2021年山东省聊城市中考数学试题和答案
- 格式:doc
- 大小:2.36 MB
- 文档页数:10
山东省聊城市中考数学试卷一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)−√2的相反数是( ) A .−√22B .√22C .−√2D .√22.(3分)如图所示的几何体的左视图是( )A .B .C .D .3.(3分)如果分式|x|−1x+1的值为0,那么x 的值为( )A .﹣1B .1C .﹣1或1D .1或04.(3分)在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是( )A .96分、98分B .97分、98分C .98分、96分D .97分、96分5.(3分)下列计算正确的是( ) A .a 6+a 6=2a 12B .2﹣2÷20×23=32C .(−12ab 2)•(﹣2a 2b )3=a 3b 3 D .a 3•(﹣a )5•a 12=﹣a 206.(3分)下列各式不成立的是( ) A .√18−√89=73√2B .√2+23=2√23C .√8+√182=√4+√9=5D .√3+√2=√3−√27.(3分)若不等式组{x+13<x2−1x <4m无解,则m 的取值范围为( )A .m ≤2B .m <2C .m ≥2D .m >28.(3分)如图,BC 是半圆O 的直径,D ,E 是BĈ上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE .如果∠A =70°,那么∠DOE 的度数为( )A .35°B .38°C .40°D .42°9.(3分)若关于x 的一元二次方程(k ﹣2)x 2﹣2kx +k =6有实数根,则k 的取值范围为( ) A .k ≥0B .k ≥0且k ≠2C .k ≥32D .k ≥32且k ≠210.(3分)某快递公司每天上午9:00﹣10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y (件)与时间x (分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为( )A .9:15B .9:20C .9:25D .9:3011.(3分)如图,在等腰直角三角形ABC 中,∠BAC =90°,一个三角尺的直角顶点与BC边的中点O 重合,且两条直角边分别经过点A 和点B ,将三角尺绕点O 按顺时针方向旋转任意一个锐角,当三角尺的两直角边与AB ,AC 分别交于点E ,F 时,下列结论中错误的是( )A .AE +AF =ACB .∠BEO +∠OFC =180°C .OE +OF =√22BCD .S 四边形AEOF =12S △ABC12.(3分)如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且AC CB=13,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为( )A .(2,2)B .(52,52)C .(83,83)D .(3,3)二、填空题(本题共5个小题,每小题3分,共15分。
聊城市2021版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)室内温度是20°C,室外温度是-1°C,室内温度比室外温度高A . 19°CB . -19°CC . 21°CD . -21°C2. (2分)截止到2011年4月9日0时,北京小客车指标申请累计收到个人申请491671个,第四轮摇号中签率接近28比1. 将491671用科学记数法表示应为()A .B .C .D .3. (2分) (2017八上·天津期末) 下列平面图形中,不是轴对称图形的是()A .B .C .D .4. (2分)某学校七年级1班统计了全班同学在1~8月份的课外阅读数量(单位:本),绘制了折线统计图,下列说法正确的是()A . 极差是47B . 中位数是58C . 众数是42D . 极差大于平均数5. (2分)已知:二次函数,下列说法中错误的个数是()①若图象与轴有交点,则.②若该抛物线的顶点在直线上,则的值为.③当时,不等式的解集是.④若将图象向上平移1个单位,再向左平移3个单位后过点,则.⑤若抛物线与x轴有两个交点,横坐标分别为、,则当x取时的函数值与x取0时的函数值相等.A . 1B . 2C . 3D . 46. (2分)已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是()A . ﹣2B . -1C . 0D . 27. (2分)(2020·无锡模拟) 如图,的三个顶点均在上,且对角线经过点,与相切于点,已知的半径为6,则的面积为().A . 35B .C .D .8. (2分)下列计算正确的是()A .B .C .D .9. (2分)(2014·内江) 如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()A .B . 3C . 2D . 410. (2分)(2017·朝阳模拟) 如图,正方形ABCD的边长为2,动点P从点A出发,在正方形的边上沿A→B→C 的方向运动到点C停止,设点P的运动路程为x.在下列图象中,能表示△ADP的面积y关于x的函数关系的图象是下列选项中的()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)式子有意义的x的取值范围是________.12. (1分) (2017七下·寿光期中) 两个角的两边互相平行,其中一个角为50°,那么另一角的度数是________.13. (1分)某几何体的三视图如图所示,则其表面积为________.14. (1分)已知命题“关于x的一元二次方程x2+bx+=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是________15. (1分)(2020·咸宁) 如图,四边形是边长为2的正方形,点E是边上一动点(不与点B,C重合),,且交正方形外角的平分线于点F,交于点G,连接,有下列结论:① ;② ;③ ;④ 的面积的最大值为1.其中正确结论的序号是________.(把正确结论的序号都填上)16. (1分)如图,直线y= +3与坐标轴交于A、B两点,⊙O的半径为2,点P是⊙O上动点,△ABP面积的最大值为________cm2 .三、解答题 (共9题;共85分)17. (5分)(2018·玉林) 先化简再求值:(a﹣)÷ ,其中a=1+ ,b=1﹣.18. (10分)(2017·大庆) 如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.(1)求证:四边形BDEF为平行四边形;(2)当∠C=45°,BD=2时,求D,F两点间的距离.19. (15分) 4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?20. (5分)为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?21. (10分)(2019·通辽模拟)(1)实数x取哪些整数时,不等式2x﹣1>x+1与 x﹣1≤7﹣ x都成立?(2)化简:(﹣)÷ ,并从0≤x≤4中选取一个合适的整数代入求值.22. (5分)(2017·赤峰) 王浩同学用木板制作一个带有卡槽的三角形手机架,如图1所示.已知AC=20cm,(提BC=18cm,∠ACB=50°,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)23. (10分)如图,已知矩形OABC中,OA=2,AB=4,双曲线(k>0)与矩形两边AB、BC分别交于E、F.(1)若E是AB的中点,求F点的坐标;(2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,证明△EGD∽△DCF,并求k 的值.24. (15分)(2019·宜春模拟) 如图,⊙A过▱OBCD的三顶点O、D、C,边OB与⊙A相切于点O,边BC与⊙O 相交于点H,射线OA交边CD于点E,交⊙A于点F,点P在射线OA上,且∠PCD=2∠DOF,以O为原点,OP所在的直线为x轴建立平面直角坐标系,点B的坐标为(0,﹣2).(1)若∠BOH=30°,求点H的坐标;(2)求证:直线PC是⊙A的切线;(3)若OD= ,求⊙A的半径.25. (10分)(2020·大连模拟) 阅读下面材料,完成(1)、(2)题.数学课上,老师出示了这样一道题:中,,,交于点,点在的延长线上,且,平分交于点,垂足为,探究线段与的数量关系,并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现与相等.”小强:“通过观察和度量,发现图中还有其它相等线段.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段与的数量关系.”……老师:“此题还有其它解法,同学们课后可以继续探究,互相交流.”……(1)求证:;(2)探究线段与的数量关系(用含的代数式表示),并证明.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共85分)17-1、18-1、18-2、19-1、19-2、19-3、20-1、21-1、21-2、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、。
2021年山东省聊城市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.(2021·山东省聊城市·历年真题)下列各数中,是负数的是()A. |−2|B. (−√5)2C. (−1)0D. −322.(2021·山东省聊城市·历年真题)如图所示的几何体,其上半部有一个圆孔,则该几何体的俯视图是()A.B.C.D.3.(2021·山东省聊城市·历年真题)已知一个水分子的直径约为3.85×10−9米,某花粉的直径约为5×10−4米,用科学记数法表示一个水分子的直径是这种花粉直径的()A. 0.77×10−5倍B. 77×10−4倍C. 7.7×10−6倍D. 7.7×10−5倍4.(2021·山东省聊城市·历年真题)如图,AB//CD//EF,若∠ABC=130°,∠BCE=55°,则∠CEF的度数为()A. 95°B. 105°C. 110°D. 115°5.(2021·山东省聊城市·历年真题)为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取40名学生对收集废旧电池的数量进行的统计:废旧电池45678数/节人数/人9111154请根据学生收集到的废旧电池数,判断下列说法正确的是()A. 样本为40名学生B. 众数是11节C. 中位数是6节D. 平均数是5.6节6.(2021·山东省聊城市·历年真题)下列运算正确的是()A. a2⋅a4=a8B. −a(a−b)=−a2−abC. (−2a)2÷(2a)−1=8a3D. (a−b)2=a2−b27.(2021·山东省聊城市·历年真题)关于x的方程x2+4kx+2k2=4的一个解是−2,则k值为()A. 2或4B. 0或4C. −2或0D. −2或28.(2021·山东省聊城市·历年真题)如图,A,B,C是半径为1的⊙O上的三个点,若AB=√2,∠CAB=30°,则∠ABC的度数为()A. 95°B. 100°C. 105°D. 110°9.(2021·山东省聊城市·历年真题)若−3<a≤3,则关于x的方程x+a=2解的取值范围为()A. −1≤x<5B. −1<x≤1C. −1≤x<1D. −1<x≤510.(2021·山东省聊城市·历年真题)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c的图象和反的图象在同一坐标系中大致为()比例函数y=a+b+cxA.B.C.D.11.(2021·山东省聊城市·历年真题)如图,在直角坐标系中,点A,B的坐标为A(0,2),B(−1,0),将△ABO绕点O按顺时针旋转得到△A1B1O,若AB⊥OB1,则点A1的坐标为()A. (2√55,4√55) B. (4√55,2√55) C. (23,43) D. (45,85)12.(2021·山东省聊城市·历年真题)如图,四边形ABCD中,已知AB//CD,AB与CD之间的距离为4,AD=5,CD=3,∠ABC=45°,点P,Q同时由A点出发,分别沿边AB,折线ADCB向终点B方向移动,在移动过程中始终保持PQ⊥AB,已知点P的移动速度为每秒1个单位长度,设点P的移动时间为x秒,△APQ的面积为y,则能反映y与x之间函数关系的图象是()A. B.C. D.二、填空题(本大题共5小题,共15.0分)√8)=______ .13.(2021·山东省聊城市·历年真题)计算:√2(√18−1214.(2021·山东省聊城市·历年真题)有四张大小和背面完全相同的不透明卡片,正面分别印有等边三角形、平行四边形、菱形和圆,将这四张卡片背面朝上洗匀,从中随机抽取两张卡片,所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的概率是______ .15.(2021·山东省聊城市·历年真题)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为点D和点E,AD与CE交于点O,连接BO并延长交AC于点F,若AB=5,BC=4,AC=6,则CE:AD:BF值为______ .16.(2021·山东省聊城市·历年真题)用一块弧长16πcm的扇形铁片,做一个高为6cm的圆锥形工件侧面(接缝忽略不计),那么这个扇形铁片的面积为______ cm2.17.(2021·山东省聊城市·历年真题)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A,C分别在x 轴,y轴上,B,D两点坐标分别为B(−4,6),D(0,4),线段EF在边OA上移动,保持EF=3,当四边形BDEF 的周长最小时,点E的坐标为______ .三、解答题(本大题共8小题,共69.0分)18.(2021·山东省聊城市·历年真题)先化简,再求值:2a+1a+1+a2−2aa2−1÷(2a−1a−1−a−1),其中a=−32.19.(2021·山东省聊城市·历年真题)为扎实推进“五育并举”工作,某校利用课外活动时间,开设了书法、健美操、乒乓球和朗诵四个社团活动,每个学生选择一项活动参加,为了了解活动开展情况,学校随机抽取了部分学生进行调查,将调查结果绘制成条形统计图和扇形统计图:请根据以上的信息,回答下列问题:(1)抽取的学生有______ 人,n=______ ,a=______ ;(2)补全条形统计图;(3)若该校有学生3200人,估计参加书法社团活动的学生人数.20.(2021·山东省聊城市·历年真题)为迎接建党一百周年,我市计划用两种花卉对某广场进行美化.已知用600元购买A种花卉与用900元购买B种花卉的数量相等,且B 种花卉每盆比A种花卉多0.5元.(1)A,B两种花卉每盆各多少元?(2)计划购买A,B两种花卉共6000盆,其中A种花卉的数量不超过B种花卉数量,求购买A种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元?的1321.(2021·山东省聊城市·历年真题)如图,在四边形ABCD中,AC与BD相交于点O,且AO=CO,点E在BD上,满足∠EAO=∠DCO.(1)求证:四边形AECD是平行四边形;(2)若AB=BC,CD=5,AC=8,求四边形AECD的面积.22.(2021·山东省聊城市·历年真题)时代中学组织学生进行红色研学活动.学生到达爱国主义教育基地后,先从基地门口A处向正南方向走300米到达革命纪念碑B处,再从B处向正东方向走到党史纪念馆C处,然后从C处向北偏西37°方向走200米到达人民英雄雕塑D处,最后从D处回到A处.已知人民英雄雕塑在基地门口的南偏东65°方向,求革命纪念碑与党史纪念馆之间的距离(精确到1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)x−2与x轴,y轴分别23.(2021·山东省聊城市·历年真题)如图,过C点的直线y=−12交于点A,B两点,且BC=AB,过点C作CH⊥x轴,垂足为点H,交反比例函数(x>0)的图象于点D,连接OD,△ODH的面积为6.y=kx(1)求k值和点D的坐标;x−2上,且位于第二象限内,若△BDE(2)如图,连接BD,OC,点E在直线y=−12的面积是△OCD面积的2倍,求点E的坐标.24.(2021·山东省聊城市·历年真题)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,AE是直径,交BC于点H,点D在AC⏜上,连接AD,CD过点E作EF//BC交AD的延长线于点F,延长BC交AF于点G.(1)求证:EF是⊙O的切线;(2)若BC=2,AH=CG=3,求EF和CD的长.x+c与x轴交于点A,B,25.(2021·山东省聊城市·历年真题)如图,抛物线y=ax2+32与y轴交于点C,已知A,C两点坐标分别是A(1,0),C(0,−2),连接AC,BC.(1)求抛物线的表达式和AC所在直线的表达式;(2)将△ABC沿BC所在直线折叠,得到△DBC,点A的对应点D是否落在抛物线的对称轴上,若点D在对称轴上,请求出点D的坐标;若点D不在对称轴上,请说明理由;(3)若点P是抛物线位于第三象限图象上的一动点,连接AP交BC于点Q,连接BP,△BPQ的面积记为S1,△ABQ的面积记为S2,求S1的值最大时点P的坐标.S2答案和解析1.【答案】D【知识点】实数的概念、零指数幂、二次根式的性质【解析】解:A:因为|−2|=2>0,所以A选项不符合题意;B:因为(−√5)2=5>0,所以B选项不符合题意;C:因为(−1)0=1>0,所以C选项不符合题意;D:因为−32=−9<0,所以D选项符合题意;故选:D.A:根据绝对值运算法则进行计算即可得出答案;B:根据二次根式的性质进行计算即可得出答案;C:根据零指数幂法则进行计算即可得出答案;D:先根据一个数平方的计算方法求出32,再求根据相反数的方法进行计算即可得出答案.本题主要考查绝对值、零指数幂、相反数的运算,熟练应用相关法则进行计算是解决本题的关键.2.【答案】A【知识点】简单组合体的三视图【解析】解:从上面看该几何体,能看见的轮廓线用实线表示,看不见的轮廓线用虚线表示,因此所看到的图形与选项A中的图形相同,故选:A.根据俯视图的意义,从上面看该几何体所得到的图形,结合各个选项中图形进行判断即可本题考查简单几何体的俯视图,理解视图的意义是正确判断的前提,能看见的轮廓线用实线表示,看不见的轮廓线用虚线表示是正确判断的关键.3.【答案】C【知识点】科学记数法-绝对值较小的数【解析】解:根据题意得,(3.85×10−9)÷(5×10−4)=(3.85÷5)×(10−9÷10−4)=0.77×10−5=7.7×10−6,故选:C.根据题意列出算式进行计算,一定注意1≤|a|<10.本题考查了用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,准确确定a与n值是关键.4.【答案】B【知识点】平行线的性质【解析】解:∵AB//CD//EF,∠ABC=130°,∴∠BCD=∠ABC=130°,∵∠BCE=55°,∴∠DCE=∠BCD−∠BCE=130°−55°=75°,∴∠CEF=180°−∠DCE=180°−75°=105°,故选:B.由AB//CD//EF,利用平行线的性质可得∠BCE=55°,易得∠CEF.本题主要考查了平行线的性质定理,熟练运用性质定理是解答此题的关键.5.【答案】D【知识点】加权平均数、中位数、众数【解析】解:A.样本为40名学生收集废旧电池的数量,此选项错误;B.众数是5节和6节,此选项错误;=5.5(节),此选项错误;C.中位数为5+62×(4×9+5×11+6×11+7×5+8×4)=5.6(节),D.平均数为140故选:D.根据样本的概念、众数、中位数及加权平均数的定义分别求解即可.本题主要考查众数、中位数、加权平均数,解题的关键是掌握众数、中位数及加权平均数的定义.6.【答案】C【知识点】整式的混合运算、负整数指数幂【解析】解:A、a2⋅a4=a2+4=a6,故A选项错误,不符合题意;B、−a(a−b)=−a2+ab,故B选项错误,不符合题意;C、(−2a)2÷(2a)−1=(2a)2−(−1)=(2a)3=8a3,故C选项正确,符合题意;D、(a−b)2=a2−2ab+b2,故D选项错误,不符合题意;故选:C.根据同底数幂的乘、除法公式、单项式乘多项式、完全平方公式直接计算进行判断即可.本题考查同底数幂的乘、除法公式、单项式乘多项式、完全平方公式,熟记计算公式即可解答.7.【答案】B【知识点】一元二次方程的解【解析】解:把x=−2代入方程x2+4kx+2k2=4得4−8k+2k2=4,整理得k2−4k=0,解得k1=0,k2=4,即k的值为0或4.故选:B.直接把x=−2代入方程x2+4kx+2k2=4得4−8k+2k2=4,然后解关于k的一元二次方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.8.【答案】C【知识点】圆周角定理【解析】解:如图,连接OB、OC,过点O作OD⊥AB,垂足为D,则有:OA═OB═OC═1,AD═BD═12AB═√22,在Rt△OAD中,OD2═OA2−AD2,∴OD═√12−(√22)2═√22, ∴△OAD 是等腰直角三角形,∴∠OAD═45°,∴∠OBA═∠OAD═45°,∵∠BAC═30°,∴∠COB═2∠BAC═60°,∴△OBC 是等边三角形,∠OBC═60°,∴∠ABC═∠OBA +∠OBC═45°+60°═105°,故选:C .首先作出相关的辅助线,利用垂径定理和勾股定理求出各线段之间的关系,得到一些特殊的三角形,再利用圆周角定理推出相关角的度数即可.本题考查圆周角定理,其关键是要根据同一条弧找到相对应的圆周角和圆心角.此外在同圆内还有很多的等量关系,如半径相等、垂径定理等,应充分合理运用.9.【答案】A【知识点】一元一次方程的解、不等式的基本性质【解析】解:x +a =2,x =−a +2,∵−3<a ≤3,∴−3≤−a <3,∴−1≤−a +2<5,∴−1≤x <5,故选:A .把a 看做已知数求出方程的解得到x 的值,由−3<a ≤3代入计算即可.此题考查了解一元一次等式、一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.10.【答案】D【知识点】二次函数的图象、反比例函数的图象、一次函数的图象【解析】解:∵二次函数的图象开口向下,∴a <0,∵−b2a<0,∴b<0,∵抛物线与y轴相交于正半轴,∴c>0,∴直线y=bx+c经过一、二、四象限,由图象可知,当x=1时,y<0,∴a+b+c<0,∴反比例函数y=a+b+cx的图象必在二、四象限,故A、B、C错误,D正确;故选:D.先根据二次函数的图象开口向下和对称轴可知b<0,由抛物线交y的正半轴,可知c>0,由当x=1时,y<0,可知a+b+c<0,然后利用排除法即可得出正确答案.本题考查的是二次函数的图象与系数的关系,反比例函数及一次函数的性质,熟知以上知识是解答此题的关键.11.【答案】A【知识点】旋转中的坐标变化*、勾股定理【解析】解:如图,设AB交OB1于T,过点A1作A1R⊥x轴于R.∵A(0,2),B(−1,0),∴OB=1,OA=2,∴AB=√OB2+OA2=√12+22=√5,∵12⋅OB⋅OA=12⋅AB⋅OT,∴OT=√5=2√55,∴AT =√OA 2−OT 2=√22−(2√55)2=4√55, ∵∠AOR =∠A 1OB 1=90°,∴∠AOT =∠A 1OR ,∵∠ATO =∠A 1RO =90°,∴△ATO∽△A 1RO ,∴AOOA 1=OT OR =ATA 1R ,∴1=2√55OR =4√55A 1R ,∴OR =2√55,RA 1=4√55, ∴A 1(2√55,4√55), 故选:A .如图,设AB 交OB 1于T ,过点A 1作A 1R ⊥x 轴于R.解直角三角形求出OT ,AT ,再利用相似三角形的性质求出OR ,RA 1即可.