y=kx(k≠0)的图象交于点P(﹣3,1),则根据图象可得,关于x、y的二元一次方程组的解是:.故答案为:.9.解:一次函数y=3x+7中,令x=0,则y=7,即一次函数与y轴的交点是(0,7);把x=0,y=7代入﹣2x+by=18,得:7b=18,即b=.10.解:(1)在图中,∵函数y1=ax+b,y2=mx+n交点为(2,3),此即为方程组的解,故答案为.(2)对直线l2,x=﹣1时,y=0;x=2时,y=3.∴y=3x﹣3,∴当﹣1≤x≤2时,y2的范围是0≤y2≤3,故答案为0≤y2≤3;(3)对直线l1,y=﹣3时,x=0;y=3时,x=2.∴y=x﹣1当﹣3≤y1≤3时,自变量x的取值范围是0≤x1≤2,故答案为0≤x1≤2.三.解答题11.解:(1)把P(1,b)代入y=x+1得b=1+1=2;(2)由(1)得P(1,2),所以方程组的解为;(3)直线l3:y=nx+m经过点P.理由如下:因为y=mx+n经过点P(1,2),所以m+n=2,所以直线y=nx+m也经过P点.12.解:(1)∵直线l1:y=x+3与直线l2:y=ax+b相交于点A(m,4),∴4=m+3,解得:m=1;(2)∵m=1,∴关于x,y的方程组的解为:,关于x的不等式x+3≤ax+b的解集为:x≤1.13.解:(1)在y=3x﹣2中令y=0,即3x﹣2=0 解得x=,∴D(,0),∵点C(m,3)在直线y=3x﹣2上,∴3m﹣2=3,∴m=,∴C(,3);(2)设直线l2的函数表达式为y=kx+b(k≠0),由题意得:,解得:,∴y=﹣x+;(3)由图可知,二元一次方程组的解为.14.解:由题意可得A(2,1).把A的坐标代入y=ax+2,得1=2a+2,解得a=﹣,所以y=﹣x+2;把A、B的坐标代入y=kx+b,,解得,所以y=x﹣1.∴两个一次函数的表达式为y=﹣x+2,y=x﹣1.15.解:(1)如图观察图象可知:点C在方程2x﹣y=﹣1的图象上,故答案为C.(2)由,解得,∴方程2x+3y=9和方程3x﹣4y=5图象的交点坐标为(3,1).(3)由,解得,∵x+y=5,∴+=5,∴m=,当t>时,﹣|1﹣7t|=t+2+1﹣7t=3﹣6t.16.解:(1)①将x=m,y=5代入x+y=5得5+m=5,∴m=0,将x=6,y=n代入x+y=5得6+n=5∴n=﹣1故答案为:0,﹣1;(2)猜想x+y=5的解对应的点所组成的图形为直线,它有这样两个特征:①图象经过一、二、四象限;②图象从左向右呈下降趋势.故答案为:直线,图象经过一、二、四象限,图象从左向右呈下降趋势;(3)由题意得:﹣2a+a﹣1=5,解得:a=﹣6.17.解:依题意得:2=﹣k+6,解得:k=4;又∵1=3×4+b,∴b=﹣11.18.解:由x﹣y=3得y=x﹣3,由x+2y=﹣3得y=﹣x﹣.作出函数的图象(如图),得到交点(1,﹣2).∴方程组的解为.19.解:(1)当x=1时,m=1+1=2,则P(1,2),所以方程组的解是;故答案为;(2)当y=3时,x+1=3,解得x=2;当y=0时,x+1=0,解得x=﹣1,所以当0≤y1<3时,自变量x的取值范围是﹣1≤x<2;、故答案为﹣1≤x<2;(3)直线l3:y=bx+a经过点P.理由如下:∵直线l2:y2=ax+b经过点P(1,2),∴a+b=2,∵当x=1时,y=bx+a=b+a=2,∴直线l3:y=bx+a经过点P.20.解:(1)把P(2,m)代入y=x+1得m=3,则P点坐标为(2,3);把(0,﹣2),P(2,3)代入y=kx+b得,解得,所以直线l1的表达式为y=x﹣2;(2)因为直线l1:y=kx+b(k≠0)与直线l2:y=x+1交于点P(2,3),所以方程组的解为.21.解:(1)过点(1,0)和(0,﹣1)画一次函数y=x﹣1的图象;过点(﹣2,0)和(2,1)画一次函数y=的图象.如图.两直线的交点坐标为(2,1).(2)由图象可知:①方程组的解是;②不等式x﹣1>的解集是x>2.22.解:(1)∵2x﹣y=5化为:y=2x﹣5,3x+4y=2化为:y=﹣x+,是两个一次函数,如图1:∴两个一次函数的交点坐标是(2,﹣1),则方程组的解是;(2)∵x+3y=3化为:y=﹣x+1,3x﹣2y=﹣6化为:y=x+3,如图2:∴两个一次函数的交点坐标是(﹣,),则方程组的解是.23.解:(1)把P(﹣2,a)代入y=2x﹣1得a=2×(﹣2)﹣1=﹣5,(2)设L2的解析式为y=kx,把P(﹣2,﹣5)代入得﹣5=﹣2k,解得k=,所以L2的解析式为y=x,所以点(﹣2,﹣5)可以看作是解二元一次方程组所得;(3)对于y=2x﹣1,令y=0得2x﹣1=0,解得x=,则A点坐标为(,0)所以S△APO=×|﹣5|×=.24.解:(1)将点P(﹣1,m)代入直线方程y=2x+6得:﹣2+6=m,所以m的值是4;(2)方程组的解为,故答案为:,(3)直线y=﹣bx﹣k也经过点P.理由如下:∵点P(﹣1,4),在直线y=﹣bx﹣k上,∴b﹣k=4,∵y=kx+b交于点P,∴﹣k+b=4,∴b﹣k=﹣k+b,这说明直线y=﹣bx﹣k也经过点P.25.解:(1),由①+②得:3x=3,解得:x=1,把x=1代入①得:y=3∴的解为:;(2)由①得:y=11﹣3x,由②得:y=,在同一平面直角坐标系中画出函数y=11﹣3x与y=的图象,由图可知,它们的交点坐标为(3,2),∴原方程组的解为:.26.解:(1)①将x=﹣1,y=m代入x+y=3得﹣1+m=3∴m=4将x=n,y=代入x+y=3得n﹣=3∴n=故答案为:4,;②由①及原题表格可知A、B、C的坐标分别为:A(﹣3,6)、B(﹣1,4)、C(,)画图如下:(2)易得x=﹣2,y=5;x=0,y=3;x=1,y=2;x=2,y=1;x=3,y=0都是方程x+y=0的解,在直角坐标系中画出对应点D、E、F、G、H猜想x+y=3的解对应的点所组成的图形为直线,它有这样两个特征:①图象经过一、二、四象限;②图象从左向右呈下降趋势.(3)由题意得:解得:∴a的值为3,b的值为3.27.解:1、如图,2、观察图象,两条直线的交点坐标为(1,2),由此得出这个二元一次方程组的解是;3、根据题意得,解得故答案为(1,2),.28.解:(1)如图所示:方程组的解为:;故答案为:;(2)如图所示:当y1>0与y2>0同时成立时,x取何值范围是:1<x<3;故答案为:1<x<3;(3)∵令x=0,则y1=﹣2,y2=6,∴A(0,﹣2),B(0,6).∴AB=8.∴S△ABC=×8×2=8;(4)令P(x0,2x0﹣2),则S△ABP=×8×|x0|=8,∴x0=±2.∵点P异于点C,∴x0=﹣2,2x0﹣2=﹣6.∴P(﹣2,﹣6).29.解:(1)根据题意得:,解方程组得:,∴a+b=﹣+2=,即a+b=;(2)设P(x,y),则点P即在一次函数y=ax+b上,又在直线y=kx上,由(1)得:一次函数y=ax+b的解析式是y=﹣+2,又∵PO=P A,∴,解方程组得:,∴k的值是;(3)设点D(x,﹣+2),则E(x,),F(x,0),∵DE=2EF,∴=2×,解得:x=1,则﹣+2=×1+2=,∴D(1,).30.解:(1)设直线l1的解析式为y=kx+b,根据题意得:,解得:,∴直线l1的解析式为y=x﹣5,∵B(0,﹣5),∴OB=5,∵点C(0,﹣1),∴OC=1,∴BC=5﹣1=4,设D(x,y),则△DCB的面积=×4×|x|=8,解得:x=±4(负值舍去),∴x=4,代入y=x﹣5得:y=﹣,∴D(4,﹣);(2)设直线l2的解析式为y=ax+c,根据题意得:,解得:,∴直线l2的解析式为y=﹣x﹣1,∵l1、l2相交于点D,∴点D的坐标是方程组的解.31.解:(1)∵直线l1经过(2,3)和(﹣1,﹣3),∴解得:,∴直线l1的解析式为:y=2x﹣1,把P(﹣2,a)代入y=2x﹣1得:a=2×(﹣2)﹣1=﹣5;(2)设l2的解析式为y=kx,把P(﹣2,﹣5)代入得﹣5=﹣2k,解得k=,所以l2的解析式为y=x,所以点(﹣2,﹣5)可以看作是解二元一次方程组所得;(3)对于y=2x﹣1,令x=0,解得y=﹣1,则A点坐标为(0,﹣1),所以S△APO=×2×1=1.。
