2015北京171中学高三(上)期中数学(理)
- 格式:pdf
- 大小:186.95 KB
- 文档页数:9
1A北京市2015年第一学期期中检测试卷高三数学(理)试卷满分:150分 考试时间:120分钟一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.集合{}2M x|x 4>=,{}|13N x x =<<,则图中阴影部分所表示的集合是 ( )A .{}|23x x -≤<B .{}|22x x -≤≤C .{}|12x x <≤D .{}|23x x ≤<2. 设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是 ( )A. 若αβ⊥,m α⊂,n β⊂,则m n ⊥ B .若//αβ,m α⊂,n β⊂,则//m n C .若m n ⊥,m α⊂,n β⊂,则αβ⊥ D .若m α⊥,//m n ,//n β,则αβ⊥ 3. “1m =”是“直线0x y -=和直线0x my +=互相垂直”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.在同一坐标系中画出函数log a y x =,xy a =,y x a =+的图象,可能正确的是 ( )5.在等比数列{}n a 中,若48a =,2q =-,则7a 的值为 ( )A .64-B .64C .48-D .486.设,x y ∈R,向量(,1),(1,),(2,4)a x b y c ===-,且,//a c b c ⊥,则a b += ( )A B C .D .107.已知点(,)P x y 的坐标满足条件1,2,220,x y x y ≤⎧⎪≤⎨⎪+-≥⎩那么22x y +的取值范围是( )A .[1,4]B .[1,5]C .4[,4]5 D .4[,5]58. 如图,在正方体1111ABCD A B C D -中,点O 为线段BD 设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α, 则sin α的取值范围是 ( )A .B .C .D . 二、填空题:本大题共6小题,每小题5分,共30分.9. 以点(2,1-)为圆心且与直线5x y +=相切的圆的方程是 .10.周期为2的函数()f x 在[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f = 。
北京市朝阳区2015届高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.1.已知集合A={x|x2+x﹣2<0},B={x|x>0},则集合A∪B等于()A.{x|x>﹣2} B.{x|0<x<1} C.{x|x<1} D.{x|﹣2<x<1}解答:解:∵集合A={x|x2+x﹣2<0}={x|﹣2<x<1},B={x|x>0},∴集合A∪B={x|x>﹣2}.故选:A.点评:本题考查并集的求法,是基础题,解题时要认真审题,注意不等式性质的合理运用.2.已知命题p:∀x>0,x+≥4;命题q:∃x0∈R,2x0=﹣1.则下列判断正确的是()A.p是假命题B.q是真命题C.p∧(¬q)是真命题D.(¬p)∧q是真命题解答:解:对于命题p:∵x>0,∴x+≥2=4,∴命题p为真命题;对于命题q:∵对∀x∈R,2x>0,∴命题q为假命题,¬q为真命题,故只有选项C为真命题.故选:C.点评:本题综合考查了复合命题的真假,简单命题的真假判断等知识,属于中档题,解题的关键是:准确理解两个命题的真值情况.3.执行如图所示的程序框图,则输出的k的值是()A.120 B.105 C.15 D.5考点:循环结构.专题:算法和程序框图.分析:据题意,模拟程序框图的运行过程,得出程序框图输出的k值是什么.解答:解:第一次循环得到:k=1,i=3;第二次循环得到:k=3,i=5;第三次循环得到:k=15,i=7;满足判断框中的条件,退出循环∴k=15故选C点评:本题考查了求程序框图的运行结果的问题,解题时应模拟程序框图的运行过程,以便得出结论,是基础题.4.曲线y=与直线x=1,x=e2及x轴所围成的图形的面积是()A.e2B.e2﹣1 C.e D.2分析:确定被积区间及被积函数,利用定积分表示面积,即可得到结论.解答:解:由题意,由曲线y=与直线x=1,x=e2及x轴所围成的图形的面积是S===2.故选:D.点评:本题考查面积的计算,解题的关键是确定曲线交点的坐标,确定被积区间及被积函数,利用定积分表示面积.5.设,是两个非零的平面向量,下列说法正确的是()①若•=0,则有|+|=|﹣|;②|•|=||||;③若存在实数λ,使得=λ,则|+|=||+||;④若|+|=||﹣||,则存在实数λ,使得=λ.A.①③B.①④C.②③D.②④分析:①当•=0时,判断|+|=|﹣|成立;②利用数量积判断|•|=||||不一定成立;③当=λ时,判断|+|=||+||不一定成立;④当|+|=||﹣||时,得出、共线,即可判断正误.解答:解:对于①,当•=0时,|+|===|﹣|,∴①正确;对于②,∵•=||||cos<,>,∴|•|=||||不一定成立,②错误;对于③,当=λ时,则|+|=|λ+|=|||λ+1|,||+||=|λ|+||=||(|λ|+1),|+|=||+||不一定成立,∴③错误;对于④,当|+|=||﹣||时,∴+2•+=﹣2||||+,∴•=﹣||||,∴共线,即存在实数λ,使得=λ,∴④正确.综上,正确的是①④.故选:B.点评:本题考查了平面向量的应用问题,解题时应熟练地掌握平面向量的有关概念,是基础题.6.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为()A.3000 B.3300 C.3500 D.4000考点:函数最值的应用.专题:计算题;应用题;函数的性质及应用.分析:由题意,设利润为y元,租金定为3000+50x元,(0≤x≤70,x∈N),则y=(3000+50x)(70﹣x)﹣100(70﹣x),利用基本不等式求最值时的x的值即可.解答:解:由题意,设利润为y元,租金定为3000+50x元,(0≤x≤70,x∈N)则y=(3000+50x)(70﹣x)﹣100(70﹣x)=(2900+50x)(70﹣x)=50(58+x)(70﹣x)≤50()2,当且仅当58+x=70﹣x,即x=6时,等号成立,故每月租金定为3000+300=3300(元),故选B.点评:本题考查了学生由实际问题转化为数学问题的能力及基本不等式的应用,属于中档题.7.如图,某地一天中6时至14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b(其中ω>0,<φ<π),则估计中午12时的温度近似为()A.30℃B.27℃C.25℃D.24℃考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:三角函数的图像与性质.分析:由函数的图象的顶点坐标求出A和b,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,从而其求得x=12时的值.解答:解:由函数的图象可得b=20,A=30﹣20=10,根据•=10﹣6,可得ω=.再根据五点法作图可得,×6+φ=,求得φ=,∴y=10sin(x+)+20.令x=12,可得y=10sin(+)+20=10sin+20 10×+20≈27℃,故选:B.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,属于基础题.8.设函数f(x),g(x)满足下列条件:(1)对任意实数x1,x2都有f(x1)•f(x2)+g(x1)•g(x2)=g(x1﹣x2);(2)f(﹣1)=﹣1,f(0)=0,f(1)=1.下列四个命题:①g(0)=1;②g(2)=1;③f2(x)+g2(x)=1;④当n>2,n∈N*时,[f(x)]n+[g(x)]n的最大值为1.其中所有正确命题的序号是()A.①③B.②④C.②③④D.①③④考点:命题的真假判断与应用.专题:函数的性质及应用.分析:既然对任意实数x1,x2都有f(x1)•f(x2)+g(x1)•g(x2)=g(x1﹣x2),那么分别令x1,x2取1,0,﹣1求出g(0),g(1),g(﹣1),g(2),然后令x1=x2=x可得③,再根据不等式即可得④解答:解;对于①结论是正确的.∵对任意实数x1,x2都有f(x1)•f(x2)+g(x1)•g(x2)=g(x1﹣x2)且f(﹣1)=﹣1,f(0)=0,f(1)=1,令x1=x2=1,得[f(1)]2+[g(1)]2=g(0),∴1+[g(1)]2=g(0),∴g(0)﹣1=[g(1)]2令x1=1,x2=0,得f(1)f(0)+g(1)g(0)=g(1),∴g(1)g(0)=g(1),g(1)[g (0)﹣1]=0解方程组得对于②结论是不正确的,令x1=0,x2=﹣1,得f(0)f(﹣1)+g(0)g(﹣1)=g(1),∴g (﹣1)=0令x1=1,x2=﹣1,得f(1)f(﹣1)+g(1)g(﹣1)=g(2),∴﹣1=g(2),∴g(2)≠1 对于③结论是正确的,令x1=x2=1,得f2(x)+g2(x)=g(0)=1,对于④结论是正确的,由③可知f2(x)≤1,∴﹣1≤f(x)≤1,﹣1≤g(x)≤1∴|f n(x)|≤f2(x),|g n(x)|≤g2(x)对n>2,n∈N*时恒成立,[f(x)]n+[g(x)]n≤f2(x)+g2(x)=1综上,①③④是正确的.故选:D点评:本题考查赋值法求抽象函数的性质属于中档题.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.已知平面向量,满足||=1,=(1,1),且∥,则向量的坐标是或.考点:平面向量共线(平行)的坐标表示.专题:平面向量及应用.分析:设=(x,y).由于平面向量,满足||=1,=(1,1),且∥,可得=1,x﹣y=0.解出即可.解答:解:设=(x,y).∵平面向量,满足||=1,=(1,1),且∥,∴=1,x﹣y=0.解得.∴=或.故答案为:或.点评:本题考查了向量模的计算公式、向量共线定理,属于基础题.10.已知tan(+α)=,α∈(,π),则tanα的值是﹣;cosα的值是﹣.考点:两角和与差的正切函数;任意角的三角函数的定义.专题:三角函数的求值.分析:利用两角和与差的正切函数及任意角的三角函数的定义,即可求得tanα与cosα的值.解答:解:tan(+α)=,∴tanα=tan[(+α)﹣]===﹣;又α∈(,π),∴cosα=﹣=﹣.故答案为:;.点评:本题考查两角和与差的正切函数及任意角的三角函数的定义,属于中档题.11.若f(x)=,是奇函数,则a+b的值是﹣1.考点:函数奇偶性的性质.分析:不妨设x<0,则﹣x>0,根据所给的函数解析式,利用f(﹣x)=﹣f(x),由此可得a、b的值,即可得到a+b.解答:解:函数f(x)=,是奇函数,任意x<0,则﹣x>0,由f(﹣x)=﹣f(x),则﹣2x+3=﹣ax﹣b,则a=2,b=﹣3.则a+b=﹣1,故答案为:﹣1.点评:本题主要考查分段函数求函数的奇偶性,运用函数的奇偶性的定义是解题的关键,属于基础题.12.已知等差数列{a n}中,S n为其前n项和.若a1+a3+a5+a7=﹣4,S8=﹣16,则公差d=﹣2;数列{a n}的前3项和最大.考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由题意可得a2+a4+a6+a8=﹣4+4d,可得S8=﹣4+(﹣4+4d)=﹣16,解之可得d=﹣2,进而可得a1=5,可得a n=7﹣2n,解不等式可得等差数列{a n}的前3项为正数,从第4项起为负数,故数列{a n}的前3项和最大.解答:解:∵a1+a3+a5+a7=﹣4,∴a2+a4+a6+a8=﹣4+4d,∴S8=﹣4+(﹣4+4d)=﹣16,解得d=﹣2,∴a1+a3+a5+a7=4a1+12d=﹣4,解得a1=5,∴等差数列{a n}的通项公式a n=5﹣2(n﹣1)=7﹣2n,令a n=7﹣2n≤0可得n≥,∴等差数列{a n}的前3项为正数,从第4项起为负数,∴数列{a n}的前3项和最大故答案为:﹣2;3点评:本题考查等差数列的前n项和公式,属基础题.13.已知x,y满足条件若目标函数z=ax+y(其中a>0)仅在点(2,0)处取得最大值,则a的取值范围是(,+∞).考点:简单线性规划的应用.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的知识,确定目标取最优解的条件,即可求出a的取值范围.解答:解:作出不等式对应的平面区域,由z=ax+y得y=﹣ax+z,∵a>0,∴此时目标函数的斜率k=﹣a<0,要使目标函数z=ax+y仅在点A(2,0)处取得最大值,则此时﹣a≤k AB=﹣,即a>,故答案为:(,+∞)点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.14.如图,在水平地面上有两座直立的相距60m的铁塔AA1和BB1.已知从塔AA1的底部看塔BB1顶部的仰角是从塔BB1的底部看塔AA1顶部的仰角的2倍,从两塔底部连线中点C分别看两塔顶部的仰角互为余角.则从塔BB1的底部看塔AA1顶部的仰角的正切值为;塔BB1的高为45m.考点:解三角形的实际应用.专题:应用题;解三角形.分析:设从塔BB1的底部看塔AA1顶部的仰角为α,则AA1=60tanα,BB1=60tan2α,利用从两塔底部连线中点C分别看两塔顶部的仰角互为余角,可得△A1AC∽△CBB1,即可求出结论.解答:解:设从塔BB1的底部看塔AA1顶部的仰角为α,则AA1=60tanα,BB1=60tan2α,∵从两塔底部连线中点C分别看两塔顶部的仰角互为余角,∴△A1AC∽△CBB1,∴,∴AA1•BB1=900,∴3600tanαtan2α=900,∴tanα=,tan2α=,BB1=60tan2α=45.故答案为:,45点评:本题考查解三角形的实际应用,考查学生的计算能力,属于中档题.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(13分)已知函数f(x)=sinx﹣acosx(x∈R)的图象经过点(,1).(Ⅰ)求函数f(x)的解析式;(Ⅱ)求函数f(x)的最小正周期和单调递减区间.考点:两角和与差的正弦函数;三角函数的周期性及其求法;复合三角函数的单调性.专题:三角函数的图像与性质.分析:(Ⅰ)代点可求a值,可得解析式;(Ⅱ)由(Ⅰ)知f(x)=,易得周期为T=2π,解可得单调递减区间.解答:解:(Ⅰ)∵函数f(x)的图象经过点,∴,即﹣a=1,解得a=1.∴==.(Ⅱ)由(Ⅰ)知f(x)=.∴函数f(x)的最小正周期为T=2π.由,k∈Z.可得,k∈Z.∴函数f(x)的单调递减区间为:[],k∈Z点评:本题考查三角函数的图象和性质,涉及三角函数公式和三角函数的单调性和周期性,属基础题.16.(13分)如图,在△ABC中,∠ACB为钝角,AB=2,BC=.D为AC延长线上一点,且CD=+1.(Ⅰ)求∠BCD的大小;(Ⅱ)求BD的长及△ABC的面积.考点:余弦定理的应用.专题:解三角形.分析:(Ⅰ)利用正弦定理求出∠BCD的正弦函数值,然后求出角的大小;(Ⅱ)在△BCD中,由余弦定理可求BD的长,然后求出AC的长,即可求解△ABC的面积.解答:(本小题满分13分)解:(Ⅰ)在△ABC中,因为,,由正弦定理可得,即,所以.因为∠ACB为钝角,所以.所以.…(6分)(Ⅱ)在△BCD中,由余弦定理可知BD2=CB2+DC2﹣2CB•DC•cos∠BCD,即,整理得BD=2.在△ABC中,由余弦定理可知BC2=AB2+AC2﹣2AB•AC•cosA,即,整理得.解得.因为∠ACB为钝角,所以AC<AB=2.所以.所以△ABC的面积.….(13分)点评:本题考查余弦定理的应用,解三角形,考查基本知识的应用.17.(13分)在递减的等比数列{a n}中,设S n为其前n项和,已知a2=,S3=.(Ⅰ)求a n,S n;(Ⅱ)设b n=log2S n,试比较与b n+1的大小关系,并说明理由.