10.矿山压力及其控制(第十章)
- 格式:ppt
- 大小:470.50 KB
- 文档页数:17
一`名词解释1矿山压力:由于在地下煤岩中进行采掘活动而在井巷、硐室及回采工作面周围煤、岩体中和其中支护物上所引起的力。
2矿压显现:由于矿山压力作用,使围岩、煤体和各种人工支撑物产生的种种力学现象,统称为“矿山压力显现”。
3矿山压力控制:所有人为地调节、改变和利用矿山压力作用的各种措施,叫做矿山压力控制(简称为“矿压控制”)4伪 顶:在煤层与直接顶之间有时存在厚度小于0.3至0.5m 极易垮落的软弱岩层。
5直接顶:直接位于煤层上方的一层或几层性质相近的岩层称为直接顶。
6老 顶:位于直接顶上方厚而坚硬的岩层。
7老顶初次来压步距:由开切眼到初次来压时工作面推进的距离。
8 老顶的周期来压步距;两次来压期间工作面推进的距离。
9沿空掘巷:在上一区段工作面运输平巷废弃后,待采空区上覆岩层移动基本稳定后,沿被废弃的巷道边缘,掘进下一工作面的区段回风平巷称为沿空掘巷。
10沿空留巷:在上区段工作面采过后,通过加强支护或采用其他有效方法,将上区段工作面运输平巷保留下来,作为下区段工作面的回采时的回风平巷称为沿空留巷。
11端面破碎度:支架前梁端部到煤壁间顶板破碎的程度。
12冲击地压:也称岩爆,发生在煤矿中一般叫冲击地压,发生在岩层中叫岩爆。
它是一种岩体中聚积的弹性变形势能在一定条件下的突然猛烈释放,导致岩石爆裂并弹射出来的现象。
二、问答题1、绘制侧压系数λ=0,71,31,21,1时圆孔巷道周围的应力分布图,并叙 述应力分布的特征。
特征: 1)圆孔周围应力集中是局部的,应力集中程度随远离孔而减弱,并趋于原始应力; 2)圆孔周边应力集中系数随围压增大而有所减弱; 3)当λ<1/3时,沿最大主应力方向,孔周边一定范围内存在切向拉应力;当λ≥1/3时,围岩周边不产生切向拉应力; 4)当λ=0时,沿最大主应力方向,孔周边一定范围内存在径向拉应力。
2试述原岩应力场的概念及主要组成部分。
天然存在于原岩内而与人为因素无关的应力场称为原岩应力场,由地心引力引起的应力场称为自重应力场。
①矿山压力:由于在地下煤岩中进行采掘活动而在井巷、硐室及回采工作面周围煤、岩体中和其中支护物上所引起的力。
②矿压显现:由于矿山压力作用,使围岩、煤体和各种人工支撑物产生的种种力学现象,统称为“矿山压力显现”。
③矿山压力控制:所有人为地调节、改变和利用矿山压力作用的各种措施,叫做矿山压力控制(简称为“矿压控制”)矿山岩石力学特点:①采矿工程作业地点深,使岩石力学复杂。
②人工支护服务年限不长,计算精度及安全系数不高。
③必须考虑到转移地点难以预见的复杂地质变化。
第一章岩石:矿物或岩屑在地质作用下按一定规律聚集形成的自然物体矿物:存在地壳中的具有一定化学成分和物理性质的自然元素和化合物。
结构:组成岩石的物质成分、颗粒大小和形状以及其相互结合的情况。
(结晶、胶结)构造:组成成分的空间分布及其相互间排列关系容重——岩石单位体积(含孔隙体积)的重力,kN/m3天然容重——天然含水状态下,γ干容重———105~110℃烘干24小时(至恒重), γd饱和容重——岩石孔隙吸水饱和(水浸48小时)状态下, γw比重——岩石固体部分的重量和4℃同体积纯水重量的比值(岩石的相对密度)孔隙率n——岩石中各类孔隙总体积占岩石总体积的百分比。
孔隙比e——岩石中各类孔隙总体积与岩石实体体积之比碎胀系数——岩石破碎后处于松散状态下的体积与岩石破碎前处于整体状态下的体积之比。
软化系数——饱水岩样抗压强度与自然风干岩样抗压强度的比值。