北师大版八年级数学上册第五章《6.二元一次方程与一次函数》课时练习题(含答案)一、单选题1.直线2y x =与直线5y x =-+的交点为( )A .()5,10B .510,33⎛⎫ ⎪⎝⎭C .()4,8D .47,33⎛⎫ ⎪⎝⎭ 2.一次函数26y x =-+的图象与两坐标轴围成的三角形的面积是( )A .6B .9C .12D .183.已知关于x ,y 的方程组32y x b y x =-+⎧⎨=-+⎩的解是1x y m=-⎧⎨=⎩,则直线y x b =-+与32y x =-+的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.在同一平面直角坐标系中,一次函数y ax b =+与()0y mx n a m =+<<的图象如图所示,小星根据图象得到如下结论:①在一次函数y mx n =+的图象中,y 的值随着x 值的增大而增大;②方程组y ax b y mx n-=⎧⎨-=⎩的解为32x y =-⎧⎨=⎩; ③方程0mx n +=的解为2x =;④当0x =时,1ax b +=-.其中结论正确的个数是( )A .1B .2C .3D .45.若直线21y x =+与y x b =-+的交点在第一象限,则b 的值可以是( )A .2B .1C .0D .1-6.如图所示,在直角坐标系中的两条直线分别是1y x =-+和25y x =-,那么方程组251y x y x =-⎧⎨=-+⎩的解是( )A .21x y =⎧⎨=-⎩B .12x y =-⎧⎨=⎩C .01x y =⎧⎨=⎩D .10x y =⎧⎨=⎩7.若直线1l 经过点()0,4,2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( )A .()2,0-B .()2,0C .()6,0-D .()6,08.如图,在平面直角坐标系中,点()3,A a 是直线2y x =与直线y x b =+的交点,点B 是直线y x b =+与y 轴的交点,点P 是x 轴上的一个动点,连接P A ,PB ,则PA PB +的最小值是( )A .6B .35C .9D .310二、填空题9.在平面直角坐标系中,O 为坐标原点,若直线y =x +3分别与x 轴,直线y =-2x 交于点A ,B ,则△AOB 的面积为 _____.10.在平面直角坐标系中,一次函数y =kx +b 和y =mx +n 相交于点(2,﹣1),则关于x ,y的方程组y kx b y mx n =+⎧⎨=+⎩的解是______. 11.如果直线y =12x +n 与直线y =mx -1的交点坐标为(1,-2),那么m =________,n =________.12.如图,在同一平面直角坐标系中,直线l 1:y 14=x 12+与直线l 2:y =kx +3相交于点A ,则方程组11423y x y kx ⎧=+⎪⎨⎪=+⎩的解为 ___.13.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,直线l 1:y =x +5与直线l 2:y =-12x -1的交点坐标为____.三、解答题14.在同一平面直角坐标系中画出正比例函数y =x 和一次函数y =﹣x +2的图象,并求出这两个函数图象与x 轴围成的三角形面积.x+2,且l1与x轴交于点A,直线l2经过定点B(4,15.如图,直线l1的函数表达式为y=120),C(﹣1,5),直线l1与l2交于点D.(1)求直线l2的函数表达式;(2)求△ADB的面积;(3)在x轴上是否存在一点E,使△CDE的周长最短?若存在,请直接写出点E的坐标;若不存在,请说明理由.16.如图,一次函数y=x+2的图象经过点A(2,4),B(n,﹣1).(1)求n的值;(2)请判断点P(﹣2,4)在不在该直线上.(3)连接OA,OB,求△OAB的面积.x+1,与x轴、y轴分别交于A,B两点,以线段17.如图,已知直线m的解析式为y=﹣12AB为直角边在第一象限内作等腰Rt△ABC,且∠BAC=90°,点P为直线x=1上的动点,且△ABP的面积与△ABC的面积相等.(1)求△ABC 的面积;(2)求点P 的坐标.18.如图1,在平面直角坐标xOy 中,直线1l :1y x =+与x 抽交于点A ,直线2l :33y x =-与x 轴交于点B ,与1l 相交于C 点.(1)请直接写出点A ,点B ,点C 的坐标:A _________,B ________,C _______. (2)如图2,动直线x t =分别与直线1l 、2l 交于P 、Q 两点.①若2PQ =,求t 的值;②若存在2AQC ABC S S =△△,求出此时点Q 的坐标;若不存在,请说明理由.19.如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.(1)若直线AB解析式为y=﹣2x+12,求:①求点C的坐标;②求△OAC的面积.(2)在(1)的条件下,若P是x轴上的一个动点,直接写出当△POC是等腰三角形时P的坐标.(3)如图2,作∠AOC的平分线OF,若AB OF⊥,垂足为E,OA=4,P是线段AC上的动点,过点P作OC,OA的垂线,垂足分别为M,N,试问PM+PN的值是否变化,若不变,求出PM+PN的值;若变化,请说明理由。
八年级数学上册《第五章用二元一次方程组确定一次函数表达式》练习题-带答案(北师大版) 一、选择题1.如图,以两条直线l1,l2的交点坐标为解的方程组是( )2.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )3.如图,函数y1=-2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式-2x>ax+3的解集是()A.x>2B.x<2C.x>-1D.x<-14.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为( )A.x<32B.x<3C.x>-32D.x>35.如图,直线y=x+32与y=kx﹣1相交于点P,点P的纵坐标为12,则关于x的不等式x+32>kx ﹣1的解集在数轴上表示正确的是 ( )6.已知直线l 1:y =-3x +b 与直线l 2:y =kx -1在同一坐标系中的图象交于点(1,-2),那么方程组⎩⎨⎧3x +y =b ,kx -y =1的解是( ) A.⎩⎨⎧x =1,y =-2 B.⎩⎨⎧x =1,y =2 C.⎩⎨⎧x =-1,y =-2 D.⎩⎨⎧x =-1,y =27.如图,两个一次函数图象的交点坐标为(2,4),则关于x ,y 的方程组的解为( ) A. B. C. D. 8.如图,一次函数y 1=mx +2与y 2=﹣2x +5的图象交于点A(a,3),则不等式mx +2>﹣2x +5的解集为( )A.x>3B.x <3C.x>1D.x <1二、填空题9.如图,直线l 1,l 2交于点A.观察图像,点A 的坐标可以看作方程组_______的解.10.已知方程组⎩⎨⎧y =ax +b ,y =kx ,的解是⎩⎨⎧x =1,y =3,则一次函数y =ax +b 与y =kx 的交点P 的坐标是 . 11.已知函数y 1=k 1x +b 1与函数y 2=k 2x +b 2的图象如图所示,则不等式y 1<y 2的解集是 .12.已知直线y =x-3与y =2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________. 13.如果一次函数y 1=ax+b 和y 2=cx+d 在同一坐标系内的图象如图,并且方程组⎩⎨⎧+=+=dcx y b ax y 的解⎩⎨⎧==n y m x ,则m,n 的取值范围是 .14.如图,经过点B(-2,0)的直线y =kx +b 与直线y =4x +2相交于点A(-1,-2),则不等式4x +2<kx +b <0的解集为 .三、解答题15.已知一次函数y =kx +2与y =x ﹣1的图象相交,交点的横坐标为2.(1)求k 的值;(2)直接写出二元一次方程组的解.16.如图直线y 1=kx +b 经过点A(﹣6,0),B(﹣1,5).(1)求直线AB 的表达式;(2)若直线y 2=﹣2x ﹣3与直线AB 相交于点M ,则点M 的坐标为(_____,_____);(3)根据图像,直接写出关于x 的不等式kx +b ﹤﹣2x ﹣3的解集.17.如图,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P(1,b).(1)求b 的值;(2)不解关于x ,y 的方程组⎩⎨⎧y =x +1,y =mx +n ,请你直接写出它的解; (3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.18.如图,根据图中信息解答下列问题:(1)关于x的不等式ax+b>0的解集是________;(2)关于x的不等式mx+n<1的解集是________;(3)当x为何值时,y1≤y2?(4)当x<0时,比较y2与y1的大小关系.19.小颖根据学习函数的经验,对函数y=1﹣|x﹣1|的图象与性质进行了探究,下面是小颖的探究过程,请你补充完整.(1)列表:x…﹣2 ﹣2 0 1 2 3 4 …y…﹣2 ﹣1 0 1 0 ﹣1 k …①k=______;②若A(7,﹣5),B(m,﹣5)为该函数图象上不同的两点,则m=______.(2)描点并画出该函数的图象.(3)根据函数图象可得:①该函数的最大值为______;②观察函数y=1﹣|x﹣1|的图象,写出该图象的两条性质:______,______;③已知直线y1=12x﹣1与函数y=1﹣|x﹣1|的图象相交,则当y1≤y时x的取值范围是______.参考答案1.C2.D3.D4.A5.A.6.A7.A.8.C9.答案为:.10.答案为:(1,3).11.答案为:x <1. 12.答案为:58x y =-⎧⎨=-⎩13.答案为:m >0,n >0.14.答案为:-2<x <-1.15.解:(1)将x =2代入y =x ﹣1,得y =1则交点坐标为(2,1).将(2,1)代入y =kx +2得2k +2=1解得k =-12;(2)二元一次方程组的解为. 16.解:(1)(1)∵直线1y kx b =+经过点A(﹣6,0)、B(﹣1,5) 605k b k b -+=⎧∴⎨-+=⎩,解方程组得16k b =⎧⎨=⎩∴直线AB 的解析式为y =x +6;(2)(2)∵直线223y x =--与直线AB 相交于点M623y x y x =+⎧∴⎨=--⎩,解得33x y =-⎧⎨=⎩∴点C 的坐标为(﹣3,3)故答案为:﹣3,3;(3)(3)由图可知,关于x 的不等式23kx b x +<--的解集是3x <-.17.