考点:数列与函数的综合.专题:综合题;等差数列与等比数列.分析:(Ⅰ)利用a2=,S3=,建立方程组,即可求a n,S n;(Ⅱ)b n+1=log2S n+1,由于函数y=log2x在定义域上为增函数,所以只需比较与S n+1的大小关系.解答:解:(Ⅰ)由已知可得,解得q=2或.由上面方程组可知a1>0,且已知数列{a n}为递减数列,所以.代入求得,则.….(6分)(Ⅱ)依题意,=;b n+1=log2S n+1,由于函数y=log2x在定义域上为增函数,所以只需比较与S n+1的大小关系,即比较S n•S n+2与S2n+1的大小关系,=,=,由于,即,所以.即S n•S n+2<S2n+1,即<b n+1….(13分)点评:本题考查数列的通项,考查大小比较,考查学生分析解决问题的能力,属于中档题.18.(14分)已知函数f(x)=,a∈R.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若f(x)在(1,2)上是单调函数,求a的取值范围.考点:函数的单调性及单调区间.专题:函数的性质及应用;导数的综合应用.分析:本题考察函数的单调性.(Ⅰ)先写出函数的定义域,然后求导数,分a=0,a>0,a<0,利用导数的符号讨论函数的单调性即可,(Ⅱ)结合(Ⅰ)中的函数单调性,对a进行分类讨论,又x∈(1,2),分成a≤0,0<2a≤1,1<2a<2,2a≥2四种情况进行讨论.解答:解:(Ⅰ)f(x)的定义域为{x|x≠a}..①当a=0时,f(x)=x(x≠0),f'(x)=1,则x∈(﹣∞,0),(0,+∞)时,f(x)为增函数;②当a>0时,由f'(x)>0得,x>2a或x<0,由于此时0<a<2a,所以x>2a时,f(x)为增函数,x <0时,f(x)为增函数;由f'(x)<0得,0<x<2a,考虑定义域,当0<x<a,f(x)为减函数,a<x<2a时,f (x)为减函数;③当a<0时,由f'(x)>0得,x>0或x<2a,由于此时2a<a<0,所以当x<2a时,f(x)为增函数,x>0时,f(x)为增函数.由f'(x)<0得,2a<x<0,考虑定义域,当2a<x<a,f(x)为减函数,a<x<0时,f (x)为减函数.综上,当a=0时,函数f(x)的单调增区间为(﹣∞,0),(0,+∞).当a>0时,函数f(x)的单调增区间为x∈(﹣∞,0),(2a,+∞),单调减区间为(0,a),(a,2a).当a<0时,函数f(x)的单调增区间为x∈(﹣∞,2a),(0,+∞),单调减区间为(2a,a),(a,0).(Ⅱ)①当a≤0时,由(Ⅰ)可得,f(x)在(1,2)单调增,且x∈(1,2)时,x≠a.②当0<2a≤1时,即时,由(Ⅰ)可得,f(x)在(2a,+∞)单调增,即在(1,2)单调增,且x∈(1,2)时,x≠a.③当1<2a<2时,即时,由(Ⅰ)可得,f(x)在(1,2)上不具有单调性,不合题意.④当2a≥2,即a≥1时,由(Ⅰ)可得,f(x)在(0,a),(a,2a)为减函数,同时需注意a∉(1,2),满足这样的条件时f(x)在(1,2)单调减,所以此时a=1或a≥2.综上所述,或a=1或a≥2.点评:本题易忽略函数的定义域,在讨论函数的性质的题目中一定要先求出函数的定义域,在定义域内讨论;难点是分类讨论较复杂,要做到不重不漏,按照数轴从左向右讨论,还要注意特殊情况.19.(14分)已知函数y=f(x),若在区间(﹣2,2)内有且仅有一个x0,使得f(x0)=1成立,则称函数f(x)具有性质M.(Ⅰ)若f(x)=sinx+2,判断f(x)是否具有性质M,说明理由;(Ⅱ)若函数f(x)=x2+2mx+2m+1具有性质M,试求实数m的取值范围.考点:函数零点的判定定理.专题:计算题;新定义;函数的性质及应用.分析:(Ⅰ)f(x)=sinx+2具有性质M.若存在x0∈(﹣2,2),使得f(x0)=1,解方程求出方程的根,即可证得;(Ⅱ)依题意,若函数f(x)=x2+2mx+2m+1具有性质M,即方程x2+2mx+2m=0在(﹣2,2)上有且只有一个实根.设h(x)=x2+2mx+2m,即h(x)=x2+2mx+2m在(﹣2,2)上有且只有一个零点.讨论m的取值范围,结合零点存在定理,即可得到m的范围.解答:解:(Ⅰ)f(x)=sinx+2具有性质M.理由:依题意,若存在x0∈(﹣2,2),使得f(x0)=1,则x0∈(﹣2,2)时有sinx0+2=1,即sinx0=﹣1,x0=2kπ﹣,k∈Z.由于x0∈(﹣2,2),所以x0=﹣.又因为区间(﹣2,2)内有且仅有一个x0=﹣.使得f(x0)=1成立,所以f(x)具有性质M;(Ⅱ)依题意,若函数f(x)=x2+2mx+2m+1具有性质M,即方程x2+2mx+2m=0在(﹣2,2)上有且只有一个实根.设h(x)=x2+2mx+2m,即h(x)=x2+2mx+2m在(﹣2,2)上有且只有一个零点.解法一:(1)当﹣m≤﹣2时,即m≥2时,可得h(x)在(﹣2,2)上为增函数,只需解得交集得m>2.(2)当﹣2<﹣m<2时,即﹣2<m<2时,若使函数h(x)在(﹣2,2)上有且只有一个零点,需考虑以下3种情况:(ⅰ)m=0时,h(x)=x2在(﹣2,2)上有且只有一个零点,符合题意.(ⅱ)当﹣2<﹣m<0即0<m<2时,需解得交集得∅.(ⅲ)当0<﹣m<2时,即﹣2<m<0时,需解得交集得.(3)当﹣m≥2时,即m≤﹣2时,可得h(x)在(﹣2,2)上为减函数只需解得交集得m≤﹣2.综上所述,若函数f(x)具有性质M,实数m的取值范围是m或m>2或m=0;解法二:依题意,(1)由h(﹣2)•h(2)<0得,(4﹣2m)(6m+4)<0,解得或m>2.同时需要考虑以下三种情况:(2)由解得m=0.(3)由解得,不等式组无解.(4)由解得,解得.综上所述,若函数f(x)具有性质M,实数m的取值范围是或m>2或m=0.点评:本题考查函数的零点的判断和求法,考查零点存在定理的运用,考查分类讨论的思想方法,考查运算能力,属于中档题.20.(13分)对于项数为m的有穷数列{a n},记b k=max{a1,a2,a3,…,a k}(k=1,2,3,…,m),即b k为a1,a2,a3,…,a k中的最大值,则称{b n}是{a n}的“控制数列”,{b n}各项中不同数值的个数称为{a n}的“控制阶数”.(Ⅰ)若各项均为正整数的数列{a n}的控制数列{b n}为1,3,3,5,写出所有的{a n};(Ⅱ)若m=100,a n=tn2﹣n,其中,{b n}是{a n}的控制数列,试用t表示(b1﹣a1)+(b2﹣a2)+(b3﹣a3)+…+(b100﹣a100)的值;(Ⅲ)在1,2,3,4,5的所有全排列中,将每种排列视为一个数列,对于其中控制阶数为2的所有数列,求它们的首项之和.考点:数列的应用.专题:新定义;等差数列与等比数列.分析:(Ⅰ)若各项均为正整数的数列{a n}的控制数列{b n}为1,3,3,5,可得{a n};(Ⅱ)确定当n≥2时,总有a n+1>a n,n≥3时,总有b n=a n.从而只需比较a1和a2的大小,即可得出结论.(Ⅲ)确定首项为1、2、3、4的数列的个数,即可得出结论.解答:解:(Ⅰ)1,3,1,5;1,3,2,5;1,3,3,5….(3分)(Ⅱ)因为,所以.所以当n≥2时,总有a n+1>a n.又a1=t﹣1,a3=9t﹣3.所以a3﹣a1=8t﹣2>0.故n≥3时,总有b n=a n.从而只需比较a1和a2的大小.(1)当a1≤a2,即t﹣1≤4t﹣2,即时,{a n}是递增数列,此时b n=a n对一切n=1,2,3,…100均成立.所以(b1﹣a1)+(b2﹣a2)+(b3﹣a3)+…+(b100﹣a100)=0.(2)当a1>a2时,即t﹣1>4t﹣2,即时,b1=a1,b2=a1,b n=a n(n≥3).所以(b1﹣a1)+(b2﹣a2)+(b3﹣a3)+…+(b100﹣a100)=0+[(t﹣1)﹣(4t﹣2)]+0+…+0=1﹣3t.综上,原式=….(9分)(Ⅲ)154.首项为1的数列有6个;首项为2的数列有6+2=8个;首项为3的数列有6+4+2=12个;首项为4的数列有6+6+6+6=24个;所以,控制阶数为2的所有数列首项之和6+8×2+12×3+24×4=154.…(13分)点评:本题考查数列的应用,着重考查分析,对抽象概念的理解与综合应用的能力,对(3)观察,分析寻找规律是难点,是难题.。
2018届北京东城区171中学高三上学期期中考试数学试题一、单选题1.已知是虚数单位,复数().A.B.C.D.【答案】D【解析】,故选D.2.已知集合,集合,则().A.B.C.D.【答案】A【解析】由中的不等式变形得:,得到,由中的不等式变形得:,得到,即,则,故选A.3.在极坐标系中,点到直线的距离是().A.B.C.D.【答案】C【解析】点到直线分别化为直角坐标系下的坐标与方程:,直线点到直线的距离,点到直线的距离是,故选C. 4.已知中,,则().A.B.C.D.【答案】A【解析】中,,可得,可得,两边平方可得解得,故选A.5.已知不等式组,表示的平面区域的面积等于,则的值为().A.B.C.D.【答案】B【解析】作出不等式组对应的平面区域如图:4过定点表示直线的下方,,则由图象可知,由,解得,即,则的面积,故,故选B.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何. 刍甍:底面为矩形的屋脊状的几何体(网络纸中粗线部分为其三视图,设网络纸上每个小正方形的边长为1丈),那么该刍甍的体积为()A.4立方丈B.5立方丈C.6立方丈D.12立方丈【答案】B【解析】由已知可将刍甍切割成一个三棱柱和一个四棱锥,三棱柱的体积为3,四棱锥的体积为2,则刍甍的体积为5.故选B.7.在平行四边形中,对角线与交于点,,则().A.B.C.D.或【答案】B【解析】如图所示,平行四边形中,对角线与交于点,根据向量加法原理可得,故选B.8.设函数,则“”是“与”都恰有两个零点的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】因为,所以开口向上,有两个零点,最小值必然小于,当取得最小值时,,即,令,则,必有两个零点,同理,由于是对称轴,开口向上,,必有两个零点,所以“”是“与”都恰有两个零点的充要条件,故选C.【方法点睛】本题通过充分条件与必要条件考查二次函数的图象与性质,属于难题题. 判断充要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.本题中,不但要理解充分条件与必要条件的基本含义,更要熟练掌握二次函数的图象与性质,以及二次函数与一元二次方程的关系.二、填空题9.在的展开式中,含的项的系数是__________.【答案】10【解析】展开式中含项的系数分别为,系数的和为,故答案为.【方法点晴】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.10.设是等差数列的前项和,若,,则公差__________.__________.【答案】240【解析】由题意,,①,②②-①得,,即,由等差数列的前项和公式和性质可得:,故答案为.11.过点的直线将圆分成两段弧,当其中的劣弧最短时,直线的方程是__________.【答案】【解析】由条件知点在圆内,故当劣弧最短时,应与圆心与点的连线垂直,设圆心为,则直线的斜率的方程为,即,故答案为.12.若函数是奇函数,则__________.【答案】【解析】设,则,结合奇函数的性质可得:,故答案为. 13.将、、、、、六个字母排成一排,且、均在的同侧,则不同的排法共有__________种(用数字作答).【答案】480【解析】按的位置分类,在左1 ,左2 ,左3 ,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可,当在左边第1个位置时,有,当在左边第2个位置时,和有右边的4个位置可以选,有,当在左边第3个位置时,有,共为种,乘以2得,则不同的排法共有种,故答案为.14.对于一切实数,令为不大于的最大整数,则函数称为高斯函数或取整函数,计算__________;若,,为数列的前项和,则__________.【答案】1【解析】为不大于的最大整数,,为高斯实数或取实数,若,,,,,故答案为.三、解答题15.(本小题共分)设函数,其中.(Ⅰ)若的最小正周期为,求的单调递增区间.(Ⅱ)若函数的图像的一条对称轴为,求的值.【答案】(1)增区间为,.(2)或【解析】试题分析:(1)根据二倍角的正弦公式、二倍角的余弦公式以及辅助角公式将化成的形式,再利用的周期为,根据周期公式列方程求,利用正弦函数的单调性列不等式可得的单调递增区间;(2)∵是的一条对称轴,∴,,取特殊值,结合条件,即可求得的值.试题解析:(Ⅰ),∵的最小正周期是,∴,,∴,令,,得,,∴的单调增区间为,.(Ⅱ)∵是的一条对称轴,∴,,∴,又,,∴或.16.袋子里有完全相同的3只红球和4只黑球,今从袋子里随机取球.(Ⅰ)若有放回地取3次,每次取一个球,求取出2个红球1个黑球的概率;(Ⅱ)若无放回地取3次,每次取一个球,若取出每只红球得2分,取出每只黑球得1分,求得分的分布列和数学期望.【答案】(1)108:343(2)【解析】试题分析:(1)由题可先算出取出红球和黑球的概率,再求取3次2个红球1个黑球的概率,可知为独立重复试验(有放回),运用独立重复试验的概率公式可求;(注意规范解题格式)(2)由题意(无放回),先分析出的可能取值,再分别求出对应的概率,可列出分布列(为超几何分布),代入期望公式可得。
北京东城区第一七一中学2017—2018学年度高三数学(理科)期中考试试题一、本大题共8小题,每小题5分,共40分1. 已知是虚数单位,复数().A. B. C. D.【答案】D【解析】,故选D.2. 已知集合,集合,则().A. B. C. D.【答案】A【解析】由中的不等式变形得:,得到,由中的不等式变形得:,得到,即,则,故选A.3. 在极坐标系中,点到直线的距离是().A. B. C. D.【答案】C【解析】点到直线分别化为直角坐标系下的坐标与方程:,直线点到直线的距离,点到直线的距离是,故选C.4. 已知中,,则().A. B. C. D.【答案】A5. 已知不等式组,表示的平面区域的面积等于,则的值为().A. B. C. D.【答案】B【解析】作出不等式组对应的平面区域如图:4过定点表示直线的下方,,则由图象可知,由,解得,即,则的面积,故,故选B.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6. 《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1丈),那么该刍甍的体积为(左视图为正视图,右图为左视图,下图为俯视图)().A. 立方丈B. 立方丈C. 立方丈D. 立方丈【答案】B【解析】由已知可将刍甍切割成一个三棱柱和一个四棱锥,三棱柱的体积为3,四棱锥的体积为2,则刍甍的体积为5.故选B.7. 在平行四边形中,对角线与交于点,,则().A. B. C. D. 或【答案】B【解析】如图所示,平行四边形中,对角线与交于点,根据向量加法原理可得,故选B.8. 设函数,则“”是“与”都恰有两个零点的().A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】因为,所以开口向上,有两个零点,最小值必然小于,当取得最小值时,,即,令,则,必有两个零点,同理,由于是对称轴,开口向上,,必有两个零点,所以“”是“与”都恰有两个零点的充要条件,故选C.【方法点睛】本题通过充分条件与必要条件考查二次函数的图象与性质,属于难题题. 判断充要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.本题中,不但要理解充分条件与必要条件的基本含义,更要熟练掌握二次函数的图象与性质,以及二次函数与一元二次方程的关系.二、填空题:本大题共6小题,每小题5分,共30分9. 在的展开式中,含的项的系数是__________.【答案】10【解析】展开式中含项的系数分别为,系数的和为,故答案为.【方法点晴】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.10. 