图解法分析设备受力
- 格式:ppt
- 大小:137.00 KB
- 文档页数:11
相互作用(二)受力分析专题特殊法判断。
4.如何防止“多力”或“丢力”(1) 防止“多力”的有效途径是找出力的施力物体,若某力有施力物体则它实际存在,无施力物体则它不存在。
另外合力与分力不要重复分析。
(2) 按正确的顺序(即一重、二弹、三摩擦、四其他)进行受力分析是保证不“丢力”的有效措施。
冲上粗糙的【典例2】如图所示,A、B两个物体的1 kg,现在它们在拉力对A、B分别画出完整的受力分析。
、B之间的摩擦力大小为多少。
B.3只分析外力。
【典例5】倾角θ=37°,质量知识点二正交分解法1. 力分解为两个相互垂直的分力的方法称为正交分解法。
例如将力F沿x和y两个方向分解,如图所示,则F x=F cos θF y=F sin θ多的力,也就是说需要向两坐标轴上投影分解的力少一些。
这样一来,计算也就方便一些,可以就是将物理问题的某些研究对象或某些过程、状态从系统或全过程中隔离出来进行研究的方知识点三【典例探究】【典例=5 N,f2=0,f3=5 N=5 N,f2=5 N,f3=0=0,f=5 N,f=5 N现行高考要求,物体受到往往是三个共点力问题,利】用绳是其它-1先减小,后增大 B.F 先减小后增大(B)F1个力中其中两个力是绳的拉力,由于是同一根点位置固定,A 端缓慢左移时,答案与解析1.【答案】A2.【答案】(1) 见规范解答图 (2) 0 (3) 4 N【解析】(1) 以A 为研究对象,A 受到重力、支持力作用;以B 为研究对象,B 受到重力、支持力、压力、拉力、地面对B 的滑动摩擦力作用;如图。
(2) 对A :由二力平衡可知A 、B 之间的摩擦力为0。
(3) 以A 、B 整体为研究对象,由于两物体一起做匀速直线运动,所以受力如图,水平方向上由二力平衡得拉力等于滑动摩擦力,即F =F f =μB 地F N B ,而F N B =G B +G A ,所以F =0.2×(1×10+1×10) N=4 N 。
动态平衡受力分析在有关物体平衡的问题中,有一类涉及动态平衡。
这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。
解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。
物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点。
基础知识必备方法一:三角形图解法特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。
方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。
然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。
【例1】如图所示,一个重力为G的匀质球放在光滑斜面上,斜面倾角为,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态.今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板对球的压力F N1和斜面对球的支持力F N2变化情况为()A.F N1、F N2都是先减小后增加B.F N2一直减小,F N1先增加后减小C.F N1先减小后增加,F N2一直减小D.F N1一直减小,F N2先减小后增加答案C【练习1】如图所示,小球被轻质细绳系着,斜吊着放在光滑劈面上,小球质量为m,斜面倾角为θ,向右缓慢推动劈一小段距离,在整个过程中()A.绳上张力先增大后减小B.绳上张力先减小后增大C.劈对小球支持力减小D.劈对小球支持力增大答案D方法二:相似三角形法。
特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化,且三个力中没有二力保持垂直关系,但可以找到力构成的矢量三角形相似的几何三角形的问题原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。
高一上物理共点力作用下的平衡专题及3种受力分析方法姓名:___________ 班级:___________一、物体受两个力平衡(即二力平衡),这两个力大小相等,方向相反。
二、如果物体受三个力平衡:(1)其中两个力的合力与第三个力等大反向则平衡。