解:(1)b =2(2)⎩⎨⎧x =1,y =2 (3)直线y =nx +m 也经过点P∵点P(1,2)在直线y =mx +n 上∴m +n =2∴2=n ×1+m ,这说明直线y =nx +m 也经过点P.18.解:(1)∵直线y 2=ax+b 与x 轴的交点是(4,0)∴当x <4时,y 2>0,即不等式ax+b >0的解集是x <4;故答案是:x <4;(2)∵直线y 1=mx+n 与y 轴的交点是(0,1)∴当x <0时,y 1<1,即不等式mx+n <1的解集是x <0;.故答案是:x <0;(3)由一次函数的图象知,两条直线的交点坐标是(2,18),当函数y 1的图象在y 2的下面时,有x ≤2,所以当x ≤2时,y 1≤y 2;(4)如图所示,当x <0时,y 2>y 1. 19.解:(1)①当4x =时14113132y =--=-=-=-,即2k =- 故答案为:2-;②把5y =-代入11y x =--得 511m -=--∴16m -=,解得:17m = 25m =-∵()7,5A -,(),5B m -为该函数图象上不同的两点∴5m =-故答案为:-5;(2)解:该函数的图象如图所示(3)解:根据函数图象可知:①该函数的最大值为1,故答案为:1;②性质:该函数的图象是轴对称图形;当1x <时,y 随着x 的增大而增大,当1x >时,y 随着x 的增大而减小;③如图,直线1112y x =-与1|1|y x =--的图象相交于点(2,2)-- ()20, 由函数图象得:当1y y ≤时,x 的取值范围为22x -≤≤ 故答案为:22x -≤≤.。
第五章 二元一次方程组一、单选题1.下列方程组是二元一次方程组的是( )A .{x +y =1z +x =6B .{x +y =3xy =12C .{x +y =61x+y =4D .{x =y +13−2x =y +132.二元一次方程2x−3y =1有无数个解,下列选项中是该方程的一个解的是( )A .{x =12y =0B .{x =1y =1 C .{x =1y =0D .{x =32y =433.已知方程组{x +2y =m +22x +y =3m,未知数x 、y 的和等于2,则m 的值是( )A .1B .2C .3D .44.已知直线y=﹣x+4与y=x+2的图象如图,则方程组{x +y =4−2=x−y的解为( )A .B .C .D .5.买苹果和梨共100千克,其中苹果的质量比梨的质量的2倍少8千克,求苹果和梨各买了多少.若设买苹果x 千克,则列出的方程组应是( )A .{x +y =100y =2x +8B .{x +y =100y =2x−8C .{x +y =100x =2y +8D .{x +y =100x =2y−8 6.已知m 为正整数,且二元一次方程组{mx +2y =103x−2y =0 有整数解,则m 的值为( )A .1B .2C .3D .77.把5m 长的彩绳截成2m 或1m 的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( )A .1种B .2种C .3 种D .4种8.已知一次函数y =3x 与y =−32x +92图象的交点坐标是(1,3),则方程组{y =3xy =−32x +92的解是()A .{x =2y =6B .{x =−1y =3C .{x =0y =0D .{x =1y =39.如图,在长为18m ,宽为15m 的长方形空地上,沿平行于长方形各边的方向分别割出三个大小完全一样的小长方形花圃,则其中一个小长方形花圃的面积为( )A .15m 2B .18m 2C .28m 2D .35m 210.我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶和1个小桶可以盛酒3斛,1个大桶和5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶可以盛酒x 斛,1个小桶可以盛酒y 斛,根据题意,可列方程组为( )A .{5x +y =3x +5y =2B .{5x−y =3x +5y =2C .{5x +y =2x +5y =3D .{x−5y =25x +y =3二、填空题11.由方程组{x +m =2y−3=−m,可得x —y 的值是 .12.已知2y−x =4,用含y 的代数式表示x =.13.若方程组{x +y =2,2x +2y =3没有解,则直线y =2−x 与直线y =32−x 的位置关系是 .14.五一小长假,小亮和家人到公园游玩.湖边有大小两种游船,小亮发现2艘大船与3艘小船一次共可以满载游客58人,3艘大船与2艘小船一次共可以满载游客72人.则1艘大船与1艘小船一次共可以满载游客的人数为.15.如图,在长方形ABCD 中,放入6个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分面积为 cm 2.16.已知关于x ,y 的二元一次方程a 1x +b 1y =c 1的部分解如表:x…−125811…y …−19−12−529…关于x ,y 的二元一次方程a 2x +b 2y =c 2的部分解如表:x …−125811…y…−70−46−22226…则关于x ,y 的二元一次方程组{a 1x +b 1y =c1a 2x +b 2y =c 2的解是.17.有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件共需315元;若购甲4件,乙10件,丙1件,共需420元,问购甲、乙、丙各5件共需元.18.“鸡兔同笼”是我国古代数学名著《孙子算经》上的一道题:今有鸡兔同笼,上有四十三头,下有一百零二足,问鸡兔各几何?若设笼中有鸡x 只,兔y 只,则可列出的二元一次方程组为 .三、解答题19.解方程组:(1){3x +y =155x−2y =14;(2){3x−2y =7x−2y 3+2y−12=1.20.在平面直角坐标系中有A (−1,4),B (−3,2),C (0,5)三点.(1)求过A ,B 两点的直线的函数解析式;(2)判断A ,B ,C 三点是否在同一条直线上?并说明理由.21.已知关于x ,y 的二元一次方程组{2x +3y =kx +2y =−1的解互为相反数,求k 的值.22.阅读:某同学在解方程组{3x +2y =72x−1y=14时,运用了换元法,方法如下:设1x =m ,1y =n ,则原方程组可变形为关于m ,n 的方程组{3m +2n =72m−n =14,解这个方程组得到它的解为{m =5n =−4 .由1x=5,1y =−4,求得原方程组的解为{x =15y =−14.请利用换元法解方程组:{5x−1+12y =113x−1−12y=13.23.在平面直角坐标系内,已知点A (a,0),B (b,2),C (0,2).a ,b 是方程组{2a +b =13a +2b =11的解.(1)求a ,b 的值;(2)过点E (6,0)作PE ∥y 轴,Q (6,m )是直线PE 上一动点,连接QA ,QB .试用含有m 的式子表示三角形ABQ 的面积.24.某商场销售甲、乙两种商品,其中甲种商品进价为20元/件,售价为30元/件;乙种商品进价为50元/件,售价为80元/件.现商场用13000元购进这两种商品并全部售出,两种商品的总利润为7500元,问该商场购进甲、乙两种商品各多少件?25.某市绿道免费公共自行车租赁系统正式启用.市政府投资了200万元,建成40个公共自行车站点、配置800辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2019年将投资432万元,新建80个公共自行车站点、配置1760辆公共自行车.请问每个站点的造价和每辆公共自行车的配置费分别是多少万元?26.某商店分两次购进A,B型两种台灯进行销售,两次购进的数量及费用如下表所示,由于物价上涨,第二次购进A,B型两种台灯时,两种台灯每台进价分别上涨30%,20%.购进的台数购进所需要的费用(元)A型B型第一次10203000第二次15104500(1)求第一次购进A,B型两种台灯每台进价分别是多少元?(2)A,B型两种台灯销售单价不变,第一次购进的台灯全部售出后,获得的利润为2800元,第二次购进的台灯全部售出后,获得的利润为1800元.求A,B型两种台灯每台售价分别是多少元?27.如图,已知一次函数y=3x+3与y轴交于点A,与x轴交于点B,直线AC与x正半轴交于点C,且AC=BC.(1)求直线AC的解析式;(2)点D为线段AC上一点,点E为线段CD的中点,过点E作x轴的平行线交直线AB 于点F,连接DF交x轴于点G,求证:AD=BG;(3)在(2)的条件下,线段EF、DG分别与y轴交于点M、N,若∠AFD=2∠BAO,求线段MN的长.参考答案1.D2.A3.A4.B5.D6.B7.C8.D9.C10.A11.-112.2y−413.平行14.2615.2716.{x=8y=217.52518.{x+y=432x+4y=10219.(1){x=4y=3(2){x=165y=131020.(1)y=x+5(2)A,B,C三点在同一条直线上21.−122.{x=43y=−18.23.(1)a=5,b=3(2)m+1或−m−124.该商场购进甲种商品150件,乙种商品200件25.每个站点的造价为1万元,每辆公共自行车的配置费为0.2万元.26.(1)第一次购进A 型台灯每台进价为200元,B 型台灯每台进价为50元;(2)A 型台灯每台售价为340元,B 型台灯每台售价为120元27.(1)y =﹣34x +3;(3)45104.。