设是等差数列的前项和,若,,则公差__________.__________.【答案】(1). 2(2). 40【解析】由题意,,①,②②-①得,,即,由等差数列的前项和公式和性质可得:,故答案为.11. 过点的直线将圆分成两段弧,当其中的劣弧最短时,直线的方程是__________.【答案】【解析】由条件知点在圆内,故当劣弧最短时,应与圆心与点的连线垂直,设圆心为,则直线的斜率的方程为,即,故答案为.12. 若函数是奇函数,则__________.【答案】【解析】设,则,结合奇函数的性质可得:,故答案为.13. 将、、、、、六个字母排成一排,且、均在的同侧,则不同的排法共有__________种(用数字作答).【答案】480【解析】按的位置分类,在左1 ,左2 ,左3 ,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可,当在左边第1个位置时,有,当在左边第2个位置时,和有右边的4个位置可以选,有,当在左边第3个位置时,有,共为种,乘以2得,则不同的排法共有种,故答案为.14. 对于一切实数,令为不大于的最大整数,则函数称为高斯函数或取整函数,计算__________;若,,为数列的前项和,则__________.【答案】(1). 1(2).【解析】为不大于的最大整数,,为高斯实数或取实数,若,,,,,故答案为.三、解答题:本大题共6小题,共80分15. (本小题共分)设函数,其中.(Ⅰ)若的最小正周期为,求的单调递增区间.(Ⅱ)若函数的图像的一条对称轴为,求的值.【答案】(1)增区间为,.(2)或【解析】试题分析:(1)根据二倍角的正弦公式、二倍角的余弦公式以及辅助角公式将化成的形式,再利用的周期为,根据周期公式列方程求,利用正弦函数的单调性列不等式可得的单调递增区间;(2)∵是的一条对称轴,∴,,取特殊值,结合条件,即可求得的值.试题解析:(Ⅰ),∵的最小正周期是,∴,,∴,令,,得,,∴的单调增区间为,.(Ⅱ)∵是的一条对称轴,∴,,∴,又,,∴或.16. (本小题共分)袋子里有完全相同的只红球和只黑球,今从袋子里随机取球.(Ⅰ)若有放回地取次,每次取一个球,求取出个红球个黑球的概率.(Ⅱ)若无放回地取次,每次取一个球,若取出每只红球得分,取出每只黑球得分,求得分的分布列和数学期望.【答案】(1)(2)【解析】试题分析:(1)由题可先算出取出红球和黑球的概率,再求取3次2个红球1个黑球的概率,可知为独立重复试验(有放回),运用独立重复试验的概率公式可求;(注意规范解题格式)(2)由题意(无放回),先分析出的可能取值,再分别求出对应的概率,可列出分布列(为超几何分布),代入期望公式可得。
2015北京三十五中高三(上)期中数学(理)一、选择题(共10个小题,每题4分,共40分.每小题只有一个正确选项,请选择正确答案填在机读卡相应的题号处)1.(4分)已知集合A={x∈R|0<x<3},B={x∈R|x2≥4},则A∩B=()A.{x|2<x<3} B.{x|2≤x<3} C.{x|x≤﹣2或2≤x<3} D.R2.(4分)给定下列命题:①“x>1”是“x>2”的充分不必要条件;②若sinα≠,则α≠;③“公比大于的等比数列是递增数列”的逆否命题;④命题“?x0∈R,使﹣x0+1≤0”的否定.其中真命题的序号是()A.①② B.②④ C.①③ D.③④3.(4分)已知数列{a n}的前n项和为S n=kn2,若对所有的n∈N*,都有a n+1>a n,则实数k的取值范围是()A.k<0 B.k<1 C.k>1 D.k>04.(4分)已知函数①y=sinx+cosx,②,则下列结论正确的是()A.两个函数的图象均关于点成中心对称B.两个函数的图象均关于直线成轴对称C.两个函数在区间上都是单调递增函数D.两个函数的最小正周期相同5.(4分)设函数y=f(x)对任意的x∈R都有f(1﹣x)=f(1+x)成立,则y=f(x)()A.图象关于x=0对称 B.图象关于x=1对称C.是周期为1的周期函数 D.是周期为2的周期函数6.(4分)函数y=e|lnx|﹣|x﹣1|的图象大致为()A.B. C. D.7.(4分),为非零向量,“函数f(x)=(x+)2为偶函数”是“⊥”的()A.充分但不必要条件 B.必要但不充分条件C.充要条件 D.既不充分也不必要条件8.(4分)函数f(x)=e x cosx的图象在点(0,f(0))处的切线方程的倾斜角为()A.0 B.C.1 D.9.(4分)若a>0,b>0且a+b=4,则下列不等式恒成立的是()A.B.C.D.a2+b2≥810.(4分)对于定义域和值域均为[0,1]的函数f(x),定义f1(x)=f(x),f2(x)=f(f1(x)),…,f n(x)=f (f n﹣1(x)),n=1,2,3,….满足f n(x)=x的点x∈[0,1]称为f的n阶周期点.设f(x)=,则f的n阶周期点的个数是()A.2n B.2(2n﹣1)C.2n D.2n2二、选择题(共6个小题,每题5分,共30分.请将正确答案填在答题纸相应的题号处)11.(5分)如图所示,在平面直角坐标系xOy中,角α的终边与单位圆交于点A,点A的纵坐标为,则cosα= .12.(5分)已知点P(1,﹣2)及其关于原点的对称点中有且只有一个在不等式2x﹣by+1>0表示的平面区域内,则b的取值范围是.13.(5分)已知平面向量,的夹角为60°,=(,1),||=1,则|+2|= .14.(5分)函数f(x)=e x+x3﹣2在区间(0,1)内的零点个数是.15.(5分)已知函数f(x)=,若f(a2﹣2)>f(a),则实数a的取值范围是.16.(5分)对于函数①,②,③f(x)=cos(x+2)﹣cosx,判断如下两个命题的真假:命题甲:f(x)在区间(1,2)上是增函数;命题乙:f(x)在区间(0,+∞)上恰有两个零点x1,x2,且x1x2<1.能使命题甲、乙均为真的函数的序号是.三、解答题(本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.)17.(12分)设等差数列{a n}的前n项和为S n,已知前6项和为36,最后6项和为180,S n=324(n>6).(Ⅰ)求数列的项数n;(Ⅱ)求a9+a10的值及数列的通项公式.18.(13分)在△ABC中,a,b,c分别为内角A,B,C的对边,且b2+c2﹣a2=bc.(Ⅰ)求角A的大小;(Ⅱ)设函数f(x)=sin cos+cos2,求f(B)的最大值,并判断此时△ABC的形状.19.(13分)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=﹣48x+8000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?20.(14分)如图所示,A,B分别是单位圆与x轴、y轴正半轴的交点,点P在单位圆上,∠AOP=θ(0<θ<π),C点坐标为(﹣2,0),平行四边形OAQP的面积为S.(1)求?+S的最大值;(2)若CB∥OP,求sin(2θ﹣)的值.21.(14分)已知函数.(a∈R)(1)当a=1时,求f(x)在区间[1,e]上的最大值和最小值;(2)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax下方,求a的取值范围.22.(14分)已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T)=T?f (x)成立.(1)函数f(x)=x是否属于集合M?说明理由;(2)设函数f(x)=a x(a>0,且a≠1)的图象与y=x的图象有公共点,证明:f(x)=a x∈M;(3)若函数f(x)=sinkx∈M,求实数k的取值范围.数学试题答案一、选择题(共10个小题,每题4分,共40分.每小题只有一个正确选项,请选择正确答案填在机读卡相应的题号处)1.【解答】集合B中的不等式x2≥4,移项并分解因式得:(x+2)(x﹣2)≥0,可化为:或,解得:x≥2或x≤﹣2,所以集合B={x|x≤﹣2或x≥2},又集合A={x|0<x<3},则A∩B={x|2≤x<3}.故选B2.【解答】①,x>1不能推出x>2,x>2一定有x>1,∴“x>1”是“x>2”的必要不充分条件,命题①错误;②,若sinα≠,则α≠,命题②正确;③,数列﹣1,﹣2,﹣4,…的公比大于1,不是递增数列,∴“公比大于1的等比数列是递增数列”是假命题,其逆否命题是假命题;④,∵对任意实数x,x2﹣x+1>0恒成立,∴命题“?x0∈R,使﹣x0+1≤0”为假命题,则其否定为真命题.∴真命题的序号是②④.故选:B.3.【解答】∵S n=kn2,∴a n+1=S n+1﹣S n=k(n+1)2﹣kn2=(2n+1)k.∵对所有的n∈N*,都有a n+1>a n,∴(2n+1)k>(2n﹣1)k,化为k>0,故选:D.4.【解答】函数①y=sinx+cosx=sin(x+),②y=2sinxcosx=sin2x,由于①的图象关于点(﹣,0 )成中心对称,②的图象不关于点(﹣,0 )成中心对称,故A不正确.由于函数②的图象不可能关于(﹣,0)成中心对称,故B不正确.由于这两个函数在区间(﹣,)上都是单调递增函数,故C正确.由于①的周期等于2π,②的周期等于π,故 D不正确.故选 C.5.【解答】在函数y=f(x)图象上取点P(1﹣x,f(1﹣x),Q(1+x,f(1+x)),则有x p=1﹣x,x Q=1+x,∴.∵f(1﹣x)=f(1+x),∴y p=y q,∴点P、Q关于直线x=1对称.由x的任意性可知:函数y=f(x)的图象关于直线x=1对称.故选 B.6.【解答】先化简函数的表达式,e|lnx|=,∴当x≥1时,y=x﹣(x﹣1)=1;当0<x<1时,y=﹣(1﹣x)=x+﹣1;∴y=,特别地,当0<x<1时,,故只有A与B符合,但当x≥1时,y=x﹣(x﹣1)=1,图象时平行于x轴的直线,故只有B正确,故选:B.7.【解答】∵若f(x)为偶函数,则有则有则有反之,若则有则有所以f(x)为偶函数故函数为偶函数是的充要条件故选C8.【解答】求导函数,可得f′(x)=e x(cosx﹣sinx)∴f′(0)=1∴函数f(x)=e x cosx的图象在点(0,f(0))处的切线方程的倾斜角为故选B.9.【解答】∵a>0,b>0,且a+b=4,∴,∴,即ab≤4.A.∵ab≤4,∴,故A不恒成立;B.∵ab≤4=a+b,∴,故B不恒成立;C.∵,∴C不恒成立;D.∵=8.∴D恒成立.故选D.10.【解答】当x∈[0,]时,f1(x)=2x=x,解得x=0当x∈(,1]时,f1(x)=2﹣2x=x,解得x=∴f的1阶周期点的个数是 2当x∈[0,]时,f1(x)=2x,f2(x)=4x=x解得x=0当x∈(,]时,f1(x)=2x,f2(x)=2﹣4x=x解得x=当x∈(,]时,f1(x)=2﹣2x,f2(x)=﹣2+4x=x解得x=当x∈(,1]时,f1(x)=2﹣2x,f2(x)=4﹣4x=x解得x=∴f的2阶周期点的个数是22,当x∈[0,],f1(x)=2x,f2(x)=4x,f3(x)=8x=x,x=0当x∈(,],f1(x)=2x,f2(x)=4x,f3(x)=2﹣8x=x,x=当x∈(,],f1(x)=2x,f2(x)=2﹣4x,f3(x)=2﹣2(2﹣4x)=x,x=…依此类推∴f的n阶周期点的个数是2n故选C.二、选择题(共6个小题,每题5分,共30分.请将正确答案填在答题纸相应的题号处)11.【解答】由定义知:sinα=,∵sin2α+cos2α=1,∴cos2α=,又角的终边落在第二象限,∴cosα=﹣.故答案为﹣.12.【解答】设点P(1,﹣2)关于原点的对称点为Q(x,y),则,解得:Q(﹣1,2).因为点P(1,﹣2)及其关于原点的对称点中有且只有一个在不等式2x﹣by+1>0表示的平面区域内,所以把点P,Q的坐标代入代数式2x﹣by+1中乘积小于0,即[2×1﹣b×(﹣2)+1][2×(﹣1)﹣b×2+1]<0,解得:或,所以b的取值范围是(﹣∞,)∪(,+∞).故答案为(﹣∞,)∪(,+∞).13.【解答】∵平面向量,的夹角为60°,=(,1),∴||=2.再由|b|=1,可得=2×1cos60°=1,∴|+2|===,故答案为.14.【解答】f′(x)=e x+3x2>0;∴f(x)在R上单调递增;又f(0)=﹣1<0,f(1)=e﹣1>0;∴f(x)在区间(0,1)内零点个数是1.故答案为:1.15.【解答】f(x)=2﹣x﹣1在(﹣∞,0)上单调递减函数f(x)=﹣x2﹣2x在(0,+∞)上单调递减函数而函数在x=0处连续∴函数f(x)在R上是单调递减函数而f(a2﹣2)>f(a),∴a2﹣2<a解得a∈(﹣1,2).故答案为:﹣1<a<2.16.【解答】当函数,在区间(0,)上单调递减,在区间(,+∞)上单调递增,故命题甲:f (x)在区间(1,2)上是增函数为真命题;当x=时函数取极小值﹣1<0,故命题乙:f(x)在区间(0,+∞)上恰有两个零点x1,x2,且x1x2=<1.故①满足条件;当在区间(1,2)上函数的解析式可化为,根据“增﹣减=增”,可得f(x)在区间(1,2)上是增函数;由函数y=|log2x|与函数y=的图象可得在区间(0,+∞)上恰有两个零点x1,x2,且x1x2<1,故②满足条件;由余弦函数的周期性,查得函数f(x)=cos(x+2)﹣cosx,在区间(0,+∞)上有无限多个零点,故③不满足条件故答案为:①②三、解答题(本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.)17.【解答】(Ⅰ)∵前6项和为36,最后6项的和为180,∴a1+a2+…+a6=36,a n+a n﹣1+…+a n﹣5=180,两式相加得(a1+a n)+(a2+a n﹣1)+…+(a6+a n﹣5)=216,∴a1+a n=36,∵S n=n(a1+a n)=324∴n=18;(Ⅱ)由(Ⅰ)知,a1+a18=36∴a9+a10=a1+a18=36,∵a1+a18=2a1+17d=36,3(2a1+5d)=36,∴d=2,a1=1,∴a n=2n﹣1.18.【解答】(Ⅰ)在△ABC中,因为b2+c2﹣a2=bc,由余弦定理 a2=b2+c2﹣2bccosA 可得cosA=.∵0<A<π,(或写成A是三角形内角)∴.(Ⅱ)==,∵,∴,∴.∴当,即时,f(B)有最大值是.又∵,∴,∴△ABC为等边三角形.19.【解答】(1)设每吨的平均成本为W(万元/T),则(0<x≤210),(4分)当且仅当,x=200(T)时每吨平均成本最低,且最低成本为32万元.(6分)(2)设年利润为u(万元),则=.(11分)所以当年产量为210吨时,最大年利润1660万元.(12分)20.【解答】(1)由已知,得A(1,0),B(0,1).P(cos θ,sin θ),因为四边形OAQP是平行四边形,所以=+=(1+cosθ,sinθ).所以?=1+cosθ.(3分)又平行四边形OAQP的面积为S=|?|sin θ=sin θ,所以?+S=1+cosθ+sin θ=sin(θ+)+1.(5分)又0<θ<π,所以当θ=时,?+S的最大值为+1.(7分)(2)由题意,知=(2,1),=(cosθ,sinθ),因为CB∥OP,所以cosθ=2sinθ.又0<θ<π,cos2θ+sin2θ=1,解得sin θ=,cos θ=,所以sin2θ=2sin θcosθ=,cos 2θ=cos2θ﹣sin2θ=.所以sin(2θ﹣)=sin 2θcos﹣cos 2θsin=×﹣×=.(13分)21.【解答】(Ⅰ)当a=1时,,.对于x∈[1,e],有f'(x)>0,∴f(x)在区间[1,e]上为增函数.∴,(Ⅱ)令,则g(x)的定义域为(0,+∞).在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax下方等价于g(x)<0在区间(1,+∞)上恒成立.∵.①若,令g'(x)=0,得极值点x1=1,.当x2>x1=1,即时,在(x2,+∞)上有g'(x)>0.此时g(x)在区间(x2,+∞)上是增函数,并且在该区间上有g(x)∈(g(x2),+∞),不合题意;当x2<x1=1,即a≥1时,同理可知,g(x)在区间(1,+∞)上,有g(x)∈(g(1),+∞),也不合题意;②若,则有2a﹣1≤0,此时在区间(1,+∞)上恒有g'(x)<0.从而g(x)在区间(1,+∞)上是减函数要使g(x)<0在此区间上恒成立,只须满足.由此求得a的范围是[,].综合①②可知,当a∈[,]时,函数f(x)的图象恒在直线y=2ax下方.22.【解答】(1)对于非零常数T,f(x+T)=x+T,Tf(x)=Tx.因为对任意x∈R,x+T=Tx不能恒成立,所以f(x)=x?M;(2)因为函数f(x)=a x(a>0且a≠1)的图象与函数y=x的图象有公共点,所以方程组:有解,消去y得a x=x,显然x=0不是方程a x=x的解,所以存在非零常数T,使a T=T.于是对于f(x)=a x有f(x+T)=a x+T=a T?a x=T?a x=Tf(x)故f(x)=a x∈M;(3)当k=0时,f(x)=0,显然f(x)=0∈M.当k≠0时,因为f(x)=sinkx∈M,所以存在非零常数T,对任意x∈R,有f(x+T)=Tf(x)成立,即sin(kx+kT)=Tsinkx.因为k≠0,且x∈R,所以kx∈R,kx+kT∈R,于是sinkx∈[﹣1,1],sin(kx+kT)∈[﹣1,1],故要使sin(kx+kT)=Tsinkx.成立,只有T=±1,当T=1时,sin(kx+k)=sinkx成立,则k=2mπ,m∈Z.当T=﹣1时,sin(kx﹣k)=﹣sinkx成立,即sin(kx﹣k+π)=sinkx成立,则﹣k+π=2mπ,m∈Z,即k=﹣(2m﹣1)π,m∈Z.综合得,实数k的取值范围是{k|k=mπ,m∈Z}.11 / 11。