(合成法)(分解法)(2)也可以分解第三个力,让被分解的这两个力与其余两个力分别抵消,则三个力就平衡。
(3)如果三个力首位依次相连可以组成一个封闭的三角形,则这三个力也是合力为零,即平衡。
这个方法称为三角形法,这个方法是最优的求静态平衡和动态平衡的方法。
(正交分解)(4)如果物体受三个或三个以上的力平衡,一般用正交分解法,建立直角坐标系时,尽量使更多的力落在坐标轴上,让后把不在坐标轴上的力分解到坐标轴上,如果最后x轴,y轴合力都分别为零,则物体整体合力为零,即平衡。
正交分解不用按力的效果分解。
三、静态平衡:1.(多选)如图所示,竖直放置的轻弹簧一端固定在地面上,另一端与斜面体P相连,P与斜放在其上固定的挡板MN接触且处于静止状态,则斜面体P此刻受到的外力的个数有可能是()A.2个B.3个C.4个D.5个2.(斜面上的物体所受摩擦力的问题要特别注意多解性)如图,斜面A放在水平地面上.物块B放在斜面上,有一水平力F作用在B上时,A、B均保持静止.A受到水平地面的静摩擦力为f1,B受到A的静摩擦力为f2,现使F逐渐增大,但仍使A、B处于静止状态,则()A.f1一定增大B.f1、f2都不一定增大C.f1、f2均增大D.f2一定增大3.一质量为m的物块恰好静止在倾角为θ的斜面上。
现对物块施加一个竖直向下的恒力F,如图所示。
则物块()A.仍处于静止状态B.沿斜面加速下滑C.受到的摩擦力不变D.受到的合外力增大4.如图所示,光滑半球形容器固定在水平面上,O为球心,一质量为m的小滑块,在水平力F的作用下静止于P点。
设滑块所受支持力为F N,OP与水平方向的夹角为θ.下列关系正确的是()A.F=mgsinθB.F=mgcosθC.F N=D.F N=mgtanθ5.如图,滑块A置于水平地面上,滑块B在一水平力作用下紧靠滑块A(A、B接触面竖直),此时A恰好不滑动,B刚好不下滑。
1、动态平衡问题-三种非常规方法一.动态平衡是指平衡问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,所以叫动态平衡。
2.基本思路化“动”为“静”,“静”中求“动”。
二、解决动态平衡方法1、图解法:图解法分析物体动态平衡问题时,一般物体只受三个力作用,且其中一个力大小、方向均不变,另一个力的方向不变,第三个力大小、方向均变化. (1)用力的矢量三角形分析力的最小值问题的规律:①若已知F 合的方向、大小及一个分力F 1的方向,则另一分力F 2的最小值的条件为F 1⊥F 2; ②若已知F 合的方向及一个分力F 1的大小、方向,则另一分力F 2的最小值的条件为F 2⊥F 合. 例1.(多选)已知力F ,且它的一个分力F 1跟F 成30°角,大小未知,另一个分力F 2的大小为33F ,方向未知,则F 1的大小可能是( ) A.3F 3 B.3F 2 C.23F 3D.3F 【解析】根据题意作出矢量三角形如图,因为33F >F2,从图上可以看出,F 1有两个解,由直角三角形OAD 可知:F OA = F 2-F22=32F .由直角三角形ABD 得:F BA = F 22-F22=36F .由图的对称性可知:F AC =F BA =36F ,则分力F 1=32F -36F =33F ;F 1′=32F +36F =233F .【答案】AC针对训练1、作用于O 点的三力平衡,设其中一个力大小为F 1,沿y 轴正方向,力F 2大小未知,与x 轴负方向夹角为θ,如图19所示.下列关于第三个力F 3的判断中正确的是( ).A .力F 3只能在第四象限B.力F3与F2夹角越小,则F2和F3的合力越小C.F3的最小值为F1cos θD.力F3可能在第一象限的任意区域【解析】O点受三力平衡,因此F2、F3的合力大小等于F1,方向与F1相反,故B错误;作出平行四边形,由图可以看出F3的方向范围为第一象限中F2反方向下侧及第四象限,故A、D错;当F3⊥F2时,F3最小,F3=F1cos θ,故C正确.【答案】 C针对训练2、(多选)如图所示,在“探究求合力的方法”的实验中,橡皮条一端固定于P 点,另一端通过两个细绳套连接两个弹簧测力计,分别用F1和F2拉两个弹簧测力计,将结点拉至O点.现让F1大小不变,方向沿顺时针方向转动某一角度,且F1始终处于PO所在直线左侧,要使结点仍位于O点,则关于F2的大小和图中的θ角,下列说法中正确的是( )A.增大F2的同时增大θ角B.增大F2的同时减小θ角C.增大F2而保持θ角不变D.减小F2的同时增大θ角【解析】结点O的位置不变,则F1和F2的合力不变,作出F1和F2合成的矢量三角形,如图所示,可知增大F2的同时,θ角可以增大,可以不变,也可以减小,故只有D说法错误.【答案】ABC2、相似三角形:正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例求出三角形中力的比例关系,从而达到求未知量的目的。