本题考查坐标与图形的性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.12.【答案】B【知识点】动点问题的函数图象【解析】解:如图,过点D 作DE ⊥AB 于E ,过点C 作CF ⊥AB 于F ,∴DE =CF =4,DE//CF ,∠CFA =90°,∴四边形DEFC 是矩形,∴DC =EF =3,∵AD =5,DE =4,∴AE =√AD 2−DE 2=√25−16=3,∵∠ABC =45°,∴∠FCB =∠ABC =45°,∴CF =BF =4,∴AB =AE +EF +BF =10,AF =AE +EF =6,当点Q在线段AD上时,则0≤x≤3,y=12×x×43x=23x2,当点Q在线段CD上时,则3<x≤6,y=12×x×4=2x,当点Q在线段BC上,则6<x≤10,如图,∵AP=t,AB=10,∴AP=10−t,∵∠ABC=45°,QP⊥AB,∴∠PBQ=∠PQB=45°,∴PQ=PB=10−x,∴y=12×x×(10−x)=−12x2+5x,故选:B.分点Q在线段AD上,点Q在线段CD上,点Q在线段BC上,三种情况讨论,由三角形面积公式可求解析式,即可求解.本题考查了动点问题的函数图形,三角形的面积公式,求出各段的函数关系式是解题的关键.13.【答案】4【知识点】二次根式的混合运算【解析】解:原式=√2×(3√2−√2)=√2×2√2=4,故答案为:4.先化简括号内二次根式,再计算括号内的减法,最后计算乘法即可.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.14.【答案】16【知识点】中心对称图形、轴对称图形、用列举法求概率(列表法与树状图法)【解析】解:等边三角形是轴对称图形,平行四边形是中心对称图形,菱形和圆既是轴对称图形,又是中心对称图形,把印有等边三角形、平行四边形、菱形和圆的四张卡片分别记为:A、B、C、D,画树状图如图:共有12种等可能的结果,所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的结果有2种,∴所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的概率为212=16,故答案为:16.画树状图,共有12种等可能的结果,所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的结果有2种,再由概率公式求解即可.此题考查了列表法与树状图法以及轴对称图形、中心对称图形等知识;用到的知识点为:概率=所求情况数与总情况数之比.15.【答案】12:15:10【知识点】三角形的面积【解析】解:在△ABC中,AD⊥BC,CE⊥AB,AD与CE交于点O,连接BO并延长交AC于点F,∴BF⊥AC,∴12AB×CE=12BC×AD=12AC×BF,∵AB=5,BC=4,AC=6,∴12×5×CE=12×4×AD=12×6×BF,∴CE:AD:BF=12:15:10.故答案为:12:15:10.根据三角形三条高线交于一点,可得BF⊥AC,再根据三角形面积是一定的,即可得到CE:AD:BF值.本题考查了三角形的面积,关键是熟练掌握三角形面积公式,难点是得到BF⊥AC.16.【答案】80π【知识点】圆锥的计算、弧长的计算【解析】解:∵扇形铁片的弧长16πcm,∴圆锥的底面周长为16πcm,=8(cm),∴圆锥的底面半径=16π2π由勾股定理得:圆锥的母线长=√62+82=10(cm),×16π×10=80π(cm2)∴扇形铁片的面积=12故答案为:80π.根据扇形弧长与圆锥的底面周长的关系求出圆锥的底面半径,根据勾股定理求出圆锥的母线长,根据扇形面积公式计算,得到答案.本题考查的是圆锥的计算,理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.,0)17.【答案】(−25【知识点】坐标与图形性质、矩形的性质、轴对称-最短路线问题【解析】解:在BC上截取BH=3,作点D关于x轴的对称点D′,连接D′H交AO于点E,∴BH=EF=3,BC//AO,∴四边形BHEF是平行四边形,∴BF=EH,∵点D与点D′关于x轴对称,∴DE=D′E,点D′坐标为(0,−4),∵四边形BDEF 的周长=EF +BF +BD +DE ,∴四边形BDEF 的周长=EH +ED′+BD +EF ,∵EF 和BD 是定值,∴当EH +D′E 有最小值时,四边形BDEF 的周长有最小值,∴当点E ,点H ,点D′共线时,EH +D′E 有最小值,∵点B(−4,6),∴点H(−1,6),设直线D′H 的解析式为y =kx +b ,则{6=−k +b b =−4, 解得:{k =−10b =−4, ∴直线D′H 的解析式为y =−10x −4,∴当y =0时,x =−25,∴点E(−25,0),故答案为:(−25,0).在BC 上截取BH =3,可证四边形BHEF 是平行四边形,可得BF =EH ,由对称性可得DE =D′E ,则四边形BDEF 的周长=EH +ED′+BD +EF ,由EF 和BD 是定值,则当EH +D′E 有最小值时,四边形BDEF 的周长有最小值,即当点E ,点H ,点D′共线时,EH +D′E 有最小值,利用待定系数法可求HD′解析式,即可求解.本题考查了轴对称−最短路线问题,坐标与图形,平行四边形的判定和性质,一次函数的性质等知识,确定点E 的位置是解题的关键.18.【答案】解:原式=2a+1a+1+a 2−2a a 2−1÷2a−1−(a 2−1)a−1=2a +1a +1+a 2−2a a 2−1÷2a −a 2a −1=2a +1a +1+a(a −2)(a +1)(a −1)⋅a −1−a(a −2)=2a +1a +1−1a +1 =2a a+1,当a =−32时,原式=2×(−32)−32+1=6.【知识点】分式的化简求值【解析】根据分式的混合运算法则把原式化简,把a的值代入计算即可.本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.19.【答案】200 54 25【知识点】扇形统计图、用样本估计总体、条形统计图【解析】解:(1)抽取的学生有80÷40%=200(人),=54°,360°×30200∴n=54,50×100%=25%,200∴a=25,故答案为:200,54,25;(2)参加朗诵社团活动的学生人数为200−(50+30+80)=40(人),补全条形统计图如图:;(3)估计参加书法社团活动的学生人数为3200×25%=800(人).答:估计参加书法社团活动的学生人数为800人.(1)由参加乒乓球社团活动的学生人数及其所占百分比可得抽取的总人数,用360°乘以参加健美操社团活动的学生人数所占比例即可得n,根据参加书法社团活动的学生人数和抽取的总人数求出参加书法社团活动的学生所占比例可得a的值;(2)先根据参加四个社团活动的学生数之和等于总人数求出参加朗诵社团活动的学生人数,再补全条形统计图;(3)用总人数乘以样本中参加书法社团活动的学生人数对应的百分比可得答案.本题主要考查读条形统计图与扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.【答案】解:(1)设A种花卉每盆x元,B种花卉每盆(x+0.5)元,根据题意,得:600x =900x+0.5,解这个方程,得:x=1,经检验,x=1是原方程的解,并符合题意,此时,x+0.5=1+0.5=1.5(元),∴A种花卉每盆1元,B种花卉每盆1.5元,答:A种花卉每盆1元,B种花卉每盆1.5元;(2)设购买A种花卉t盆,购买这批花卉的总费用为w元,由题意,得:w=t+1.5(6000−t)=−0.5t+9000,∵t≤13(6000−t),解得:t≤1500,∵w是t的一次函数,k=−0.5<0,∴w随t的增大而减小,∴当t=1500时,w最小,w min=−0.5×1500+9000=8250(元),∴购买A种花卉1500盆时购买这批花卉总费用最低,最低费用是8250元.答:购买A种花卉1500盆时购买这批花卉总费用最低,最低费用是8250元.【知识点】分式方程的应用、一元一次不等式的应用、一次函数的应用【解析】(1)设A种花卉每盆x元,B种花卉每盆(x+0.5)元,根据题意列出关于x的分式方程,求解、验根即可;(2)根据两种花卉的费用之和列出函数关系式,再根据t的取值范围求函数最值即可.本题考查一次函数的应用和分式方程的解法,关键是根据已知条件列出函数关系式,在给定范围内求函数最值.21.【答案】(1)证明:在△AOE和△COD中,{∠EAO=∠DCO AO=CO∠AOE=∠COD,∴△AOE≌△COD(ASA),∴OD=OE,又∵AO=CO,∴四边形AECD是平行四边形;(2)解:∵AB=BC,AO=CO,∴OB⊥AC,∴平行四边形AECD是菱形,∵AC=8,∴CO=12AC=4,在Rt△COD中,由勾股定理得:OD=√CD2−CO2=√52−42=3,∴DE=2OD=6,∴菱形AECD的面积=12AC×DE=12×8×6=24.【知识点】平行四边形的判定与性质、全等三角形的判定与性质【解析】(1)证△AOE≌△COD(ASA),得OD=OE,再由AO=CO,即可得出结论;(2)由等腰三角形的性质得OB⊥AC,则平行四边形AECD是菱形,再由勾股定理求出OD=3,则DE=6,即可求解.本题考查了平行四边形的判定与性质,全等三角形的判定与性质、菱形的判定与性质、等腰三角形的性质以及勾股定理等知识,熟练掌握平行四边形的判定与性质是解此题的关键.22.【答案】解:过D作DE⊥AB于E,DF⊥BC于F,如图所示:由题意得:∠CDF=37°,CD=200米,在Rt△CDF中,sin∠CDF=CFCD=sin37°≈0.60,cos∠CDF=DFCD=cos37°≈0.80,∴CF≈200×0.60=120(米),DF≈200×0.80=160(米),∵AB⊥BC,DF⊥BC,DE⊥AB,∴∠B=∠DFB=∠DEB=90°,∴四边形BFDE是矩形,∴BF=DE,BE=DF=160米,∴AE=AB−BE=300−160=140(米),在Rt△ADE中,tan∠DAE=DEAE=tan65°≈2.14,∴DE≈AE×2.14=140×2.14=299.60(米),∴BF=DE≈299.60(米),∴BC=BF+CF=299.60+120≈420(米),答:革命纪念碑与党史纪念馆之间的距离约为420米.【知识点】解直角三角形的应用【解析】过D作DE⊥AB于E,DF⊥BC于F,由锐角三角函数定义求出CF≈120(米),DF≈160(米),再证四边形BFDE是矩形,得BF=DE,BE=DF=160米,则AE= AB−BE=300−160=140(米),然后由锐角三角函数定义求出DE≈299.60(米),即可求解.本题考查了解直角三角形的应用—方向角问题,熟练掌握方向角的定义和锐角三角函数定义,正确作出辅助线构造直角三角形是解题的关键.23.【答案】解:(1)设点D坐标为(m,n),由题意得12OH⋅DH=12mn=6,∴mn=12,∵点D在y=kx的图象上,∴k=mn=12,∵直线y=−12x−2的图象与x轴交于点A,∴点A的坐标为(−4,0),∵CD⊥x轴,∴CH//y轴,∴AOOH =ABBC=1,∴OH=AO=4,∴点D的横坐标为4.∵点D在反比例函数y=12x的图象上∴点D坐标为(4,3);(2)由(1)知CD//y轴,∴S△BCD=S△OCD,∵S△BDE=2S△OCD,∴S△EDC=3S△BCD,过点E作EF⊥CD,垂足为点F,交y轴于点M,∵S△EDC=12CD⋅EF,S△BCD=12CD⋅OH,∴CD⋅EF=3×12CD⋅OH,∴EF=3OH=12.∴EM=8,∴点E的横坐标为−8∵点E在直线y=−12x−2上,∴点E的坐标为(−8,2).【知识点】反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征、反比例函数系数k的几何意义【解析】(1)设点D坐标为(m,n),由△ODH的面积为6,即可判断mn=12,得到k的值,由直线解析式求得A的坐标,然后根据平行线分线段成比例定理求得点D的横坐标,代入反比例函数解析式即可求得纵坐标;(2)由同底等高三角形相等得出S△BCD=S△OCD,即可得出S△EDC=3S△BCD,从而得到CD⋅EF=3×12CD⋅OH,求得EF=12,进而求得E的横坐标为−8,代入y=−12x−2即可求得坐标.本题考查了反比例函数系数k的几何意义,一次函数图形上点的坐标特征,反比例函数图象上点的坐标特征,三角形的面积等,求得点的坐标是解题的关键.24.【答案】证明:(1)∵AB=AC,∴AB⏜=AC⏜,∵AB是直径,∴BE⏜=CE⏜,∴∠BAE=∠CAE,又∵AB=AC,∴AE⊥BC,又∵EF//BC,∴EF⊥AE,∴EF是⊙O的切线;(2)连接OC,设⊙O的半径为r,∵AE⊥BC,∴CH=BH=12BC=1,∴HG=HC+CG=4,∴AG=√AH2+HG2=√9+16=5,在Rt△OHC中,OH2+CH2=OC2,∴(3−r)2+1=r2,解得:r=53,∴AE=103,∵EF//BC,∴△AEF∽△AHG,∴AHAE =HGEF,∴3103=4EF,∴EF=409,∵AH=3,BH=1,∴AB=√AH2+BH2=√9+1=√10,∵四边形ABCD内接于⊙O,∴∠B+∠ADC=180°,∵∠ADC+∠CDG=180°,∴∠B=∠CDG,又∵∠DGC=∠AGB,∴△DCG∽△BAG,∴CDAB =CGAG,∴√10=35,∴CD =3√105. 【知识点】切线的判定与性质、圆周角定理、相似三角形的判定与性质、等腰三角形的性质、三角形的外接圆与外心 【解析】(1)由题意可证∠BAE =∠CAE ,由等腰三角形的性质可得AE ⊥BC ,由平行线的性质可证EF ⊥AE ,可得结论;(2)在Rt △OHC 中,利用勾股定理可求半径,可得AE 的长,通过证明△AEF∽△AHG ,可得AH AE =HG EF ,可求EF 的长,通过证明△DCG∽△BAG ,可得CD AB =CGAG ,可求CD 的长. 本题考查了相似三角形的判定和性质,等腰三角形的性质,勾股定理,圆的有关知识,求出半径是解题的关键.25.【答案】解:(1)∵抛物线y =ax 2+32x +c 过点A(1,0),C(0,−2),∴{0= a +32+c −2=c ,解得:{a =12c =−2. ∴抛物线的表达式为y =12x 2+32x −2.设直线AC 的表达式为y =kx +b ,则{k +b =0b =−2,解得:{k =2b =−2. ∴直线AC 的表达式为y =2x −2.(2)点D 不在抛物线的对称轴上,理由是:∵抛物线的表达式为y =12x 2+32x −2,∴点B 坐标为(−4,0).∵OA =1,OC =2,∴OA OC =OC OB .又∵∠AOC =∠BOC =90°,∴△AOC ~△COB .∴∠ACO =∠CBO .∴∠ACO +∠BCO =∠COB +∠BCO =90°,∴AC ⊥BC .∴将△ABC 沿BC 所在直线折叠,点D 一定落在直线AC 上,延长AC 至D ,使DC =AC ,过点D 作DE ⊥y 轴交y 轴于点E ,如图1.又∵∠ACO =∠DCE ,∴△ACO≌△DCE(AAS).∴DE =AO =1,则点D 横坐标为−1,∵抛物线的对称轴为直线x =−32. 故点D 不在抛物线的对称轴上. (3)设过点B 、C 的直线表达式为y =mx +n , ∵C(0,−2),B(−4,0), ∴{−2=n 0=−4m +n ,解得:{m =−12n =−2. ∴过点B 、C 的直线解析式为y =−12x −2.过点A 作x 轴的垂线交BC 的延长线于点M ,点M 坐标为(1,−52),过点P 作x 轴的垂线交BC 于点N ,垂足为H ,如图2.设点P 坐标为(m,12m 2+32m −2),则点N 坐标为(m,−12m −2),∴PN =−12m −2−(12m 2+32m −2)=−12m 2−2m ,∵PN//AM ,∴△AQM ~△PQN .∴PQAQ =PNAM .若分别以PQ 、AQ 为底计算△BPQ 和△BAQ 的面积(同高不等底),则△BPQ 与△BAQ 的面积比为PQ AQ ,即S 1S 2=PQAQ . ∴S 1S 2=PN AM =−12m 2−2m 52=−m 25−4m5=−15(m +2)2+45. ∵−15<0,∴当m =−2时,S 1S 2的最大值为45,此时点P 坐标为(−2,−3).【知识点】二次函数综合【解析】(1)利用待定系数法可求得函数的表达式;(2)抛物线的表达式为y =12x 2+32x −2,点B 坐标为(−4,0).可证明△AOC ~△COB.继而可证AC ⊥BC ,则将△ABC 沿BC 所在直线折叠,点D 一定落在直线AC 上,延长AC 至D ,使DC =AC ,过点D 作DE ⊥y 轴交y 轴于点E ,可证△ACO≌△DCE ,可得D 坐标.则可判断D 点是否在抛物线对称轴上;(3)分别过A 、P 作x 轴的垂线,利用解析式,用同一个字母m 表示出P ,N 的坐标,进而用m 表示出S 1S 2的值,根据二次函数的性质可以确定出S 1S 2的最大值,进而可确定出此时的P 点坐标.本题以二次函数为背影考查了待定系数法求解析式,相似三角形的判定与性质,全等三角形的判定与性质,三角形面积的计算,二次函数中常见辅助线的作法,利用点的坐标表示线段的长度,确定函数最值,关键在于作出垂线段利于用点的坐标表示线段的长度.。
2021年山东省聊城市中考数学试卷一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中只有一项符合题目要求.)1. 下列各数中,是负数的是()A. |﹣2|B. 2C. (﹣1)0D. ﹣32【答案】D【解析】【分析】先求出各个运算结果,继而即可判断正负性.【详解】解:A. |﹣2|=2,是正数,不符合题意,B. 2=5,是正数,不符合题意,C. (﹣1)0=1是正数,不符合题意,D. ﹣32=-9是负数,符合题意,故选D.【点睛】本本题主要考查正负数的概念,掌握乘方运算,零指数幂运算以及绝对值的意义,是解题的关键.2. 如图所示的几何体,其上半部有一个圆孔,则该几何体的俯视图是()A. B.C. D.【答案】A【解析】【分析】根据俯视图的定义及画图规则,画出俯视图,再与各选项进行对比即可找出正确答案.【详解】解:从上向下看几何体时,外部轮廓如图1所示:∵上半部有圆孔,且在几何体内部,看不见的轮廓线画虚线,∴整个几何体的俯视图如图2所示:故选:A【点睛】本题考查了三视图的知识点,熟知左视图的定义和画三视图的规则是解题的关键.3. 已知一个水分子的直径约为3.85×10﹣9米,某花粉的直径约为5×10﹣4米,用科学记数法表示一个水分子的直径是这种花粉直径的( )A. 0.77×10﹣5倍B. 77×10﹣4倍C. 7.7×10﹣6倍D. 7.7×10﹣5倍【答案】C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】由题意得:(3.85×10﹣9)÷(5×10﹣4)= 7.7×10﹣6倍,故选C .【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4. 如图,AB ∥CD ∥EF ,若∠ABC =130°,∠BCE =55°,则∠CEF 的度数为( )A. 95°B. 105°C. 110°D. 115°【答案】B【解析】 【分析】由//AB CD 平行的性质可知ABC DCB ∠=∠,再结合//EF CD 即可求解.【详解】解://AB CD Q130ABC DCB ∴∠=∠=︒1305575ECD DCB BCE ∴∠=∠-∠=︒-︒=︒//EF CD Q180ECD CEF ∴∠+∠=︒18075105CEF ∴∠=︒-︒=︒故答案是:B .【点睛】本题考查平行线的性质和角度求解,难度不大,属于基础题.解题的关键是掌握平行线的性质. 5. 为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取40名学生对收集废旧电池的数量进行的统计: 废旧电池数/节 4 56 7 8人数/人 911 11 5 4 请根据学生收集到的废旧电池数,判断下列说法正确的是( )A. 样本为40名学生B. 众数是11节C. 中位数是6节D. 平均数是5.6节 【答案】D【解析】【分析】根据样本定义可判定A ,利用众数定义可判定B ,利用中位数定义可判定C ,利用加权平均数计算可判定D 即可.【详解】解:A . 随机抽取40名学生对收集废旧电池的数量是样本,故选项A 样本为40名学生不正确;B . 根据众数定义重复出现次数最多的数据是5节或6节,故选项B 众数是11节不正确,C . 根据中位数定义样本容量为40,中位数位于4020,212=两个位置数据的平均数,第20位、第21位两个数据为6节与7节的平均数67 6.52+=节,故选项C 中位数是6节不正确; D 根据样本平均数()1495116117584 5.640x =⨯+⨯+⨯+⨯+⨯=节 故选项D 平均数是5.6节正确.故选择:D .【点睛】本题考查样本,众数,中位数,平均数,熟练掌握样本,众数,中位数,平均数是解题关键. 6. 下列运算正确的是( )A. a 2•a 4=a 8B. ﹣a (a ﹣b )=﹣a 2﹣ab.C. (﹣2a )2÷(2a )﹣1=8a 3D. (a ﹣b )2=a 2﹣b 2【答案】C【解析】 【分析】依次分析各选项,利用同底数幂的乘法法则、单项式乘多项式、积的乘方、负整数指数幂、同底数幂的除法、乘法公式进行运算即可得出A 、B 、D 三个选项错误,只有A 选项正确.【详解】解:∵246·a a a =,()2a a b a ab --=-+,()2222a b a ab b -=-+, 故A 、B 、D 三个选项错误;∵()()212322428a a a a a --÷=⨯=,∴C 选项正确,故选:C .【点睛】本题考查了同底数幂的乘法运算、单项式乘多项式、积的乘方运算、负整数指数幂、同底数幂的除法运算、乘法公式等内容,解决本题的关键是牢记公式与定义,本题虽属于基础题,但其计算中容易出现符号错误,因此应加强学生的符号运算意识,提高运算能力与技巧等.7. 关于x 的方程x 2+4kx +2k 2=4的一个解是﹣2,则k 值为( )A. 2或4B. 0或4C. ﹣2或0D. ﹣2或2 【答案】B【解析】【分析】把x =-2代入方程即可求得k 的值;【详解】解:将x =-2代入原方程得到:22-8+4=4k k ,解关于k 的一元二次方程得:k =0或4,故选:B .【点睛】此题主要考查了解一元二次方程相关知识点,代入解求值是关键.8. 如图,A ,B ,C 是半径为1的⊙O 上的三个点,若AB ,∠CAB =30°,则∠ABC 的度数为( )A. 95°B. 100°C. 105°D. 110°【答案】C【解析】【分析】连接OB,OC,根据勾股定理逆定理可得∠AOB=90°,∠ABO=∠BAO=45°,根据圆周角定理可得∠COB=2∠CAB=60°,∠OBC=∠OCB=60°,由此可求得答案.【详解】解:如图,连接OB,OC,∵OA=OB=1,AB∴OA2+OB2=AB2,∴∠AOB=90°,又∵OA=OB,∴∠ABO=∠BAO=45°,∵∠CAB=30°,∴∠COB=2∠CAB=60°,又∵OC=OB,∴∠OBC=∠OCB=60°,∴∠ABC=∠ABO+∠OBC=105°,故选:C.【点睛】本题考查了勾股定理的逆定理,等腰三角形的性质,圆周角定理,熟练掌握圆周角定理是解决本题的关键.9. 若﹣3<a≤3,则关于x的方程x+a=2解的取值范围为()A. ﹣1≤x<5B. ﹣1<x≤1C. ﹣1≤x<1D. ﹣1<x≤5【答案】A【解析】【分析】先求出方程的解,再根据﹣3<a≤3的范围,即可求解.【详解】解:由x+a=2,得:x=2-a,∵﹣3<a≤3,∴﹣1≤2-a<5,即:﹣1≤x<5,故选A.【点睛】本题主要考查解一元一次方程以及不等式的性质,用含a 的代数式表示x ,是解题的关键. 10. 已知二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +c 的图象和反比例函数y =a b c x++的图象在同一坐标系中大致为( )A. B. C. D.【答案】D【解析】【分析】先通过二次函数的图像确定a 、b 、c 的正负,再利用x =1代入解析式,得到a +b +c 的正负即可判定两个函数的图像所在的象限,即可得出正确选项.