海淀区高三年级第一学期期中练习数 学(理) 2014.11本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)设集合1{|}A x x >=∈R ,{|12}B x x =∈-R ≤≤,则A B =( )(A )[1,)-+∞(B )(1,)+∞(C )(1,2](D )[1,1)-(2)已知向量(2,1)=-a ,(3,)x =b . 若3⋅=a b ,则x =( ) (A )6(B )5(C )4(D )3(3)若等比数列{}n a 满足135a a +=,且公比2q =,则35a a +=( ) (A )10(B )13(C )20(D )25(4)要得到函数πsin(2)3y x =+的图象,只需将函数sin 2y x =的图象( ) (A )向左平移3π个单位 (B )向左平移6π个单位 (C )向右平移3π个单位 (D )向右平移6π个单位 (5)设131()2a =,21log 3b =,2log 3c =,则( )(A )a b c >>(B )c a b >>(C )a c b >>(D )c b a >>(6) 设,a b ∈R ,则“0ab >且a b >”是“11a b<”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(7)已知函数,0,(),0.x x f x x x -<⎧⎪=⎨⎪⎩≥若关于x 的方程()(1)f x a x =+有三个不相学优等的实数根,则实数a 的取值范围是( ) (A )1[,)2+∞(B )(0,)+∞ (C )(0,1)(D )1(0,)2(8)设等差数列{}n a 的前n 项和为n S .在同一个坐标系中,()n a f n =及()n S g n =的部分图象如图所示,则( )-0.4-0.80.7O 87a n (S n )n(A )当4n =时,n S 取得最大值 (B )当3n =时,n S 取得最大值 (C )当4n =时,n S 取得最小值 (D )当3n =时,n S 取得最小值二、填空题共6小题,每小题5分,共30分。
北师大附中2015届高三上学期期中数学试卷(理科)一、选择题(10小题,每小题5分,共50分.请将答案填入第Ⅱ卷选择题的答案表中.)1.(5分)若集合A={x|y=2x},集合,则A∩B=()A.(0,+∞)B.(1,+∞)C.[0,+∞)D.(﹣∞,+∞)2.(5分)下列关于命题的说法错误的是()A.对于命题p:∃x∈R,x2+x+1<0,则¬p:∀x∈R,x2+x+1≥0B.“x=1”是“x2﹣3x+2=0”的充分不必要条件C.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”D.若p∧q为假命题,则p,q均为假命题3.(5分)曲线y=x3+1在点(﹣1,0)处的切线方程为()A.3x+y+3=0 B.3x﹣y+3=0 C.3x﹣y=0 D.3x﹣y﹣3=04.(5分)若sin2t=﹣cosxdx,其中t∈(0,π),则t=()A.B.C.D.π5.(5分)已知||=6,||=3,•=﹣12,则向量在向量方向上的投影是()A.2B.﹣2 C.4D.﹣46.(5分)设x,y∈R,向量=(x,1),=(1,y),=(2,﹣4)且⊥,∥,则|+|=()A.B.C.D.107.(5分)如图,在△OAB中,P为线段AB上的一点,,且,则()A.B.C.D.8.(5分)已知,为了得到g(x)=sin2x的图象,则只要将f(x)的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度9.(5分)如图,某海上缉私小分队驾驶缉私艇以40km/h的速度由A处出发,沿北偏东60°方向进行海面巡逻,当航行半小时到达B处时,发现北偏西45°方向有一艘船C,若船C位于A的北偏东30°方向上,则缉私艇所在的B处与船C的距离是()km.A.5(+)B.5(﹣)C.10(﹣)D.10(+)10.(5分)若函数f(x)满足f(x)+1=,当x∈[0,1]时,f(x)=x,若在区间(﹣1,1]上,方程f(x)﹣mx﹣2m=0有两个实数解,则实数m的取值范围是()A.0<m≤B.0<m<C.<m≤l D.<m<1二、填空题(每小题5分,共25分)11.(5分)若sinα+cosα=,则sin2α的值是.12.(5分)若扇形的周长是8cm,面积4cm2,则扇形的圆心角为rad.13.(5分)已知函数(ω>0)在单调增加,在单调减少,则ω=.14.(5分)已知函数f(x)满足f(x+6)+f(x)=0,函数y=f(x﹣1)关于点(1,0)对称,f(2)=4,则f=.15.(5分)设函数f(x)的定义域为D,若函数y=f(x)满足下列两个条件,则称y=f(x)在定义域D上是闭函数.①y=f(x)在D上是单调函数;②存在区间[a,b]⊆D,使f(x)在[a,b]上值域为[a,b].如果函数f(x)=+k为闭函数,则k的取值范围是.三、解答题(共75分)16.(15分)已知||=4,||=3,(2﹣3)•(2+)=61,(1)求的值;(2)求与的夹角θ;(3)求||的值.17.(10分)已知,,若,求:(1)f(x)的最小正周期及对称轴方程.(2)f(x)的单调递增区间.(3)当时,函数f(x)的值域.18.(12分)在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,.(1)若△ABC的面积等于,求a,b;(2)若sinB=2sinA,求△ABC的面积.19.(12分)某工厂有一批货物由海上从甲地运往乙地,已知轮船的最大航行速度为60海里/小时,甲地至乙地之间的海上航行距离为600海里,每小时的运输成本由燃料费和其他费用组成,轮船每小时的燃料费与轮船速度的平方成正比,比例系数为0.5,其余费用为每小时1250元.(Ⅰ)把全程运输成本y(元)表示为速度x(海里/小时)的函数;(Ⅱ)为使全程运输成本最小,轮船应以多大速度行驶?20.(12分)已知函数f(x)=﹣(x+2)(x﹣m)(其中m>﹣2).g(x)=2x﹣2.(Ⅰ)若命题“log2g(x)≥1”是假命题,求x的取值范围;(Ⅱ)设命题p:∀x∈R,f(x)<0或g(x)<0;命题q:∃x∈(﹣1,0),f(x)g(x)<0.若p∧q是真命题,求m的取值范围.21.(14分)设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=,g(x)=f(x)+f′(x).(Ⅰ)求g(x)的单调区间和最小值;(Ⅱ)讨论g(x)与的大小关系;(Ⅲ)是否存在x0>0,使得|g(x)﹣g(x0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在请说明理由.北师大附中2015届高三上学期期中数学试卷(理科)参考答案与试题解析一、选择题(10小题,每小题5分,共50分.请将答案填入第Ⅱ卷选择题的答案表中.)1.(5分)若集合A={x|y=2x},集合,则A∩B=()A.(0,+∞)B.(1,+∞)C.[0,+∞)D.(﹣∞,+∞)考点:函数的定义域及其求法;交集及其运算.专题:计算题;函数的性质及应用.分析:求出集合A中函数的定义域确定出A,求出集合B中函数的定义域确定出B,求出A与B的交集即可.解答:解:集合A中的函数y=2x,x∈R,即A=R,集合B中的函数y=,x≥0,即B=[0,+∞),则A∩B=[0,+∞).故选C点评:此题属于以函数的定义域为平台,考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)下列关于命题的说法错误的是()A.对于命题p:∃x∈R,x2+x+1<0,则¬p:∀x∈R,x2+x+1≥0B.“x=1”是“x2﹣3x+2=0”的充分不必要条件C.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”D.若p∧q为假命题,则p,q均为假命题考点:复合命题的真假;四种命题;命题的真假判断与应用.专题:阅读型.分析:根据全称命题的否定是特称命题判断A是否正确;根据充分、必要条件的判定方法判断B是否正确;根据逆否命题的定义判断C是否正确;利用复合命题的真值表判定D是否正确.解答:解:根据全称命题的否定是特称命题,∴A正确;∵x=1⇒x2﹣3x+2=0,当x2﹣3x+2=0时,x=1不确定,根据充分必要条件的判定,B正确;根据逆否命题的定义,是逆命题的否命题,∴C正确;∵p∧q为假命题根据复合命题真值表,P,q至少一假,∴D错误;故选D点评:本题考查命题的真假判断及复合命题的真假判断,特别要注意全称命题与特称命题互为命题的否定命题.3.(5分)曲线y=x3+1在点(﹣1,0)处的切线方程为()A.3x+y+3=0 B.3x﹣y+3=0 C.3x﹣y=0 D.3x﹣y﹣3=0考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:先求出函数y=x3+1的导函数,然后求出在x=1处的导数,从而求出切线的斜率,利用点斜式方程求出切线方程即可.解答:解:y′=3x2y′|x=1=3,切点为(﹣1,0)∴曲线y=x3+1在点(﹣1,0)切线方程为y﹣0=3[x﹣(﹣1)],即3x﹣y+3=0故选B.点评:本题主要考查了利用导数研究曲线上某点切线方程,考查运算求解能力,属于基础题.4.(5分)若sin2t=﹣cosxdx,其中t∈(0,π),则t=()A.B.C.D.π考点:定积分.专题:导数的综合应用.分析:将已知中等式中的定积分化简求值,化为关于t的三角函数方程解之.解答:解:因为﹣cosxdx=﹣sinx=0,所以sin2t=0,因为t∈(0,π),所以2t=π,所以t=;故选:B.点评:本题考查了定积分的计算以及三角函数求值,属于基础题.5.(5分)已知||=6,||=3,•=﹣12,则向量在向量方向上的投影是()A.2B.﹣2 C.4D.﹣4考点:平面向量数量积的运算.专题:平面向量及应用.分析:向量在向量方向上的投影为cos<,>=,代入数值计算即可.解答:解:向量在向量方向上的投影为:cos<,>===﹣4故选:D点评:本题考查向量投影的求法,属基础题.6.(5分)设x,y∈R,向量=(x,1),=(1,y),=(2,﹣4)且⊥,∥,则|+|=()A.B.C.D.10考点:数量积判断两个平面向量的垂直关系;向量的模;平面向量共线(平行)的坐标表示.专题:计算题.分析:由两个向量垂直的性质可得2x﹣4=0,由两个向量共线的性质可得﹣4﹣2y=0,由此求出x=2,y=﹣2,以及的坐标,从而求得||的值.解答:解:∵向量=(x,1),=(1,y),=(2,﹣4)且⊥,∥,则有2x﹣4=0,﹣4﹣2y=0,解得x=2,y=﹣2,故=(3,﹣1 ).故有||==,故选B.点评:本题主要考查两个向量共线的性质,两个向量垂直的性质,两个向量坐标形式的运算,属于基础题.7.(5分)如图,在△OAB中,P为线段AB上的一点,,且,则()A.B.C.D.考点:向量在几何中的应用;相等向量与相反向量.专题:计算题.分析:根据相等向量的定义及向量的运算法则:三角形法则求出,利用平面向量基本定理求出x,y的值解答:解:由题意,∵,∴,即,∴,即故选A.点评:本题以三角形为载体,考查向量的加法、减法的运算法则;利用运算法则将未知的向量用已知向量表示,是解题的关键.8.(5分)已知,为了得到g(x)=sin2x的图象,则只要将f(x)的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度考点:函数y=Asin(ωx+φ)的图象变换.专题:计算题;三角函数的图像与性质.分析:通过化简整理,可得g(x)=f(x﹣),由此结合函数图象平移的规律,即可得到本题的答案.解答:解:∵∴g(x)=sin2x==f(x﹣),∵函数y=f(x﹣)的图象是由函数y=f(x)的图象向右平移个单位而得∴为了得到g(x)=sin2x的图象,只要将f(x)的图象右平移个单位故选A点评:本题以三角函数的图象平移,考查了函数图象平移的公式和图象变换等知识,属于基础题.9.(5分)如图,某海上缉私小分队驾驶缉私艇以40km/h的速度由A处出发,沿北偏东60°方向进行海面巡逻,当航行半小时到达B处时,发现北偏西45°方向有一艘船C,若船C位于A的北偏东30°方向上,则缉私艇所在的B处与船C的距离是()km.A.5(+)B.5(﹣)C.10(﹣)D.10(+)考点:解三角形的实际应用.专题:应用题;解三角形.分析:由题意可得AB=20,∠BAC=30°,∠ABC=75°,由三角形内角和定理可得∠ACB=75°,由正弦定理求出BC的值.解答:解:由题意可得AB=20,∠BAC=30°,∠ABC=75°所以,∠ACB=75°,由正弦定理:,即BC==10(﹣)km,故选:C.点评:本题考查三角形内角和定理,正弦定理的应用,求出AB=20,∠BAC=30°,∠ABC=75°,是解题的关键.10.(5分)若函数f(x)满足f(x)+1=,当x∈[0,1]时,f(x)=x,若在区间(﹣1,1]上,方程f(x)﹣mx﹣2m=0有两个实数解,则实数m的取值范围是()A.0<m≤B.0<m<C.<m≤l D.<m<1考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:根据f(x)+1=,当x∈[0,1]时,f(x)=x,求出x∈(﹣1,0)时,f(x)的解析式,由在区间(﹣1,1]上,g(x)=f(x)﹣mx﹣m有两个零点,转化为两函数图象的交点,利用图象直接的结论.解答:解:∵f(x)+1=,当x∈[0,1]时,f(x)=x,∴x∈(﹣1,0)时,f(x)+1==,∴f(x)=﹣1,因为g(x)=f(x)﹣mx﹣2m有两个零点,所以y=f(x)与y=mx+2m的图象有两个交点,函数图象如图,由图得,当0<m≤时,两函数有两个交点故选:A.点评:此题是个中档题.本题考查了利用函数零点的存在性求变量的取值范围和代入法求函数解析式,体现了转化的思想,以及利用函数图象解决问题的能力,体现了数形结合的思想.也考查了学生创造性分析解决问题的能力.二、填空题(每小题5分,共25分)11.(5分)若sinα+cosα=,则sin2α的值是﹣.考点:二倍角的正弦.专题:计算题.分析:将已知的等式两边平方,利用同角三角函数间的基本关系及二倍角的正弦函数公式化简,即可求出sin2α的值.解答:解:把sinα+cosα=两边平方得:(sinα+cosα)2=,即sin2α+cos2α+2sinαcosα=1+sin2α=,解得:sin2α=﹣.