泊松比μ——岩石横向应变与纵向应变的比值扩容现象——岩石破坏前,因微裂隙产生及内部小块体相对滑移,导致体积扩大的现象岩石流变性——岩石在长期静载荷作用下应力应变随时间加长而变化的性质,包括蠕变、弹性后效和松弛等现象。
蠕变——固体材料在不变载荷的作用下,其变形随时间的增长而缓慢增加的现象。
单轴抗压强度——岩石在单轴压缩下,破坏前所能承受的最大压应力岩石强度理论——研究岩石在复杂应力状态下的破坏原因、规律及其强度条件的理论,通常称之为岩石的强度理论。
目录第0章绪论 (1)第1章矿山压力与矿山压力显现 (6)第2章采场上覆岩层运动和发展的基本规律 (7)第3章采场围岩支承压力及矿压显现与上覆岩层运动间的关系 (10)第4章回采工作面顶板控制设计 (14)第5章综采放顶煤采场矿压控制 (16)第6章矿柱支护采矿法的岩体控制 (20)第7章回采巷道矿压理论 (21)第8章冲击地压及其监测 (35)矿山压力与压力控制习题第0章绪论1、顶板事故频繁发生的基本原因是什么?答:顶板事故频繁发生的基本原因是:(1)没有很好地研究和掌握各个具体煤层需要控制的岩层范围及其运动的规律(包括运动发生的时间和条件等),顶板控制设计缺少基础;2)没有深入地研究和掌握各种类型支架的特性,特别是在生产现场所能达到的实际支撑能力。
没有解决好针对具体煤层条件选好和用好支护手段方面的问题;3)没有更好地揭示支架与顶板运动间的关系,达到正确合理的选择控制方案。
2、矿山压力与岩层控制研究的主要任务是什么?答、矿山压力与岩层控制研究的主要任务为:(1)研究随采场推进在其周围煤层及岩层中重新分布的应力(包括应力大小及方向等)及其发展变化的规律。
该应力的存在和变化是煤及岩层变形、破坏和位移的根源,也是采场及周围巷道支架上压力显现的条件。
搞清分布在煤层及各个岩层上的应力状况,揭示它们随采场推进及岩层运动而变化的规律,是采场矿山压力研究的重点。
(2)研究采场支架上显现的压力及其控制方法。
包括压力的来源、压力大小及与上覆岩层运动间的关系、正确的控制设计方法等。
(3)研究在采场周围不同部位开掘和维护的巷道的矿山压力显现及其控制办法。
包括不同时间开掘的巷道压力的来源、巷道支架上显现的压力大小及其影响因素、以及支架与围岩运动间的关系等。
(4)控制采动岩层活动的主要因素分析。
从十分复杂的采动岩层活动中建立采动岩层的结构力学模型,从而展开对采场顶板矿压、采场突水、岩层移动及地表沉陷规律等进行系统描述。
(5)深部开采时采场支承压力分布、岩层结构及运动特点、围岩大变形的控制机制等。
矿压管理规章制度最新第一章总则第一条为了保障矿井安全生产,预防和减轻矿压灾害,维护矿工健康和生命安全,提高矿山生产效率,根据《矿山安全法》等相关法律法规,制定本规章制度。
第二条矿压管理规章制度适用于煤矿、金属矿山等各类矿山的矿压管理工作,包括矿井地质勘探、设计、开拓、开采、支护、通风、水文地质工作等环节。
第三条矿山企业应当建立矿压管理工作组织机构,明确职责分工,配备专业化的矿压管理人员,并制定矿压管理相关制度和标准。
第四条矿山企业应当加强对矿工的矿压安全教育培训,提高矿工的矿压安全意识和应急处置能力。
第五条矿山企业应当建立矿压监测系统,定期开展矿压监测工作,及时掌握矿山地质构造、岩层应力、煤层气体等信息,预防矿压灾害发生。
第六条矿山企业应当建立矿压应急预案,明确矿压灾害的预警和处置程序,及时组织应急救援,保障矿工生命安全。
第七条矿山企业应当定期进行矿压安全检查,发现问题及时整改,确保矿山生产安全。
第八条矿山企业应当建立矿压事故报告和处理制度,对发生的矿压事故进行调查及时报告相关部门。