【详解】解:由图像可知:图像开口向下,对称轴位于y 轴左侧,与y 轴正半轴交于一点, 可得:0,0,0,a b c <又由于当x =1时,0y a b c =++<因此一次函数的图像经过一、二、四三个象限,反比例函数的图像位于二、四象限;故选:D .【点睛】本题考查了二次函数的图像与性质、一次函数的图像与性质以及反比例函数的图像与性质,解决本题的关键是能读懂题干中的二次函数图像,能根据图像确定解析式中各系数的正负,再通过各项系数的正负判定另外两个函数的图像所在的象限,本题蕴含了数形结合的思想方法等.11. 如图,在直角坐标系中,点A ,B 的坐标为A (0,2),B (﹣1,0),将△ABO 绕点O 按顺时针旋转得到△A 1B 1O ,若AB ⊥OB 1,则点A 1的坐标为( )A.B.C. (24,33)D. (48,55) 【答案】A【解析】分析】先求出AB ,OA 1,再作辅助线构造相似三角形,如图所示,得到对应边成比例,求出OC 和A 1C ,即可求解.【详解】解:如图所示,∵点A ,B 的坐标分别为A (0,2),B (﹣1,0),∴OB =1,OA =2,∴AB ==, ∵∠AOB =90°,∴∠A 1OB 1=90°,∴O A 1⊥OB 1,又∵AB ⊥OB 1,∴O A 1∥AB ,∴∠1=∠2,过A 1点作A 1C ⊥x 轴,∴∠A 1CO =∠AOB ,∴1AOB CO A △∽△, ∴11=O C OC AB O OA B A A =, ∵O A 1=OA =2,112OC A C =,∴OC1A C ,∴1A , 故选:A .【【点睛】本题综合考查了勾股定理、旋转的性质、相似三角形的判定和性质等内容,解决本题的关键是理解并掌握相关概念,能通过作辅助线构造相似三角形等,本题蕴含了数形结合的思想方法等.12. 如图,四边形ABCD 中,已知AB ∥CD ,AB 与CD 之间的距离为4,AD =5,CD =3,∠ABC =45°,点P ,Q 同时由A 点出发,分别沿边AB ,折线ADCB 向终点B 方向移动,在移动过程中始终保持PQ ⊥AB ,已知点P 的移动速度为每秒1个单位长度,设点P 的移动时间为x 秒,△APQ 的面积为y ,则能反映y 与x 之间函数关系的图象是( )A. B. C. D.【答案】B【解析】【分析】依次分析当03t ≤≤、36t <≤、610t <≤三种情况下的三角形面积表达式,再根据其对应图像进行判断即可确定正确选项.【详解】解:如图所示,分别过点D 、点C 向AB 作垂线,垂足分别为点E 、点F ,∵已知AB ∥CD ,AB 与CD 之间的距离为4,∴DE =CF =4,∵点P ,Q 同时由A 点出发,分别沿边AB ,折线ADCB 向终点B 方向移动,在移动过程中始终保持PQ ⊥AB ,∴PQ ∥DE ∥CF ,∵AD =5,∴3==AE ,∴当03t ≤≤时,P 点在AE 之间,此时,AP =t , ∵AP PQ AE DE=, ∴4=3PQ t , ∴2142=2233APQ t S AP PQ t t ⋅=⨯=V , 因此,当03t ≤≤时,其对应的图像为()22033y t t =≤≤,故排除C 和D ; ∵CD =3,∴EF =CD =3,∴当36t <≤时,P 点位于EF 上,此时,Q 点位于DC 上,其位置如图中的P 1Q 1,则111422APQ S t t =⨯⨯=V , 因此当36t <≤时,对应图像为()236y t t =<≤,即为一条线段;∵∠ABC =45°,∴BF =CF =4,∴AB =3+3+4=10,∴当610t <≤时,P 点位于FB 上,其位置如图中的P 2Q 2,此时,P 2B =10-t ,同理可得,Q 2P 2=P 2B =10-t ,()2221110522AP Q S t t t t =⨯-=-+V , 因此当610t <≤时,对应图像为()2156102y t t t =-+<≤,其为开口向下的抛物线的610t <≤的一段图像; 故选:B .【点睛】本题考查了平行线分线段成比例的推论、勾股定理、平行线的性质、三角形的面积公式、二次函数的图像等内容,解决本题的关键是牢记相关概念与公式,能分情况讨论等,本题蕴含了数形结合与分类讨论的思想方法等.二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13. =_______.【答案】4【解析】【分析】根据二次根式的运算法则,先算乘法,再算加减法,即可.【详解】解:原式=1 642-⨯=4.故答案是:4.【点睛】本题主要考查二次根式的混合运算,掌握二次根式的乘法法则,是解题的关键.14. 有四张大小和背面完全相同的不透明卡片,正面分别印有等边三角形、平行四边形、菱形和圆,将这四张卡片背面朝上洗匀,从中随机抽取两张卡片,所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的概率是__________.【答案】1 6【解析】【分析】由等边三角形、平行四边形、菱形、圆中,既是中心对称图形,又是轴对称图形的有菱形、圆,再画出树状图展示所有等可能的结果,进而即可求得答案.【详解】解:设等边三角形、平行四边形、菱形、圆分别为A ,B ,C ,D ,根据题意画出树状图如下:一共有12种情况,抽出的两张卡片的图形既是中心对称图形,又是轴对称图形为C 、D 共有2种情况, ∴P (既是中心对称图形,又是轴对称图形)=2÷12=16. 故答案是:16. 【点睛】本题考查了列表法和树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比,画出树状图,是解题的关键.15. 如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为点D 和点E ,AD 与CE 交于点O ,连接BO 并延长交AC 于点F ,若AB =5,BC =4,AC =6,则CE :AD :BF 值为____________.【答案】12:15:10【解析】【分析】由题意得:BF ⊥AC ,再根据三角形的面积公式,可得5432ABC S AD CE BF ===V ,进而即可得到答案.【详解】解:∵在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为点D 和点E ,AD 与CE 交于点O , ∴BF ⊥AC ,∵AB =5,BC =4,AC =6, ∴111222ABC S BC AD AB CE AC BF =⋅=⋅=⋅V , ∴5432ABC S AD CE BF ===V , ∴CE :AD :BF =12:15:10,故答案是:12:15:10.【点睛】本题主要考查三角形的高,掌握“三角形的三条高交于一点”是解题的关键.16. 用一块弧长16πcm 的扇形铁片,做一个高为6cm 的圆锥形工件侧面(接缝忽略不计),那么这个扇形铁片的面积为_______cm 2【答案】80π【解析】【分析】先求出圆锥的底面半径,再利用勾股定理求出圆锥的母线长,最后利用扇形的面积公式求解即可.【详解】解:∵弧长16πcm 的扇形铁片,∴做一个高为6cm 的圆锥的底面周长为16πcm ,∴圆锥的底面半径为:16π÷2π=8cm ,10cm =,∴扇形铁片的面积=16110280ππ⨯⨯=cm 2, 故答案是:80π.【点睛】本题考查了圆锥与扇形,掌握圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,是解题的关键.17. 如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,顶点A ,C 分别在x 轴,y 轴上,B ,D 两点坐标分别为B (﹣4,6),D (0,4),线段EF 在边OA 上移动,保持EF =3,当四边形BDEF 的周长最小时,点E 的坐标为__________.【答案】()0.4,0-【解析】【分析】先得出D 点关于x 轴的对称点坐标为H (0,-4),再通过转化,将求四边形BDEF 的周长的最小值转化为求FG +BF 的最小值,再利用两点之间线段最短得到当F 、G 、B 三点共线时FG +BF 的值最小,用待定系数法求出直线BG 的解析式后,令y =0,即可求出点F 的坐标,最后得到点E 的坐标.【详解】解:如图所示,∵D (0,4),∴D 点关于x 轴的对称点坐标为H (0,-4),∴ED =EH ,将点H 向左平移3个单位,得到点G (-3,-4),∴EF =HG ,EF ∥HG ,∴四边形EFGH 是平行四边形,∴EH =FG ,∴FG =ED ,∵B (-4,6),∴BD又∵EF =3,∴四边形BDEF 的周长=BD +DE +EF +BF =FG +3+BF ,要使四边形BDEF 的周长最小,则应使FG +BF 的值最小,而当F 、G 、B 三点共线时FG +BF 的值最小,设直线BG 的解析式为:()0y kx b k =+≠∵B (-4,6),G (-3,-4),∴4634k b k b -+=⎧⎨-+=-⎩, ∴1034k b =-⎧⎨=-⎩, ∴1034y x =--,当y =0时, 3.4x =-,∴()3.4,0F -,∴()0.4,0E -故答案为:()0.4,0-.【点睛】本题综合考查了轴对称的性质、最短路径问题、平移的性质、用待定系数法求一次函数的解析式等知识,解决问题的关键是“转化”,即将不同的线段之间通过转化建立相等关系,将求四边形的周长的最小值问题转化为三点共线和最短的问题等,本题蕴含了数形结合与转化的思想方法等.三、解答题(本题共8个小题,共69分解答题应写出文字说明、证明过程或推演步骤18. 先化简,再求值:22212211111a a a a a a a a +--⎛⎫+÷-- ⎪+--⎝⎭,其中a =﹣32. 【答案】21a a +;6 【解析】【分析】先把分式化简后,再把a 的值代入求出分式的值即可. 【详解】解:原式=22212(21)(1)(1)111a a a a a a a a a +---+-+÷+-- 2222122111a a a a a a a a +--+=+÷+-- 21111a a a +=-++ 21a a =+, 当32a =-时,原式=6. 【点睛】本题考查了分式的化简求值,熟练分解因式是解题的关键.19. 为扎实推进“五育并举”工作,某校利用课外活动时间,开设了书法、健美操、乒乓球和朗诵四个社团活动,每个学生选择一项活动参加,为了了解活动开展情况,学校随机抽取了部分学生进行调查,将调查结果绘制成条形统计图和扇形统计图:请根据以上的信息,回答下列问题:(1)抽取的学生有人,n=,a=;(2)补全条形统计图;(3)若该校有学生3200人,估计参加书法社团活动的学生人数.【答案】(1)200,54,25;(2)见解析;(3)800人【解析】【分析】(1)用乒乓球的人数除以乒乓球所占的百分比,即可求得样本容量,进而可分别求得n和a的值即可;(2)先计算出参加朗诵的人数,即可补全条形统计图;(3)先计算参加书法所占的百分比,再乘以2000,即可解答.【详解】解:(1)80÷40%=200(人),30360=54°,20050÷200=25%,故答案:200,54,25;为(2)200-50-30-80=40(人),补全条形统计图如图所示∶(3)50200×3200=800(人).答:该校参加书法社团活动的约有800 人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20. 为迎接建党一百周年,我市计划用两种花卉对某广场进行美化.已知用600元购买A种花卉与用900元购买B种花卉的数量相等,且B种花卉每盆比A种花卉多0.5元.(1)A,B两种花卉每盆各多少元?(2)计划购买A,B两种花卉共6000盆,其中A种花卉的数量不超过B种花卉数量的13,求购买A种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元?【答案】(1)A种花弃每盆1元,B种花卉每盆1.5元;(2)购买A种花卉1500盆时购买这批花卉总费用最低,最低费用为8250元【解析】【分析】(1)设A种花弃每盆x元,B种花卉每盆(x+0.5)元,根据题意列分式方程,解出方程并检验;(2)设购买A种花卉∶t盆,购买这批花卉的总费用为w元,则t≤13(6000-t),w=t+1.5(6000-t)=-0.5t+9000,w随t的增大而减小,所以根据t的范围可以求得w的最小值.【详解】解:(1)设A种花弃每盆x元,B种花卉每盆(x+0.5)元.根据题意,得6009000.5x x=+.解这个方程,得x=1.经检验知,x=1是原分式方程的根,并符合题意.此时x+0.5=1+0.5=1.5(元).所以,A种花弃每盆1元,B种花卉每盆1.5元.(2)设购买A种花卉∶t盆,购买这批花卉的总费用为w元,则t≤13(6000-t),解得∶t≤1500.由题意,得w=t+1.5(6000-t)=-0.5t+9000.因为w是t的一次函数,k=-0.5<0,w随t的增大而减小,所以当t=1500 盆时,w最小.w=-0.5×1500+9000=8250(元).所以,购买A种花卉1500盆时购买这批花卉总费用最低,最低费用为8250元.【点睛】本题主要考查了分式方程解决实际问题和一次函数求最值,根据等量关系列出方程和函数关系式及取值范围是解题关键.21. 如图,在四边形ABCD 中,AC 与BD 相交于点O ,且AO =CO ,点E 在BD 上,满足∠EAO =∠DCO .(1)求证:四边形AECD 是平行四边形;(2)若AB =BC ,CD =5,AC =8,求四边形AECD 的面积.【答案】(1)见解析;(2)24【解析】【分析】(1)根据题意可证明AOE COD V V ≌,得到OD =OE ,从而根据“对角线互相平分的四边形为平行四边形”证明即可;(2)根据AB =BC ,AO =CO ,可证明BD 为AC 的中垂线,从而推出四边形AECD 为菱形,然后根据条件求出DE 的长度,即可利用菱形的面积公式求解即可.【详解】(1)证明:在△AOE 和△COD 中,EAO DCO AO COAOE COD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()AOE COD ASA V V ≌.∴OD =OE .又∵AO =CO ,∴四边形AECD 是平行四边形.(2)∵AB =BC ,AO =CO ,∴BO 为AC 的垂直平分线,BO AC ⊥.∴平行四边形 AECD 是菱形.∵AC =8,142CO AC ∴==. 在 Rt △COD 中,CD =5,3OD ∴===,∴26DE OD ==,11682422AECD S DE AC ∴=⋅=⨯⨯=菱形, ∴四边形 AECD 的面积为24.【点睛】本题考查平行四边形的判定,菱形的判定与面积计算,掌握基本的判定方法,熟练掌握菱形的面积计算公式是解题关键.22. 时代中学组织学生进行红色研学活动.学生到达爱国主义教育基地后,先从基地门口A 处向正南方向走300米到达革命纪念碑B 处,再从B 处向正东方向走到党史纪念馆C 处,然后从C 处向北偏西37°方向走200米到达人民英雄雕塑D 处,最后从D 处回到A 处.已知人民英雄雕塑在基地门口的南偏东65°方向,求革命纪念碑与党史纪念馆之间的距离(精确到1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【答案】420米【解析】【分析】过D 点分别作DE ⊥BC ,DF ⊥AB ,垂足分别是点E ,点F .由三角函数可求120CE ≈,160DE ≈.可证四边形 BEDF 是矩形,可求AF =140,在Rt △ADF 中,利用三角函数可求DF =AF ·tan65°≈299.60.,可求BC =BE +CE ≈420(米).【详解】解∶过D 点分别作DE ⊥BC ,DF ⊥AB ,垂足分别是点E ,点F .由题意得,CDE ∠=37°.在R △CDE 中 ∵sin 37,cos37,200CE DE CD CD CD︒=︒==, 200sin 372000.60120CE ∴=⋅︒≈⨯=,200cos372000.80160DE =⋅≈⨯=︒.,,AB BC DE BC DF AB ⊥⊥⊥Q ,90B DEB DFB ∴∠=∠=∠=︒.∴四边形 BEDF 是矩形,∴BE =DF ,BF =DE =160,∴AF =AB -BF =300-160=140.在Rt △ADF 中,tan 65DF AF︒=, ∴DF =AF ·tan65°≈140×2.14=299.60.∴BC =BE +CE =299.60+120≈420(米).所以,革命纪念碑与党史纪念馆之间的距离约为 420米.【点睛】本题考查解直角三角形应用,矩形判定与性质,掌握锐角三角函数的定义与矩形判定和性质是解题关键.23. 如图,过C 点的直线y =﹣12x ﹣2与x 轴,y 轴分别交于点A ,B 两点,且BC =AB ,过点C 作CH ⊥x 轴,垂足为点H ,交反比例函数y =k x(x >0)的图象于点D ,连接OD ,△ODH 的面积为6 (1)求k 值和点D 的坐标; (2)如图,连接BD ,OC ,点E 在直线y =﹣12x ﹣2上,且位于第二象限内,若△BDE 的面积是△OCD 面积的2倍,求点E 的坐标.【答案】(1)12k =,点 D 坐标为(4,3);(2)点E 的坐标为(-8,2)【解析】【分析】(1)结合反比例函数k 的几何意义即可求解k 值;由⊥CH x 轴可知//CH y 轴,利用平行线分线段成比例即可求解D 点坐标;(2)//CH y 可知OCD ∆和BCD ∆的面积相等,由函数图像可知BDE ∆、BCD ∆、CED ∆的面积关系,再结合题意2BDE OCD S S ∆∆=,即可求CD 边上高的关系,故作EF CD ⊥,垂足为F ,即可求解E 点横坐标,最后由E 点在直线AB 上即可求解.【详解】解∶(1)设点 D 坐标为(m ,n ),由题意得116,1222OH DH mn mn ⋅==∴=. ∵点 D 在k y x =的图象上,12k mn ∴==. ∵直线122y x =--的图象与x 轴交于点A , ∴点A 的坐标为(-4,0).∵CH ⊥x 轴,CH //y 轴. 1.4AO AB OH AO OH BC∴==∴==. ∴点D 在反比例函数12y x=的图象上, ∴点 D 坐标为(4,3) (2)由(1)知CD y P 轴,BCD OCD S S ∴=△△.2,3BDE OCD EDC BCD S S S S =∴=Q △△△△.过点E 作EF ⊥CD ,垂足为点 F ,交y 轴于点M ,1111,,32222EDC BCD S CD EF S CD OH CD EF CD OH =⋅=⋅∴⋅=⨯⋅V V Q . 312.8EF OH EM ∴==∴=.∴点 E 的横坐标为-8.∵点E 在直线122y x =--上,∴点E 的坐标为(-8,2).【点睛】本题考查一次函数与反比例函数的综合运用、三角形面积问题、k 的几何意义,属于中档难度的综合题型.解题的关键是掌握一次函数与反比例函数的相关性质和数形结合思想.24. 如图,在△ABC 中,AB =AC ,⊙O 是△ABC 的外接圆,AE 是直径,交BC 于点H ,点D 在»AC 上,连接AD ,CD 过点E 作EF ∥BC 交AD 的延长线于点F ,延长BC 交AF 于点G .(1)求证:EF 是⊙O 的切线;(2)若BC =2,AH =CG =3,求EF 和CD 的长.【答案】(1)见解析;(2)409EF =,CD = 【解析】 【分析】(1)因为AE 是直径,所以只需证明EF ⊥AE 即可;(2)因EF ∥BG ,可利用AHG AEF :△△,将要求的EF 的长与已知量建立等量关系;因四边形ABCD 是圆内接四边形,可证得CDG ABG ∽△△,由此建立CD 与已知量之间的等量关系.【详解】(1)证明:∵AB =AC ,»»AB AC ∴=.又∵AE 是e O 的直径,»»BECE ∴=. BAE CAE ∴∠=∠.∵AB =AC ,∴AE ⊥BC .∴∠AHC =90°.∵EF ∥BC ,∴∠AEF =∠AHC =90°.∴EF ⊥AE .∴EF 是e O 切线.(2)如图所示,连接OC ,设e O 的半径为r .AE BC ⊥∵,的112=122CH BH BC ===⨯∴. 3CG =Q , 134HG HC CG =+=+=∴.5AG ===.在Rt △COH 中,∵222OH CH OC +=,又∵OH =AH -OA =3-r ,222(3)1r r -+=∴.解得,53r =. 5102233AE r ==⨯=∴. ∵EF ∥BC ,∴AHG AEF :△△.AH HG AE EF=∴. 34103EF =∴,409EF =∴ ∵四边形ABCD 内接于O e ,180B ADC ∠+∠=︒∴.+=180ADC CDG o ∵∠∠,CDG B ∠=∠∴.=DGC BGA ∵∠∠,CDG ABG ∴△△.∽CD CG AB AG=∴AC ===QAB AC ==∴35=.CD=∴【点睛】本题考查了等腰三角形的性质、垂径定理及推论、相似三角形的判定与性质、圆内接四边形的性质等知识点,熟知上述各类图形的判定或性质是解题的基础,寻找未知量与已知量之间的等量关系是关键.25. 如图,抛物线y=ax2+32x+c与x轴交于点A,B,与y轴交于点C,已知A,C两点坐标分别是A (1,0),C(0,﹣2),连接AC,BC.(1)求抛物线的表达式和AC所在直线的表达式;(2)将V ABC沿BC所在直线折叠,得到V DBC,点A的对应点D是否落在抛物线的对称轴上,若点D在对称轴上,请求出点D的坐标;若点D不在对称轴上,请说明理由;(3)若点P是抛物线位于第三象限图象上的一动点,连接AP交BC于点Q,连接BP,V BPQ的面积记为S1,V ABQ的面积记为S2,求12SS的值最大时点P的坐标.【答案】(1)213222y x x=+-;22y x=-;(2)点D不在抛物线的对称轴上,理由见解析;(3)点P 坐标为(-2,-3)【解析】【分析】(1)利用待定系数法求解即可;(2)先求出点B坐标,再结合点A、C坐标利用相似三角形的判定及性质可证得AC BC⊥,延长AC到点D,使DC=AC,过点D作DE⊥y轴,垂足为点E,由此可得()ACO DCE AAS△≌△,进而可求得点D的横坐标为-1,最后根据抛物线的对称轴是直线32x=-即可判断出点B不在对称轴上;(3)先利用待定系数法求出直线BC的函数表达式,然后过点A作x轴的垂线交BC的延长线于点M,则点M 坐标为51,2⎛⎫- ⎪⎝⎭,过点P 作x 轴的垂线交BC 于点N ,垂足为点H ,设点P 坐标为213,222m m m ⎛⎫+- ⎪⎝⎭,则点N 坐标为1,22m m ⎛⎫-- ⎪⎝⎭,根据相似三角形的判定及性质可得21214(2)55S m S =-++,由此可得答案. 【详解】解;(1)∵抛物线232y ax x c =++过A (1,0),C (0,﹣2), ∴3022a c c ⎧++=⎪⎨⎪=-⎩, 解得:122a c ⎧=⎪⎨⎪=-⎩,∴抛物线的表达式为 213222y x x =+-. 设 AC 所在直线的表达式为y kx b =+,∴02k b b +=⎧⎨=-⎩, 解得22k b =⎧⎨=-⎩, ∴AC 所在直线的表达式为22y x =-;(2)点D 不在抛物线的对称轴上,理由是∶∵抛物线的表达式是213222y x x =+-, ∴令y =0,则2132022x x +-=, 解得14x =-,21x =,∴点B 坐标为(-4,0).1OA =Q ,2OC =, ∴OA OC OC OB=. 又90,AOC COB ∠=∠=︒Q∴AOC COB △∽△.∴∠=∠ACO CBO .∴90ACO BCO CBO BCO ∠+∠=∠+∠=︒,∴AC BC ⊥.∴将△ABC 沿 BC 折叠,点 A 的对应点D 一定在直线AC 上.如下图,延长AC 到点D ,使 DC =AC ,过点D 作DE ⊥y 轴,垂足为点E .又∵ACO DCE ∠=∠,∴()ACO DCE AAS △≌△,∴DE =OA =1,∴点D 的横坐标为-1,∵抛物线的对称轴是直线32x =-, ∴点D 不在抛物线的对称轴上;(3)设过点 B ,C 的直线表达式为11y k x b =+,∵点C 坐标是(0,-2),点B 坐标是(-4,0),∴过点 B ,C 的直线表达式为122y x =--. 过点 A 作x 轴的垂线交BC 的延长线于点M ,则点M 坐标为51,2⎛⎫- ⎪⎝⎭, 如下图,过点P 作x 轴的垂线交BC 于点N ,垂足为点H ,设点P 坐标为213,222m m m ⎛⎫+- ⎪⎝⎭,则点N 坐标为1,22m m ⎛⎫-- ⎪⎝⎭,∴2211312222222PN m m m m m ⎛⎫=---+-=-- ⎪⎝⎭. ∵AQM PQN △△∽, ∴PQ PN AQ AM=, ∵若分别以PQ ,AQ 为底计算△BPQ 与△BAQ 面积,则△BPQ 与△BAQ 的面积的比为PQ AQ , 即12S PQ S AQ=. ∴22212124142(2)555552m m S PN m m m S AM ---===-=-++, ∵105-<, ∴当m =-2时,12S S 的最大值为45, 将m =-2代入213222y x x =+-,得3y =-, ∴当12S S 取得最大值时,点P 坐标为(-2,-3). 【点睛】本题考查了用待定系数法求函数表达式,二次函数图像与性质,相似三角形的判定及性质,熟练掌握二次函数的图像与性质及相似三角形的判定与性质是解决本题的关键.的。