故答案为:﹣点评:此题考查了同角三角函数间的基本关系,以及二倍角的正弦函数公式.将已知的等式两边平方是本题的突破点.12.(5分)若扇形的周长是8cm,面积4cm2,则扇形的圆心角为2rad.考点:弧长公式.专题:计算题.分析:设扇形的圆心角为α,半径为R,则根据弧长公式和面积公式有,故可求扇形的圆心角.解答:解:设扇形的圆心角为α,半径为R,则⇒.故答案为:2.点评:本题主要考察了弧长公式和面积公式的应用,属于基础题.13.(5分)已知函数(ω>0)在单调增加,在单调减少,则ω=.考点:y=Asin(ωx+φ)中参数的物理意义;正弦函数的单调性.专题:计算题;压轴题.分析:由题意函数在时取得最大值,求出ω的范围,根据单调性,确定ω的值.解答:解:由题意又ω>0,令k=0得.(由已知T>2π.如k>0,则ω≥2,T≤π与已知矛盾).点评:本题考查y=Asin(ωx+φ)中参数的物理意义,正弦函数的单调性,考查逻辑思维能力,是基础题.14.(5分)已知函数f(x)满足f(x+6)+f(x)=0,函数y=f(x﹣1)关于点(1,0)对称,f(2)=4,则f=﹣4.考点:抽象函数及其应用;函数的值.专题:计算题;函数的性质及应用.分析:由于函数f(x)满足f(x+6)+f(x)=0,可推得函数f(x)是以12为最小正周期的函数,即有f=f(﹣2),再由函数y=f(x﹣1)关于点(1,0)对称,可得f(x)图象关于原点对称,由f(2)=4即可得到答案.解答:解:由于函数f(x)满足f(x+6)+f(x)=0,则f(x+12)=﹣f(x+6)=f(x),则函数f(x)是以12为最小正周期的函数,则f=f(12×167+10)=f(10)=f(﹣2),由于函数y=f(x﹣1)关于点(1,0)对称,则将y=f(x﹣1)的图象左移1个单位,得到y=f(x)的图象,即有f(x)图象关于原点对称,由于f(2)=4,则f(﹣2)=﹣f(2)=﹣4.则f=﹣4.故答案为:﹣4.点评:本题考查抽象函数及运用,考查函数的周期性和对称性及运用,考查运算能力,属于中档题.15.(5分)设函数f(x)的定义域为D,若函数y=f(x)满足下列两个条件,则称y=f(x)在定义域D上是闭函数.①y=f(x)在D上是单调函数;②存在区间[a,b]⊆D,使f(x)在[a,b]上值域为[a,b].如果函数f(x)=+k为闭函数,则k的取值范围是(﹣1,].考点:函数单调性的性质.专题:计算题;函数的性质及应用.分析:若函数f(x)=+k为闭函数,则存在区间[a,b],在区间[a,b]上,函数f(x)的值域为[a,b],即,故a,b是方程x2﹣(2k+2)x+k2﹣1=0(x,x≥k)的两个不相等的实数根,由此能求出k的取值范围.解答:解:若函数f(x)=+k为闭函数,则存在区间[a,b],在区间[a,b]上,函数f(x)的值域为[a,b],即,∴a,b是方程x=+k的两个实数根,即a,b是方程x2﹣(2k+2)x+k2﹣1=0(x,x≥k)的两个不相等的实数根,当k时,解得,﹣1<k;当k>﹣时,解得k无解.综上,可得﹣1<k.故答案为:(﹣1,﹣]点评:本题考查函数的单调性及新定义型函数的理解,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.三、解答题(共75分)16.(15分)已知||=4,||=3,(2﹣3)•(2+)=61,(1)求的值;(2)求与的夹角θ;(3)求||的值.考点:平面向量数量积的运算.专题:平面向量及应用.分析:(1)由(2﹣3)•(2+)=61,利用向量的运算法则,计算化简即可.(2)利用向量夹角公式计算.(3)利用(2)的结论和数量积运算性质即可得出.解答:解:(1)由(2﹣3)•(2+)=61,得4﹣4﹣3=61将||=4,||=3,代入,整理得=﹣6(2)cosθ===﹣,又0≤θ≤π,所以θ=.(3)|+|===.点评:本题主要考查两个向量的数量积的定义,两个向量夹角的范围,根据三角函数的值求角,属于基础题.17.(10分)已知,,若,求:(1)f(x)的最小正周期及对称轴方程.(2)f(x)的单调递增区间.(3)当时,函数f(x)的值域.考点:平面向量数量积的运算;正弦函数的定义域和值域;正弦函数的单调性.专题:三角函数的图像与性质.分析:先由向量的运算结合三角函数公式化简为,(1)由公式易求得得周期和对称轴;(2)转化为函数y=的减区间;(3)由x的范围开始逐步求解范围,可得答案.解答:解:由题意可得:=…(4分)(1)由上可知:T==π…(5分)由2x=k解得:对称轴方程为…(7分)(2)f(x)增区间即为的减区间,由≤2x,解得f(x)的单调递增区间为…(10分)(3)∵∴∴∴值域为…(13分)点评:本题为三角函数和向量的综合应用,熟练利用公式是解决问题的关键,属中档题.18.(12分)在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,.(1)若△ABC的面积等于,求a,b;(2)若sinB=2sinA,求△ABC的面积.考点:解三角形;三角形中的几何计算.专题:计算题.分析:(1)由c及cosC的值,利用余弦定理列出关于a与b的关系式a2+b2﹣ab=4,再由已知三角形的面积及sinC的值,利用三角形的面积公式得出ab的值,与a2+b2﹣ab=4联立组成方程组,求出方程组的解即可求出a与b的值;(2)利用正弦定理化简sinB=2sinA,得到b=2a,与(1)得出的a2+b2﹣ab=4联立组成方程组,求出方程组的解得到a与b的值,再由sinC的值,利用三角形的面积公式即可求出三角形ABC的面积.解答:解:(1)∵c=2,cosC=,∴由余弦定理c2=a2+b2﹣2abcosC得:a2+b2﹣ab=4,又△ABC的面积等于,sinC=,∴,整理得:ab=4,(4分)联立方程组,解得a=2,b=2;(6分)(2)由正弦定理,把sinB=2sinA化为b=2a,(8分)联立方程组,解得:,,又sinC=,则△ABC的面积.(10分)点评:此题属于解三角形的题型,涉及的知识有:正弦、余弦定理,三角形的面积公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.19.(12分)某工厂有一批货物由海上从甲地运往乙地,已知轮船的最大航行速度为60海里/小时,甲地至乙地之间的海上航行距离为600海里,每小时的运输成本由燃料费和其他费用组成,轮船每小时的燃料费与轮船速度的平方成正比,比例系数为0.5,其余费用为每小时1250元.(Ⅰ)把全程运输成本y(元)表示为速度x(海里/小时)的函数;(Ⅱ)为使全程运输成本最小,轮船应以多大速度行驶?考点:函数最值的应用.专题:综合题;导数的综合应用.分析:(Ⅰ)利用轮船每小时的燃料费与轮船速度的平方成正比,比例系数为0.5,其余费用为每小时1250元,可求全程运输成本y(元)表示为速度x(海里/小时)的函数;(Ⅱ)求导数,确定函数的单调性,即可求出使全程运输成本最小,轮船的多大速度.解答:解:(Ⅰ)由题意得:,即:…(6分)(Ⅱ)由(Ⅰ)知,,令y'=0,解得x=50,或x=﹣50(舍去).…(8分)当0<x<50时,y'<0当50<x<60时,y'>0(均值不等式法同样给分)…(10分)因此,函数在x=50处取得极小值,也是最小值.故为使全程运输成本最小,轮船应以50海里/小时的速度行驶.…(12分)点评:本题考查函数最值的应用,考查导数知识的运用,确定函数模型是关键.20.(12分)已知函数f(x)=﹣(x+2)(x﹣m)(其中m>﹣2).g(x)=2x﹣2.(Ⅰ)若命题“log2g(x)≥1”是假命题,求x的取值范围;(Ⅱ)设命题p:∀x∈R,f(x)<0或g(x)<0;命题q:∃x∈(﹣1,0),f(x)g(x)<0.若p∧q是真命题,求m的取值范围.考点:复合命题的真假.专题:简易逻辑.分析:(I)由于命题“log2g(x)≥1”是假命题,可得log2g(x)<1,即,利用对数函数和指数函数的单调性即可得出x的取值范围;(II)由于p∧q是真命题,可得p与q都是真命题.由于当x>1时,g(x)>0,又p是真命题,可得f(x)<0.由f(1)<0,可得m<1.当﹣1<x<0时,g(x)<0.由于q是真命题,则∃x∈(﹣1,0),使得f(x)>0,利用f(﹣1)>0,可得m的取值范围.解答:解:(I)∵命题“log2g(x)≥1”是假命题,则log2g(x)<1,即,∴0<2x﹣2<2,解得1<x<2.∴x的取值范围是(1,2);(II)∵p∧q是真命题,∴p与q都是真命题.当x>1时,g(x)=2x﹣2>0,又p是真命题,则f(x)<0.f(1)=﹣(1+2)(1﹣m)<0,解得m<1.当﹣1<x<0时,g(x)=2x﹣2<0.∵q是真命题,则∃x∈(﹣1,0),使得f(x)>0,∴f(﹣1)=﹣(﹣1+2)(﹣1﹣m)>0,即m>﹣1.综上所述:﹣1<m<1.点评:本题综合考查了二次函数和对数函数的单调性、简易逻辑的有关知识,考查了推理能力和计算能力,属于难题.21.(14分)设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=,g(x)=f(x)+f′(x).(Ⅰ)求g(x)的单调区间和最小值;(Ⅱ)讨论g(x)与的大小关系;(Ⅲ)是否存在x0>0,使得|g(x)﹣g(x0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在请说明理由.考点:利用导数研究函数的单调性;指、对数不等式的解法.专题:计算题;综合题;压轴题;开放型;分类讨论.分析:(I)根据题意求出f(x)的解析式,代入g(x)=f(x)+f′(x).求出g(x),求导,令导数等于零,解方程,跟据g′(x),g(x)随x的变化情况即可求出函数的单调区间和最小值;(Ⅱ)构造函数h(x)=g(x),利用导数求该函数的最小值,从而求得g(x)与的大小关系;(Ⅲ)证法一:假设存在x0>0,使|g(x)﹣g(x0)|<成立,即对任意x>0,解此绝对值不等式,取时,得出矛盾;证法二假设存在x0>0,使|g(x)﹣g(x0)|成<立,转化为求函数的值域,得出矛盾.解答:解:(Ⅰ)由题设易知f(x)=lnx,g(x)=lnx+,∴g′(x)=,令g′(x)=0,得x=1,当x∈(0,1)时,g′(x)<0,故g(x)的单调递减区间是(0,1),当x∈(1,+∞)时,g′(x)>0,故g(x)的单调递增区间是(1,+∞),因此x=1是g(x)的唯一极值点,且为极小值点,从而是最小值点,∴最小值为g(1)=1;(Ⅱ)=﹣lnx+x,设h(x)=g(x)﹣=2lnx﹣x+,则h′(x)=,当x=1时,h(1)=0,即g(x)=,当x∈(0,1)∪(1,+∞)时,h′(x)<0,h′(1)=0,因此,h(x)在(0,+∞)内单调递减,当0<x<1,时,h(x)>h(1)=0,即g(x)>,当x>1,时,h(x)<h(1)=0,即g(x)<,(Ⅲ)满足条件的x0 不存在.证明如下:证法一假设存在x0>0,使|g(x)﹣g(x0)|<成立,即对任意x>0,有,(*)但对上述x0,取时,有Inx1=g(x0),这与(*)左边不等式矛盾,因此,不存在x0>0,使|g(x)﹣g(x0)|<成立.证法二假设存在x0>0,使|g(x)﹣g(x0)|成<立.由(Ⅰ)知,的最小值为g(x)=1.又>Inx,而x>1 时,Inx 的值域为(0,+∞),∴x≥1 时,g(x)的值域为[1,+∞),从而可取一个x1>1,使g(x1)≥g(x0)+1,即g(x1)﹣g(x0)≥1,故|g(x1)﹣g(x0)|≥1>,与假设矛盾.∴不存在x0>0,使|g(x)﹣g(x0)|<成立.点评:此题是个难题.考查利用导数研究函数的单调性和在闭区间上的最值问题,对方程f'(x)=0根是否在区间[0,1]内进行讨论,体现了分类讨论的思想方法,增加了题目的难度.其中问题(III)是一个开放性问题,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.。
北京市月坛中学2014-2015学年度高三第一学期数学(理)期中试题一、选择题(每小题4分,共40分)1.若集合{}{}|0,|3A x x B x x =>=<,则A B 等于( )A .{|0}x x <B .{|03}x x <<C .{|4}x x >D .R 2. 命题“R ∈∀x ,x x ≠2”的否定是( ) A .R ∈∀x ,x x =2B .R ∉∀x ,x x ≠2C .R ∈∃x ,x x =2D .R ∉∃x ,x x ≠23. 设a R ∈,则1a >是11a< 的( )A .充分条件B .必要条件C .充分必要条件D .既不充分也不必要条件 4.在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A .①和②B .③和①C . ④和③D .④和② 5.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12 D .14 6.已知函数||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=a ( ) A. 1 B. 2 C. 3 D. 1-7.已知平面向量(2,1)=-a ,(1,1)=b ,(5,1)=-c . 若()//k +a b c ,则实数k 的值为( )A .2B .12C .114D .114-班级 姓名 成绩8. 函数x x f xsin )21()(-=在区间[0,2]π上的零点个数为( )A.1B.2C.3D.4 9. 已知函数2()cos f x x x =-,则(0.5)f -,(0)f ,(0.6)f 的大小关系是A .(0)(0.5)(0.6)f f f <-<B . (0.5)(0.6)(0)f f f -<<C .(0)(0.6)(0.5)f f f <<-D . (0.5)(0)(0.6)f f f -<<10.定义一种新运算:,(),()b a b a b a a b ≥⎧⊗=⎨<⎩已知函数24()(1)l o g f x x x =+⊗,若函数()()g x f x k =-恰有两个零点,则k 的取值范围为A . (]1,2B . (1,2)C . (0,2)D . (0,1) 二、填空题(每小题5分,共30分)11. 若4sin ,tan 05θθ=->,则cos θ= .12. 在各项均为正数的等比数列{}n a 中,若2228log log 1a a +=,则37a a ⋅= .13.已知平面向量a ,b 满足2==a b ,(2)()=2⋅--a +b a b ,则a 与b 的夹角为 .14. 在ABC ∆中,1a =,2b =,1cos 4C =,则c = ;sin A = . 15.设函数⎩⎨⎧>≤-=.0,,0,)(2x x x x x f ,若4)(=αf ,则实数α= .16. 如图放置的边长为1的正方形P ABC 沿x 轴滚动。