北师大版八年级数学上册第五章二元一次方程组教材同步练习题一、选择题:1.下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.1x +4y=6 D.4x=24y-2.下列方程组中,是二元一次方程组的是()A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a-11b=21 ()A.有且只有一解B.有无数解C.无解D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x-2│+(3y+2)2=0,则的值是()A.-1 B.-2 C.-3 D.326.方程组43235x y kx y-=⎧⎨+=⎩的解与x与y的值相等,则k等于()A.1 B.-2 C.-1 D.07.下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.48.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246... 22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二、填空题9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______.12.已知2,3xy=-⎧⎨=⎩是方程x-ky=1的解,那么k=_______.13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.以57xy=⎧⎨=⎩为解的一个二元一次方程是_________.16.已知2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)•有相同的解,求a 的值.18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?19.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,•使它与已知方程所组成的方程组的解为41x y =⎧⎨=⎩.22.根据题意列出方程组:(1)明明到买0.8元与2元的卡片共13张,共花去20元钱,•问明明两种卡片各买了多少张?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组2528x y x y +=⎧⎨-=⎩的解是否满足2x -y=8?满足2x -y=8的一对x ,y 的值是否是方程组2528x y x y +=⎧⎨-=⎩的解?24.是否存在整数m ,使关于x 的方程2x+9=2-(m -2)x 在整数范围内有解,你能找到几个m 的值?你能求出相应的x 的解吗?参考答案:一、选择题1.D 解析:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式.2.A 解析:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为1;③每个方程都是整式方程.3.B 解析:不加限制条件时,一个二元一次方程有无数个解.4.C 解析:用排除法,逐个代入验证.5.C 解析:利用非负数的性质.6.B7.C 解析:根据二元一次方程的定义来判定,•含有两个未知数且未知数的次数不超过1次的整式方程叫二元一次方程,注意⑧整理后是二元一次方程.8.B二、填空题9.424332x y -- 10.43-10 11.43,2 解析:令3m -3=1,n -1=1,∴m=43,n=2. 12.-1 解析:把2,3x y =-⎧⎨=⎩代入方程x -ky=1中,得-2-3k=1,∴k=-1. 13.4 解析:由已知得x -1=0,2y+1=0,∴x=1,y=-12,把112x y =⎧⎪⎨=-⎪⎩代入方程2x -ky=4中,2+12k=4,∴k=1. 14.解:12344321x x x x y y y y ====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩ 解析:∵x+y=5,∴y=5-x ,又∵x ,y 均为正整数,∴x为小于5的正整数.当x=1时,y=4;当x=2时,y=3;当x=3,y=2;当x=4时,y=1.∴x+y=5的正整数解为12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩15.x+y=12 解析:以x与y的数量关系组建方程,如2x+y=17,2x-y=3等,此题答案不唯一.16.1 4 解析:将2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩代入方程组中进行求解.三、解答题17.解:∵y=-3时,3x+5y=-3,∴3x+5×(-3)=-3,∴x=4,∵方程3x+5y=•-•3•和3x-2ax=a+2有相同的解,∴3×(-3)-2a×4=a+2,∴a=-119.18.解:∵(a-2)x+(b+1)y=13是关于x,y的二元一次方程,∴a-2≠0,b+1≠0,•∴a≠2,b≠-1解析:此题中,若要满足含有两个未知数,需使未知数的系数不为0.(•若系数为0,则该项就是0)19.解:由题意可知x=y,∴4x+3y=7可化为4x+3x=7,∴x=1,y=1.将x=1,y=•1•代入kx+(k-1)y=3中得k+k-1=3,∴k=2 解析:由两个未知数的特殊关系,可将一个未知数用含另一个未知数的代数式代替,化“二元”为“一元”,从而求得两未知数的值.20.解:由(│x│-1)2+(2y+1)2=0,可得│x│-1=0且2y+1=0,∴x=±1,y=-12.当x=1,y=-12时,x-y=1+12=32;当x=-1,y=-12时,x-y=-1+12=-12.解析:任何有理数的平方都是非负数,且题中两非负数之和为0,则这两非负数(│x│-1)2与(2y+1)2都等于0,从而得到│x│-1=0,2y+1=0.21.解:经验算41xy=⎧⎨=⎩是方程12x+3y=5的解,再写一个方程,如x-y=3.22.(1)解:设0.8元的邮票买了x枚,2元的邮票买了y枚,根据题意得130.8220 x yx y+=⎧⎨+=⎩.(2)解:设有x只鸡,y个笼,根据题意得415(1)y xy x+=⎧⎨-=⎩.23.解:满足,不一定.解析:∵2528x yx y+=⎧⎨-=⎩的解既是方程x+y=25的解,也满足2x-y=8,•∴方程组的解一定满足其中的任一个方程,但方程2x-y=8的解有无数组,如x=10,y=12,不满足方程组25 28x yx y+=⎧⎨-=⎩.24.解:存在,四组.∵原方程可变形为-mx=7,∴当m=1时,x=-7;m=-1时,x=7;m=•7时,x=-1;m=-7时x=1.。
二元一次方程组与一次函数练习题
一.选择题
1.如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x,y的二元一次方程组的解是()
A.B.C.D.
2.如图,函数y=ax+b和y=kx的图象交于点P,关于x,y的方程组的解是()
A.B.C.D.
3.如图,直线l1、l2的交点坐标可以看作方程组()的解.
A.B.C.D.
4.如图,在平面直角坐标系xOy中,如果一个点的坐标可以用来表示关于x、y的二元一次方程组的解,那么这个点是()
A.M B.N C.E D.F
5.若以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣1上,则常数b=()A.B.2C.﹣1D.1
二.填空题
6.在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则二元一次方程组的解为.
7.若方程组的解是,则直线y=﹣2x+b与直线y=x﹣a的交点坐标是.
8.已知直线y=x﹣1与y=﹣x+5的交点坐标是(4,1),则方程组的解是.
9.已知y1=x+1,y2=﹣2x+4,对任意一个x,取y1,y2中的较大的值为m,则m的最小值是.10.已知二元一次方程组的解为,则在同一平面直角坐标系中,直线l1:y=x+5与直线l2:y=﹣x﹣1的交点坐标为.
三.解答题
11.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).
(1)求b的值;
(2)不解关于x、y的方程组,请你直接写出它的解;
(3)直线l3:y=nx+m是否也经过点P?请说明理由.。