2021年山东省中考数学真题分类汇编:方程与不等式一.选择题(共14小题)1.(2021•聊城)若﹣3<a≤3,则关于x的方程x+a=2解的取值范围为()A.﹣1≤x<5B.﹣1<x≤1C.﹣1≤x<1D.﹣1<x≤5 2.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,则a+b<2b;④若b>0,则<,其中正确的个数是()A.1B.2C.3D.4 3.(2021•威海)解不等式组时,不等式①②的解集在同一条数轴上表示正确的是()A.B.C.D.4.(2021•聊城)关于x的方程x2+4kx+2k2=4的一个解是﹣2,则k值为()A.2或4B.0或4C.﹣2或0D.﹣2或2 5.(2021•济宁)已知m,n是一元二次方程x2+x﹣2021=0的两个实数根,则代数式m2+2m+n 的值等于()A.2019B.2020C.2021D.2022 6.(2021•菏泽)关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,则k的取值范围是()A.k且k≠1B.k≥且k≠1C.k D.k≥7.(2021•临沂)不等式<x+1的解集在数轴上表示正确的是()A.B.C.D.8.(2021•淄博)甲、乙两人沿着总长度为10km的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为xkm/h,则下列方程中正确的是()A.﹣=12B.﹣=0.2C.﹣=12D.﹣=0.29.(2021•烟台)已知关于x的一元二次方程x2﹣mnx+m+n=0,其中m,n在数轴上的对应点如图所示,则这个方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定10.(2021•菏泽)如果不等式组的解集为x>2,那么m的取值范围是()A.m≤2B.m≥2C.m>2D.m<2 11.(2021•临沂)方程x2﹣x=56的根是()A.x1=7,x2=8B.x1=7,x2=﹣8C.x1=﹣7,x2=8D.x1=﹣7,x2=﹣812.(2021•临沂)某工厂生产A、B两种型号的扫地机器人.B型机器人比A型机器人每小时的清扫面积多50%;清扫100m2所用的时间A型机器人比B型机器人多用40分钟.两种型号扫地机器人每小时分别清扫多少面积?若设A型扫地机器人每小时清扫xm2,根据题意可列方程为()A.=+B.+=C.+=D.=+13.(2021•泰安)已知关于x的一元二次方程kx2﹣(2k﹣1)x+k﹣2=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣B.k<C.k>﹣且k≠0D.k<且k≠0 14.(2021•济宁)不等式组的解集在数轴上表示正确的是()A.B.C.D.二.填空题(共7小题)15.(2021•烟台)幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为.16.(2021•东营)某地积极响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展荒山绿化,打造美好家园,促进旅游发展.某工程队承接了90万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了任务.设原计划每天绿化的面积为x万平方米,则所列方程为.17.(2021•泰安)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”其大意是:“今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?”设甲的钱数为x,乙的钱数为y,根据题意,可列方程组为.18.(2021•枣庄)若等腰三角形的一边长是4,另两边的长是关于x的方程x2﹣6x+n=0的两个根,则n 的值为.19.(2021•枣庄)已知x,y满足方程组,则x+y的值为.20.(2021•枣庄)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m的值为.21.(2021•东营)不等式组的解集为.三.解答题(共6小题)22.(2021•东营)“杂交水稻之父”﹣﹣袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水稻亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.(1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;(2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.23.(2021•淄博)为更好地发展低碳经济,建设美丽中国.某公司对其生产设备进行了升级改造,不仅提高了产能,而且大幅降低了碳排放量.已知该公司去年第三季度产值是2300万元,今年第一季度产值是3200万元,假设公司每个季度产值的平均增长率相同.科学计算器按键顺序计算结果(已取近似值)解答过程中可直接使用表格中的数据哟!1.18 1.39 1.64(1)求该公司每个季度产值的平均增长率;(2)问该公司今年总产值能否超过1.6亿元?并说明理由.24.(2021•威海)六一儿童节来临之际,某商店用3000元购进一批玩具,很快售完;第二次购进时,每件的进价提高了20%,同样用3000元购进的数量比第一次少了10件.(1)求第一次每件的进价为多少元?(2)若两次购进的玩具售价均为70元,且全部售完,求两次的总利润为多少元?25.(2021•菏泽)列方程(组)解应用题端午节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小王:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.根据他们的对话,解决下面所给问题:超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果的销售价为每千克多少元?26.(2021•泰安)接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.(1)求该厂当前参加生产的工人有多少人?(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?27.(2021•烟台)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?2021年山东省中考数学真题分类汇编:方程与不等式参考答案与试题解析一.选择题(共14小题)1.(2021•聊城)若﹣3<a≤3,则关于x的方程x+a=2解的取值范围为()A.﹣1≤x<5B.﹣1<x≤1C.﹣1≤x<1D.﹣1<x≤5【考点】一元一次方程的解;不等式的性质.【专题】一次方程(组)及应用;一元一次不等式(组)及应用;运算能力.【分析】把a看做已知数求出方程的解得到x的值,由﹣3<a≤3代入计算即可.【解答】解:x+a=2,x=﹣a+2,∵﹣3<a≤3,∴﹣3≤﹣a<3,∴﹣1≤﹣a+2<5,∴﹣1≤x<5,故选:A.【点评】此题考查了解一元一次等式、一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.2.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,则a+b<2b;④若b>0,则<,其中正确的个数是()A.1B.2C.3D.4【考点】不等式的性质.【专题】整式;推理能力.【分析】根据不等式的性质逐个判断即可.【解答】解:∵a>b,∴当a>0时,a2>ab,当a<0时,a2<ab,故①结论错误;∵a>b,∴当|a|>|b|时,a2>b2,当|a|<|b|时,a2<b2,故②结论错误;∵a>b,b<0,∴a+b>2b,故③结论错误;∵a>b,b>0,∴a>b>0,∴,故④结论正确;∴正确的个数是1个.故选:A.【点评】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.3.(2021•威海)解不等式组时,不等式①②的解集在同一条数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】分别求解不等式①和②,即可求出不等式组的解集,再在数轴上表示出不等式组的解集即可得出答案.【解答】解:解不等式①,得x>﹣3;解不等式②,得x≤﹣1.∴不等式组的解集为:﹣3<x≤﹣1.∴不等式组的解集在数轴上表示为:.故选:A.【点评】本题主要考查了在数轴上表示不等式的解集,熟练应用求不等式组的解集的方法及在数轴上表示的方法进行求解是解决本题的关键.4.(2021•聊城)关于x的方程x2+4kx+2k2=4的一个解是﹣2,则k值为()A.2或4B.0或4C.﹣2或0D.﹣2或2【考点】一元二次方程的解.【专题】一元二次方程及应用;运算能力.【分析】直接把x=﹣2代入方程x2+4kx+2k2=4得4﹣8k+2k2=4,然后解关于k的一元二次方程即可.【解答】解:把x=﹣2代入方程x2+4kx+2k2=4得4﹣8k+2k2=4,整理得k2﹣4k=0,解得k1=0,k2=4,即k的值为0或4.故选:B.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.5.(2021•济宁)已知m,n是一元二次方程x2+x﹣2021=0的两个实数根,则代数式m2+2m+n 的值等于()A.2019B.2020C.2021D.2022【考点】根与系数的关系.【专题】一元二次方程及应用;运算能力.【分析】根据一元二次方程根的定义得到m2+m=2021,则m2+2m+n=2021+m+n,再利用根与系数的关系得到m+n=﹣1,然后利用整体代入的方法计算.【解答】解:∵m是一元二次方程x2+x﹣2021=0的实数根,∴m2+m﹣2021=0,∴m2+m=2021,∴m2+2m+n=m2+m+m+n=2021+m+n,∵m,n是一元二次方程x2+x﹣2021=0的两个实数根,∴m+n=﹣1,∴m2+2m+n=2021﹣1=2020.故选:B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程的解.6.(2021•菏泽)关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,则k的取值范围是()A.k且k≠1B.k≥且k≠1C.k D.k≥【考点】一元二次方程的定义;根的判别式.【专题】一元二次方程及应用;运算能力.【分析】分k﹣1=0和k﹣1≠0两种情况,利用根的判别式求解可得.【解答】解:当k﹣1≠0,即k≠1时,此方程为一元二次方程.∵关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,∴△=(2k+1)2﹣4×(k﹣1)2×1=12k﹣3≥0,解得k≥;当k﹣1=0,即k=1时,方程为3x+1=0,显然有解;综上,k的取值范围是k≥,故选:D.【点评】本题主要考查根的判别式和一元二次方程的定义,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.7.(2021•临沂)不等式<x+1的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【专题】一元一次不等式(组)及应用;运算能力.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得其解集,继而表示在数轴上即可.【解答】解:去分母,得:x﹣1<3x+3,移项,得:x﹣3x<3+1,合并同类项,得:﹣2x<4,系数化为1,得:x>﹣2,将不等式的解集表示在数轴上如下:故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数,不等号方向要改变.8.(2021•淄博)甲、乙两人沿着总长度为10km的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为xkm/h,则下列方程中正确的是()A.﹣=12B.﹣=0.2C.﹣=12D.﹣=0.2【考点】由实际问题抽象出分式方程.【专题】分式方程及应用;应用意识.【分析】设乙的速度为xkm/h,则甲的速度为1.2xkm/h,根据时间=路程÷速度结合甲比乙提前12分钟走完全程,即可得出关于x的分式方程,此题得解.【解答】解:12分钟=h=0.2h,设乙的速度为xkm/h,则甲的速度为1.2xkm/h,根据题意,得:﹣=0.2,故选:D.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.9.(2021•烟台)已知关于x的一元二次方程x2﹣mnx+m+n=0,其中m,n在数轴上的对应点如图所示,则这个方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【考点】实数与数轴;根的判别式.【专题】一元二次方程及应用;运算能力.【分析】先由数轴得出m,n与0的关系,再计算判别式的值即可判断.【解答】解:由数轴得m>0,n<0,m+n<0,∴mn<0,∴△=(mn)2﹣4(m+n)>0,∴方程有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.(2021•菏泽)如果不等式组的解集为x>2,那么m的取值范围是()A.m≤2B.m≥2C.m>2D.m<2【考点】解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】解第一个不等式,求出解集,再根据不等式组的解集,利用“同大取大”的口诀可得答案.【解答】解:解不等式x+5<4x﹣1,得:x>2,∵不等式组的解集为x>2,∴m≤2,故选:A.【点评】本题主要考查解一元一次不等式组,解题的关键是掌握解一元一次不等式的步骤和依据及不等式组解集的确定.11.(2021•临沂)方程x2﹣x=56的根是()A.x1=7,x2=8B.x1=7,x2=﹣8C.x1=﹣7,x2=8D.x1=﹣7,x2=﹣8【考点】解一元二次方程﹣因式分解法.【专题】一元二次方程及应用;运算能力.【分析】利用因式分解法求解即可。
山东省聊城市中考数学试卷(含答案)一、选择题1.在实数﹣1,﹣,0,中,最小的实数是()A.﹣1B.C.0D.﹣2.如图所示的几何体的俯视图是()A.B.C.D.3.如图,在△ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF∥AB交AC于点E,则∠FEC的度数是()A.120°B.130°C.145°D.150°4.下列计算正确的是()A.a2•a3=a6B.a6÷a﹣2=a﹣3C.(﹣2ab2)3=﹣8a3b6D.(2a+b)2=4a2+b25.为了增强学生预防新冠肺炎的安全意识,某校开展疫情防控知识竞赛.来自不同年级的30名参赛同学的得分情况如下表所示,这些成绩的中位数和众数分别是()成绩/分84889296100人数/人249105A.92分,96分B.94分,96分C.96分,96分D.96分,100分6.计算÷3×的结果正确的是()A.1B.C.5D.97.如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB的值为()A.B.C.D.8.用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=9.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点M,连接OC,DB.如果OC∥DB,OC =2,那么图中阴影部分的面积是()A.πB.2πC.3πD.4π10.如图,有一块半径为1m,圆心角为90°的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为()A.m B.m C.m D.m11.人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n个图形用图ⓝ表示,那么图㊿中的白色小正方形地砖的块数是()A.150B.200C.355D.50512.如图,在Rt△ABC中,AB=2,∠C=30°,将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,在B′C′上取点D,使B′D=2,那么点D到BC的距离等于()A.2(+1)B.+1C.﹣1D.+1二、填空题13.因式分解:x(x﹣2)﹣x+2=.14.如图,在⊙O中,四边形OABC为菱形,点D在上,则∠ADC的度数是.15.计算:(1+)÷=.16.某校开展读书日活动,小亮和小莹分别从校图书馆的“科技”、“文学”、“艺术”三类书籍中随机地抽取一本,抽到同一类书籍的概率是.17.如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C 的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为.三、解答题18.解不等式组并写出它的所有整数解.19.为了提高学生的综合素养,某校开设了五门手工活动课,按照类别分为:A“剪纸”、B “沙画”、C“葫芦雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如图两幅不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量为;统计图中的a=,b=;(2)通过计算补全条形统计图;(3)该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.20.今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.21.如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF,求证:四边形ABFC是矩形.22.如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD 的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°,已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到lm).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈l.43).23.如图,已知反比例函数y=的图象与直线y=ax+b相交于点A(﹣2,3),B(1,m).(1)求出直线y=ax+b的表达式;(2)在x轴上有一点P使得△P AB的面积为18,求出点P的坐标.24.如图,在△ABC中,AB=BC,以△ABC的边AB为直径作⊙O,交AC于点D,过点D 作DE⊥BC,垂足为点E.(1)试证明DE是⊙O的切线;(2)若⊙O的半径为5,AC=6,求此时DE的长.参考答案与试题解析一、选择题1.在实数﹣1,﹣,0,中,最小的实数是()A.﹣1B.C.0D.﹣【解答】解:∵|﹣|>|﹣1|,∴﹣1>﹣,∴实数﹣1,﹣,0,中,﹣<﹣1<0<.故4个实数中最小的实数是:﹣.故选:D.2.如图所示的几何体的俯视图是()A.B.C.D.【解答】解:从上面看,是一个矩形,矩形的靠右边有一条纵向的实线,故选:C.3.如图,在△ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF∥AB交AC于点E,则∠FEC的度数是()A.120°B.130°C.145°D.150°【解答】解:∵AB=AC,∠C=65°,∴∠B=∠C=65°,∵DF∥AB,∴∠CDE=∠B=65°,∴∠FEC=∠CDE+∠C=65°+65°=130°;故选:B.4.下列计算正确的是()A.a2•a3=a6B.a6÷a﹣2=a﹣3C.(﹣2ab2)3=﹣8a3b6D.(2a+b)2=4a2+b2【解答】解:A、a2•a3=a5,原计算错误,故此选项不合题意;B、a6÷a﹣2=a8,原计算错误,故此选项不合题意;C、(﹣2ab2)3=﹣8a3b6,原计算正确,故此选项合题意;D、(2a+b)2=4a2+4ab+b2,原计算错误,故此选项不合题意.故选:C.5.为了增强学生预防新冠肺炎的安全意识,某校开展疫情防控知识竞赛.来自不同年级的30名参赛同学的得分情况如下表所示,这些成绩的中位数和众数分别是()成绩/分84889296100人数/人249105A.92分,96分B.94分,96分C.96分,96分D.96分,100分【解答】解:把这些数据从小到大排列,最中间的两个数是第15、16个数的平均数,所以全班30名同学的成绩的中位数是:=94;96出现了10次,出现的次数最多,则众数是96,所以这些成绩的中位数和众数分别是94分,96分.故选:B.6.计算÷3×的结果正确的是()A.1B.C.5D.9【解答】解:原式=====1.故选:A.7.如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB的值为()A.B.C.D.【解答】解:如图,过点A作AH⊥BC于H.在Rt△ACH中,∵AH=4,CH=3,∴AC===5,∴sin∠ACH==,故选:D.8.用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=【解答】解:由原方程,得x2﹣x=,x2﹣x+=+,(x﹣)2=,故选:A.9.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点M,连接OC,DB.如果OC∥DB,OC =2,那么图中阴影部分的面积是()A.πB.2πC.3πD.4π【解答】解:连接OD,BC,∵CD⊥AB,OC=OD,∴DM=CM,∠COB=∠BOD,∵OC∥BD,∴∠COB=∠OBD,∴∠BOD=∠OBD,∴OD=DB,∴△BOD是等边三角形,∴∠BOD=60°,∴∠BOC=60°,∵DM=CM,∴S△OBC=S△OBD,∵OC∥DB,∴S△OBD=S△CBD,∴S△OBC=S△DBC,∴图中阴影部分的面积==2π,故选:B.10.如图,有一块半径为1m,圆心角为90°的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为()A.m B.m C.m D.m【解答】解:设底面半径为rm,则2πr=,解得:r=,所以其高为:=m,故选:C.11.人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n个图形用图ⓝ表示,那么图㊿中的白色小正方形地砖的块数是()A.150B.200C.355D.505【解答】解:由图形可知图ⓝ的地砖有(7n+5)块,当n=50时,7n+5=350+5=355.故选:C.12.如图,在Rt△ABC中,AB=2,∠C=30°,将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,在B′C′上取点D,使B′D=2,那么点D到BC的距离等于()A.2(+1)B.+1C.﹣1D.+1【解答】解:∵在Rt△ABC中,AB=2,∠C=30°,∴BC=2,AC=4,∵将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,∴AB′=AB=2,B′C′=BC=2,∴B′C=2,延长C′B′交BC于F,∴∠CB′F=∠AB′C′=90°,∵∠C=30°,∴∠CFB′=60°,B′F=B′C=,∵B′D=2,∴DF=2+,过D作DE⊥BC于E,∴DE=DF=×(2+)=+1,故选:D.