2014-2015学年北京十四中高三(上)期中数学试卷(理科)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知集合S=R,A={x|x2﹣2x﹣3≤0},B={x||x﹣2|<2},那么集合∁R(A∩B)等于()A. {x|0<x≤3} B. {x|﹣1≤x<2} C.{x|x≤0,或x>3} D. {x|x<﹣1,或x≥2}考点:交、并、补集的混合运算.专题:计算题.分析:通过解二次不等式化简集合A,通过解绝对值不等式化简集合B,利用交集的定义求出两个集合的交集,再利用补集的定义求出补集.解答:解:A={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3}B={x||x﹣2|<2}={x|0<x<4}∴A∩B={x|0<x≤3}∴∁R(A∩B)={x|x≤0或x>3}故选C.点评:本题考查二次不等式的解法、绝对值不等式的解法、利用交集补集的定义求集合的交集补集.2.(5分)下列说法错误的是()A.“x>1”是“|x|>1”的充分不必要条件B.若p且q为假命题,则p、q均为假命题C.命题“若x2﹣4x+3=0,则x=3”的逆否命题是:“若x≠3,则x2﹣4x+3≠0”D.命题p:“∃x∈R,使得x2+x+1<0”,则¬p:“∀x∈R,均有x2+x+1≥0”考点:命题的真假判断与应用.专题:简易逻辑.分析: A,|x|>1⇒x>1或x<﹣1,可判断A;B,若p且q为假命题,则p、q至少有一个为假命题,可判断B;C,写出命题“若x2﹣4x+3=0,则x=3”的逆否命题,可判断C;D,写出命题p:“∃x∈R,使得x2+x+1<0”的否定,可判断D.解答:解:对于A,由于|x|>1⇒x>1或x<﹣1,故“x>1”是“|x|>1”的充分不必要条件,A正确;对于B,若p且q为假命题,则p、q至少有一个为假命题,故B错误;对于C,命题“若x2﹣4x+3=0,则x=3”的逆否命题是:“若x≠3,则x2﹣4x+3≠0”,故C 正确;对于A,命题p:“∃x∈R,使得x2+x+1<0”,则¬p:“∀x∈R,均有x2+x+1≥0”,故D 正确.综上所述,只有B错误,故选:B.点评:本题考查命题的真假判断与应用,考查对充分必要条件概念的理解与应用,考查复合命题的真假判断与“全称量词”与“存在量词”的应用,属于中档题.3.(5分)若向量、满足+=(2,﹣1),=(1,2),则向量与的夹角等于() A.135° B.120° C.60° D.45°考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:运用向量的坐标运算和向量的模的公式以及向量的数量积的坐标表示,结合向量的夹角公式,计算即可得到.解答:解:向量、满足+=(2,﹣1),=(1,2),则=(1,﹣3),=1﹣6=﹣5,||=,||=,即有cos<>===﹣,由于0°≤<>≤180°,则有向量与的夹角等于135°.故选A.点评:本题考查向量的数量积的定义和坐标表示,主要考查向量的夹角公式和夹角的求法,属于基础题.4.(5分)(2014秋•西城区校级期中)下列函数中,周期为1的奇函数是()A. y=1﹣2sin2πx B. y=sinπxcosπx C. y=tan x D. y=sin(2πx+)考点:三角函数的周期性及其求法;函数奇偶性的判断.专题:三角函数的图像与性质.分析:对A先根据二倍角公式化简为y=cos2πx为偶函数,排除;对于D验证不是奇函数可排除;对于C求周期不等于1排除;故可得答案.解答:解:A,y=1﹣2sin2πx=1﹣(1﹣cos2πx)=cos2πx,由于f(﹣x)=cos(﹣2πx)=cos2πx=f(x),故为偶函数,不符合;B,对于y=sinπxcosπx=sin2πx,为奇函数,且T==1,满足条件.C,由正切函数的周期公式可得T=2,不符合;D,对于函数y=sin (2πx+),f(﹣x)=sin(﹣2πx+)≠﹣sin(2πx+),不是奇函数,排除.故选:B.点评:本题主要考查三角函数的奇偶性和最小正周期的求法,一般先将函数化简为y=Asin (wx+ρ)的形式,再由最小正周期的求法T=、奇偶性的性质、单调性的判断解题,属于基础题.5.(5分)(2014秋•通化期中)若定义在R上的偶函数f(x)满足f(x+2)=f(x)且x∈[0,1]时,f(x)=x,则方程f(x)=log3|x|的零点个数是()A. 2个 B. 3个 C. 4个 D. 6个考点:抽象函数及其应用.专题:计算题;作图题;函数的性质及应用.分析:方程f(x)=log3|x|的零点个数即函数y=f(x)与函数y=log3|x|的交点的个数,作图得到答案.解答:解:方程f(x)=log3|x|的零点个数即函数y=f(x)与函数y=log3|x|的交点的个数,作函数y=f(x)与函数y=log3|x|的图象如下,则由图象可知,有四个不同的交点,故选C.点评:本题考查了方程的根与函数图象的交点的关系及函数图象的作法,属于中档题.6.(5分)(2015•遵义校级二模)设函数f(x)=x m+ax的导函数f′(x)=2x+1,则数列{}(n∈N*)的前n项和是()A. B. C. D.考点:数列的求和;导数的运算.专题:计算题.分析:函数f(x)=x m+ax的导函数f′(x)=2x+1,先求原函数的导数,两个导数进行比较即可求出m,a,然后利用裂项法求出的前n项和,即可.解答:解:f′(x)=mx m﹣1+a=2x+1,∴a=1,m=2,∴f(x)=x(x+1),==﹣,用裂项法求和得S n=.故选A点评:本题考查数列的求和运算,导数的运算法则,数列求和时注意裂项法的应用,是好题,常考题,基础题.7.(5分)已知△ABC中,∠A=30°,AB,BC分别是,的等差中项与等比中项,则△ABC的面积等于()A. B. C.或 D.或考点:正弦定理;等差数列的性质;等比数列的性质.专题:计算题;数形结合.分析:由题意,根据等差数列及等边数列的性质分别求出AB与BC的值,再由A的度数,求出sinA的值,利用正弦定理求出sinC的值,由C为三角形的内角,利用特殊角的三角函数值求出C的度数,根据A和C的度数,利用内角和定理求出B的度数,根据B的度数判断出三角形的形状为直角三角形或等腰三角形,分别求出三角形的面积即可.解答:解:∵AB,BC分别是,的等差中项与等比中项,∴AB=,BC=1,又A=30°,根据正弦定理=得:sinC=,∵C为三角形的内角,∴C=60°或120°,当C=60°时,由A=30°,得到B=90°,即三角形为直角三角形,则△ABC的面积为××1=;当C=120°时,由A=30°,得到B=30°,即三角形为等腰三角形,过C作出AB边上的高CD,交AB于点D,在Rt△ACD中,AC=BC=1,A=30°,∴CD=,则△ABC的面积为××=,综上,△ABC的面积为或.故选C点评:此题考查了等差数列、等比数列的性质,正弦定理以及特殊角的三角函数值,利用数形结合及分类讨论的思想,由C的度数有两解,得到三角形的形状有两种,故求出的三角形面积有两解,不要漏解.8.(5分)对于下列命题:①已知i是虚数单位,函数f(x)=在R上连续,则实数a=2.②五本书排成一排,若A、B、C三本书左右顺序一定(不一定相邻),那么不同排法有A33•A33③如图,⊙O中的弦AB与直径CD相交于点p,M为DC延长线上一点,MN为⊙O的切线,N为切点,若AP=8,PB=6,PD=4,MC=6,则MN的长为2④在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sinθ与ρcosθ=﹣1交点的极坐标为(,)⑤设n=4cosxdx,则二项式(x﹣)n的展开式的常数项为6其中假命题的序号是()A.②⑤ B.②③ C.② D.①④考点:命题的真假判断与应用.专题:坐标系和参数方程.分析:①利用•i=f(0),计算即可;②采用插空法,依次插入即可;③通过相交弦定理可得半径,利用勾股定理计算即可;④利用平方关系可得ρ=,代回原式可得θ=π,进而可得结论;⑤通过定积分的性质可得n=4,代入计算即可.解答:解:①•i==﹣1,f(0)=a0﹣a=1﹣a,∵函数f(x)=在R上连续,∴﹣1=1﹣a,即a=2,故正确;②采用插空法,当A、B、C三本书左右顺序一定时(不一定相邻),插入第4本书,有4中方法,再插入第5本书,有5中方法,∴不同排法有4×5=20种,故不正确;③由相交弦定理可得:CP===12,∴圆O的半径为:==8,∵MN为⊙O的切线,∴OM2=ON2+MN2,∴MN2=OM2﹣ON2=(OC+CM)2﹣ON2=(8+6)2﹣82=132,∴MN==2,故正确;④∵ρ=2sinθ,ρcosθ=﹣1,∴sinθ=,cosθ=﹣,∴sin2θ+cos2θ=()2+()2=1,整理得:,解得:ρ=,∴sinθ=,cosθ=﹣,又∵0≤θ<2π,∴θ=π,∴交点的极坐标为(,),故正确;⑤∵n=4cosxdx=4dsinx=4,∴(x﹣)4的展开式的常数项为=6,故正确;综上所述,只有②是假命题,故选:C.点评:本题是一道综合题,考查复数、排列组合、平面几何、极坐标、定积分与展开式等基础知识,注意解题方法的积累,属于中档题.二、填空题:(本大题每小题5分,满分30分)9.(5分)若sin(π﹣α)=,且α的终边过点P(x,2),则x= ;tan(π+α)= .考点:任意角的三角函数的定义.专题:计算题;三角函数的求值.分析:由sin(π﹣α)=,可得cosα=﹣,根据α的终边过点P(x,2),求出x,再求tan(π+α)=tanα=.解答:解:∵sin(π﹣α)=,∴cosα=﹣,∵α的终边过点P(x,2),∴=﹣,x<0,∴x=,∴tan(π+α)=tanα=,故答案为:,.点评:本题考查任意角的三角函数的定义,考查诱导公式,考查学生的计算能力,比较基础.10.(5分)已知数列{a n}是等差数列,其前n项和为S n,a4=,S4=12.则数列{a n}的通项公式a n= ﹣n ;n= 5 时,S n最大.考点:等差数列的前n项和;等差数列的通项公式.专题:等差数列与等比数列.分析:由题意易得公差d和首项的方程组,解方程组可得通项公式,可得{a n}的前5项均为正数,从第6项开始为负数,易得答案.解答:解:设等差数列{a n}的公差为d,则a4=a1+3d=,S4=4a1+d=12,解得a1=,d=﹣1∴通项公式a n=﹣n;令≤0可得n≥,∴等差数列{a n}的前5项均为正数,从第6项开始为负数,∴当n=5时,S n最大.故答案为:﹣n;5点评:本题考查等差数列的通项公式和求和公式,属基础题.11.(5分)函数y=Asinωxcosφ+Acosωxsinφ+2(A>0,ω>0,0<φ<2π)的图象如图,则ω= 3 ,φ= .考点:二倍角的正弦;由y=Asin(ωx+φ)的部分图象确定其解析式.专题:三角函数的图像与性质.分析:根据两角和的正弦公式化简解析式,由图象和周期公式求出ω的值,再把点(,2)代入解析式,根据正弦函数值求出φ的值.解答:解:由题意得,y=Asinωxcosφ+Acosωxsinφ+2=Asin(ωx+φ)+2,由图得,T==,得T=,∴ω=3,∵函数的图象过点(,2),∴Asin(ω×+φ)+2=2,则sin(ω×+φ)=0,∴3×+φ=kπ(k∈Z),解得φ=kπ﹣(k∈Z),∵0<φ<2π,∴φ=,故答案为:3;.点评:本题考查两角和的正弦公式,三角函数的周期公式,以及读图能力,属于中档题.12.(5分)(2015•天津模拟)函数y=log a(x+3)﹣1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则+的最小值为8 .考点:基本不等式.专题:计算题;压轴题.分析:由题意可得定点A(﹣2,﹣1),2m+n=1,把要求的式子化为 4++,利用基本不等式求得结果.解答:解:由题意可得定点A(﹣2,﹣1),又点A在直线mx+ny+1=0上,∴2m+n=1,则+=+=4++≥4+2=8,当且仅当时,等号成立,故答案为:8.点评:本题考查基本不等式的应用,函数图象过定点问题,把要求的式子化为 4++,是解题的关键.13.(5分)(2014•和平区四模)如图,在正方形ABCD中,已知AB=2,M为BC的中点,若N 为正方形内(含边界)任意一点,则的最大值是 6 .考点:平面向量数量积的运算.专题:计算题;压轴题;数形结合.分析:在平面内建立合适的坐标系,将向量的数量积用坐标表示,再利用线性规划解决问题.解答:解:以A为坐标原点,以AD方向为x轴正方向,以AB方向为y轴负方向建立坐标系,则=(1,﹣2)设N点坐标为(x,y),则=(x,y),则0≤x≤2,﹣2≤y≤0令Z==x﹣2y,将A,B,C,D四点坐标依次代入得:Z A=0,Z B=4,Z C=6,Z D=2故Z=的最大值为6故答案为:6点评:向量的主要功能就是数形结合,将几何问题转化为代数问题,但关键是建立合适的坐标系,将向量用坐标表示,再将数量积运算转化为方程或函数问题.14.(5分)已知函数(a是常数且a>0).对于下列命题:①函数f(x)的最小值是﹣1;②函数f(x)在R上是单调函数;③若f(x)>0在上恒成立,则a的取值范围是a>1;④对任意x1<0,x2<0且x1≠x2,恒有.其中正确命题的序号是①③④.考点:函数的最值及其几何意义;函数单调性的判断与证明;函数恒成立问题.专题:综合题.分析:①由图只需说明在点x=0处函数f(x)的最小值是﹣1;②只需说明函数f(x)在R上的单调性即可;③只需说明f(x)>0在上恒成立,则当x=时,函数取得最小值,从而求得a的取值范围是a>1;④已知函数在(﹣∝,0)上的图象在[0,+∞)上是下凹的,所以任取两点连线应在图象的上方,故D正确.解答:解:①由图只需说明在点x=0处函数f(x)的最小值是﹣1;故正确;②由图象说明函函数f(x)在R上不是单调函数;故错;③只需说明f(x)>0在上恒成立,则当x=时,函数取得最小值,求得a的取值范围是a>1;故正确;④已知函数函数在(﹣∝,0)上的图象在[0,+∞)上是下凹的,所以任取两点连线应在图象的上方,即f()<,故正确.故答案为:①③④.点评:利用函数的图象研究函数的单调区间以及根据函数的增减性得到函数的最值是常用的方法,解答本题的关键是图象法.三、解答题(本大题共6小题,共80分.)15.(13分)(2012•新泰市校级模拟)在数列{a n}中,a1=3,a n=﹣a n﹣1﹣2n+1(n≥2且n∈N*).(1)求a2,a3的值;(2)证明:数列{a n+n}是等比数列,并求{a n}的通项公式;(3)求数列{a n}的前n项和S n.考点:数列的求和;等比关系的确定.专题:等差数列与等比数列.分析:(1)根据a1=3,a n=﹣a n﹣1﹣2n+1(n≥2且n∈N*),对n进行赋值,可求出a2,a3的值;(2)直接利用等比数列的定义进行证明,然后利用等比数列性质求其通项公式即可;(3)先求出数列{a n}的通项公式,然后利用分组求和法进行求和即可.解答:解:(1)∵a1=3,a n=﹣a n﹣1﹣2n+1(n≥2,n∈N*),∴a2=﹣a1﹣4+1=﹣6,a3=﹣a2﹣6+1=1.(2)∵===﹣1,∴数列{a n+n}是首项为a1+1=4,公比为﹣1的等比数列.∴a n+n=4•(﹣1)n﹣1,即a n=4•(﹣1)n﹣1﹣n,∴{a n}的通项公式为a n=4•(﹣1)n﹣1﹣n(n∈N*).(3)∵{a n}的通项公式为a n=4•(﹣1)n﹣1﹣n(n∈N*),所以S n=a k=[4•(﹣1)k﹣1﹣k]=[4•(﹣1)k﹣1﹣=4×﹣=2[1﹣(﹣1)n]﹣(n2+n)=﹣﹣2(﹣1)n.点评:本题主要考查了数列的通项公式,以及等比数列的判定和数列的求和,同时考查了运算求解的能力,属于中档题.16.(13分)盒内含有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球,规定取出1个红色球得1分,取出一个白球得0分,取出一个黑球得﹣1分,现从盒内一次性取3个球.(1)求取出的三个球得分之和恰为1分的概率(2)设ξ为取出的3个球中白色球的个数,求ξ分布列和数学期望.考点:离散型随机变量及其分布列;离散型随机变量的期望与方差.专题:概率与统计.分析:(1)分别求出“取出1个红色球,2个白色球”、“取出2个红色球,1个黑色球”的概率,从而求出3个球得分之和恰为1分的概率;(2)ξ可能的取值为0,1,2,3,分别求出其概率,可得ξ分布列和数学期望.解答:解:(1)记“取出1个红色球,2个白色球”为事件A,“取出2个红色球,1个黑色球”为事件B,则P(A+B)=P(A)+P(B)=+=(2)ξ可能的取值为0,1,2,3.P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==ξ的分布列为:ξ 0 1 2 3Pξ的数学期望Eξ=0×+1×+2×+3×=1.点评:本题考查离散型随机变量的期望与方差,互斥事件与对立事件的定义,考查学生的计算能力,属于中档题.17.(13分)已知向量=(sinx,cosx),=(cosx,﹣2cosx),﹣.(Ⅰ)若∥,求x;(Ⅱ)设f(x)=•,求f(x)的单调减区间;(Ⅲ)函数f(x)经过平移后所得的图象对应的函数是否能成为奇函数?如果是,说出平移方案;如果否,说明理由.考点:平面向量数量积的运算;两角和与差的正弦函数;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:(I)利用两个向量共线的性质求得 tan2x=﹣1,再由﹣<x<求得x的值.