北师大版八年级数学(上)解二元一次方程组50题配完整解析1.解下列方程组.(1)(2).【解答】解:(1)方程组整理得:,②﹣①×2得:y=8,把y=8代入①得:x=17,则方程组的解为;(2)方程组整理得:,①×3﹣②×2得:5y=5,即y=1,把y=1代入①得:x=8,则方程组的解为.2.解方程组:①;②.【解答】解:①,①×3+②×2得:13x=52,解得:x=4,则y=3,故方程组的解为:;②,①+12×②得:x=3,则3+4y=14,解得:y=,故方程组的解为:.3.解方程组.(1).(2).【解答】解:(1),②﹣①得:x=1,把x=1代入①得:y=9,∴原方程组的解为:;(2),①×3得:6a+9b=6③,②+③得:10a=5,a=,把a=代入①得:b=,∴方程组的解为:.4.计算:(1)(2)【解答】解:(1),①×2﹣②得:5x=5,解得:x=1,把x=1代入②得:y=﹣2,所以方程组的解为:;(2),①﹣②×2得:y=1,把y=1代入①得:x=﹣3,所以方程组的解为:.5.解下列方程组:(1)(2).【解答】解:(1),①×5,得15x﹣20y=50,③②×3,得15x+18y=126,④④﹣③,得38y=76,解得y=2.把y=2代入①,得3x﹣4×2=10,x=6.所以原方程组的解为(2)原方程组变形为,由②,得x=9y﹣2,③把③代入①,得5(9y﹣2)+y=6,所以y=.把y=代入③,得x=9×﹣2=.所以原方程组的解是6.解方程组:【解答】解:由①得﹣x+7y=6③,由②得2x+y=3④,③×2+④,得:14y+y=15,解得:y=1,把y=1代入④,得:﹣x+7=6,解得:x=1,所以方程组的解为.7.解方程组:.【解答】解:原方程组可化为,①+②得:y=,把y的值代入①得:x=.所以此方程组的解是.或解:①代入②得到,2(5x+2)=2x+8,解得x=,把x=代入①可得y=,∴.8.解方程组:(1)(2)【解答】解:(1)①代入②,得:2(2y+7)+5y=﹣4,解得:y=﹣2,将y=﹣2代入①,得:x=﹣4+7=3,所以方程组的解为;(2)①×2+②,得:11x=11,解得:x=1,将x=1代入②,得:5+4y=3,解得:y=﹣,所以方程组的解为.9.解方程组(1)(2).【解答】解:(1),②﹣①得:8y=﹣8,解得:y=﹣1,把y=﹣1代入①得:x=1,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=26,解得:y=,把y=代入①得:x=,则方程组的解为.10.计算:(1)(2).【解答】解:(1),把①代入②得:5x+4x﹣10=8,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2),②×2﹣①得:7y=21,解得:y=3,把y=3代入②得:x=﹣14,则方程组的解为.11.解方程组:【解答】解:方程组整理得:,①×4﹣②×3得:7x=42,解得:x=6,把x=6代入①得:y=4,则方程组的解为.12.解方程组:(1)(2)【解答】解:(1),①代入②,得:5x﹣3(2x﹣1)=7,解得:x=﹣4,将x=﹣4代入②,得:y=﹣8﹣1=﹣9,所以方程组的解为;(2),①×2+②,得:15x=3,解得:x=,将x=代入②,得:+6y=13,解得:y=,所以方程组的解为.13.解方程组(1)(2)【解答】解:(1),①+②,得:3x=3,解得:x=1,将x=1代入①,得:1+y=2,解得:y=1,则方程组的解为;(2),①×8﹣②,得:y=17,解得:y=3,将y=3代入②,得:4x﹣9=﹣1,解得:x=2,则方程组的解为.14.解方程组(1)(2)【解答】解:(1),①×3+②得:10x=25,解得:x=2.5,把x=2.5代入②得:y=0.5,则方程组的解为;(2)方程组整理得:,①×4+②×11得:42x=15,解得:x=,把x=代入②得:y=﹣,则方程组的解为.15.解方程组:【解答】解:①+②得:9x﹣33=0x=把x=代入①,得y=∴方程组的解是16.解方程组【解答】解:方程组整理得:,①×3﹣②×2得:x=1,把x=1代入①得:y=﹣2,则方程组的解为.17.用适当方法解下列方程组.(1)(2)【解答】解:(1),①×2,得:6s﹣2t=10③,②+③,得:11s=22,解得:s=2,将s=2代入②,得:10+2t=12,解得:t=1,则方程组的解为;(2)原方程组整理可得,①×2,得:8x﹣2y=10③,②+③,得:11x=22,解得:x=2,将x=2代入②,得:6+2y=12,解得:y=3,则方程组的解为.18.解方程组:(1)(2)【解答】解:(1),②﹣①,得:3y=6,解得:y=2,将y=2代入①,得:x﹣2=﹣2,解得:x=0,则方程组的解为;(2)方程组整理可得,①+②,得:6x=18,解得:x=3,将x=3代入②,得:9+2y=10,解得:y=,则方程组的解为.19.解方程组:【解答】解:方程组整理成一般式可得:,①+②,得:﹣3x=3,解得:x=﹣1,将x=﹣1代入①,得:﹣5+y=0,解得:y=5,所以方程组的解为.20.用适当的方法解下列方程组:(1)(2)【解答】解:(1),①代入②,得:7x﹣6x=2,解得:x=2,将x=2代入①,得:y=6,所以方程组的解为;(2)方程组整理可得,②﹣①,得:y=2,将y=2代入①,得:3x﹣4=2,解得:x=2,所以方程组的解为.21.解二元一次方程组:(1)(2)【解答】解:(1),②×3﹣①,得:13y=﹣13,解得:y=﹣1,将y=﹣1代入①,得:3x+4=10,解得:x=2,∴方程组的解为;(2)原方程组整理可得,①﹣②,得:y=10,将y=10代入①,得:3x﹣10=8,解得:x=6,∴方程组的解为.22.解方程组:(1)(2)【解答】解:(1),①×2+②得:7x=14,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2)方程组整理得:,①+②得:3x=7,解得:x=,把x=代入①得:y=﹣,则方程组的解为.23.解下列方程组:(1)(2)【解答】解:(1)整理,得:,②﹣①×6,得:19y=114,解得:y=6,将y=6代入①,得:x﹣12=﹣19,解得:x=﹣7,所以方程组的解为;(2)方程整理为,②×4﹣①×3,得:11y=﹣33,解得:y=﹣3,将y=﹣3代入①,得:4x﹣9=3,解得:x=3,所以方程组的解为.24.解方程组(1)(2)【解答】解:(1),①×2,得:2x﹣4y=2③,②﹣③,得:7y=14,解得:y=2,将y=2代入①,得:x﹣4=1,解得:x=5,所以方程组的解为;(2)方程组整理可得,②×4,得:24x+4y=60③,③﹣①,得:23x=46,解得:x=2,将x=2代入②,得:12+y=15,解得:y=3,所以方程组的解为.25.(1)(2)【解答】解:(1)方程组整理得:,①×2﹣②×3得:﹣m=﹣162,解得:m=162,把m=162代入①得:n=204,则方程组的解为;(2)方程组整理得:,①﹣②×6得:﹣11x=﹣55,解得:x=5,把x=5代入①得:y=1,则方程组的解为.26.解方程(1)(代入法)(2)【解答】解:(1),由②,得:y=3x+1③,将③代入①,得:x+2(3x+1)=9,解得:x=1,将x=1代入②,得:y=4,所以方程组的解为;(2)原方程组整理可得,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+4y=14,解得:y=,则方程组的解为.27.解方程:(1)(2)【解答】解:(1),①×2,得:2x+4y=0③,②﹣③,得:x=6,将x=6代入①,得:6+2y=0,解得:y=﹣3,所以方程组的解为;(2)方程组整理可得,①+②,得:10x=30,解得:x=3,①﹣②,得:6y=0,解得:y=0,则方程组的解为.28.解下列二元一次方程组(1)(2)【解答】解:(1),①+②得:5x=10,解得:x=2,把x=2代入①得:y=3,则方程组的解为;(2),①×3+②得:10a=5,解得:a=,把a=代入①得:b=,则方程组的解为.29.解下列方程组:(1)(2)【解答】解:(1),由②得:x=y+4③代入①得3(y+4)+4y=19,解得:y=1,把y=1代入③得x=5,则方程组的解为;(2)方程组整理得:,①+②×4得:﹣37y=74,解得:y=﹣2,把y=﹣2代入①得:x=﹣,则方程组的解为.30.解下列方程组:(1)用代入消元法解;(2)用加减消元法解.【解答】解:(1),由①,得:a=b+1③,把③代入②,得:3(b+1)+2b=8,解得:b=1,则a=b+1=2,∴方程组的解为;(2),①×3,得:9m+12n=48③,②×2,得:10m﹣12n=66④,③+④,得:19m=114,解得:m=6,将m=6代入①,得:18+4n=16,解得:n=﹣,所以方程组的解为.31.解方程组:.【解答】解:方程组整理得:,①+②得:8x=24,解得:x=3,把x=3代入②得:y=﹣5,则方程组的解为.32.解下列方程组①;②.【解答】解:①化简方程组得:,(1)×3﹣(2)×2得:11m=55,m=5.将m=5代入(1)式得:25﹣2n=11,n=7.故方程组的解为;②化简方程组得:,(1)×4+(2)化简得:30y=22,y=.将y=代入第一个方程中得:﹣x+7×=4,x=.故方程组的解为.33.解下列方程组:(1);(2);(3);(4).【解答】解:(1)由①得x=y③,把③代入②,得y﹣3y=1,解得y=3,把y=3代入③,得x=5.即方程组的解为;(2)把①代入②,得4(y﹣1)+y﹣1=5,解得y=2,把y=2代入①,得x=4.