二、填空题13.因式分解:x(x﹣2)﹣x+2=(x﹣2)(x﹣1).【解答】解:原式=x(x﹣2)﹣(x﹣2)=(x﹣2)(x﹣1).故答案为:(x﹣2)(x﹣1).14.如图,在⊙O中,四边形OABC为菱形,点D在上,则∠ADC的度数是60°.【解答】解:∵四边形ABCD内接于⊙O,∴∠B+∠D=180°,∵四边形OABC为菱形,∴∠B=∠AOC,∴∠D+∠AOC=180°,∵∠AOC=2∠D,∴3∠D=180°,∴∠ADC=60°,故答案为60°.15.计算:(1+)÷=﹣a.【解答】解:原式=•a(a﹣1)=•a(a﹣1)=﹣a.故答案为:﹣a.16.某校开展读书日活动,小亮和小莹分别从校图书馆的“科技”、“文学”、“艺术”三类书籍中随机地抽取一本,抽到同一类书籍的概率是.【解答】解:画树状图如下:由树状图知,共有9种等可能结果,其中抽到同一类书籍的有3种结果,所以抽到同一类书籍的概率为=,故答案为:.17.如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C 的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为4+2.【解答】解:∵点A(1,1),点C的纵坐标为1,∴AC∥x轴,∴∠BAC=45°,∵CA=CB,∴∠ABC=∠BAC=45°,∴∠C=90°,∵B(3,3)∴C(3,1),∴AC=BC=2,作B关于y轴的对称点E,连接AE交y轴于D,则此时,四边形ACBD的周长最小,这个最小周长的值=AC+BC+AE,过E作EF⊥AC交CA的延长线于F,则EF=BC=2,AF=6﹣2=4,∴AE===2,∴最小周长的值=AC+BC+AE=4+2,故答案为:4+2.三、解答题18.解不等式组并写出它的所有整数解.【解答】解:,解不等式①,x<3,解不等式②,得x≥﹣,∴原不等式组的解集为﹣≤x<3,它的所有整数解为0,1,2.19.为了提高学生的综合素养,某校开设了五门手工活动课,按照类别分为:A“剪纸”、B “沙画”、C“葫芦雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如图两幅不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量为120;统计图中的a=12,b=36;(2)通过计算补全条形统计图;(3)该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.【解答】解:(1)18÷15%=120(人),因此样本容量为120;a=120×10%=12(人),b=120×30%=36(人),故答案为:120,12,36;(2)E组频数:120﹣18﹣12﹣30﹣36=24(人),补全条形统计图如图所示:(3)2500×=625(人),答:该校2500名学生中喜爱“葫芦雕刻”的有625人.20.今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.【解答】解:(1)设这一批树苗平均每棵的价格是x元,根据题意列,得:,解这个方程,得x=20,经检验,x=20是原分式方程的解,并符合题意,答:这一批树苗平均每棵的价格是20元;(2)由(1)可知A种树苗每棵的价格为:20×0.9=18(元),B种树苗每棵的价格为:20×1.2=24(元),设购进A种树苗t棵,这批树苗的费用为w元,则:w=18t+24(5500﹣t)=﹣6t+132000,∵w是t的一次函数,k=﹣6<0,∴w随t的增大而减小,又∵t≤3500,∴当t=3500棵时,w最小,此时,B种树苗每棵有:5500﹣3500=2000(棵),w=﹣6×3500+132000=111000,答:购进A种树苗3500棵,BA种树苗2000棵时,能使得购进这批树苗的费用最低,最低费用为111000元.21.如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF,求证:四边形ABFC是矩形.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAE=∠CFE,∠ABE=∠FCE,∵E为BC的中点,∴EB=EC,∴△ABE≌△FCE(AAS),∴AB=CF.∵AB∥CF,∴四边形ABFC是平行四边形,∵BC=AF,∴四边形ABFC是矩形.22.如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD 的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°,已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到lm).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈l.43).【解答】解:过点N作EF∥AC交AB于点E,交CD于点F,则AE=MN=CF=1.6,EF=AC=35,∠BEN=∠DFN=90°,EN=AM,NF=MC,则DF=DC﹣CF=16.6﹣1.6=15,在Rt△DFN中,∵∠DNF=45°,∴NF=DF=15,∴EN=EF﹣NF=35﹣15=20,在Rt△BEN中,∵tan∠BNE=,∴BE=EN•tan∠BNE=20×tan55°≈20×1.43≈28.6,∴AB=BE+AE=28.6+1.6≈30.答:居民楼AB的高度约为30米.23.如图,已知反比例函数y=的图象与直线y=ax+b相交于点A(﹣2,3),B(1,m).(1)求出直线y=ax+b的表达式;(2)在x轴上有一点P使得△P AB的面积为18,求出点P的坐标.【解答】解:(1)将点A的坐标代入反比例函数表达式并解得:k=﹣2×3=﹣6,故反比例函数表达式为:y=﹣,将点B的坐标代入上式并解得:m=﹣6,故点B(1,﹣6),将点A、B的坐标代入一次函数表达式得,解得,故直线的表达式为:y=﹣3x﹣3;(2)设直线与x轴的交点为E,当y=0时,x=﹣1,故点E(﹣1,0),分别过点A、B作x轴的垂线AC、BD,垂足分别为C、D,则S△P AB=PE•CA+PE•BD=PE PE=PE=18,解得:PE=4,故点P的坐标为(3,0)或(﹣5,0).24.如图,在△ABC中,AB=BC,以△ABC的边AB为直径作⊙O,交AC于点D,过点D 作DE⊥BC,垂足为点E.(1)试证明DE是⊙O的切线;(2)若⊙O的半径为5,AC=6,求此时DE的长.【解答】(1)证明:连接OD、BD,∵AB是⊙O直径,∴∠ADB=90°,∴BD⊥AC,∵AB=BC,∴D为AC中点,∵OA=OB,∴OD∥BC,∵DE⊥BC,∴DE⊥OD,∵OD为半径,∴DE是⊙O的切线;(2)由(1)知BD是AC的中线,∴AD=CD==3,∵O的半径为5,∴AB=6,∴BD===,∵AB=AC,∴∠A=∠C,∵∠ADB=∠CED=90°,∴△CDE∽△ABD,∴,即=,∴DE=3.。
山东省聊城市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.规律型:数字的变化类(共1小题)1.(2023•聊城)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对:(3,5);(7,10);(13,17);(21,26);(31,37)…如果单另把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n个数对: .二.规律型:图形的变化类(共1小题)2.(2022•聊城)如图,线段AB=2,以AB为直径画半圆,圆心为A1,以AA1为直径画半圆①;取A1B的中点A2,以A1A2为直径画半圆②;取A2B的中点A3,以A2A3为直径画半圆③…按照这样的规律画下去,大半圆内部依次画出的8个小半圆的弧长之和为 .三.二次根式的混合运算(共2小题)3.(2023•聊城)计算:(﹣3)÷= .4.(2021•聊城)计算:= .四.解一元一次不等式组(共2小题)5.(2023•聊城)若不等式组的解集为x≥m,则m的取值范围是 .6.(2022•聊城)不等式组的解集是 .五.二次函数的应用(共1小题)7.(2022•聊城)某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为 元(利润=总销售额﹣总成本).六.三角形的面积(共1小题)8.(2021•聊城)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为点D和点E,AD与CE交于点O,连接BO并延长交AC于点F,若AB=5,BC=4,AC=6,则CE:AD:BF值为 .七.平行四边形的性质(共1小题)9.(2023•聊城)如图,在▱ABCD中,BC的垂直平分线EO交AD于点E,交BC于点O,连接BE,CE,过点C作CF∥BE,交EO的延长线于点F,连接BF.若AD=8,CE=5,则四边形BFCE的面积为 .八.圆锥的计算(共2小题)10.(2022•聊城)若一个圆锥体的底面积是其表面积的,则其侧面展开图圆心角的度数为 .11.(2021•聊城)用一块弧长16πcm的扇形铁片,做一个高为6cm的圆锥形工件侧面(接缝忽略不计),那么这个扇形铁片的面积为 cm2.九.轴对称-最短路线问题(共1小题)12.(2021•聊城)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A,C 分别在x轴,y轴上,B,D两点坐标分别为B(﹣4,6),D(0,4),线段EF在边OA 上移动,保持EF=3,当四边形BDEF的周长最小时,点E的坐标为 .一十.列表法与树状图法(共3小题)13.(2023•聊城)在一个不透明的袋子中,装有五个分别标有数字,,0,2,π的小球,这些小球除数字外其他完全相同.从袋子中随机摸出两个小球,两球上的数字之积恰好是有理数的概率为 .14.(2022•聊城)如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,﹣1;转盘B被四等分,分别标有数字3,2,﹣2,﹣3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在直角坐标系第二象限的概率是 .15.(2021•聊城)有四张大小和背面完全相同的不透明卡片,正面分别印有等边三角形、平行四边形、菱形和圆,将这四张卡片背面朝上洗匀,从中随机抽取两张卡片,所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的概率是 .山东省聊城市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.规律型:数字的变化类(共1小题)1.(2023•聊城)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对:(3,5);(7,10);(13,17);(21,26);(31,37)…如果单另把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n个数对: (n2+n+1,n2+2n+2) .【答案】(n2+n+1,n2+2n+2).【解答】解:每个数对的第一个数分别为3,7,13,21,31,...,即1×2+1,2×3+1,3×4+1,4×5+1,5×6+1,...,则第n个数对的第一个数为n2+n+1,每个数对的第二个数分别为5,10,17,26,37,...,即22+1,32+1,42+1,52+1,...,则第n个数对的第二个数为(n+1)2+1=n2+2n+2,∴第n个数对为(n2+n+1,n2+2n+2).故答案为:(n2+n+1,n2+2n+2).二.规律型:图形的变化类(共1小题)2.(2022•聊城)如图,线段AB=2,以AB为直径画半圆,圆心为A1,以AA1为直径画半圆①;取A1B的中点A2,以A1A2为直径画半圆②;取A2B的中点A3,以A2A3为直径画半圆③…按照这样的规律画下去,大半圆内部依次画出的8个小半圆的弧长之和为 π .【答案】见试题解答内容【解答】解:∵AB=2,∴AA1=1,半圆①弧长为=π,同理A1A2=,半圆②弧长为=()2π,A2A3=,半圆③弧长为=()3π,......半圆⑧弧长为=()8π,∴8个小半圆的弧长之和为π+()2π+()3π+...+()8π=π.故答案为:π.三.二次根式的混合运算(共2小题)3.(2023•聊城)计算:(﹣3)÷= 3 .【答案】3.【解答】解:原式=(4﹣3×)÷=(4﹣)÷=3÷=3.故答案为:3.4.(2021•聊城)计算:= 4 .【答案】4.【解答】解:原式=×(3﹣)=×2=4,故答案为:4.四.解一元一次不等式组(共2小题)5.(2023•聊城)若不等式组的解集为x≥m,则m的取值范围是 m≥﹣1 .【答案】m≥﹣1.【解答】解:∵不等式组,解得,∵x≥m,∴m≥﹣1.故答案为:m≥﹣1.6.(2022•聊城)不等式组的解集是 x<﹣2 .【答案】x<﹣2.【解答】解:,解不等式①得:x≤4,解不等式②得:x<﹣2;所以不等式组的解集为:x<﹣2.五.二次函数的应用(共1小题)7.(2022•聊城)某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为 121 元(利润=总销售额﹣总成本).【答案】见试题解答内容【解答】解:当10≤x≤20时,设y=kx+b,把(10,20),(20,10)代入可得:,解得,∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=﹣x+30,设该食品零售店每天销售这款冷饮产品的利润为w元,w=(x﹣8)y=(x﹣8)(﹣x+30)=﹣x2+38x﹣240=﹣(x﹣19)2+121,∵﹣1<0,∴当x=19时,w有最大值为121,故答案为:121.六.三角形的面积(共1小题)8.(2021•聊城)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为点D和点E,AD与CE交于点O,连接BO并延长交AC于点F,若AB=5,BC=4,AC=6,则CE:AD:BF值为 12:15:10 .【答案】12:15:10.【解答】解:在△ABC中,AD⊥BC,CE⊥AB,AD与CE交于点O,连接BO并延长交AC于点F,∴BF⊥AC,∴AB×CE=BC×AD=AC×BF,∵AB=5,BC=4,AC=6,∴×5×CE=×4×AD=×6×BF,∴CE:AD:BF=12:15:10.故答案为:12:15:10.七.平行四边形的性质(共1小题)9.(2023•聊城)如图,在▱ABCD中,BC的垂直平分线EO交AD于点E,交BC于点O,连接BE,CE,过点C作CF∥BE,交EO的延长线于点F,连接BF.若AD=8,CE=5,则四边形BFCE的面积为 24 .【答案】24.【解答】解:∵四边形ABCD是平行四边形,AD=8,∴AD=BC=8,∵由EF是线段BC的垂直平分线,∴EF⊥BC,OB=OC=BC=4,∵CE=5,∴OE===3.∵CF∥BE,∴∠OCF=∠OBE,在△OCF与△OBE中,,∴△OCF≌△OBE(ASA),∴OE=OF=3,∴S四边形BFCE=S△BCE+S△BFC=BC•OE+BC•OF=×8×3+×8×3=12+12=24.故答案为:24.八.圆锥的计算(共2小题)10.(2022•聊城)若一个圆锥体的底面积是其表面积的,则其侧面展开图圆心角的度数为 120° .【答案】120°.【解答】解:设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n°.由题意得S底面=πr2,l底面周长=2πr,∵这个圆锥体的底面积是其表面积的,∴S扇形=3S底面=3πr2,l扇形弧长=1底面=2πr.由S扇形=l扇形弧长×R得3πr2=×2πr×R,故R=3r.由l扇形弧长=得:2πr=,解得n=120.故答案为:120°.11.(2021•聊城)用一块弧长16πcm的扇形铁片,做一个高为6cm的圆锥形工件侧面(接缝忽略不计),那么这个扇形铁片的面积为 80π cm2.【答案】80π.【解答】解:∵扇形铁片的弧长16πcm,∴圆锥的底面周长为16πcm,∴圆锥的底面半径==8(cm),由勾股定理得:圆锥的母线长==10(cm),∴扇形铁片的面积=×16π×10=80π(cm2)故答案为:80π.九.轴对称-最短路线问题(共1小题)12.(2021•聊城)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A,C 分别在x轴,y轴上,B,D两点坐标分别为B(﹣4,6),D(0,4),线段EF在边OA 上移动,保持EF=3,当四边形BDEF的周长最小时,点E的坐标为 (﹣,0) .【答案】(﹣,0).【解答】解:在BC上截取BH=3,作点D关于x轴的对称点D',连接D'H交AO于点E,∴BH=EF=3,BC∥AO,∴四边形BHEF是平行四边形,∴BF=EH,∵点D与点D'关于x轴对称,∴DE=D'E,点D'坐标为(0,﹣4),∵四边形BDEF的周长=EF+BF+BD+DE,∴四边形BDEF的周长=EH+ED'+BD+EF,∵EF和BD是定值,∴当EH+D'E有最小值时,四边形BDEF的周长有最小值,∴当点E,点H,点D'共线时,EH+D'E有最小值,∵点B(﹣4,6),∴点H(﹣1,6),设直线D'H的解析式为y=kx+b,则,解得:,∴直线D'H的解析式为y=﹣10x﹣4,∴当y=0时,x=﹣,∴点E(﹣,0),故答案为:(﹣,0).一十.列表法与树状图法(共3小题)13.(2023•聊城)在一个不透明的袋子中,装有五个分别标有数字,,0,2,π的小球,这些小球除数字外其他完全相同.从袋子中随机摸出两个小球,两球上的数字之积恰好是有理数的概率为 .【答案】.【解答】解:根据题意列树状图如下:共有20个等可能的结果,两球上的数字之积恰好是有理数有8种,∴两球上的数字之积恰好是有理数的概率为=.故答案为:.14.(2022•聊城)如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,﹣1;转盘B被四等分,分别标有数字3,2,﹣2,﹣3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在直角坐标系第二象限的概率是 .【答案】见试题解答内容【解答】解:列表如下:20﹣1 3(2,3)(0,3)(﹣1,3)2(2,2)(0,2)(﹣1,2)﹣2(2,﹣2)(0,﹣2)(﹣1,﹣2)﹣3(2,﹣3)(0,﹣3)(﹣1,﹣3)由表可知,共有12种等可能结果,其中点(x,y)落在直角坐标系第二象限的有2种,所以点(x,y)落在直角坐标系第二象限的概率是=,故答案为:.15.(2021•聊城)有四张大小和背面完全相同的不透明卡片,正面分别印有等边三角形、平行四边形、菱形和圆,将这四张卡片背面朝上洗匀,从中随机抽取两张卡片,所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的概率是 .【答案】见试题解答内容【解答】解:等边三角形是轴对称图形,平行四边形是中心对称图形,菱形和圆既是轴对称图形,又是中心对称图形,把印有等边三角形、平行四边形、菱形和圆的四张卡片分别记为:A、B、C、D,画树状图如图:共有12种等可能的结果,所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的结果有2种,∴所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的概率为=,故答案为:.。
2021年山东省聊城市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2015•聊城)﹣的绝对值等于( )D. A.﹣3B.3C.﹣2.(3分)(2015•聊城)直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于( ) A.58°B.70°C.110°D.116°3.(3分)(2015•聊城)电视剧《铁血将军》在我市拍摄,该剧展示了抗日英雄范筑先的光辉形象.某校为了了解学生对“民族英雄范筑先”的知晓情况,从全校2400名学生中随机抽取了100名学生进行调查.在这次调查中,样本是( ) A.2400名学生 B.100名学生 C.所抽取的100名学生对“民族英雄范筑先”的知晓情况 D.每一名学生对“民族英雄范筑先”的知晓情况4.(3分)(2015•聊城)某几何体的三视图如图所示,这个几何体是( ) A.圆锥B.圆柱C.三棱柱D.三棱锥5.(3分)(2015•聊城)下列运算正确的是( ) A.a2+a3=a5B.(﹣a3)2=a6 C.ab2•3a2b=3a2b2D.﹣2a6÷a2=﹣2a3 6.(3分)(2015•聊城)不等式x ﹣3≤3x+1的解集在数轴上表示如下,其中正确的是( )A .B .C .D .7.(3分)(2015•聊城)下列命题中的真命题是( ) A .两边和一角分别相等的两个三角形全等 B .相似三角形的面积比等于相似比 C .正方形不是中心对称图形 D .圆内接四边形的对角互补8.(3分)(2015•聊城)为了了解一路段车辆行驶速度的情况,交警统计了该路段上午7::0至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数、中位数分别是( ) A .众数是80千米/时,中位数是60千米/时 B .众数是70千米/时,中位数是70千米/时 C .众数是60千米/时,中位数是60千米/时 D .众数是70千米/时,中位数是60千米/时9.(3分)(2015•聊城)图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是( )A .梦B .水C .城D .美10.(3分)(2015•聊城)湖南路大桥于今年5月1日竣工,为徒骇河景区增添了一道亮丽的风景线.某校数学兴趣小组用测量仪器测量该大桥的桥塔高度,在距桥塔AB 底部50米的C 处,测得桥塔顶部A 的仰角为41.5°(如图).已知测量仪器CD 的高度为1米,则桥塔AB 的高度约为( ) A.34米B.38米C.45米D.50米11.(3分)(2015•聊城)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是( ) A.小亮骑自行车的平均速度是12km/h B.妈妈比小亮提前0.5小时到达姥姥家 C.妈妈在距家12km处追上小亮 D.9:30妈妈追上小亮12.(3分)(2015•聊城)如图,点O是圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使和都经过圆心O,则阴影部分的面积是⊙O面积的( ) A.B.C.D.二、填空题(本题共5小题,每小题3分,共15分)13.(3分)(2015•聊城)一元二次方程x2﹣2x=0的解是 .14.(3分)(2015•聊城)计算:(+)2﹣= .15.(3分)(2015•聊城)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB的距离是 .16.(3分)(2015•聊城)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0。