(II)利用两个向量的数量积公式化简 f(x)的解析式为sin(2x﹣)﹣1,令2kπ+≤2x﹣≤2kπ+,k∈z,求得x的范围,即可求得函数的减区间.(Ⅲ)将函数f(x)的图象向上平移1个单位,再向左平移( k∈N)个单位,或向右平移( k∈N)个单位即可.解答:解:(I)若,则 sinx(sinx﹣2cosx)=cos2x,…(1分)即﹣sin2x=cos2x,∴tan2x=﹣1.﹣﹣﹣﹣﹣(2分)又∵﹣<x<,∴﹣<2 x<π,∴2x=﹣,或 2x=,即 x=﹣或 x=.﹣﹣﹣﹣﹣﹣﹣﹣(4分)(II)∴f(x)==2sinxcosx﹣2cos2x=sin2x﹣cos2x=sin(2x﹣)﹣1,…(7分)令 2kπ+≤2x﹣≤2kπ+,k∈z,解得kπ+≤x≤kπ+.又,∴f(x)的单调减区间时(﹣,﹣)、(,).…(11分)(Ⅲ)能,将函数f(x)的图象向上平移1个单位,再向左平移( k∈N)个单位,或向右平移( k∈N)个单位,即得函数 g(x)=sin2x的图象,而 g(x)为奇函数.…(13分)点评:本题主要考查两个向量共线的性质、两个向量的数量积公式,两角和差的正弦公式,函数y=Asin(ωx+∅)的图象变换规律,属于中档题.18.(13分)已知函数f(x)=ln(x+2)﹣x2+bx+c(Ⅰ)若函数f(x)在点x=1处的切线与直线3x+7y+2=0垂直,且f(﹣1)=0,求函数f(x)在区间[0,3]上的最小值;(Ⅱ)若f(x)在区间[0,1]上为单调减函数,求b的取值范围.考点:利用导数研究曲线上某点切线方程;函数单调性的性质.专题:综合题;导数的综合应用.分析:(Ⅰ)求导函数,利用函数f(x)在点x=1处的切线与直线3x+7y+2=0垂直,求得b 的值,利用f(﹣1)=0,求得c的值,可得函数解析式,再确定函数f(x)在区间[0,3]上的单调性,即可求得f(x)在区间[0,3]上的最小值;(Ⅱ)f(x)是减函数等价于≤0,即恒成立,求出右边函数的最小值,即可得到结论.解答:解:(Ⅰ)求导函数,可得∵函数f(x)在点x=1处的切线与直线3x+7y+2=0垂直,∴f′(1)=,∴,∴b=4又f(﹣1)=ln(2﹣1)﹣1﹣4+c=0,∴c=5∴f(x)=ln(x+2)﹣x2+4x﹣5,∴由=0得x=∴当x∈[0,]时,f′(x)≥0,f(x)单调递增当x∈[,3]时,f′(x)≤0,f(x)单调递减又f(0)=ln2+5,f(3)=ln5+8,所以f(x)在[0,3]最小值为ln2+5;(Ⅱ)因为f(x)是减函数,所以≤0,即恒成立令t=,则t′=2+,∴t=,在[0,1]上单调递增∴t min=﹣所以当b≤﹣时,f(x)在区间[0,1]上单调递减.点评:本题考查导数知识的运用,考查函数的最值,考查函数的单调性,考查分离参数法的运用,考查学生的计算能力,属于中档题.19.(14分)(2011•淮南一模)设函数f(x)=(1+x)2﹣2ln(1+x).(1)若在定义域内存在x0,而使得不等式f(x0)﹣m≤0能成立,求实数m的最小值;(2)若函数g(x)=f(x)﹣x2﹣x﹣a在区间(0,2]上恰有两个不同的零点,求实数a的取值范围.考点:利用导数研究函数的单调性.分析:(1)依题意得,求m的最小值,就是求f(x)的最小值,利用导数研究函数的单调性,可以得到f(x)在(﹣1,0)上为减函数,f(x)在(0,+∞)为增函数,即f(x)的最小值为f(0)=1,所以m的最小值为1(2)解出g(x)=x+1﹣2ln(x+1)﹣a,原题设即方程1+x﹣2ln(1+x)=a在区间[0,2]上恰有两个相异实根,令h(x)=1+x﹣2ln(1+x),这时只需解出h(x)在[0,2]上的值域,画出图象,可以得出a的取值范围.解答:解:(1)要使得不等式f(x0)﹣m≤0能成立,只需m≥f(x)max.求导得f′(x)=2(1+x)﹣2,定义域为(﹣1,+∞),∵当x∈(﹣1,0)时,f′(x)<0,∴函数f(x)在区间(﹣1,0)上是减函数;当x∈(0,+∞)时,f′(x)>0,∴函数f(x)在区间(0,+∞)上是增函数.∴f(x)mix=f(0)=1,∴m≥1.故实数m的最小值为1.(2)由f(x)=(1+x)2﹣2ln(1+x)得:g(x)=(1+x)2﹣2ln(1+x)﹣(x2+x+a)=x+1﹣2ln(x+1)﹣a原题设即方程1+x﹣2ln(1+x)=a在区间[0,2]上恰有两个相异实根.设h(x)=(1+x)﹣2ln(1+x).∵h′(x)=1﹣,列表如下:∵h(0)﹣h(2)=1﹣(3﹣2ln3)=2(ln3﹣1)>2(lne﹣1)=0,∴h(0)>h(2).从而有h(x)max=1,h(x)min=2﹣2ln2画出函数h(x)在区间[0,2]上的草图(如图)易知要使方程h(x)=a在区间(0,2]上恰有两个相异实根,只需:2﹣2ln2<a≤3﹣2ln3,即:a∈(2﹣2ln2,3﹣2ln3].点评:本题考查利用导数研究函数的单调性,本题比较新颖的地方是,求解(2)中的a的取值范围,经过等价变换,只需求h(x)=(1+x)﹣2ln(1+x)的值域,再根据图象,解出a的取值范围.在教学中,多加强训练和指导,以便掌握其要领.20.(14分)已知f(x)是定义在R上的函数,f(1)=1,且∀x1,x2∈R,总有f(x1+x2)=f (x1)+f(x2)+1恒成立.(Ⅰ)记g(x)=f(x)+1,求证:g(x)是奇函数;(Ⅱ)对∀n∈N*,有a n=,b n=f()+1,记c n=,求{c n}的前n项和S n;(Ⅲ)求F(n)=a n+1+a n+2+…+a2n(n≥2,n∈N)的最小值.考点:数列的应用;函数单调性的判断与证明;抽象函数及其应用;数列的求和.专题:函数的性质及应用;点列、递归数列与数学归纳法.分析:(1)令x1=x2=0得f(0)=﹣1,再令x1=x,x2=﹣x,得g(x)=f(x)+1是奇函数.(2)令x1=n,x2=1,得f(n)=2n﹣1,从而c n=,计算即可.(3)通过计算可知F(n+1)>F(n),又n≥2,从而得出结果.解答:解:(1)证明:f(x1+x2)=f(x1)+f(x2)+1,令x1=x2=0得f(0)=﹣1,再令x1=x,x2=﹣x,得f(0)=f(x)+f(﹣x)+1.故f(﹣x)+1=﹣[f(x)+1],从而g(x)=f(x)+1是奇函数;(2)令x1=n,x2=1,得f(n+1)=f(n)+2,故f(n)=2n﹣1,从而,,又c n=,S n=①=②由①﹣②得S n=;(3)∵F(n+1)﹣F(n)=a2n+1+a2n+2﹣a n+1=∴F(n+1)>F(n).又n≥2,故F(n)的最小值为.点评:本题考查抽象函数的奇偶性,以及数列的求和,需要一定的计算能力,属于中档题.。
北京七中2015届高三上学期期中数学试卷(文科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)设全集U=R,集合A={x|x2﹣2x<0},B={x|x>1},则集合A∩∁U B=()A.{x|1<x<2} B.{x|1≤x<2} C.{x|0<x<1} D.{x|0<x≤1} 2.(5分)设,则()A.c<b<a B.c<a<b C.a<b<c D.b<c<a3.(5分)设m、n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n②若m∥α,n∥α,则m∥n③若α⊥γ,β⊥γ,则α∥β④若α∥β,β∥γ,m⊥α,则m⊥γ其中正确命题的序号是()A.①和②B.②和③C.③和④D.①和④4.(5分)设等比数列{a n}的公比为q,前n项和为S n,且a1>0.若S2>2a3,则q的取值范围是()A.B.C.D.5.(5分)已知命题p:∀x∈R,sin(π﹣x)=sinx;命题q:α,β均是第一象限的角,且α>β,则sinα>sinβ.下列命题是真命题的是()A.p∧¬q B.¬p∧¬q C.¬p∧q D.p∧q6.(5分)在约束条件下,当3≤s≤5时,目标函数z=3x+2y的最大值的变化范围是()A.B.C.D.7.(5分)已知函数f(x)=(x+a)(x﹣b)(其中a>b>0)的图象如右图所示,则函数g (x)=a x﹣b的图象大致为()A.B.C. D.8.(5分)某企业为节能减排,用9万元购进一台新设备用于生产.第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元.设该设备使用了n(n∈N*)年后,年平均盈利额达到最大值(盈利额等于收入减去成本),则n等于()A.6 B.5 C.4 D.3二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.(5分)已知直线l1:x﹣3y+1=0,l2:2x+my﹣1=0.若l1∥l2,则实数m=.10.(5分)已知向量,满足=3,=2,a与b的夹角为60°,则a•b=.若(a﹣mb)⊥a,则实数m=.11.(5分)若直线l与圆x2+(y+1)2=4相交于A,B两点,且线段AB的中点坐标是(1,﹣2),则直线l的方程为.12.(5分)在△ABC中,C为钝角,,,则角C=°,sinB=.13.(5分)正三棱柱的左视图如图所示,则该正三棱柱的侧面积为.14.(5分)已知函数f(x)=,则f(f(x))=下面三个命题中,所有真命题的序号是.①函数f(x)是偶函数;②任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立;③存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)△ABC的内角A,B,C的对边a,b,c满足b2+c2﹣a2=bc.(1)求角A的大小;(2)设函数f(x)=sin cos+cos2,求f(B)的最大值.16.(13分)已知数列{a n}是等差数列,a1=2,且a2,a4,a8成等比数列.( I)求等差数列{a n}的通项公式;(II)如果数列{b n}是等比数列,且b1=a2,b2=a4,求{b n}的前n项和S n.17.(13分)如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M为CE的中点.(Ⅰ)求证:ED⊥BC;(Ⅱ)求证:平面BDE⊥平面BEC;(Ⅲ)判断直线BM和平面ADEF的位置关系,并加以证明.18.(13分)设a>0且a≠0,函数.(1)当a=2时,求曲线y=f(x)在(3,f(3))处切线的斜率;(2)求函数f(x)的极值点.19.(14分)已知椭圆C:+=1(a>b>0)的一个顶点为A(2,0),离心率为,直线y=k(x﹣1)与椭圆C交于不同的两点M,N,(Ⅰ)求椭圆C的方程;(Ⅱ)当△AMN的面积为时,求k的值.20.(14分)设正数数列{a n}的前n项之和为S n满足S n=()2(Ⅰ)求a1,a2,a3,a4;(Ⅱ)推测数列{a n}的通项公式,并进行证明;(Ⅲ)设b n=,数列{b n}的前n项和为T n,若T n<对一切n∈N*成立,求最小正整数m.北京七中2015届高三上学期期中数学试卷(文科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)设全集U=R,集合A={x|x2﹣2x<0},B={x|x>1},则集合A∩∁U B=()A.{x|1<x<2} B.{x|1≤x<2} C.{x|0<x<1} D.{x|0<x≤1}考点:交、并、补集的混合运算.专题:计算题.分析:解二次不等式我们可以求出集合A,进而由集合B,由补集的运算方法,我们可以求出C U B,结合集合交集的运算方法,我们易求出答案.解答:解:∵集合A={x|x2﹣2x<0}={x|0<x<2},又∵B={x|x>1},∴C U B={x|x≤1},则集合A∩C U B={x|0<x≤1}故选D点评:本题考查的知识点是集合交、并、补集的混合运算,其中根据已知条件求出集合A 和C U B,是解答本题的关键.2.(5分)设,则()A.c<b<a B.c<a<b C.a<b<c D.b<c<a考点:对数值大小的比较;三角函数值的符号.专题:计算题.分析:首先根据所给的三个数字,按照对数函数和指数函数的性质进行比较,第一个数字第一个数字30.5>30=1,第二个数字=log31<log3 2<log33=1,第三个数字求出结果小于0,最后总结最后结果.解答:解:∵在,三个数字中,第一个数字30.5>30=1,第二个数字0=log31<log3 2<log33=1第三个数字cos=﹣<0故选A.点评:本题考查对数值大小的比较,考查对数函数与指数函数对于底数不同时的单调性不同,比较三个数字与1,0 的关系,对于底数不同的对数或指数一般找一个中间量进行比较大小.3.(5分)设m、n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n②若m∥α,n∥α,则m∥n③若α⊥γ,β⊥γ,则α∥β④若α∥β,β∥γ,m⊥α,则m⊥γ其中正确命题的序号是()A.①和②B.②和③C.③和④D.①和④考点:平面的基本性质及推论.专题:计算题.分析:本题是一个研究空间中线面之间位置关系的问题,①选项由线面垂直与线面平行判断线线垂直,②选项根据平行于同一个平面的两条直线不一定平行进行判断,③选项由垂直于同一个平面的两个平面不一定平行进行判断,④选项由当一条直线垂直于两平行平面中的一个时,则它必垂直于另一个进行判断,从而得到正确选项.解答:解:①选项正确,因为由m⊥α,n∥α,可得出m⊥n;②选项不正确,因为在“m∥α,n∥α,则m∥n,”条件中缺少条件线m,线n在同一个平面,故不满足面面平行的性质定理,不能得m∥n;③选项不正确,因为当“α⊥γ,β⊥γ”,两平面α与β的关系可以是平行或者相交;④选项正确,因为当一条直线垂直于两平行平面中的一个时,则它必垂直于另一个.综上知①④选项正确故选D.点评:本题考查空间中直线与平面之间的位置关系,熟练掌握理解空间中线与线,线与面,面与面的位置关系及判定定理及较好的空间想像能力是准确解答本题的关键,本题是一个知识性较强的题,解题的难点是对空间中线面位置关系的正确感知.4.(5分)设等比数列{a n}的公比为q,前n项和为S n,且a1>0.若S2>2a3,则q的取值范围是()A.B.C.D.考点:等比数列的性质;数列的函数特性.专题:等差数列与等比数列.分析:由题意可得a1>0,且 a1+a1q>2a1q2,解一元二次不等式求得q的取值范围,注意q≠0这个隐藏条件.解答:解:由题意可得a1>0,且 a1+a1q>2a1q2,即 2q2﹣q﹣1<0,即(2q+1)(q﹣1)<0.解得﹣<q<1,又q≠0,∴q的取值范围是,故选B.点评:本题主要考查数列的函数特性,等比数列的通项公式,一元二次不等式的解法,注意q≠0这个隐藏条件,这是解题的易错点,属于中档题.5.(5分)已知命题p:∀x∈R,sin(π﹣x)=sinx;命题q:α,β均是第一象限的角,且α>β,则sinα>sinβ.下列命题是真命题的是()A.p∧¬q B.¬p∧¬q C.¬p∧q D.p∧q考点:全称命题;复合命题的真假.专题:三角函数的图像与性质.分析:我们先判断命题p:∀x∈R,sin(π﹣x)=sinx与命题q:α,β均是第一象限的角,且α>β,则sinα>sinβ的真假,进而根据复合命题的真值表,易判断四个结论的真假,最后得到结论.解答:解:由三角函数的诱导公式知sin(π﹣x)=sinx,得命题p:∀x∈R,sin(π﹣x)=sinx为真命题,又∵取α=420°,β=60°,α>β,但sinα>sinβ不成立,q为假命题,故非p是假命题,非q是真命题;所以A:p∧¬q是真命题,B:¬p∧¬q是假命题,C:¬p∧q假命题,D:命题p∧q是假命题,故选A.点评:本题考查的知识点是复合命题的真假,其中根据三角函数的诱导公式及三角函数的性质,判断命题p与命题q的真假是解答的关键.6.(5分)在约束条件下,当3≤s≤5时,目标函数z=3x+2y的最大值的变化范围是()A.B.C.D.考点:简单线性规划的应用.专题:计算题;压轴题.分析:先根据约束条件画出可行域,再利用几何意义求最值,只需求出直线z=3x+2y过区域内边界上的某些点时,z最大值即可.