第二章矿山地质勘探第九条矿山企业应当加强矿山地质勘探工作,全面了解矿山地质构造、岩层应力等信息,为矿山设计和开采提供科学依据。
第十条矿山企业应当严格执行矿山地质勘探规范,确保勘探数据的真实可靠。
第十一条矿山企业应当根据矿山地质勘探结果,制定合理的矿山设计方案,避免矿压灾害的发生。
第十二条矿山企业应当建立矿山地质勘探档案,妥善保存相关数据资料,以备查阅。
第三章矿山设计第十三条矿山企业应当根据矿山地质条件,科学设计矿山采矿方法和工艺流程,合理布置掘进工作面,防止矿压灾害的发生。
第十四条矿山设计应当符合国家矿山安全规范的要求,确保矿山生产安全。
第十五条矿山设计应当考虑矿山支护、通风、排水等设施的设置,保障矿山生产正常运行。
第十六条矿山设计部门应当与矿压管理部门密切合作,共同保障矿山安全生产。
第四章矿山开拓第十七条矿山企业应当根据矿山设计方案,科学进行矿山开拓工作,按照规定设置掘进工作面和采矿巷道。
矿山压力及其控制复习重点1、矿山压力:由于矿山开采活动的影响,在巷硐周围岩体中形成的和作用在巷硐支护物上的力称为矿山压力。
2、矿山压力显现:由于矿山压力作用使巷硐周围岩体和支护物产生的种种力学现象,称为矿山压力显现。
3、矿山压力控制:所有减轻、调节、改变和利用矿山压力作用的各种方法均叫做矿山压力控制。
4、原岩应力:未受开采影响的岩体内,由于岩体自重和构造运动等原因引起的应力。
5、弹性变形能:岩体受外力作用而产生弹性变形时,在岩体内部所储存的能量。
6、支承压力:在岩体内开掘巷道后,巷道围岩必然出现应力重新分布,一般将巷道两侧改变后的切向应力增高部分称为支承压力。
7、构造应力及其特点:构造应力是由于地壳构造运动在岩体中引起的应力,可分为现代构造应力和地质构造残余应力。
构造应力以水平力为主,具有明显区域性和方向性,其特点为①一般情况下地壳运动以水平力为主,构造应力主要是水平应力,而且地壳总的运动趋势是相互挤压,所以水平应力以压应力占绝对优势;②构造应力分布不均匀,在地质构造变化比较剧烈的地区最大应力的大小和方向往往有很大变化;③岩体中的构造应力具有明显的方向性,最大和最小水平应力值相差较大;④构造应力在坚硬岩层中出现比较普遍,软岩中很少。
8、圆孔在双向等压应力场中周围应力分布的基本规律:①在双向等压应力场中,圆孔周边全处于压缩应力状态;②应力大小与弹性常数E、μ无关;③6t、6r的分布和角度无关,皆为主应力,即切向和径向平面均为主平面;④双向等压应力场中孔周边的切身应力为最大应力,与孔径大小无关,6t=2rH超过周边围岩的弹性极限时,围岩进入塑性状态;⑤其他各点的应力大小则与孔径有关;⑥在双向等压应力场中圆孔周围任意点的切向应力与径向应力和为常数。
9、采场压力分区:减压区、增压区、稳压区、极限平衡区、弹性区。
10、关键层:将对采场上覆岩层局部或至地表的全部岩层活动起控制作用的岩层称为关键层。
11、充分采动:当采空区尺寸相当大时,地表最大下沉值达到该地质条件下应有的最大值,此时采动称为最大采动。
课程编号:012102《矿山压力及岩层控制》(Ground Pressure and Strata Control)课程教学大纲48学时 3学分一、课程的性质、目的及任务《矿山压力与岩层控制》课程是采矿工程专业必修的专业核心课程和主干课程。
该课程全面反映了我国矿山压力与岩层控制研究方面所取得的科研成果和生产实践经验,适当介绍了可借鉴的国外相关理论和技术。
本课程的任务是使学生掌握:煤矿回采工作面和采区巷道矿山压力及其控制的基本理论和基础知识,采掘空间周围岩体内的应力重新分布规律,回采工作面围岩结构及其移动、破坏规律,支架-围岩相互作用关系以及矿山压力的控制方法等。