山东省聊城市中考数学一模试卷一、选择题(本大题共12小题,共36.0分)1.实数−π,−3.14,0,√2四个数中,最小的是()A. −πB. −3.14C. √2D. 02.如图中几何体的俯视图是()A.B.C.D.3.如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O,MN过O,且MN//BC,分别交AB、AC于点M、N.若BM=5,MN=9,则线段CN的长是()A. 3B. 4C. 4.5D. 54.下列计算正确的是()A. x2x3=x6B. (m+3)2=m2+9C. a10÷a5=a5D. (xy2)3=xy65.某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分.人数25131073成绩(分)5060708090100全班40名同学的成绩的中位数和众数分别是()A. 75,70B. 70,70C. 80,80D. 75,806.给出下列化简①(−√2)2=2:②√(−2)2=2;③√122+142=12√3;④√1−14=12,其中正确的是()A. ①②③④B. ①②③C. ①②D. ③④7. 如图所示,△ABC 的顶点是正方形网格的格点,则sin A 的值为( ) A. 12 B. √55 C. √1010D. 2√55 8. 用配方法解方程2x 2−x −1=0时,配方结果正确的是( )A. (x −12)2=34B. (x −14)2=34C. (x −14)2=1716D. (x −14)2=916 9. 如图,CD 是⊙O 的直径,AB ,EF 是⊙O 的弦,且AB//CD//EF ,AB =16,CD =20,EF =12,则图中阴影部分的面积是( )A. 96+25πB. 88+50πC. 50πD. 25π10. 某同学用一扇形纸片为玩偶制作了一个圆锥形帽子(不考虑接缝),已知扇形的半径为13cm ,扇形的弧长为10π cm ,那么这个圆锥形帽子的高是( )A. 5cmB. 12cmC. 13cmD. 14cm11. 按照如图所示的方法排列黑色小正方形地砖,则第13个图案中黑色小正方形地砖的块数是( )A. 273B. 293C. 313D. 33312. 如图,在△ABC 中,∠BAC =108°,将△ABC 绕点A 按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC 边上,且AB′=CB′,则∠C′的度数为( )A. 18°B. 20°C. 24°D. 28°二、填空题(本大题共5小题,共15.0分)13. 因式分解:x(x −3)−x +3=______.14. 如图,点A 、B 、C 、D 、E 在⊙O 上,且AB ⏜为50°,则∠E +∠C =______°.15. 化简:(1x−4+1x+4)÷2x 2−16=______.16. 某校举行唱歌比赛活动,每个班级唱两首歌曲,一首是必唱曲目校歌,另外一首是从A ,B ,C ,D 四首歌曲中随机抽取1首,则九年级(1)班和(2)班抽取到同一首歌曲的概率是______.17. 在平面直角坐标系中,已知A 、B 两点的坐标分别为A(−1,1)、B(3,2),若点M 为x 轴上一点,且MA +MB 最小,则点M 的坐标为______.三、解答题(本大题共8小题,共69.0分)18. 解不等式组{x −32(2x −1)≤41+3x 3>2x −1,并写出x 的所有整数解.19.某校开设武术、舞蹈、剪纸等三项活动课程,随机抽取了部分学生对这三项活动课程的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1)本次抽样调查的样本容量是____;(2)将条形统计图补充完整;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.20.公历3月12日是植树节,为宣传保护树木,激发人们爱林造林的热情,政府投资13万元给某村民小组用于购买与种植A、B两种树苗共3000棵,完成这项种植后,剩余的款项作为村民小组的纯收入,已知用160元购买A树苗比购买B树苗多3棵.这两种树苗的单价、成活率及移栽费用见下表:树苗品种A树苗B树苗购买价格(元/棵)a a+12树苗成活率90%95%移栽费用(元/棵)35(1)求表中a的值;(2)设购买A树苗x棵,其它购买的是B树苗,把这些树苗种植完成后,村民小组获得的纯收入为y元,请你写出y与x之间的函数关系式;(3)若要求这批树苗种植后,成活率达到93%以上(包含93%),则最多种植A树苗多少棵?此时,村民小组在这项工作中,所得的纯收入最大值可以是多少元?21.如图,将▱ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.(1)求证:△ABD≌△BEC;(2)连接BD,若四边形BECD是矩形,求证:∠BOD=2∠A.22.如图,线段AB,CD表示甲、乙两幢居民楼的高,两楼间的距离BD是60米.某人站在A处测得C点的俯角为37°,D点的俯角为48°(人的身高忽略不计),求乙楼的高度CD.(参考数据:sin37°≈35,tan37°≈34,sin48°≈710,tan48°≈1110)23. 一次函数y =kx +b 的图象与反比例函数y =mx 的图象交于A(−2,1),B(1,n)两点.(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB 的面积.(3)当kx +b ≤mx 时,请直接写出x 的取值范围.24. 如图,AB ,CD 为⊙O 的直径,弦AE//CD ,连接BE 交CD 于点F ,过点E 的直线EP 与CD 的延长线交于点P ,并且使得∠PED =∠C .(1)求证:PE 是⊙O 的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为6,CF=2EF,求PD的长.25.如图,抛物线y=−x2+bx+c经过A(−1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、N、G为顶点的四边形是正方形时,请求出点M的坐标.【答案与解析】1.答案:A解析:本题考查了无理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.解:∵|−π|=π,|−3.14|=3.14,∴−π<−3.14,∴−π,−3.14,0,√2这四个数的大小关系为−π<−3.14<0<√2.故选A.2.答案:C解析:解:人站在几何体的正面,从上往下看,正方形个数依次为1,1,1,故选:C.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.答案:B解析:本题考查了等腰三角形的判定与性质和平行线性质的理解与掌握.此题证出∠MBO=∠MOB,∠NOC=∠NCO是解题的关键.解:∵MN//BC,∴∠OBC=∠MOB,∠OCB=∠NOC,∵OB是∠ABC的角平分线,OC是∠ACB的角平分线,∴∠MBO=∠OBC,∠NCO=∠OCB,∴∠MBO=∠MOB,∠NOC=∠NCO,∴OM=BM,ON=CN,∴MN=MO+ON=BM+CN,又∵BM=5,MN=9,∴CN=4,故选B.4.答案:C解析:解:A.x2⋅x3=x5,故选项A不合题意;B.(m+3)2=m2+6m+9,故选项B不合题意;C.a10÷a5=a5,故选项C符合题意;D.(xy2)3=x3y6,故选项D不合题意.故选:C.分别根据同底数幂的乘法法则,完全平方公式,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.5.答案:A解析:解:把这些数据从小到大排列,最中间的两个数是第20、21个数,分别为70和80,中位数是这两个数的平均数,=75;∴全班40名同学的成绩的中位数是:70+80270出现了13次,出现的次数最多,则众数是70;故选A.根据中位数和众数的定义分别进行解答即可.此题考查了中位数和众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.6.答案:C解析:根据二次根式的运算法则即可求出答案.本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.解:①原式=2,故①正确;②原式=2,故②正确;③原式=√340=2√85,故③错误;④原式=√34=√32,故④错误;故选:C.7.答案:B解析:此题主要考查了锐角三角函数关系,正确构造直角三角形是解题关键.直接连接DC,得出CD⊥AB,再结合勾股定理以及锐角三角函数关系得出答案.解:连接DC,设每个正方形网格的边长为1,由网格可得:CD⊥AB,则DC=√2,AC=√10,故sinA=DCAC =√2√10=√55.故选:B.8.答案:D解析:本题考查了解一元二次方方程--配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.本题具体做法是把常数项−1移项后,再在左右两边同时除以2,最后在左右两边同时加上一次项系数−12的一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.解:把方程2x2−x−1=0的常熟项移到等号的右边,得2x2−x=1,在左右两边同时除以2,得x2−12x=12方程两边同时加上一次项系数一半的平方,得到x 2−12x +116=12+116,配方得(x −14)2=916. 故选D .9.答案:C解析:解:延长BO 交⊙O 于G ,则BG 是⊙O 的直径,连接AG ,则∠GAB =90°,∵AB =16,BG =CD =20,∴AG =√BG 2−AB 2=12,∴AG =EF ,∴AG⏜=EF ⏜, 连接OE ,OF ,则S 扇形AOG =S 扇形EOF ,∵CD//EF ,∴S △OEF =S △DEF ,∴S 阴影DEF =S 扇形EOF ,∴S 阴影DEF =S 扇形AOG ,∴图中阴影部分的面积=12S 圆O =12⋅π×102=50π,故选:C .延长BO 交⊙O 于G ,则BG 是⊙O 的直径,连接AG ,根据圆周角定理得到∠GAB =90°,根据勾股定理得到AG =√BG 2−AB 2=12,求得AG =EF ,推出S 扇形AOG =S 扇形EOF ,根据已知条件得到S △OEF =S △DEF ,于是得到结论.本题考查学生的观察能力及计算能力.本题中找出两个阴影部分面积之间的联系是解题的关系. 10.答案:B解析:解:先求底面圆的半径,即2πr=10π,r=5cm,∵扇形的半径13cm,∴圆锥的高=√132−52=12cm.故选:B.首先求得圆锥的底面半径,然后利用勾股定理求得圆锥的高即可.此题主要考查圆锥的侧面展开图和勾股定理的应用,牢记有关公式是解答本题的关键,难度不大.11.答案:C解析:本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般规律,利用规律解决问题.由图形可知:第1个图案中黑色小正方形地砖的块数=1×1+0×0=12+02,第2个图案中黑色小正方形地砖的块数=2×2+1×1=22+12,第3个图案中黑色小正方形地砖的块数=3×3+ 2×2=32+22,…则第n个图案中黑色小正方形地砖的块数=n×n+(n−1)×(n−1)=n2+ (n−1)2,由此代入求得答案即可.解:∵第1个图案中黑色小正方形地砖的块数=1×1+0×0=12+02,第2个图案中黑色小正方形地砖的块数=2×2+1×1=22+12,第3个图案中黑色小正方形地砖的块数=3×3+2×2=32+22,…∴第n个图案中黑色小正方形地砖的块数=n×n+(n−1)×(n−1)=n2+(n−1)2,则第13个图案中黑色小正方形地砖的块数是132+122=313.故选C.12.答案:C解析:【试题解析】本题考查了旋转的性质,等腰三角形的性质,灵活运用这些的性质解决问题是本题的关键.由旋转的性质可得∠C=∠C′,AB=AB′,由等腰三角形的性质可得∠C=∠CAB′,∠B=∠AB′B,由三角形的外角性质和三角形内角和定理可求解.解:∵AB′=CB′,∴∠C=∠CAB′,∴∠AB′B=∠C+∠CAB′=2∠C,∵将△ABC绕点A按逆时针方向旋转得到△AB′C′,∴∠C=∠C′,AB=AB′,∴∠B=∠AB′B=2∠C,∵∠B+∠C+∠CAB=180°,∴3∠C=180°−108°,∴∠C=24°,∴∠C′=∠C=24°,故选:C.13.答案:(x−1)(x−3)解析:此题考查了因式分解−提公因式法,熟练掌握因式分解的方法是解本题的关键.原式变形后,提取公因式即可.解:原式=x(x−3)−(x−3)=(x−1)(x−3),故答案为:(x−1)(x−3).14.答案:155解析:解:连接EA,∵AB⏜为50°,∴∠BEA=25°,∵四边形DCAE为⊙O的内接四边形,∴∠DEA+∠C=180°,∴∠DEB+∠C=180°−25°=155°,故答案为:155.连接EA,根据圆周角定理求出∠BEA,根据圆内接四边形的性质得到∠DEA+∠C=180°,结合图形计算即可.本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.15.答案:x解析:解:(1x−4+1x+4)÷2x2−16=x+4+x−4(x+4)(x−4)⋅(x+4)(x−4)2=2x2=x,故答案为:x.根据分式的加法和除法可以解答本题.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.16.答案:14解析:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.画树状图展示所有16种等可能的结果数,再找出九年级(1)班和(2)班抽取到同一首歌曲的结果数,然后根据概率公式求解.解:画树状图为:共有16种等可能的结果数,其中九年级(1)班和(2)班抽取到同一首歌曲的有4种情况,所以九年级(1)班和(2)班抽取到同一首歌曲的概率为416=14,故答案为:14.17.答案:(13,0)解析:解:如图,作点A 作关于x 轴的对称点A′,连接A′B 与x 轴的交于点M ,点M 即为所求.∵点B 的坐标(3,2)点A′的坐标(−1,−1),∴直线BA′的解析式为y =34x −14,令y =0,得到x =13∴点M(13,0)故答案为(13,0).可过点A 作关于x 轴的对称点A′,连接A′B 与轴的交点即为所求.此题考查轴对称问题,熟练掌握轴对称的性质,理解两点之间线段最短的涵义.18.答案:解:{x −32(2x −1)≤4①1+3x 3>2x −1② 解不等式①,得:x ≥−54,解不等式②,得:x <43,则不等式组的解集为−54≤x <43,∴不等式组的整数解为:−1、0、1.解析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.答案:解:(1)100;(2)由(1)得女生总人数为50人,∴女生中喜欢舞蹈的人数为:50−10−16=24(人),如图所示:(3)∵样本中喜欢剪纸的人数为30人,样本容量为100,∴估计全校学生中喜欢剪纸的人数=1200×30100=360人.解析:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(1)根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,即可求出女生总人数,进而求得样本容量;(2)由(1)得女生总人数,即可得出喜欢舞蹈的人数,进而补全条形统计图即可;(3)用全校学生数×喜欢剪纸的学生在样本中所占百分比即可求出.解:(1)∵根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,∴女生总人数为:10÷20%=50(人),∴本次抽样调查的样本容量是:30+6+14+50=100,故答案为100;(2)见答案;(3)见答案.20.答案:解:(1)根据题意,得:160a −160a+12=3,解得:a1=20,a2=−32,经检验,它们都是原方程的解,但a2=−32不合题意,舍去,所以a=20;(2)由(1)可知:A树苗购买价格:20元/棵;B树苗购买价格:32元/棵,根据题意,得:y=130000−[20x+(3000−x)⋅32+3x+5(3000−x)]=14x+19000,即:y与x之间的函数关系式是:y=14x+19000;(3)设种植A树苗b棵,则有:90%b+(3000−b)×95%≥93%×3000,解得:b≤1200,由(2)可知:y=14x+19000,其中14>0,对于此一次函数,当x取最大值时,纯收入y的值最大.所以有:y最大值=14×1200+19000=35800(元),因此:最多种植A树苗1200棵,纯收入最大值是35800元.解析:(1)根据题意列出方程解答即可;(2)根据题意列出函数解析式即可;(3)设种植A树苗b棵,列出解析式根据增函数解答即可.此题考查一次函数的应用,关键是根据题意列出分式方程和函数解析式进行解答.21.答案:证明:(1)在平行四边形ABCD中,AD=BC,AB=CD,AB//CD,则BE//CD.又∵AB=BE,∴BE=DC,∴四边形BECD为平行四边形,∴BD=EC.∴在△ABD与△BEC中,{AB=BE BD=EC AD=BC,∴△ABD≌△BEC(SSS);(2)由(1)知,四边形BECD为平行四边形,则OD=OE,OC=OB.∵四边形ABCD为平行四边形,∴∠A=∠BCD,即∠A=∠OCD.又∵平行四边形BECD为矩形,∴OC=OD,∴∠OCD=∠ODC,∴∠BOD=∠OCD+∠ODC=2∠A,∴∠BOD=2∠A.解析:本题考查了平行四边形的性质和判定,矩形的判定,平行线的性质,全等三角形的性质和判定,三角形的外角性质等知识点的综合运用,难度较大.(1)根据平行四边形的判定与性质得到四边形BECD为平行四边形,然后由SSS推出两三角形全等即可;(2)由四边形ABCD为平行四边形可知∠A=∠BCD,即∠A=∠OCD,由四边形BECD是矩形,推知OC=OD,由等腰三角形的性质得到∠OCD=∠ODC.22.答案:解:过点C作CE⊥AB交AB于点E,则四边形EBDC为矩形,∴BE=CD CE=BD=60(米),如图,根据题意可得,∠ADB=48°,∠ACE=37°,∵tan48°=AB,BD在Rt△ADB中,×60=66(米),则AB=tan48°⋅BD≈1110∵tan37°=AE,CE在Rt△ACE中,×60=45(米),则AE=tan37°⋅CE≈34∴CD=BE=AB−AE=66−45=21(米),∴乙楼的高度CD为21米.解析:过点C作CE⊥AB交AB于点E,在直角△ADB中利用三角函数求得AB的长,然后在直角△AEC 中求得AE的长,即可求解.本题考查了解直角三角形的应用−仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.23.答案:解:(1)∵把A(−2,1)代入y=mx得:m=−2,∴反比例函数的解析式是y=−2x,∵B(1,n)代入反比例函数y=−2x,得:n=−2,∴B的坐标是(1,−2),把A、B的坐标代入一次函数y=kx+b得:{1=−2k+b−2=k+b,解得:k=−1,b=−1,∴一次函数的解析式是y=−x−1;(2)设直线AB交x轴于点C,∵把y=0代入一次函数的解析式y=−x−1得:0=−x−1,即x=−1,∴C(−1,0),△AOB的面积S=S AOC+S△BOC=12×|−1|×1+12×|−1|×|−2|=1.5;(3)从图象可知:当kx+b≤mx时,x的取值范围x≥1或−2≤x<0.解析:本题考查了反比例函数、一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,三角形的面积等知识点的综合运用,主要考查学生的计算能力和观察图形的能力.(1)把A的坐标代入反比例函数的解析式即可求出反比例函数的解析式,把B的坐标代入求出B的坐标,把A、B的坐标代入一次函数y=kx+b即可求出函数的解析式;(2)求出直线AB交x轴于点C的坐标,求出△AOC和△BOC的面积,即可求出答案;(3)根据函数的图象和A、B的坐标即可得出答案.24.答案:(1)证明:如图,连接OE.∵CD是圆O的直径,∴∠CED=90°.∵OC=OE,∴∠1=∠2.又∵∠PED=∠C,即∠PED=∠1,∴∠PED=∠2,∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,∴OE⊥EP,又∵点E在圆上,∴PE是⊙O的切线;(2)证明:∵AB、CD为⊙O的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等).又∵∠PED=∠1,∴∠PED=∠4,即ED平分∠BEP;(3)解:设EF=x,则CF=2x,∵⊙O的半径为6,∴OF=2x−6,在Rt△OEF中,OE2=OF2+EF2,即62=x2+(2x−6)2,解得x=4.8,∴EF =4.8,∴BE =2EF =9.6,CF =2EF =9.6,∴DF =CD −CF =12−9.6=2.4,∵AB 为⊙O 的直径,∴∠AEB =90°,∵AB =12,BE =9.6,∴AE =365,∵∠BEP =∠A ,∠EFP =∠AEB =90°,∴△AEB∽△EFP ,∴PF BE =EF AE,即PF 9.6=4.8365, ∴PF =325,∴PD =PF −DF =4.解析:本题考查了切线的判定和性质,圆周角定理的应用,勾股定理的应用,三角形相似的判定和性质,熟练掌握性质定理是解题的关键.(1)如图,连接OE.欲证明PE 是⊙O 的切线,只需推知OE ⊥PE 即可;(2)由圆周角定理得到∠AEB =∠CED =90°,根据“同角的余角相等”推知∠3=∠4,结合已知条件证得结论;(3)设EF =x ,则CF =2x ,在Rt △OEF 中,根据勾股定理得出62=x 2+(2x −6)2,求得EF ,进而求得BE 和CF ,在Rt △AEB 中,根据勾股定理求得,然后根据△AEB∽△EFP ,求得PF 的长,继而求出PD =PF −DF 的长.25.答案:解:(1)∵抛物线y =−x 2+bx +c 经过A(−1,0),B(3,0)两点,∴{−1−b +c =0−9+3b +c =0, 解得,{b =2c =3, ∴经过A ,B ,C 三点的抛物线的函数表达式为y =−x 2+2x +3;(2)如图1,连接PC 、PE ,x =−b 2a =−22×(−1)=1,当x =1时,y =4,∴点D 的坐标为(1,4),设直线BD 的解析式为:y =mx +n ,则{m +n =43m +n =0,解得,{m =−2n =6,∴直线BD 的解析式为y =−2x +6,设点P 的坐标为(x,−2x +6),则PC 2=x 2+(3+2x −6)2,PE 2=(x −1)2+(−2x +6)2,∵PC =PE ,∴x 2+(3+2x −6)2=(x −1)2+(−2x +6)2,解得,x =2,则y =−2×2+6=2,∴点P 的坐标为(2,2);(3)设点M 的坐标为(a,0),则点G 的坐标为(a,−a 2+2a +3),∵以F、M、N、G为顶点的四边形是正方形,∴FM=MG,即|2−a|=|−a2+2a+3|,当2−a=−a2+2a+3时,整理得,a2−3a−1=0,解得,a=3±√132;当2−a=−(−a2+2a+3)时,整理得,a2−a−5=0,解得,a=1±√212,∴当以F、M、N、G为顶点的四边形是正方形时,点M的坐标为(3+√132,0),(3−√132,0),(1+√212,0),(1−√212,0).解析:本题考查的是二次函数的图象和性质、待定系数法求函数解析式以及正方形的性质,掌握二次函数的图象和性质、灵活运用待定系数法是解题的关键.(1)利用待定系数法求出过A,B,C三点的抛物线的函数表达式;(2)连接PC、PE,利用公式求出顶点D的坐标,利用待定系数法求出直线BD的解析式,设出点P 的坐标为(x,−2x+6),利用两点间距离公式表示出PC2和PE2,根据题意列出方程,解方程求出x 的值,计算求出点P的坐标;(3)设点M的坐标为(a,0),表示出点G的坐标,根据正方形的性质列出方程,解方程即可.。