解答:解:由交点为A(2,0),B(4﹣s,2s﹣4),C(0,s),C'(0,4),当3≤s<4时可行域是四边形OABC,此时,7≤z≤8当4≤s≤5时可行域是△OAC'此时,z max=8故选D.点评:本题主要考查了简单的线性规划.由于线性规划的介入,借助于平面区域,可以研究函数的最值或最优解;借助于平面区域特性,我们还可以优化数学解题,借助于规划思想,巧妙应用平面区域,为我们的数学解题增添了活力.7.(5分)已知函数f(x)=(x+a)(x﹣b)(其中a>b>0)的图象如右图所示,则函数g (x)=a x﹣b的图象大致为()A.B.C. D.考点:函数的图象;指数函数的图像与性质.专题:函数的性质及应用.分析:根据二次函数的图象判断a,b的值,判断函数g(x)=a x﹣b的图象特征,推出结果即可.解答:解:∵二次函数的图象开口向上,∴a>b>0,∵二次函数的图象与y轴的交点在y轴的负半轴上,∴a>1>b>0,函数g(x)=a x﹣b的是增函数,与y轴的交点为(0,1﹣b).函数的图象如图:C.故选:C.点评:本题考查了二次函数的图象与系数的关系,注意:二次函数的图象开口向上决定a 的正负;二次函数的图象与y轴的交点的位置决定c的正负,指数函数的图象的特征,考查基本知识的应用.8.(5分)某企业为节能减排,用9万元购进一台新设备用于生产.第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元.设该设备使用了n(n∈N*)年后,年平均盈利额达到最大值(盈利额等于收入减去成本),则n等于()A.6 B.5 C.4 D.3考点:函数模型的选择与应用.专题:计算题;等差数列与等比数列.分析:根据题意建立等差数列模型,利用等差数列的性质以及求和公式即可得到结论.解答:解:设该设备第n年的营运费为a n,万元,则数列{a n}是以2为首项,2为公差的等差数列,则a n=2n,则该设备使用了n年的营运费用总和为T n=n2+n,设第n年的盈利总额为S n,则S n=11n﹣(n2+n)﹣9=﹣n2+10n﹣9=﹣(n﹣5)2+16,∴当n=5时,S n取得最大值16,故选:B.点评:本题主要考查与数列有关的应用问题,根据条件利用等差数列的通项公式求出盈利总额的表达式是解决本题的关键.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.(5分)已知直线l1:x﹣3y+1=0,l2:2x+my﹣1=0.若l1∥l2,则实数m=﹣6.考点:直线的一般式方程与直线的平行关系.专题:计算题.分析:求出已知直线的斜率,利用两条直线的平行斜率相等,求出m的值即可.解答:解:直线l1:x﹣3y+1=0的斜率为:,因为直线l1:x﹣3y+1=0,l2:2x+my﹣1=0.l1∥l2,所以=,解得m=﹣6;故答案为:﹣6.点评:不考查直线与直线平行的充要条件的应用,考查计算能力.10.(5分)已知向量,满足=3,=2,a与b的夹角为60°,则a•b=3.若(a﹣mb)⊥a,则实数m=3.考点:平面向量数量积的运算;数量积判断两个平面向量的垂直关系.专题:计算题.分析:(1)直接代入向量数量积公式易求答案.(2)根据向量垂直的充要条件构造方程,解方程即可求出未知参数m的值.解答:解:(1)∵||=3,||=2,与的夹角为60°∴•=3×2×=3又∵(﹣m)⊥∴2﹣m•=0即9﹣3m=0解m=3故答案为:3,3点评:本题考查的知识点为平面向量的数量积运算,⊥⇔x1•x2+y1y2=0.即:“两个向量若平行,交叉相乘差为0,两个向量若垂直,对应相乘和为0.11.(5分)若直线l与圆x2+(y+1)2=4相交于A,B两点,且线段AB的中点坐标是(1,﹣2),则直线l的方程为x﹣y﹣3=0.考点:直线与圆的位置关系.专题:直线与圆.分析:设圆心为C,AB的中点为D,由直线和圆相交的性质可得,直线l⊥CD,求出直线l的斜率为的值,再用点斜式求得直线l的方程.解答:解:设圆C:x2+(y+1)2=4的圆心C(0,﹣1),弦AB的中点坐标是D(1,﹣2),由直线和圆相交的性质可得直线l⊥CD,∴直线l的斜率为==1,故直线l的方程为 y+2=x﹣1,即 x﹣y﹣3=0,故答案为 x﹣y﹣3=0.点评:本题主要考查直线和圆相交的性质,用点斜式求直线的方程,属于中档题.12.(5分)在△ABC中,C为钝角,,,则角C=150°,sinB=.考点:正弦定理;同角三角函数间的基本关系;两角和与差的正弦函数.专题:计算题.分析:先根据正弦定理求得sinC的值,进而求得C,进而根据sinB=sin(A+C)利用两角和公式求得答案.解答:解:由正弦定理可知=∴sinC=sinA=∵C为钝角,∴C=150°cosA==∴sinB=sin(A+C)=﹣×+×=故答案为150°,点评:本题主要考查了正弦定理,同角三角函数基本关系的应用,和利用两角和公式化简求值.考查了学生分析问题和基本的运算能力.13.(5分)正三棱柱的左视图如图所示,则该正三棱柱的侧面积为12.考点:简单空间图形的三视图.专题:计算题;空间位置关系与距离.分析:由题意,正三棱柱的底面边长为2,即可求出该正三棱柱的侧面积.解答:解:由题意,正三棱柱的底面边长为2,所以该正三棱柱的侧面积为2×2×3=12.故答案为:12.点评:本题考查求正三棱柱的侧面积,考查学生的计算能力,比较基础.14.(5分)已知函数f(x)=,则f(f(x))=1下面三个命题中,所有真命题的序号是①②③.①函数f(x)是偶函数;②任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立;③存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.考点:命题的真假判断与应用;函数的值.专题:计算题;压轴题.分析:根据函数的对应法则,可得不管x是有理数还是无理数,均有f(f(x))=1.根据函数奇偶性的定义,可得f(x)是偶函数,①正确;根据函数的表达式,结合有理数和无理数的性质,得②正确;取x1=﹣,x2=0,x3=,可得A(,0)、B(0,1)、C(﹣,0)三点恰好构成等边三角形,得③正确.解答:解:∵当x为有理数时,f(x)=1;当x为无理数时,f(x)=0∴当x为有理数时,ff((x))=f(1)=1;当x为无理数时,ff((x))=f(0)=1即不管x是有理数还是无理数,均有f(f(x))=1接下来判断三个命题的真假对于①,因为有理数的相反数还是有理数,无理数的相反数还是无理数,所以对任意x∈R,都有f(﹣x)=f(x),故①正确;对于②,若x是有理数,则x+T也是有理数;若x是无理数,则x+T也是无理数∴根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立,故②正确;对于③,取x1=﹣,x2=0,x3=,可得f(x1)=0,f(x2)=1,f(x3)=0∴A(,0),B(0,1),C(﹣,0),恰好△ABC为等边三角形,故③正确.故答案为:1 ①②③点评:本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于基础题.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)△ABC的内角A,B,C的对边a,b,c满足b2+c2﹣a2=bc.(1)求角A的大小;(2)设函数f(x)=sin cos+cos2,求f(B)的最大值.考点:三角函数的最值;余弦定理.专题:计算题.分析:(Ⅰ)观察已知,自然想到余弦定理,然后求角A的大小;(Ⅱ)通过函数f(x)=,化为一个解答一个三角函数的形式,根据A的值确定B是范围,结合函数表达式,求f(B)的最大值.解答:解:(Ⅰ)在△ABC中,因为b2+c2﹣a2=bc,由余弦定理a2=b2+c2﹣2bccosA可得cosA=.(余弦定理或公式必须有一个,否则扣1分)(3分)∵0<A<π(或写成A是三角形内角)(4分)∴A=.(5分)(Ⅱ)函数f(x)==(7分)=sin(x+)+,(9分)∵A=∴B∈(0,)∴(没讨论,扣1分)(10分)∴当,即B=时,f(B)有最大值是.(13分)点评:本题是基础题,考查三角形中的基本计算问题,考查余弦定理的应用,注意B的范围是确定函数最值的关键,也是易错点.16.(13分)已知数列{a n}是等差数列,a1=2,且a2,a4,a8成等比数列.( I)求等差数列{a n}的通项公式;(II)如果数列{b n}是等比数列,且b1=a2,b2=a4,求{b n}的前n项和S n.考点:等差数列与等比数列的综合;等比数列的前n项和.专题:综合题.分析:(I)已知数列{a n}是等差数列,设出公差d,又a1=2,由a2,a4,a8成等比数列得到关于d的一元二次方程,求出d有两解,分别就两个d求出两个通项公式;(II)由(I)可得a2,a4,有两组解,又b1=a2,b2=a4,可得两组b1,b2,又知数列{b n}是等比数列,可求出两个公比q,选择含有首项和公比的等比数列的前n项和公式,就两种情况分别求出即可.解答:解:(I)因为数列{a n}是等差数列,设其公差为d,a1=2,则a2=2+d,a4=2+3d,a8=2+7d.由a2,a4,a8成等比数列,得a42=a2a8,即(2+3d)2=(2+d)(2+7d)解得d=0或d=2,所以a n=2或a n=2n.(II)①当a n=2时,b1=a2=2,b2=a4=2,公比q=1,{b n}的前n项和S n=nb1=2n;②当a n=2n时,b1=a2=4,b2=a4=8,公比q=2,{b n}的前n项和.点评:本题主要考查等差数列的通项公式和等比数列的前n项和公式,已知数列为等差数列,求通项公式,求首项和公差即可,本题公差有两个,所以有两个通项公式;求等比数列的前n项和时,由已知准确选择公式.17.(13分)如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M为CE的中点.(Ⅰ)求证:ED⊥BC;(Ⅱ)求证:平面BDE⊥平面BEC;(Ⅲ)判断直线BM和平面ADEF的位置关系,并加以证明.考点:平面与平面垂直的判定;空间中直线与直线之间的位置关系.专题:空间位置关系与距离.分析:(Ⅰ)根据线面垂直的性质定理证明ED⊥平面ABCD即可;(Ⅱ)根据面面垂直的判定定理即可证明平面BDE⊥平面BEC;(Ⅲ)根据线面平行的判定定理进行证明即可.解答:证明:(Ⅰ)∵ADEF为正方形,∴ED⊥AD.…(1分)又∵平面ADEF⊥平面ABCD,且平面ADEF∩平面ABCD=AD.又∵ED⊂平面ADEF,∴ED⊥平面ABCD.…(2分)又∵BC⊂平面ABCD∴ED⊥BC.…(3分)(Ⅱ)在直角梯形ABCD中,AB=AD=2,CD=4,可得.…(4分)在△BCD中,,∴BC⊥BD.…(5分)又∵ED∩BD=D∴BC⊥平面BDE.…(6分)又∵BC⊂平面BCE,∴平面BDE⊥平面BEC.…(7分)( III)直线BM∥平面ADEF…8 分取DE中点N,连结MN,AN.在△EDC中,M,N分别为EC,ED的中点,∴MN∥CD,且.∵AB∥CD,,∴MN∥AB,且MN=AB.∴四边形ABMN为平行四边形.…11 分∴BM∥AN.…12 分又∵AN⊂平面ADEF,且BM⊄平面ADEF,∴BM∥平面ADEF.…13分.点评:本题主要考查空间直线和平面之间平行和垂直的判定,利用相应的判定定理是解决本题的关键.18.(13分)设a>0且a≠0,函数.(1)当a=2时,求曲线y=f(x)在(3,f(3))处切线的斜率;(2)求函数f(x)的极值点.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的极值.专题:综合题.分析:(1)由已知中函数,根据a=2,我们易求出f(3)及f′(3)的值,代入即可得到切线的斜率k=f′(3).(2)由已知我们易求出函数的导函数,令导函数值为0,我们则求出导函数的零点,根据m >0,我们可将函数的定义域分成若干个区间,分别在每个区间上讨论导函数的符号,即可得到函数函数f(x)的极值点.解答:解:(1)由已知x>0(2分)当a=2时,(4分)所以,曲线y=f(x)在(3,f(3))处切线的斜率为,(6分)(2)(8分)由f'(x)=0得x=1或x=a,(9分)①当0<a<1时,当x∈(0,a)时,f'(x)>0,函数f(x)单调递增;当x∈(a,1)时,f'(x)<0,函数f(x)单调递减;当x∈(1,+∞)时,f'(x)>0,函数f(x)单调递增.此时x=a是f(x)的极大值点,x=1是f(x)的极小值点(10分)②当a>1时,当x∈(0,1)时,f'(x)>0,函数f(x)单调递增;当x∈(a,1)时,f'(x)<0,函数f(x)单调递减;当x∈(a,+∞)时,f'(x)>0,函数f(x)单调递增此时x=1是f(x)的极大值点,x=a是f(x)的极小值点(13分)综上,当0<a<1时,x=a是f(x)的极大值点,x=1是f(x)的极小值点;当a=1时,f(x)没有极值点;当a>1时,x=1是f(x)的极大值点,x=a是f(x)的极小值点点评:本题考查的知识点是利用导数研究函数的单调性,利用导数研究曲线上某点切线方程,其中根据已知函数的解析式求出导函数的解析式是解答本题的关键,还考查利用导函数来研究函数的极值.在利用导函数来研究函数的极值时,分三步①求导函数,②求导函数为0的根,③判断根左右两侧的符号,若左正右负,原函数取极大值;若左负右正,原函数取极小值.19.(14分)已知椭圆C:+=1(a>b>0)的一个顶点为A(2,0),离心率为,直线y=k(x﹣1)与椭圆C交于不同的两点M,N,(Ⅰ)求椭圆C的方程;(Ⅱ)当△AMN的面积为时,求k的值.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)根据椭圆一个顶点为A (2,0),离心率为,可建立方程组,从而可求椭圆C的方程;(Ⅱ)直线y=k(x﹣1)与椭圆C联立,消元可得(1+2k2)x2﹣4k2x+2k2﹣4=0,从而可求|MN|,A(2,0)到直线y=k(x﹣1)的距离,利用△AMN的面积为,可求k的值.解答:解:(Ⅰ)∵椭圆一个顶点为A (2,0),离心率为,∴∴b=∴椭圆C的方程为;(Ⅱ)直线y=k(x﹣1)与椭圆C联立,消元可得(1+2k2)x2﹣4k2x+2k2﹣4=0设M(x1,y1),N(x2,y2),则x1+x2=,∴|MN|==∵A(2,0)到直线y=k(x﹣1)的距离为∴△AMN的面积S=∵△AMN的面积为,∴∴k=±1.点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查三角形面积的计算,解题的关键是正确求出|MN|.20.(14分)设正数数列{a n}的前n项之和为S n满足S n=()2(Ⅰ)求a1,a2,a3,a4;(Ⅱ)推测数列{a n}的通项公式,并进行证明;(Ⅲ)设b n=,数列{b n}的前n项和为T n,若T n<对一切n∈N*成立,求最小正整数m.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(Ⅰ)由S n=()2,利用递推思想能求出a1,a2,a3,a4.(Ⅱ)猜测a n=2n﹣1,a n=S n﹣S n﹣1=﹣,从而能证明a n=2n﹣1.(Ⅲ),由此利用裂项求和法能求出最小正整数m=10.解答:(本小题满分14分)解:(Ⅰ)∵S n=()2,∴a1=S1=()2,由a n>0,解得a1=1,,由a n>0,解得a2=3,,由a n>0,解得a3=5,,由a n>0,解得a4=7.…(3分)(Ⅱ)猜测a n=2n﹣1…(4分)证明:S n=,S n﹣1=,a n=S n﹣S n﹣1=﹣(n≥2)…(6分)2(a n+a n﹣1)=(a n+a n﹣1)(a n﹣a n﹣1),∴a n﹣a n﹣1=2,∴a n=2n﹣1(n≥2)…(8分)a1=1满足上式,∴a n=2n﹣1.…(9分)(Ⅲ)…(10分)T n=(1﹣)=(1﹣)<,…(12分)若对一切n∈N*成立,则需,∴最小正整数m=10.…(14分)点评:本题考查数列的前4项的求法,考查数列的通项公式的铺想及证明,考查满足条件的最小正整数的求法,解题时要认真审题,注意错位相减法的合理运用.。