即方程组的解为;(3)原方程组整理得,把②代入①,得x=,把x=代入②,得y=,即方程组的解为;(4)原方程组整理得,把①代入②,得﹣14n﹣6﹣5n=13,解得n=﹣1,把n=﹣1代入①,得m=4.即方程组的解为.34.用合适的方法解下列方程组(1)(2)(3)(4)==4.【解答】解:(1)把①代入②得,3x+2(40﹣2x)=22,解得x=58,把x=58代入①得,y=40﹣2×58=﹣76,故原方程组的解为;(2)①×2﹣②得,8y=9,解得y=,把y=代入①得,2x+3×=5,解得,x=,故原方程组的解为;(3)①+②×5得,21x=0,解得,x=0,把x=0代入①得,5y=15,解得y=3,故原方程组的解为;(4)原方程可化成方程组,①+②×3得,﹣7y=56,解得,y=﹣8,把y=﹣8代入②得,﹣x+24=12,解得,x=12.故原方程组的解为.35.计算解下列方程组(1)(2)(3).【解答】解:(1)①×2﹣②,得3y=15,解得y=5,将y=5代入①,得x=0.5,故原方程组的解是;(2)化简①,得﹣4x+3y=5③②+③,得﹣2x=6,得x=﹣3,将x=﹣3代入②,得y=﹣,故原方程组的解是;(3)将③代入①,得5y+z=12④将③代入②,得6y+5z=22⑤④×5﹣⑤,得19y=38,解得,y=2,将y=2代入③,得x=8,将x=8,y=2代入①,得z=2,故原方程组的解是.36.解下列方程组(1)(2)(3)【解答】解:(1),由①得:x=﹣2y③,将③代入②,得:3(﹣2y)+4y=6,解得:y=﹣3,将y=﹣3代入③得:x=6.所以方程组的解为;(2),①×2得:2x﹣4y=10③,②﹣③得:7y=﹣14.解得:y=﹣2,把y=﹣2代入①,得x+4=5,解得:x=1.所以原方程组的解是;(3),①+②得2y=16,即y=8,①+③得2x=12,即x=6,②+③得2z=6,即z=3.故原方程组的解为.37.解方程组:(1)(2).【解答】解:(1)把①代入②得:3(3+2y)﹣8y=13,解得:y=﹣2,把y=﹣2代入①得:x=3﹣4=﹣1,所以原方程组的解为;(2)①+②得:2x+3y=21④,③﹣①得:2x﹣2y=﹣2⑤,由④和⑤组成一元二元一次方程组,解得:,把代入①得:++z=12,解得:z=,所以原方程组的解为.38.解下列方程组:(1);(2);(3);(4).【解答】解:(1)将①代入②,得5x+2x﹣3=11解得,x=2将x=2代入②,得y=1故原方程组的解是;(2)②×3﹣①,得11y=22解得,y=2将y=2代入①,得x=1故原方程组的解是;(3)整理,得①+②×5,得14y=14解得,y=1将y=1代入②,得x=2故原方程组的解是;(4)①+②×2,得3x+8y=13④①×2+②,得4x+3y=25⑤④×4﹣⑤×3,得23y=﹣23解得,y=﹣1将y=﹣1代入④,得x=7将x=7,y=﹣1代入①,得z=3故原方程组的解是.39.解方程(1)(2)(3)(4).【解答】解:(1),①﹣②得y=1,把y=1代入②得x+2=1,解得x=﹣1.故方程组的解为.(2),①×4+②×3得17x=34,解得x=2,把x=2代入②得6+4y=2,解得y=﹣1.故方程组的解为.(3),②﹣①得x=2,把x=2代入②得12+0.25y=13,解得y=4.故方程组的解为.(4),①+②+③得2(x+y+z)=38,解得x+y+z=19④,④﹣①得z=3,④﹣②得x=7,④﹣③得y=9.故方程组的解为.40.解下列方程组:(1)(2)(3)(4).【解答】解:(1)可化为①﹣②得3y=4,y=;代入①得﹣y=4,y=;∴方程组的解为:;(2)方程组可化为,①×3﹣②×2得m=18,代入①得3×18+2n=78,n=12;方程组的解为:;(3)方程组可化为,把①变形代入②得9(36﹣5x)﹣x=2,x=7;代入①得35+y=36,y=1;方程组的解为:;(4)原方程组可化为,①﹣②得﹣6y=3,y=﹣;③﹣①×2得﹣6y﹣7z=﹣4,即﹣6×(﹣)﹣7z=﹣4,z=1;代入①得x+2×(﹣)+1=2,x=2.方程组的解为:.41.解方程组:(1)(2)(3).【解答】解:(1)由得,①﹣②得2x=4,∴x=2,把x=2代入①得,3×2﹣2y=0,∴y=3,∴;(2),原方程组可化为,①×6﹣②×2得,4y=8,∴y=2,把y=2代入①得,8x+9×2=6,∴x=﹣,∴;(3),①+②得,4x+y=16④,②×2+③得,3x+5y=29⑤,④×5﹣⑤得,17x=51,∴x=3,把x=3代入④得,y=4,把x=3和y=4代入①得,3×3﹣4+z=10,∴z=5,∴.42.解方程组(1)(2)(3).【解答】解:(1),由①得:x=3y+5③,把③代入②得:6y+10+5y=21,即y=1,把y=1代入③得:x=8,则方程组的解为;(2),①×3+②×2得:13x=52,即x=4,把x=4代入①得:y=3,则方程组的解为;(3),由①得:x=1,②+③得:x+2z=﹣1,把x=1代入得:z=﹣1,把x=1,z=﹣1代入③得:y=2,则方程组的解为.43.解方程组:(1)(2)(3).【解答】解:(1),由②得:x=2y+4③,将③代入①得:11y=﹣11,解得:y=﹣1,将y=﹣1代入③得:x=2,则原方程组的解是;(2),②﹣①×2得:13y=65,即y=5,将y=5代入①得:x=2,则原方程组的解是;(3),将①代入②得:4x﹣y=5④,将①代入③得:y=3,将y=3代入④得:x=2,将x=2,y=3代入①得:z=5,则原方程组的解是.44.解方程组:(1)(2)(3)(4).【解答】解:(1)①+②得:3x=3,解得:x=1,把x=1代入①得:1﹣y=1,解得:y=0,所以原方程组的解为:;(2)①×3+②×2得:13x=52,解得:x=4,把x=4代入①得:12﹣2y=6,解得:y=3,所以原方程组的解为:;(3)整理得:①﹣②得:﹣7y=﹣7,解得:y=1,把y=1代入①得:3x﹣2=﹣8,解得:x=﹣2,所以原方程组的解为:;(4)①+②得:3x+3y=15,x+y=5④,③﹣②得:x+3y=9⑤,由④和⑤组成一个二元一次方程组,解得:x=3,y=2,把x=3,y=2代入①得:z=1,所以原方程组的解为:.45.解方程组:(1);(2);(3).【解答】解:(1)①+②得:3x=9解得:x=3把x=3代入①得:y=﹣1所以;(2)原方程可化为①×4﹣②×3得:7x=42解得:x=6把x=6代入①得:y=4所以;(3)把③变为z=2﹣x把z代入上两式得:两式相加得:2y=4解得:y=2把y=2代入①得:x=﹣1,z=3所以.46.用合适的方法解下列方程组:(1)(2)(3)(4)(5)【解答】解:(1)把①代入②得,3x+2(40﹣2x)=22,解得x=58,把x=58代入①得,y=40﹣2×58=﹣76,故原方程组的解为;(2)①×2﹣②得,8y=9,解得y=,把y=代入①得,2x+3×=5,解得,x=,故原方程组的解为;(3)①+②×5得,21x=0,解得,x=0,把x=0代入①得,5y=15,解得y=3,故原方程组的解为;(4)原方程可化成方程组,①+②×3得,﹣7y=56,解得,y=﹣8,把y=﹣8代入②得,﹣x+24=12,解得,x=12.故原方程组的解为;(5)把②代入③得,5x+3(12x﹣10)+2z=17,即41x+2z=47…④,①+④×2得,85x=85,解得,x=1,把x=1代入①得,3﹣4z=﹣9,解得,z=3,把x=1代入②得,y=12﹣10=2,故原方程组的解为.47.解方程组:(1)(2)(3)(4).【解答】解:(1),①×3﹣②得:﹣16y=﹣160,解得:y=10,把y=10代入①得:x=10,则原方程组的解是:;(2),①+②得;x+y=③,①﹣③得:2008x=,解得:x=,把x=代入③得:y=,则原方程组的解是:;(3)①4x﹣6y=13③,②﹣③得:3y=﹣6,解得:y=﹣2,把y=﹣2代入②得:x=,则原方程组的解为:;(4)由①得,y=1﹣x把y=1﹣x代入②得,1﹣x+z=6④④+③得2z=10,解得z=5,把z=5代入②得,y=1,把y=1代入②得,x=0,则原方程组的解为.48.解下列方程组:(1)(2)(3)(4).【解答】解:(1)②﹣①×2,得3x=6,解得,x=2,将x=2代入①,得y=﹣1,故原方程组的解是;(2)①×9+②,得x=9,将x=9代入①,得y=6,故原方程组的解是;(3)②﹣①,得y=1,将y=1代入①,得x=1故原方程组的解是;(4)②+③×3,得5x﹣7y=19④①×5﹣④,得y=﹣2,将y=﹣2代入①,得x=1,将x=1,y=﹣2代入③,得z=﹣1故原方程组的解是.49.(1);(2);(3);(4).【解答】解:(1)把①变形后代入②得:5(3x﹣7)﹣x=7,x=3;代入①得:y=2;即方程组的解为;(2)原方程化简为①×5﹣②得:y=﹣988代入①得:x﹣988=600,x=1588.原方程组的解为;(3)在中,把两方程去分母、去括号得:①+②×5得:14y﹣28=0,y=2;代入②得:x=﹣2.原方程组的解为;(4)在③×3﹣②得:7x﹣y=35,代入①得:5x+3(7x﹣35)=25,x=5;代入①得:25+3y=25,y=0;代入②得:2×5﹣3z=19,z=﹣3.原方程组的解为.50.解方程组:①;②;③.【解答】解:①方程组整理得:,①+②×5得:7x=﹣7,解得:x=﹣1,把x=﹣1代入②得:y=3,则方程组的解为;②方程组整理得:得,①×6+②得:19y=114,解得:y=6,把y=6代入①得:x=﹣7,则方程组的解为;③,①+②得:x+z=1④,③+④得:2x=5,解得:x=2.5,把x=2.5代入④得:z=﹣1.5,把x=2.5,z=﹣1.5代入①得:y=1,则方程组的解为.。