山东省聊城市中考数学试卷一、选择题(本大题共12小题,每小题3分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. (2016山东聊城,1,3分)在实数-31,-2 ,0,3中,最小的实数是( ) A .-2 B .0 C .-31 D .3 【答案】A【逐步提示】本题考查了实数大小的比较,解题的关键是掌握实数大小比较的方法.①先观察三个实数的正、负性,②再两个负数的大小,③确定最小的实数.【详细解答】解:由于负数小于0,0小于正数,又∵2=2,13=31,2>31,∴-2<-31,∴-2<-31<0<3,最小的是-2,故选择A . 【解后反思】实数比较大小时,正数都大于零,负数都小于零,正数大于一切负数,两个负数,绝对值大的反而小;也可利用数轴比较实数的大小关系,数轴上,右边的点表示的实数总是比左边的大.【关键词】 无理数;实数;有理数比较大小;2.(2016山东聊城,2,3分)如图,AB ∥CD ,∠B=68°,∠E=20°,则∠D 的度数为( )A .28°B .38°C .48°D .88°【答案】C【逐步提示】本题考查了平行线的性质,三角形的外角的性质,解题的关键是根据平行线的性质进行角的等量转化.①由已知条件AB ∥CD ,利用“两直线平行,同位角相等”证得∠1=∠B ,由此求出∠1的度数,②由∠1是三角形的一个外角,利用三角形外角的性质,得∠1=∠D+∠E ,③结合已知条件∠E=20°,求出∠D 的度数.【详细解答】解:∵ AB ∥CD ,∴∠1=∠B=68°,又∵∠1=∠D+∠E ,∠E=20°,∴∠D=∠1-∠E= 68°-20°=48°,故选择C .【解后反思】平行线的性质有:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.三角形一个外角等于不相邻的两个内角的和.【关键词】平行线的性质;三角形的外角;3.(2016山东聊城,3,3分)地球的体积约为1012立方千米,太阳的体积约为1.4⨯1018立方千米,地球的体积约是太阳体积的倍数是( )A .7.1610-⨯B .7.1710-⨯C .1.4610⨯D .1.4710⨯【答案】 B【逐步提示】本题考查了同底数幂的除法、单项式除以单项式,科学记数法,解题的关键是掌握相关法则.①表达出地球的体积与太阳体积的商,②运算时按照单项式除以单项式的运算法则进行. ③化为科学记数法.【详细解答】解:1012÷(1.4⨯1018)=(1 ÷1.4 )⨯181210-≈0.71610-⨯=7.1710-⨯,故选择B.【解后反思】同底数幂的相乘,底数不变,指数相减,即:m n m n a a a -÷=(a ≠0). 单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式中出现的字母,则连同它的指数一起作为商的一个因式.用科学记数法表示一个数,就是把一个数写成a ×10n 的形式(其中1≤a <10,n 为整数),其方法是(1)确定a ,a 是只有一位整数的数;(2)确定n ,当原数的绝对值≥10时, n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).【关键词】科学记数法;单项式除以单项式;同底数幂的除法4.(2016山东聊城,4,3分)把8a 3-8a 2+2a 进行因式分解,结果正确的是( )A .2a(4 a 2-4a+1)B .8a 2(a -1)C .2a (2a -1)2D .2a (2a+1)2【答案】C【逐步提示】本题考查了多项式的因式分解,掌握因式分解的方法及步骤是解答本题的关键.①先提取公因式,②再应用完全平方公式法将其分解因式,从而得出正确的判断.【详细解答】解:8a 3-8a 2+2a=2a (1a 4a 42+-)=2a (2a -1)2 ,故选择C .【解后反思】因式分解在初中范围内主要是两种方法,一是提取公因式法,二是运用公式法(即运用平方差公式或完全平方公式).在进行分解因式的时候,首先看能否提取公因式,然后看能否运用公式.切记:因式分解要进行到每个因式都不能再分解为止.【关键词】因式分解;提取公因式法;运用公式法;完全平方公式;5.(2016山东聊城,5,3分)某体校要从四名射击手中选拔一名参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩x及其方差S2如下表表示:甲乙丙丁x(环) 8.4 8.6 8.6 7.6S20.74 0.56 0.94 1.92如果要选择一名成绩高且发挥稳定的选手参赛,则应选择的选手是()A.甲B.乙C.丙D丁【答案】B【逐步提示】本题考查了由方差确定数据的稳定性大小,解题的关键是正确理解方差的含义.①先比较平均数,确定平均数较高的选手,②再比较方差,确定成绩稳定的选手..【详细解答】解:因为x甲<x丁<x乙=x丙,所以淘汰甲和丁,而S乙2<S丙2,所以应选拔乙参加省体育运动会,故选择B .【解后反思】方差反映了一组数据与其平均值的离散程度的大小;在平均数相等的情况下,方差越大,则它与其平均值的离散程度越大,稳定性越差;反之,则它与其平均值的离散程度越小,稳定性越好.【关键词】数据的代表;平均数;数据的波动与分布规律;方差;6.(2016山东聊城,6,3分)若干个大小相同的小正方体组合成的几何体的主视图和俯视图如图所示,下面所给的四个选项中,不可能是这个几何体的左视图的是()主视图俯视图A B C D【答案】C【逐步提示】本题考查了画简单几何体的三种视图,解题的关键是熟悉各种常见几何体三视图的形状及其三视图的画法.①第一步先由题干中主视图判断组合成的几何体的层数,②再观察各选项中左视图判断其组合成的几何体的层数,③确定不符合题干的组合成的几何体的层数的选项.【详细解答】解:由主视图可以判断出小正方体组合体最高2层,而选项C中的左视图反映的是正方体组合体有3层,所以它不可能是这个几何体的左视图,故选择C .【解后反思】若有三视图逆推原几何体,主视图主要描述物体的长和高,左视图主要描述物体的宽和高,俯视图主要描述物体的长和宽,而若三视图不完整,则组合体可能存在多种情形.【关键词】画三视图;三视图的反向思维7.(2016山东聊城,7,3分)二次函数y=a c bx x ++2(a ,b ,c 为常数且a 0≠)的图象如图所示,则一次函数y=a b x +与反比例函数y=xc 的图象可能是( )【答案】C【逐步提示】本题考查了二次函数、一次函数、反比例函数的图象与性质,解题的关键是熟记这些函数的图象与性质,能够读出图象包含的信息.①根据二次函数的图象先判断a ,b ,c 的符号,②由c 的符号确定反比例函数的图象分布象限,③由a ,b 的符号确定一次函数的图象增减性,④观察选项确定正确答案.【详细解答】解:根据二次函数c bx ax y ++=2的图象在平面直角坐标系中的位置可知a ,b ,c 的符号:①∵抛物线开口向上,∴a >0;②∵抛物线的对称轴直线a b x 2-=在y 轴的右侧,∴02>-ab ,∴b <0;③∵抛物线与y 轴的交点(0,c )在y 轴的正半轴上,∴c <0.由以上分析可知:一次函数b ax y +=的图象是一条自左向右呈上升趋势的直线,且与y 轴的交点(0,b )在y 轴的正半轴上;反比例函数xc y =的图象是双曲线,双曲线的两个分支分别在第二、四象限.∴在同平面直角坐标系中,一次函数b ax y +=与反比例函数x c y =的图象可能是C.故选择C .【解后反思】二次函数、反比例函数及一次函数,它们的图象、性质各有不同,特别是由抛物线在坐标系中的位置获取抛物线的开口方向、对称轴、抛物线与坐标轴的交点位置及个数等信息,是必须要熟练掌握的基本技能.①二次函数c bx ax y ++=2的图象是抛物线,抛物线在平面直角坐标系中的位置由a ,b ,c 的符号确定:抛物线开口方向决定了a 的符号,当开口向上时,a >0,当开口向下时,a <0;当对称轴在y 轴左侧时,a ,b 同号,当对称轴在y 轴右侧时,a ,b 异号;抛物线与y 轴的交点在y 轴的正半轴上时,c >0,抛物线与y 轴的交点在y 轴的负半轴上时,c <0,抛物线与y 轴的交点为原点时,c =0;抛物线与x 轴的交点个数由ac b 42-的符号决定,当ac b 42->0时,有2个交点,当ac b 42-=0时,有1个交点,当ac b 42-<0时,没有交点;②一次函数b ax y +=的图象是一条直线:当a >0时,直线自左向右呈上升趋势,当a <0时,直线自左向右呈下降趋势;当b >0时直线与y 轴的交点(0,b )在y 轴的正半轴上,当b <0时直线与y 轴的交点(0,b )在y 轴的负半轴上,当b =0时直线与y 轴的交点(0,b )为原点;③反比例函数x c y =的图象是双曲线,当c >0时,双曲线的两个分支分别在第一、三象限,当c <0时,双曲线的两个分支分别在第二、四象限.【关键词】二次函数;反比例函数;一次函数;数形结合思想;8.(2016山东聊城,8,3分)在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A .27B .51C .69D .72【答案】D【逐步提示】本题考查了一元一次方程的应用,解题的关键是理清题意,找出等量关系,列出符合要求的方程.①先设出最大数,然后表示出两个比较小的数,②分别让它们的和等于选项中各数构造方程求出最大数,③最后观察所求各数在表中是否存在,从而确定选项.【详细解答】解:设三个数中最大的数为x ,其它两个分别为x -7,x -14,三个数的和为3x -21,当3x -21=27时,x=16,;这时三个数为2,9,16;当3x -21=51时,x=124;这时三个数为10,17,24;当3x -21=69时,x=30;这时三个数为16,23,30;当3x -21=72时,x=31,由于6月份的月历表中最大的数是30,没有31,所以这种情况不可能,即这三个数的和不可能是72,故选择D .【解后反思】利用一元一次方程解决实际问题的关键是找出题目中包含的等量关系,然后设合适的未知数,从而列出符合要求的方程. 解题过程中发现问题中有不确定因素时,要把握住这个关键的环节,看看是否需要分类讨论,以避免漏解的情况出现.列方程(组)解应用题的一般步骤:(1)审:审清题意,找出已知量、未知量及等量关系;(2)设:直接或间接设出未知数;(3)列:根据等量关系列方程(组);(4)解:解这个方程(组),求出未知数的值;(5)检:检验所求的未知数的值是否为所列方程的解;是否符合实际问题;(6)答:写出答案(包括单位名称)【关键词】 一元一次方程的应用;数字问题;一元一次方程;9.(2016山东聊城,9,3分)如图所示,四边形ABCD 内接于⊙O ,F 是弧CD 上一点,且DF BC =,连接CF 并延长交AD 的延长线于点E ,连接AC ,若∠ABC=105°,∠BAC=25°,则∠E 的度数为( )A .45°B .50°C .55°D .60°【答案】B【逐步提示】本题考查了圆内接四边形及性质,解题的关键是掌握圆内接四边形的性质,并结合三角形内外角关系解决问题.①先利用圆的内接四边形对角互补的性质求出∠ACD 的度数,②利用等弧所对的圆周角相等求出∠DCE ,③利用三角形的一个外角等于不相邻两个内角的和求出∠E 的度数.【详细解答】解:因为,四边形ABCD 内接于⊙O ,所以∠ADC=180°-∠ABC=180°-105°=75°,又因为DF BC =,所以∠DCE=∠BAC=25°,又因为∠ADC=∠DCE+∠E ,所以∠E=∠ADC -∠DCE=75°-25°=50°,故选择B .【解后反思】等弧所对的圆周角相等;圆内接四边形对角互补;三角形的一个外角等于不相邻两个内角的和.【关键词】圆内接四边形及性质 ;圆心角、圆周角定理;三角形的外角10.(2016山东聊城,10,3分)不等式组⎩⎨⎧>-+<+1155m x x x 的解集是1>x ,则m 的取值范围是( )A .m 1≥B .m 1≤C .m 0≥D .m 0≤【答案】D【逐步提示】本题考查了一元一次不等式组的解集,解题的关键是掌握解集概念.①解不等式组中每一个不等式, ②利用不等式组的解集确定m+1与1的大小关系, ③利用m+1与1的大小关系,构造不等式可确定m 的取值范围.【详细解答】解:5511x x x m +<+⎧⎨->⎩①②,解不等式①得,x >1,解不等式②得x >m+1,又因为不等式组的解集为1>x ,所以m+1≤1,所以m 0≤,故选择D .【解后反思】根据不等式的解集确定待定系数的取值范围,有时需要考虑分类讨论.当不等式解集确定时,往往逆用不等式的解集意义,构造关于待定系数的不等式(组)求待定系数的取值范围.【关键词】一元一次不等式组;不等式组的解集;解一元一次不等式组;11.(2016山东聊城,11,3分)如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD 边上的点A’处,点B落在点B’处,若∠2=40°,则图中∠1的度数为()A.115° B.120° C.130° D.140°【答案】A【逐步提示】本题考查了矩形的性质、翻折的性质、全等三角形的性质与判定以及勾股定理,解题的关键是理解折叠的性质.①矩形性质求出矩形各角为90°,②利用直角三角形两个锐角互余先求出∠B′A′C,,③利用平角定义求出∠DA′E,④利用三角形外角性质求出∠AEA′,⑤利用轴对称性质求出∠AEF,⑥利用平行线性质求出∠1确定选项.【详细解答】解:因为四边形ABCD是矩形,所以,AD∥BC,∠C=∠D=∠A =90°,因为∠2=40°,所以∠B′A′C=90°-40°=50°,因为四边形ABFE与四边形A′B′FE,所以∠AEF=∠A′EF,∠B′A′E=∠A =90°,所以∠DA′E= 180°-∠B′A′E-∠B′A′C=180°-90°-50°=40°,所以∠AEA′=∠D+∠B′A′E = 90°+40°=130°,所以∠AEF+∠A′EF=130°,所以,∠AEF=∠A′EF=65°,因为AD∥BC,所以∠1=180°-∠AEF=180°-65°=115°,故选择A.【解后反思】在解答这类问题时,一般先作出折叠前后的图形形状及位置,然后再利用轴对称性质和其他相关知识进行解题.关键是弄清“折痕”的特点,认识到折痕两边的部分是全等的.由于折叠前后折叠部分图形的形状、大小不变,因此利用轴对称性,可以转化相等的线段,相等的角等关系.折叠前后的两个图形是关于折痕轴对称的全等形,有对应角、对应边及直角三角形出现,结合勾股定理以及方程思想来解决.【关键词】矩形;折叠;全等三角形;勾股定理;12.(2016山东聊城,12,3分)聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB 是其垂直地面的直径,小莹在地面C点处利用测角仪测得摩天轮的最高点A的仰角为33°,(tan33°测得圆心O的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为()≈0.65,tan21°≈0.38)A.169米B.204米C.240米D.407米【答案】B【逐步提示】考查了解直角三角形的应用,解题的关键是合理利用三角函数相关公式进行计算.①作出AB垂线段,构造直角三角形,②分别在两个直角三角形中,利用正切定义,用CD分别表示AD,OD,③由AD-OD=OA构造关于CD的方程,④解关于CD的方程确定选项.【详细解答】解:如图所示,过点作CD⊥AB于点D,在Rt△ADC中,tan∠ACD=AD CD,所以AD=CD tan∠ACB =CD×tan33°≈0.65CD,在Rt△ODC中,tan∠OCD=ODCD,所以OAD=CD tan∠OCB =CD×tan21°≈0.38CD,又因为AD-OD=OA=12AB=55,所以0.65CD-0.38CD= 55,解得CD≈204,故选择B.【解后反思】利用解直角三角形解决实际问题的步骤是:(1)审题,弄清方位角、仰角、俯角、坡角、坡度、水平距离、垂直距离等概念,将实际问题抽象为数学问题.(2)认真分析题意,画出平面图形,转化为解直角三角形问题,对于非基本的题型可通过解方程(组)来转化为基本类型,对于较复杂的问题,往往要通过作辅助线构造直角三角形,或分割成一些直角三角形或矩形.(3)根据条件,结合图形,选用适当的锐角三角函数解直角三角形.(4)按照题目中已知数的精确度进行近似计算,检验得到符合实际要求的解,并按题目要求的精确度确定答案,并标注单位.对非直角三角形的求解,可以通过作辅助线的方法转化成直角三角形解决,这种方法叫“化斜为直”法.通常以特殊角为一锐角,构造直角三角形.若条件中含有线段的比或锐角三角函数值,也可以设未知数,列方程求解.【关键词】解直角三角形;仰角、俯角有关问题;二、填空题(本大题共5小题,每小题3分,满分15分.)13.(2016山东聊城,13,3=_____________。
2021年山东省聊城市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.(2016·山东聊城)在实数﹣,﹣2,0,中,最小的实数是()A.﹣2 B.0 C.﹣D.【考点】实数大小比较.【分析】根据负数的绝对值越大,这个数越小,然后根据正数大于0,负数小于0进行大小比较即可.【解答】解:实数﹣,﹣2,0,中,最小的实数是﹣2,故选A【点评】此题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.2.(2016·山东聊城)如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为()A.28° B.38° C.48° D.88°【考点】平行线的性质.【分析】根据平行线的性质得到∠1=∠B=68°,由三角形的外角的性质即可得到结论.【解答】解:如图,∵AB∥CD,∴∠1=∠B=68°,∵∠E=20°,∴∠D=∠1﹣∠E=48°,故选C.【点评】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.3.(2016·山东聊城)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×107【考点】整式的除法.【分析】直接利用整式的除法运算法则结合科学记数法求出答案.【解答】解:∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷1.4×1018≈7.1×10﹣7.故选:B.【点评】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.4.(2016·山东聊城)把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2D.2a(2a+1)2【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式2a,进而利用完全平方公式分解因式即可.【解答】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2.故选:C.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.5.(2016·山东聊城)某体校要从四名射击选手中选拔一名参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差S2如表所示:甲乙丙丁(环)8.4 8.6 8.6 7.6S20.74 0.56 0.94 1.92如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是()A.甲B.乙C.丙D.丁【考点】方差.【分析】从平均成绩分析乙和丙要比甲和丁好,从方差分析甲和乙的成绩比丙和丁稳定,综合两个方面可选出乙.【解答】解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定,因此要选择一名成绩高且发挥稳定的学生参赛,因选择乙,故选:B【点评】此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.(2016·山东聊城)用若干个大小相同的小正方形体组合成的几何体的主视图和俯视图如图所示,下面所给的四个选项中,不可能是这个几何体的左视图的是()A.B.C.D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】由俯视图可得此几何体底面有5个小正方形分为3列3排,根据主视图可得这个几何体的左视图有2层高,依此即可求解.【解答】解:由俯视图可得此几何体底面有5个小正方形分为3列3排,根据主视图可得这个几何体的左视图有2层高,可得这个几何体的左视图不可能是3层高.故选:C.【点评】此题主要考查了画三视图,关键是根据主视图和俯视图分析出每排小正方体的个数.7.(2016·山东聊城)二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b 与反比例函数y=的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象;二次函数的图象.【专题】函数及其图象.【分析】根据二次函数y=ax2+bx+c的图象,可以判断a、b、c的正负情况,从而可以判断一次函数y=ax+b 与反比例函数y=的图象分别在哪几个象限,从而可以解答本题.【解答】解:由二次函数y=ax2+bx+c的图象可知,a>0,b<0,c<0,则一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=的图象在二四象限,故选C.【点评】本题考查反比例函数的图象、一次函数的图象、二次函数的图象,解题的关键是明确它们各自图象的特点,利用数形结合的思想解答问题.8.(2016·山东聊城)在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.72【考点】一元一次方程的应用.【分析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.【解答】解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是72.故选:D.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.(2016·山东聊城)如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD 的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45° B.50° C.55° D.60°【考点】圆内接四边形的性质;圆心角、弧、弦的关系;圆周角定理.【分析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵=,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.故选B.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.10.(2016·山东聊城)不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤0【考点】不等式的解集.【专题】计算题;一元一次不等式(组)及应用.【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【解答】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选D【点评】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.11.(2016·山东聊城)如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115° B.120° C.130° D.140°【考点】翻折变换(折叠问题).【分析】根据折叠的性质和矩形的性质得出∠BFE=∠EFB',∠B'=∠B=90°,根据三角形内角和定理求出∠CFB'=50°,进而解答即可.【解答】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°,∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.【点评】本题考查了矩形的性质,折叠的性质,三角形的内角和定理的应用,能综合运用性质进行推理和计算是解此题的关键,注意:折叠后的两个图形全等.12.(2016·山东聊城)聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,tan21°≈0.38)()A.169米B.204米C.240米D.407米【考点】解直角三角形的应用-仰角俯角问题.【分析】过C作CD⊥AB于D,在Rt△ACD中,求得AD=CD•tan∠ACD=CD•tan33°,在Rt△BCO中,求得OD=CD•tan∠BCO=CD•tan21°,列方程即可得到结论.【解答】解:过C作CD⊥AB于D,在Rt△ACD中,AD=CD•tan∠ACD=CD•tan33°,在Rt△BCO中,OD=CD•tan∠BCO=CD•tan21°,∵AB=110m,∴AO=55m,∴A0=AD﹣OD=CD•tan33°﹣CD•tan21°=55m,∴CD==≈204m,答:小莹所在C点到直径AB所在直线的距离约为204m.故选B.