作受力分析题的方法一、选择方法1、如果是选择题或者是填空题,没有要求我们选择什么方法解答,那么我们就“简单”原则,选择尽量简单的方法,可以选择整体法、隔离法。
2、如果几个物体不具备使用整体法、隔离法的方法的话,我们就选择图解法:(1)相似三角形如果物体受三个力,首选相似三角形。
注意,这里说的相似是指力学三角形和几何三角形,也就是说,我们对物体进行受力分析,用力的示意图把物体所受的力画出来,让所画线段的长度与力的大小成比例,这样呈现在图上的几何三角形与力学三角形就相似了。
物体所受力的大小之间的数学关系(包括数值的比例、所夹角度)与呈现在图上的几何三角形几条边之间的关系是一致的、相对应的。
(2)正交分解法如果物体受力较多(多于三个),之间关系也比较复杂,也可以选择正交分解法,横向与纵向分别达到受力平衡的状态。
根据线段的长短表示力的大小,再根据几个力之间的夹角关系,把未知的力用已经的力乘以夹角的三角函数值,这样就能列出方程,导出几个力之间的关系式。
二、解题方法1、静态平衡:整个过程是静态的,不动的,就直接根据物体受力平衡,根据题的特点,选择上面适合的某种或者多种方法。
2、动态平衡:整个系统,有一个量或者是因素是动的,比如说将绳子向上移,或者是向下移,但是是缓慢移动,每一个时刻是平衡的。
这个时候,要注意,将不变的量找出来,将不变的量通过画图表示出来,然后根据变化,在已经的图形中进行画图分析,比如咱们卷子上的题目:A将A往下移,B保持不动分析:不是一个系统,单个物体,我们选择图解法,并且只有三个力,重力、两个绳子的拉力,我们选择相似三角形的这种图解法。
这是一个动态平衡的过程,我们确定出不变的量有重力的大小和方向,还有B的拉力方向,我们就作图,画一条竖直向下且长度固定的线段,然后再画一条水平向右的直线,并将初始位置的拉力的大致画出然后我们将其中的一个拉力进行移动,画出相似三角形,将水平拉力向下平移O A2 A1 A如图,随着A点向下移,在力学三角形中,A点的位置就由开始的A一直到A1、A2,即向左移,但是由于竖直方向的力的线段方向和长度不变,另外一个力保持水平方向不变,如此一来,只能使得两个力的线段都越来越短,即越来越小。
四个力的动态平衡也可用“图解法”巧解麻城二中胡孝情解析法的基本程序是:对研究对象的任一状态进行受力分析,建立平衡方程,求出应变物理量与自变物理量的一般函数关系式,然后根据自变量的变化情况及变化区间确定应变物理量的变化情况。
图解法的基本程序是:对研究对象的状态变化过程中的若干状态进行受力分析,依据某一参量的变化(一般为某一角),在同一图中作出物体在若干状态下的平衡力图(力的平形四边形或三角形),再由动态的力的平行四边形或三角形的边的长度变化及角度变化确定某些力的大小及方向的变化情况。
例1、木箱重为G,与地面间的动摩擦因数为μ,用斜向上的力F拉木箱,使之沿水平地面匀速前进,如图所示。
问角α为何值时拉力F最小?这个最小值为多大?图解法:( 图1) ( 图2) ( 图3)由于f=µN 则N 与f 可以合成一个力F(N 1),且这个力与y 轴夹角θ一定 ,在平衡问题中:如图2即F(N 1)方向一定,G 大小方向一定,分析第三个力变化情况时,可用图解法。
如图3 很容易看出当F(N 1)与F 垂直时(α=θ时,其中tan θ=Nf =µ), F 有最小值,且F min =G sinθ,故有习题:1.如图示:一水平导轨处于与水平方向成45°角向左上方的匀强磁场中,一根通有恒定电流的金属棒,由于受到安培力作用而在粗糙的导轨上向右做匀速运动,现将磁场方向沿顺时针缓慢转动至竖直向上,在此过程中,金属棒始终保持匀速运动,已知棒与导轨间动摩擦因数µ<1,则磁感应强度B 的大小变化情况是:( D )A. 不变B. 一直增大C. 一直减小D. 先变小后变大小结:我们分别用以上两种方法分析,并作比较,就知道“图解法”的巧妙之处。
此类题巧妙运用了由于f=µN则N与f可以合成一个力F(N1),且这个力与y轴夹角 一定,在平衡问题中:如图2即F(N1)方向一定。
将四个力的动态平衡(不能用图解法)巧妙地转化为三个力的动态平衡,从而利用“图解法”来简化解题过程。