二元一次方程组与一次函数一.选择题1.如图,直线y=kx(k≠0)与y=x+4在第二象限交于A,y=x+4交x轴,y轴分别于B、C两点.S:S△ACO=1:2,则方程组的解为()△ABOA.B.C.D.2.如图,函数y=ax+b和y=kx的图象交于点P,关于x,y的方程组的解是()A.B.C.D.3.已知直线y=2x与y=﹣x+b的交点的坐标为(1,a),则方程组的解是()A.B.C.D.4.已知m=2x﹣3,n=﹣x+6,若规定y=,则y的最大值为()A.0B.1C.﹣1D.25.若以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣1上,则常数b=()A.B.2C.﹣1D.1二.填空题6.在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则二元一次方程组的解为.7.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得方程组的解是.8.请从以下两个小题中任意选一个作答,若多选,则按所选的第一小题计分.(1)点P(3,﹣2)到x轴的距离为个单位长度.(2)如图,已知函数y=ax+b(a≠0)和y=kx(k≠0)的图象交于点P,则根据图象可得,关于x、y 的二元一次方程组的解是9.一次函数y=3x+7的图象与y轴的交点在二元一次方程﹣2x+by=18上,则b=.10.已知直线l1、l2的解析式分别为y1=ax+b,y2=mx+n(0<m<a),根据图中的图象填空:(1)方程组的解为;(2)当﹣1≤x≤2时,y2的范围是;(3)当﹣3≤y1≤3时,自变量x的取值范围是.三.解答题11.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x、y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.12.如图,直线l1:y=x+3与直线l2:y=ax+b相交于点A(m,4).(1)求出m的值;(2)观察图象,请你直接写出关于x,y的方程组的解和关于x的不等式x+3≤ax+b的解集.13.如图,直线l1的函数表达式为y=3x﹣2,且直线l1与x轴交于点D.直线l2与x轴交于点A,且经过点B(4,1),直线l1与l2交于点C(m,3).(1)求点D和点C的坐标;(2)求直线l2的函数表达式;(3)利用函数图象写出关于x,y的二元一次方程组的解.14.已知一次函数y=ax+2与y=kx+b的图象如图所示,且方程组的解为点B坐标为(0,﹣1).求这两个一次函数的表达式.15.阅读材料,回答以下问题:我们知道,二元一次方程有无数个解.在平面直角坐标系中,我们标出以这个方程的解为坐标的点,就会发现这些点在同一条直线上.例如:是方程x﹣y=﹣1的一个解,对应点M(1,2).如图所示,我们在平面直角坐标系中将其标出,另外方程的解还对应点(2,3)、(1,2)……将这些点连起来正是一条直线,反过来,在这条直线上任取一点,这个点的坐标也是方程x﹣y=﹣1的解,所以,我们就把这条直线就叫做方程x﹣y=﹣1的图象.一般的,任意二元一次方程解的对应点连成的直线就叫这个方程的图象.请问:(1)已知A(1,1)、B(﹣3,4)、C(,2),则点(填“A或B或C”)在方程2x﹣y=﹣1的图象上.(2)求方程2x+3y=9和方程3x﹣4y=5图象的交点坐标.(3)已知以关于x、y的方程组的解为坐标的点在方程x+y=5的图象上,当t>m时,化简﹣|1﹣7t|.16.已知二元一次方程x+y=5,通过列举将方程的解写成下列表格的形式:x﹣1m56y650n 如果将二元一次方程的解所包含的未知数x的值对应直角坐标系中一个点的横坐标,未知数y的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:方程x+y =5的解的对应点是(2,3).(1)表格中的m=,n=;(2)通过以上确定对应点坐标的方法,将表格中给出的五个解依次转化为对应点的坐标,并在所给的直角坐标系中画出这五个点;根据这些点猜想方程x+y=5的解的对应点所组成的图形是,并写出它的两个特征①,②;(3)若点P(﹣2a,a﹣1)恰好落在x+y=5的解对应的点组成的图形上,求a的值.17.小明同学在解方程组的过程中,错把b看成了6,其余的解题过程没有出错,解得此方程组的解为,又已知直线y=kx+b过点(3,1),则b的正确值应该是多少?18.用作图象的方法解方程组:.19.如图,直线l1:y1=x+1和直线l2:y2=ax+b相交于点P(1,m).(1)方程组的解是;(2)当0≤y1<3时,自变量x的取值范围是;(3)直线l3:y=bx+a是否经过点P?请说明理由.20.如图,过点(0,﹣2)的直线l1:y=kx+b(k≠0)与直线l2:y=x+1交于点P(2,m).(1)求点P的坐标和直线l1的表达式;(2)根据图象直接写出方程组的解.21.已知:一次函数y=x﹣1和y=x+.(1)在给出的平面直角坐标系中,画出这两个函数的图象,并写出交点的坐标;(2)结合图象:①写出方程组的解;②写出不等式x﹣1>x+的解集.22.利用函数图象解方程组:(1);(2).23.在直角坐标系中,直线L1的解析式为y=2x﹣1,直线L2过原点且L2与直线L1交于点P(﹣2,a).(1)试求a的值;(2)试问点(﹣2,a)可以看作是怎样的二元一次方程组所求得的?(结合题意给出解答)(3)设直线L1与x轴交于点A,你能求出△APO的面积吗?试试看.24.如图,直线y=2x+6与直线l:y=kx+b交于点P(﹣1,m)(1)求m的值;(2)方程组的解是;(3)直线y=﹣bx﹣k是否也经过点P?请说明理由.25.解方程组(1)(2)用图象法解方程组:.26.已知二元一次方程x+y=3,通过列举将方程的解写成下列表格的形式,x﹣3﹣1n备用备用备用y6m﹣如果将二元一次方程的解所包含的未知数x的值对应直角坐标系中一个点的横坐标,未知数y的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:解的对应点是(2,1).(1)①表格中的m=,n=;②根据以上确定对应点坐标的方法,将表格中给出的三个解依次转化为对应点A、B、C的坐标,并在所给的直角坐标系中画出这三个点.(2)试着再多列举几组不同的x+y=3的解,并在直角坐标系中画出对应点,根据结果猜想x+y=3的解对应的点所组成的图形,写出它的两个特征.(3)若点P(b,a﹣3),G(﹣a,b+3)恰好都落在x+y=3的解对应的点组成的图象上,求a,b的值.27.【数学活动回顾】:我们曾探究过“以方程x﹣y=0的解为坐标(x的值为横坐标、y的值为纵坐标)的点的特性”,了解了二元一次方程的解与其图象上点的坐标的关系.规定:以方程x﹣y=0的解为坐标的所有点的全体叫做方程x﹣y=0的图象;结论:一般的,任何一个二元一次方程的图象都是一条直线.示例:如图1,我们在画方程x﹣y=0的图象时,可以取点A(﹣1,﹣1)和B(2,2),作出直线AB.【解决问题】:1、请你在图2所给的平面直角坐标系中画出二元一次方程组中的两个二元一次方程的图象(提示:依据“两点确定一条直线”,画出图象即可,无需写过程)2、观察图象,两条直线的交点坐标为,由此你得出这个二元一次方程组的解是;【拓展延伸】:3、已知二元一次方程ax+by=6的图象经过两点A(﹣1,3)和B(2,0),试求a、b的值.28.如图,直线y1=2x﹣2与y轴交于点A,直线y2=﹣2x+6与y轴交于点B,两条直线交于点C.(1)方程组的解是.(2)当2x﹣2>0与﹣2x+6>0同时成立时,x的取值范围是.(3)求△ABC的面积;(4)在直线y1=2x﹣2的图象上存在异于点C的另一点P,使得△ABC与△ABP的面积相等,请求出点P的坐标.29.在平面直角坐标系中,一次函数y=ax+b的图象过点B(﹣1,),与x轴交于点A(4,0),与y轴交于点C,与直线y=kx交于点P,且PO=P A,(1)求a+b的值.(2)求k的值.(3)D为PC上一点,DF⊥x轴于点F,交OP于点E,若DE=2EF,求D点坐标.30.如图,直线l1过点A(8,0)、B(0,﹣5),直线l2过点C(0,﹣1),l1、l2相交于点D,且△DCB的面积等于8.(1)求点D的坐标;(2)点D的坐标是哪个二元一次方程组的解.31.在直角坐标系中,直线l1经过(2,3)和(﹣1,﹣3),直线l2经过原点O,且与直线l1交于点P(﹣2,a).(1)求a的值;(2)(﹣2,a)可看成怎样的二元一次方程组的解?(3)设直线l1与y轴交于点A,你能求出△APO的面积吗?参考答案一.选择题1.解:作AH⊥x轴于H,如图,当x=0时,y=x+4=4,则C(0,4),∵S△ABO:S△ACO=1:2,∴AB:AC=1:2,∵AH∥OC,∴==,∴AH=×4=,当y=时,x+4=,解得x=﹣4,∴A(﹣4,),∴方程组的解为.故选:C.2.解:由图可知,交点坐标为(﹣3,﹣2),所以方程组的解是.