通过课程学习,使学生能够针对矿山生产地质条件,合理布置巷道和回采工作面,合理设计回采工作面顶板和巷道围岩的控制方法,掌握防治顶板事故和冲击地压预测、预防技术。
了解矿山压力研究的基本方法,具备分析和解决矿山压力问题的能力。
二、适用专业采矿工程。
三、先修课程材料力学、岩石力学。
四、课程的基本要求1.掌握矿山压力、矿山压力显现、矿山压力控制等基本概念,了解研究矿山压力的目的、意义。
2.掌握开采空间围岩应力重新分布规律,原岩应力、构造应力、支承压力、极限平衡状态、超前支承压力、残余支承压力等概念,岩体内的弹性变形能。
3.掌握回采工作面及其采空区上覆岩层所形成的“竖三带”与“横三区”;掌握直接顶的稳定性,老顶岩层“梁”与“板”模型,老顶岩层破断块体形成的“砌体梁”结构及其稳定性;了解“关键层”理论、采场岩层移动与控制以及底板岩层破坏规律。
4.掌握回采工作面老顶初次来压、周期来压及其来压步距;掌握矿山压力显现的影响因素,顶板压力的构成及其估算,老顶来压预报方法。
5.掌握直接顶分类与老顶分级。
掌握工作面支架与围岩相互作用关系,工作面支架的基本类型和性能,支架合理工作阻力的构成及其估算;支撑式、掩护式、支撑掩护式支架的特点及其适应条件。
掌握综采工作面端面顶板稳定性影响因素;综放工作面顶板稳定性影响因素。
第一章 矿山岩石和岩体的基本性质1、岩石的孔隙性、孔隙度和孔隙比有什么不同?研究它们有何意义?2、岩石受载时会产生哪些类型的变形?岩石的塑性和流变性有什么不同?3、将某矿的页岩岩样做成5cm ×5cm ×5cm 的三块立方体试件,分别作剪切角度为45°、55°和65°的抗剪强度实验,施加的最大载荷相应地为22.4、15.3和12.3KN ,求该页岩的内聚力C 和内摩擦角值,并绘出该页岩的抗剪强度曲线图。
4、对某矿石灰岩进行抗剪强度实验结果,当时,当时。
如果已知该岩石的单向抗压强度,求侧压力时其三轴抗压强度是什么?5、莫尔强度理论和格里菲斯强度理论在本质上有何区别?为什么莫尔强度理论较广泛地用作岩石强度条件?他可用来解释那些问题?6、试叙述单向拉伸、单向压缩、双向拉伸、双向压缩、双向不等拉压、纯剪、三向等拉、三向等压和三向不等压的应力圆(设压应力为正,、、分别为最大、中间和最小应力)。
7、岩石强度的压性能有何意义?如何根据莫尔应力圆和斜直线型强度包络线求解岩石试件在单向受力条件下的压拉比?8、如果某种岩石的强度条件为试求:(1)这种岩石的单轴抗压强度;(2)设压应力为正,单位为MPa ,则下列应力状态的各点是否会产生破坏,(40,30,20);(53,7,30,6.3);(53.7,30,1);(1000,1000,1000)。
9、某种岩石在单轴压缩过程中,其压应力达到28MPa 时即发生破坏,破坏面与最大主平面的夹角为60°,假定抗剪强度随正应力呈线性变化,计算,(1)这种岩石的内摩擦角;(2)在正应力为零的平面上的抗剪强度;(3)上述试验中与最大主平面成30°夹角的平面上的抗剪强度;(4)破坏面上的正应力和剪应力。
10、解释岩体强度变化曲线图的含义,是考虑是否有其他方式能更多的反映岩体ϕMPa n 8.41=σMPa 8.151=τMPa n 2.81=σMPa 181=τMPa R 6.821=MPa 53=σ1σ2σ3σ)MPa (tan 10300+=ατ321σσσ>>强度特征?11、某矿按双千斤顶法对主井井口表土层下基岩中制取的四个试体进行了原地剪切试验,每次先施加法线力N 到一定值且稳定不变后再施加倾斜15°的推力P ,直到试体沿底板岩面发生剪切破坏,试验结果如下:擦角υ值。