【点评】此题主要考查了仰角与俯角的问题,利用两个直角三角形拥有公共直角边,能够合理的运用这条公共边是解答此题的关键.二、填空题(本题共5个小题,每小题3分,只要求填写最后结果)13.(2016·山东聊城)计算:=12.【考点】二次根式的乘除法.【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12.故答案为:12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.14.(2016·山东聊城)如果关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实根,那么k的取值范围是k>﹣且k≠0.【考点】根的判别式.【分析】根据一元二次方程的定义和△的意义得到k≠0且△>0,即(﹣3)2﹣4×k×(﹣1)>0,然后解不等式即可得到k的取值范围.【解答】解:∵关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣3)2﹣4×k×(﹣1)>0,解得:k>﹣且k≠0.故答案为:k>﹣且k≠0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.15.(2016·山东聊城)如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为2π.【考点】圆锥的计算.【专题】计算题.【分析】先利用三角函数计算出BO,再利用勾股定理计算出AB,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算圆锥的侧面积.【解答】解:如图,∠BAO=30°,AO=,在Rt△ABO中,∵tan∠BAO=,∴BO=tan30°=1,即圆锥的底面圆的半径为1,∴AB==2,即圆锥的母线长为2,∴圆锥的侧面积=•2π•1•2=2π.故答案为2π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.(2016·山东聊城)如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.【考点】概率公式;概率的意义.【分析】求出随机闭合开关S1,S2,S3,S4,S5中的三个,共有几种可能情况,以及能让灯泡L1,L2同时发光的有几种可能,由此即可解决问题.【解答】解:∵随机地闭合开关S1,S2,S3,S4,S5中的三个共有10种可能,能够使灯泡L1,L2同时发光有2种可能(S1,S2,S4或S1,S2,S5).∴随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是=.故答案为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17.(2016·山东聊城)如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是(21008,0).【考点】正方形的性质;规律型:点的坐标.【分析】首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2016的坐标.【解答】解:∵正方形OA1B1C1边长为1,∴OB1=,∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,∴OB2=2,∴B2点坐标为(0,2),同理可知OB3=2,∴B3点坐标为(﹣2,2),同理可知OB4=4,B4点坐标为(﹣4,0),B5点坐标为(﹣4,﹣4),B6点坐标为(0,﹣8),B7(8,﹣8),B8(16,0)B9(16,16),B10(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2016÷8=252∴B2016的纵横坐标符号与点B8的相同,横坐标为正值,纵坐标是0,∴B2016的坐标为(21008,0).故答案为:(21008,0).【点评】本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.(2016·山东聊城)计算:(﹣).【考点】分式的混合运算.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=﹣.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.(2016·山东聊城)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A1B2C2关于原点O成中心对称图形,写出△A1B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A2B3C3,写出△A2B3C3的各顶点的坐标.【考点】坐标与图形变化-旋转;坐标与图形变化-平移.【专题】作图题.【分析】(1)利用点C和点C1的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点A1,B1的坐标;(2)根据关于原点对称的点的坐标特征求解;(3)利用网格和旋转的性质画出△A2B3C3,然后写出△A2B3C3的各顶点的坐标.【解答】解:(1)如图,△A1B1C1为所作,因为点C(﹣1,3)平移后的对应点C1的坐标为(4,0),所以△ABC先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),B1点的坐标为(3,﹣2);(2)因为△ABC和△A1B2C2关于原点O成中心对称图形,所以A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);(3)如图,△A2B3C3为所作,A3(5,3),B3(1,2),C3(3,1);【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.20.(2016·山东聊城)如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.【考点】菱形的判定.【专题】证明题.【分析】先证明△AEF≌△CED,推出四边形ADCF是平行四边形,再证明∠DAC=∠ACB,推出DA=DC,由此即可证明.【解答】证明:∵AF∥CD,∴∠AFE=∠CDE,在△AFE和△CDE中,,∴△AEF≌△CED,∴AF=CD,∵AF∥CD,∴四边形ADCF是平行四边形,∵∠B=90°,∠ACB=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠DAC=∠DAB=30°=∠ACD,∴DA=DC,∴四边形ADCF是菱形.【点评】本题考查菱形的判定、全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,属于基础题,中考常考题型.21.(2016·山东聊城)为了让书籍开拓学生的视野,陶冶学生的情操,向阳中学开展了“五个一”课外阅读活动,为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:组别分组频数(人数)频率1 10≤t<30 0.162 30≤t<50 203 50≤t<70 0.284 70≤t<90 65 90≤t<110(1)将表中空格处的数据补全,完成上面的频数、频率分布表;(2)请在给出的平面直角坐标系中画出相应的频数直方图;(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于50min?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【专题】计算题;数据的收集与整理.【分析】(1)根据总人数50,以及表格中的数据确定出所求数据,填写表格即可;(2)根据表格中的数据作出相应的频数直方图,如图所示;(3)由时间不少于50min的百分比,乘以1500即可得到结果.【解答】解:(1)根据题意填写如下:组别分组频数(人数)频率1 10≤t<30 8 0.162 30≤t<50 20 0.403 50≤t<70 14 0.284 70≤t<90 6 0.125 90≤t<110 2 0.04(2)作出条形统计图,如图所示:(3)根据题意得:1500×(0.28+0.12+0.04)=660(人),则该校共有660名学生平均每天阅读时间不少于50min.【点评】此题考查了频数分布直方图,用样本估计总体,以及频数分布表,弄清题中的数据是解本题的关键.22.(2016·山东聊城)为加快城市群的建设与发展,在A,B两城市间新建条城际铁路,建成后,铁路运行里程由现在的120km缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.【考点】分式方程的应用.【分析】设城际铁路现行速度是xkm/h,设计时速是(x+110)xkm/h;现行路程是120km,设计路程是114km,由时间=,运行时间=现行时间,就可以列方程了.【解答】解:设城际铁路现行速度是xkm/h.由题意得:×=.解这个方程得:x=80.经检验:x=80是原方程的根,且符合题意.则×=×=0.6(h).答:建成后的城际铁路在A,B两地的运行时间是0.6h.【点评】考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.23.(2016·山东聊城)如图,在直角坐标系中,直线y=﹣x与反比例函数y=的图象交于关于原点对称的A,B两点,已知A点的纵坐标是3.(1)求反比例函数的表达式;(2)将直线y=﹣x向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.【考点】反比例函数与一次函数的交点问题.【分析】(1)将y=3代入一次函数解析式中,求出x的值,即可得出点A的坐标,再利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式;(2)根据A、B点关于原点对称,可求出点B的坐标以及线段AB的长度,设出平移后的直线的函数表达式,根据平行线间的距离公式结合三角形的面积即可得出关于b的一元一次方程,解方程即可得出结论.【解答】解:(1)令一次函数y=﹣x中y=3,则3=﹣x,解得:x=﹣6,即点A的坐标为(﹣6,3).∵点A(﹣6,3)在反比例函数y=的图象上,∴k=﹣6×3=﹣18,∴反比例函数的表达式为y=﹣.(2)∵A、B两点关于原点对称,∴点B的坐标为(6,﹣3),∴AB==6.设平移后的直线的函数表达式为y=﹣x+b(b>0),即x+2y﹣2b=0,直线y=﹣x可变形为x+2y=0,∴两直线间的距离d==b.∴S△ABC=AB•d=×6×b=48,解得:b=8.∴平移后的直线的函数表达式为y=﹣x+8.【点评】本题考查了反比例函数与一次函数交点的问题、反比例函数图象上点的坐标特征.三角形的面积公式以及平行线间的距离公式,解题的关键是:(1)求出点A的坐标;(2)找出关于b的一元一次方程.本题属于中档题,难度不大,解决该题型题目时,利用平行线间的距离公式要比通过解直角三角形简洁不少.24.(2016·山东聊城)如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=BG;(2)若AB=4,求DC的长.【考点】相似三角形的判定与性质.【分析】(1)直接利用圆周角定理结合平行线的判定方法得出FO是△ABG的中位线,即可得出答案;(2)首选得出△FOE≌△CBE(ASA),则BC=FO=AB=2,进而得出AC的长,再利用相似三角形的判定与性质得出DC的长.【解答】(1)证明:∵以Rt△ABC的直角边AB为直径作⊙O,点F恰好落在的中点,∴=,∴∠AOF=∠BOF,∵∠ABC=∠ABG=90°,∴∠AOF=∠ABG,∴FO∥BG,∵AO=BO,∴FO是△ABG的中位线,∴FO=BG;(2)解:在△FOE和△CBE中,,∴△FOE≌△CBE(ASA),∴BC=FO=AB=2,∴AC==2,连接DB,∵AB为⊙O直径,∴∠ADB=90°,∴∠ADB=∠ABC,∵∠BCD=∠ACB,∴△BCD∽△ACB,∴=,∴=,解得:DC=.【点评】此题主要考查了相似三角形的判定与性质以及全等三角形的判定与性质等知识,正确得出△BCD∽△ACB是解题关键.25.(2016·山东聊城)如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).CD 垂直于y轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.(1)求出二次函数的表达式以及点D的坐标;(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F 重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分的图形的面积;(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.【考点】二次函数综合题.【分析】(1)用待定系数法求抛物线解析式;=S△A1O1F﹣S△FGH计算即可;(2)由GH∥A1O1,求出GH=1,再求出FH,S重叠部分(3)分两种情况①直接用面积公式计算,②用面积差求出即可.【解答】解:(1)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).∴设抛物线的解析式为y=a(x+3)(x﹣9),∵C(0,4)在抛物线上,∴4=﹣27a,∴a=﹣,∴设抛物线的解析式为y=﹣(x+3)(x﹣9)=﹣x2+x+4,∵CD垂直于y轴,C(0,4)∴﹣x2+x+4=4,∴x=6,∵D(6,4),(2)如图1,∵点F是抛物线y=﹣x2+x+4的顶点,∴F(3,),∴FH=,∵GH∥A1O1,∴,∴,∴GH=1,∵Rt△A1O1F与矩形OCDE重叠部分是梯形A1O1HG,∴S=S△A1O1F﹣S△FGH=A1O1×O1F﹣GH×FH=×3×4﹣×1×=.重叠部分(3)①当0<t≤3时,如图2,∵C2O2∥DE,∴,∴,∴O2G=t,∴S=S△OO2G=OO2×O2G=t×t=t2,②当3<t≤6时,如图3,∵C2H∥OC,∴,∴,∴C2H=(6﹣t),∴S=S=S△A2O2C2﹣S△C2GH四边形A2O2HG=OA×OC﹣C2H×(t﹣3)=×3×4﹣×(6﹣t)(t﹣3)=t2﹣3t+12∴当0<t≤3时,S=t2,当3<t≤6时,S=t2﹣3t+12.【点评】此题是二次函数综合题,主要考查了待定系数法求函数解析式,平行线分线段成比例定理,三角形的面积计算,解本题的关键是画出图形.。
山东省聊城市2021年中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列各数中最大的数是()A . 5B .C . πD . ﹣82. (2分)(2019·自贡) 下列图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分) (2019八上·莎车期末) 下列各式变形中,是因式分解的是()A .B .C .D .4. (2分) (2018·淄博) 下列语句描述的事件中,是随机事件的为()A . 水能载舟,亦能覆舟B . 只手遮天,偷天换日C . 瓜熟蒂落,水到渠成D . 心想事成,万事如意5. (2分)(2016·慈溪模拟) 如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是()A .B .C .D .6. (2分) (2017七下·乐亭期末) 某种细菌直径约为0.00000067mm,若将0.00000067mm用科学记数法表示为 mm(n为负整数),则n的值为().A . -5B . -6C . -7D . -87. (2分)(2018·河池模拟) 数学小组的同学为了解“阅读经典”活动的开展情况,随机调查了50名同学,对他们一周的阅读时间进行了统计,并绘制成下图.这组数据的中位数和众数分别是()A . 中位数和众数都是8小时B . 中位数是25人,众数是20人C . 中位数是13人,众数是20人,D . 中位数是6小时,众数是8小时8. (2分) (2016八下·红桥期中) 将矩形纸片ABCD按如图方式折叠,得到菱形AECF,若AD= ,则AB的长为()A . 2B . 2C . 3D . 39. (2分) (2016九上·平南期中) 将抛物线y=x2﹣4x+3向上平移至顶点落在x轴上,如图所示,则两条抛物线、对称轴和y轴围成的图形的面积S(图中阴影部分)是()A . 1B . 2C . 3D . 410. (2分)如图,a∥b,∠1=70°,则∠2等于()A . 20°B . 35°C . 70°D . 110°二、填空题 (共5题;共5分)11. (1分) (2017八下·江东月考) 计算﹣2 的结果是________.12. (1分) (2018八上·深圳期末) 一台机床生产一种零件,5天内出现次品的件数为:1、0、1、2、1,则出现次品的方差为________.13. (1分)(2014·盐城) 一只自由飞行的小鸟,将随意地落在如图所示的方格地面上,每个小方格形状完全相同,则小鸟落在阴影方格地面上的概率是________.14. (1分) (2020九上·北仑期末) 如图,分别以正五边形 ABCDE的顶点A,D为圆心,以AB长为半径作,,若AB=1,则阴影部分图形的周长是________ 。
聊城市2021版中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如果两个数的和为0,那么这两个数()A . 都等于零B . 互为相反数C . 互为倒数D . 一定是一正一负2. (2分)下列命题正确的个数是()①若代数式有意义,则x的取值范围为x≤1且x≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元.③若反比例函数(m为常数),当x>0时,y随x增大而增大,则一次函数y=﹣2x+m的图象一定不经过第一象限.④若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3,y=2x+1,y=x2中偶函数的个数为2个.A . 1B . 2C . 3D . 43. (2分)下列说法正确的是()A . 为了了解全国中学生每天体育锻炼的时间,应采用普查的方式B . 若甲组数据的方差=0.03,乙组数据的方差是=0.2,则乙组数据比甲组数据稳定C . 广安市明天一定会下雨D . 一组数据4、5、6、5、2、8的众数是54. (2分)(2017·济宁) 下列几何体中,主视图、俯视图、左视图都相同的是()A .B .C .D .5. (2分)(2019·安顺) 下列运算中,计算正确的是()A . (a2b)3=a5b3B . (3a2)3=27a6C . a6÷a2=a3D . (a+b)2=a2+b26. (2分)(2018·攀枝花) 布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是()A .B .C .D .7. (2分)如图、在平行四边形ABCD中,E、F是对角线BD上的两点,则下列条件中不能判定四边形AECF 是平行四边形的是()A . DF=BEB . AF BD,C .D .8. (2分)下列三个命题:①圆既是轴对称图形,又是中心对称图形;②垂直于弦的直径平分这条弦;③相等圆心角所对的弧相等。
山东省聊城市2021版中考数学试卷 A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)在纪念“中国人民抗日战争暨世界反法西斯战争胜利70周年”知识竞赛中,如果把加10分记为“+10分”,那么扣20分应记为()A . 10分B . ﹣20分C . ﹣10分D . +20分2. (2分)在下列图案中,是轴对称图形的有()A . 1个B . 2个C . 3个D . 4个3. (2分)下列各组数中,互为相反数的一组是()A . -2与B . -2与C . -2与D . 与4. (2分) (2019八上·瑞安期中) 下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A . 1,2,1B . 1,2,2C . 1,2,3D . 1,2,45. (2分) 13 、如果∠A和∠B是两平行直线中的同旁内角,且∠A比∠B的2倍少30º,则∠B的度数是()A . 30ºB . 70ºC . 110ºD . 30º或70º6. (2分)(2017·东莞模拟) 下列几何体中,主视图是三角形的几何体的是()A .B .C .D .7. (2分) (2017八下·明光期中) 已知一元二次方程x2﹣4x﹣3=0两根为m,n,则m2﹣mn+n2的值为()A . 25B . 16C . 9D . 78. (2分)(2012·内江) 如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD= ,则阴影部分图形的面积为()A . 4πB . 2πC . πD .9. (2分)(2013·来宾) 如图,其图象反映的过程是:张强从家去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象,下列回答正确的是()A . 张强在体育场锻炼45分钟B . 张强家距离体育场是4千米C . 张强从离家到回到家一共用了200分钟D . 张强从家到体育场的平均速度是10千米/小时10. (2分)若( + )•w=1,则w=()A . a+2(a≠﹣2)B . ﹣a+2(a≠2)C . a﹣2(a≠2)D . ﹣a﹣2(a≠±2)二、填空题 (共8题;共8分)11. (1分) (2020七上·中山期末) 一个角的余角等于这个角的,则这个角为________度。
山东省聊城市2021年中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)倒数是的数是()A . 5B . -5C .D . -2. (2分)计算÷ ÷ 的结果是()A .B .C .D .3. (2分) (2017七上·新安期中) 下列运算正确的是()A . ﹣a2b﹣2a2b=﹣3a2bB . 2a﹣a=2aC . 3a2+2a2=5a4D . 2a+b=2ab4. (2分)(2018·衡阳) 下列命题是假命题的是A . 正五边形的内角和为540°B . 矩形的对角线相等C . 对角线互相垂直的四边形是菱形D . 圆内接四边形的对角互补5. (2分)方程 = 的解为().A . x=2B . x=6C . x=﹣6D . 无解6. (2分)(2019·大埔模拟) 在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限7. (2分)(2016·泰州) 对于一组数据﹣1,﹣1,4,2,下列结论不正确的是()A . 平均数是1B . 众数是﹣1C . 中位数是0.5D . 方差是3.58. (2分)把多项式分解因式正确的是()A .B .C .D .9. (2分)(2018·牡丹江模拟) 如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC的面积是4,则这个反比例函数的解析式是()A . y=B . y=C . y=D . y=10. (2分) (2020九下·深圳期中) 定义新运算:a※b= ,则函数y=3※x的图象大致是()A .B .C .D .二、填空题 (共8题;共8分)11. (1分) (2018九上·杭州月考) 抛物线的开口向________,对称轴是________,顶点是________.12. (1分) (2019九下·中山月考) 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是________.13. (1分) (2019九上·海曙期末) 如图,的两条中线,交于点,交于点,若,则 ________.14. (1分)(2018·山西) 2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为________cm.15. (1分)如图,在△ABC中,∠B=66°,∠C=54°,AD是∠BAC的平分线,DE平分∠ADC交AC于E,则∠ADE=________°。