故选:D.3.解:∵直线y=2x经过(1,a)∴a=2,∴交点坐标为(1,2),∵方程组的解就是两个一次函数的交点坐标,∴方程组的解,故选:A.4.解:若m≥n,即2x﹣3≥﹣x+6,解得x≥3,y=2﹣2x+3﹣x+6=﹣3x+11,当x=3时,y有最大值,最大值=﹣3×3+11=2;若m<n,即2x﹣3<﹣x+6,解得x<3,y=2+2x﹣3+x﹣6=3x﹣7,y没有最大值,所以y的最大值为2.故选:D.5.解:因为以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣1上,直线解析式乘以2得2y=﹣x+2b﹣2,变形为:x+2y﹣2b+2=0 所以﹣b=﹣2b+2,解得:b=2,故选:B.二.填空题6.解:∵一次函数y=kx和y=﹣x+3的图象交于点(1,2),∴二元一次方程组的解为.故答案为:.7.解:因为函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),所以方程组的解为.故答案为.8.解:(1)点P(3,﹣2)到x轴的距离为2个单位长度;故答案为:2;(2)函数y=ax+b(a≠0)和y=kx(k≠0)的图象交于点P(﹣3,1),则根据图象可得,关于x、y的二元一次方程组的解是:.故答案为:.9.解:一次函数y=3x+7中,令x=0,则y=7,即一次函数与y轴的交点是(0,7);把x=0,y=7代入﹣2x+by=18,得:7b=18,即b=.10.解:(1)在图中,∵函数y1=ax+b,y2=mx+n交点为(2,3),此即为方程组的解,故答案为.(2)对直线l2,x=﹣1时,y=0;x=2时,y=3.∴y=3x﹣3,∴当﹣1≤x≤2时,y2的范围是0≤y2≤3,故答案为0≤y2≤3;(3)对直线l1,y=﹣3时,x=0;y=3时,x=2.∴y=x﹣1当﹣3≤y1≤3时,自变量x的取值范围是0≤x1≤2,故答案为0≤x1≤2.三.解答题11.解:(1)把P(1,b)代入y=x+1得b=1+1=2;(2)由(1)得P(1,2),所以方程组的解为;(3)直线l3:y=nx+m经过点P.理由如下:因为y=mx+n经过点P(1,2),所以m+n=2,所以直线y=nx+m也经过P点.12.解:(1)∵直线l1:y=x+3与直线l2:y=ax+b相交于点A(m,4),∴4=m+3,解得:m=1;(2)∵m=1,∴关于x,y的方程组的解为:,关于x的不等式x+3≤ax+b的解集为:x≤1.13.解:(1)在y=3x﹣2中令y=0,即3x﹣2=0 解得x=,∴D(,0),∵点C(m,3)在直线y=3x﹣2上,∴3m﹣2=3,∴m=,∴C(,3);(2)设直线l2的函数表达式为y=kx+b(k≠0),由题意得:,解得:,∴y=﹣x+;(3)由图可知,二元一次方程组的解为.14.解:由题意可得A(2,1).把A的坐标代入y=ax+2,得1=2a+2,解得a=﹣,所以y=﹣x+2;把A、B的坐标代入y=kx+b,,解得,所以y=x﹣1.∴两个一次函数的表达式为y=﹣x+2,y=x﹣1.15.解:(1)如图观察图象可知:点C在方程2x﹣y=﹣1的图象上,故答案为C.(2)由,解得,∴方程2x+3y=9和方程3x﹣4y=5图象的交点坐标为(3,1).(3)由,解得,∵x+y=5,∴+=5,∴m=,当t>时,﹣|1﹣7t|=t+2+1﹣7t=3﹣6t.16.解:(1)①将x=m,y=5代入x+y=5得5+m=5,∴m=0,将x=6,y=n代入x+y=5得6+n=5∴n=﹣1故答案为:0,﹣1;(2)猜想x+y=5的解对应的点所组成的图形为直线,它有这样两个特征:①图象经过一、二、四象限;②图象从左向右呈下降趋势.故答案为:直线,图象经过一、二、四象限,图象从左向右呈下降趋势;(3)由题意得:﹣2a+a﹣1=5,解得:a=﹣6.17.解:依题意得:2=﹣k+6,解得:k=4;又∵1=3×4+b,∴b=﹣11.18.解:由x﹣y=3得y=x﹣3,由x+2y=﹣3得y=﹣x﹣.作出函数的图象(如图),得到交点(1,﹣2).∴方程组的解为.19.解:(1)当x=1时,m=1+1=2,则P(1,2),所以方程组的解是;故答案为;(2)当y=3时,x+1=3,解得x=2;当y=0时,x+1=0,解得x=﹣1,所以当0≤y1<3时,自变量x的取值范围是﹣1≤x<2;、故答案为﹣1≤x<2;(3)直线l3:y=bx+a经过点P.理由如下:∵直线l2:y2=ax+b经过点P(1,2),∴a+b=2,∵当x=1时,y=bx+a=b+a=2,∴直线l3:y=bx+a经过点P.20.解:(1)把P(2,m)代入y=x+1得m=3,则P点坐标为(2,3);把(0,﹣2),P(2,3)代入y=kx+b得,解得,所以直线l1的表达式为y=x﹣2;(2)因为直线l1:y=kx+b(k≠0)与直线l2:y=x+1交于点P(2,3),所以方程组的解为.21.解:(1)过点(1,0)和(0,﹣1)画一次函数y=x﹣1的图象;过点(﹣2,0)和(2,1)画一次函数y=的图象.如图.两直线的交点坐标为(2,1).(2)由图象可知:①方程组的解是;②不等式x﹣1>的解集是x>2.22.解:(1)∵2x﹣y=5化为:y=2x﹣5,3x+4y=2化为:y=﹣x+,是两个一次函数,如图1:∴两个一次函数的交点坐标是(2,﹣1),则方程组的解是;(2)∵x+3y=3化为:y=﹣x+1,3x﹣2y=﹣6化为:y=x+3,如图2:∴两个一次函数的交点坐标是(﹣,),则方程组的解是.23.解:(1)把P(﹣2,a)代入y=2x﹣1得a=2×(﹣2)﹣1=﹣5,(2)设L2的解析式为y=kx,把P(﹣2,﹣5)代入得﹣5=﹣2k,解得k=,所以L2的解析式为y=x,所以点(﹣2,﹣5)可以看作是解二元一次方程组所得;(3)对于y=2x﹣1,令y=0得2x﹣1=0,解得x=,则A点坐标为(,0)所以S△APO=×|﹣5|×=.24.解:(1)将点P(﹣1,m)代入直线方程y=2x+6得:﹣2+6=m,所以m的值是4;(2)方程组的解为,故答案为:,(3)直线y=﹣bx﹣k也经过点P.理由如下:∵点P(﹣1,4),在直线y=﹣bx﹣k上,∴b﹣k=4,∵y=kx+b交于点P,∴﹣k+b=4,∴b﹣k=﹣k+b,这说明直线y=﹣bx﹣k也经过点P.25.解:(1),由①+②得:3x=3,解得:x=1,把x=1代入①得:y=3∴的解为:;(2)由①得:y=11﹣3x,由②得:y=,在同一平面直角坐标系中画出函数y=11﹣3x与y=的图象,由图可知,它们的交点坐标为(3,2),∴原方程组的解为:.26.解:(1)①将x=﹣1,y=m代入x+y=3得﹣1+m=3∴m=4将x=n,y=代入x+y=3得n﹣=3∴n=故答案为:4,;②由①及原题表格可知A、B、C的坐标分别为:A(﹣3,6)、B(﹣1,4)、C(,)画图如下:(2)易得x=﹣2,y=5;x=0,y=3;x=1,y=2;x=2,y=1;x=3,y=0都是方程x+y=0的解,在直角坐标系中画出对应点D、E、F、G、H猜想x+y=3的解对应的点所组成的图形为直线,它有这样两个特征:①图象经过一、二、四象限;②图象从左向右呈下降趋势.(3)由题意得:解得:∴a的值为3,b的值为3.27.解:1、如图,2、观察图象,两条直线的交点坐标为(1,2),由此得出这个二元一次方程组的解是;3、根据题意得,解得故答案为(1,2),.28.解:(1)如图所示:方程组的解为:;故答案为:;(2)如图所示:当y1>0与y2>0同时成立时,x取何值范围是:1<x<3;故答案为:1<x<3;(3)∵令x=0,则y1=﹣2,y2=6,∴A(0,﹣2),B(0,6).∴AB=8.∴S△ABC=×8×2=8;(4)令P(x0,2x0﹣2),则S△ABP=×8×|x0|=8,∴x0=±2.∵点P异于点C,∴x0=﹣2,2x0﹣2=﹣6.∴P(﹣2,﹣6).29.解:(1)根据题意得:,解方程组得:,∴a+b=﹣+2=,即a+b=;(2)设P(x,y),则点P即在一次函数y=ax+b上,又在直线y=kx上,由(1)得:一次函数y=ax+b的解析式是y=﹣+2,又∵PO=P A,∴,解方程组得:,∴k的值是;(3)设点D(x,﹣+2),则E(x,),F(x,0),∵DE=2EF,∴=2×,解得:x=1,则﹣+2=×1+2=,∴D(1,).30.解:(1)设直线l1的解析式为y=kx+b,根据题意得:,解得:,∴直线l1的解析式为y=x﹣5,∵B(0,﹣5),∴OB=5,∵点C(0,﹣1),∴OC=1,∴BC=5﹣1=4,设D(x,y),则△DCB的面积=×4×|x|=8,解得:x=±4(负值舍去),∴x=4,代入y=x﹣5得:y=﹣,∴D(4,﹣);(2)设直线l2的解析式为y=ax+c,根据题意得:,解得:,∴直线l2的解析式为y=﹣x﹣1,∵l1、l2相交于点D,∴点D的坐标是方程组的解.31.解:(1)∵直线l1经过(2,3)和(﹣1,﹣3),∴解得:,∴直线l1的解析式为:y=2x﹣1,把P(﹣2,a)代入y=2x﹣1得:a=2×(﹣2)﹣1=﹣5;(2)设l2的解析式为y=kx,把P(﹣2,﹣5)代入得﹣5=﹣2k,解得k=,所以l2的解析式为y=x,所以点(﹣2,﹣5)可以看作是解二元一次方程组所得;(3)对于y=2x﹣1,令x=0,解得y=﹣1,则A点坐标为(0,﹣1),所以S△APO=×2×1=1.。