2015届高考理科数学第一轮知识点复习方案测试题67.doc
- 格式:doc
- 大小:91.50 KB
- 文档页数:5
学案24 正弦定理和余弦定理应用举例导学目标: 能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.自主梳理1.仰角和俯角与目标视线同在一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角.(如图所示)2.方位角一般指北方向线顺时针到目标方向线的水平角,如方位角45°,是指北偏东45°,即东北方向.3.方向角:相对于某一正方向的水平角.(如图所示)①北偏东α°即由指北方向顺时针旋转α°到达目标方向.②北偏西α°即由指北方向逆时针旋转α°到达目标方向.③南偏西等其他方向角类似.4.坡角坡面与水平面的夹角.(如图所示)5.坡比 坡面的铅直高度与水平宽度之比,即i =h l =tan α(i 为坡比,α为坡角).6.解题的基本思路运用正、余弦定理处理实际测量中的距离、高度、角度等问题,实质是数学知识在生活中的应用,要解决好,就要把握如何把实际问题数学化,也就是如何把握一个抽象、概括的问题,即建立数学模型.自我检测1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β之间的关系是 ( )A .α>βB .α=βC .α+β=90°D .α+β=180°2.(2011·承德模拟)如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离相等,灯塔A 在观察站C 的北偏东40°,灯塔B 在观察站C 的南偏东60°,则灯塔A 在灯塔B 的 )A .北偏东10°B .北偏西10°C .南偏东10°D .南偏西10°3.如图所示,为了测量某障碍物两侧A 、B 间的距离,给定下列四组数据,不能确定A 、B 间距离的是( )A .α,a ,bB .α,β,aC .a ,b ,γD .α,β,b4.在200 m 高的山顶上,测得山下一塔的塔顶与塔底的俯角分别是30°、60°,则塔高为________m.5.(2010·全国Ⅱ)△ABC 中,D 为边BC 上的一点,BD =33,sinB =513,cos ∠ADC =35,求AD .探究点一与距离有关的问题例1(2010·陕西)如图,A,B是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距203海里的C点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D点需要多长时间?变式迁移1某观测站C在目标A的南偏西25°方向,从A出发有一条南偏东35°走向的公路,在C处测得与C相距31千米的公路上B处有一人正沿此公路向A走去,走20千米到达D,此时测得CD 为21千米,求此人在D处距A还有多少千米?探究点二测量高度问题例2如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.变式迁移2某人在塔的正东沿着南偏西60°的方向前进40米后,望见塔在东北方向,若沿途测得塔的最大仰角为30°,求塔高.探究点三三角形中最值问题例3(2010·江苏)某兴趣小组要测量电视塔AE的高度H(单位:m),示意图如图所示,垂直放置的标杆BC的高度h=4 m,仰角∠ABE=α,∠ADE=β.(1)该小组已测得一组α、β的值,算出了tan α=1.24,tan β=1.20,请据此算出H的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精度.若电视塔实际高度为125 m,试问d为多少时,α-β最大?变式迁移3(2011·宜昌模拟)如图所示,已知半圆的直径AB=2,点C在AB的延长线上,BC=1,点P为半圆上的一个动点,以DC 为边作等边△PCD,且点D与圆心O分别在PC的两侧,求四边形OPDC面积的最大值.1.解三角形的一般步骤(1)分析题意,准确理解题意.分清已知与所求,尤其要理解应用题中的有关名词、术语,如坡度、仰角、俯角、方位角等.(2)根据题意画出示意图.(3)将需求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解.演算过程中,要算法简练,计算正确,并作答.(4)检验解出的答案是否具有实际意义,对解进行取舍.2.应用举例中常见几种题型测量距离问题、测量高度问题、测量角度问题、计算面积问题、航海问题、物理问题等.(满分:75分)一、选择题(每小题5分,共25分)1.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为 ( )A.518B.34C.32D.782.(2011·揭阳模拟)如图,设A 、B 两点在河的两岸,一测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A 、B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 m D.2522 m 3.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为 ( )A.922B.924C.928 D .9 24.(2011·沧州模拟)某人向正东方向走x km 后,向右转150°,然后朝新方向走3 km ,结果他离出发点恰好是 3 km ,那么x 的值为( )A. 3 B.2 3C.3或2 3 D.35.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向,另一灯塔在船的南偏西75°方向,则这只船的速度是每小时()A.5海里B.53海里6.一船以每小时15 km的速度向东航行,船在A处看到一个灯塔M在北偏东60°方向,行驶4 h后,船到B处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________.7.(2011·台州模拟)某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度为15°的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为106米(如图所示),旗杆底部与第一排在一个水平面上.若国歌长度约为50秒,升旗手应以________米/秒的速度匀速升旗.8.(2011·宜昌模拟)线段AB外有一点C,∠ABC=60°,AB=200 km,汽车以80 km/h的速度由A向B行驶,同时摩托车以50 km/h 的速度由B向C行驶,则运动开始________h后,两车的距离最小.三、解答题(共38分)9.(12分)(2009·辽宁)如图,A、B、C、D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B点和D点的仰角分别为75°、30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B、D间距离与另外哪两点间距离相等,然后求B、D的距离(计算结果精确到0.01 km,2≈1.414,6≈2.449).10.(12分)如图所示,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的南偏西75°方向的B1处,此时两船相距20海里.当甲船航行20分钟到达A2处时,乙船航行到甲船的南偏西60°方向的B2处,此时两船相距102海里.问乙船每小时航行多少海里?11.(14分)(2009·福建)如图,某市拟在长为8 km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数y=A sin ωx(A>0,ω>0),x∈[0,4]的图象,且图象的最高点为S(3,23);赛道的后一部分为折线段MNP,为保证参赛运动员的安全,限定∠MNP=120°.(1)求A,ω的值和M,P两点间的距离;(2)应如何设计,才能使折线段赛道MNP最长?答案 自我检测1.B 2.B 3.A4.40035.解 由cos ∠ADC =35>0知B <π2,由已知得cos B =1213,sin ∠ADC =45,从而sin ∠BAD =sin(∠ADC -B )=sin ∠ADC cos B -cos ∠ADC sin B=45×1213-35×513=3365.由正弦定理得,AD sin B =BD sin ∠BAD, 所以AD =BD ·sin B sin ∠BAD=33×5133365=25. 课堂活动区例1 解题导引 这类实际应用题,实质就是解三角形问题,一般都离不开正弦定理和余弦定理,在解题中,首先要正确地画出符合题意的示意图,然后将问题转化为三角形问题去求解.注意:①基线的选取要恰当准确;②选取的三角形及正、余弦定理要恰当.解 由题意知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,∴∠ADB =180°-(45°+30°)=105°.在△DAB 中,由正弦定理,得DB sin ∠DAB =AB sin ∠ADB, ∴DB =AB ·sin ∠DAB sin ∠ADB =5(3+3)·sin 45°sin 105° =5(3+3)·sin 45°sin 45°cos 60°+cos 45°sin 60°=103(海里). 又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°,BC =203(海里),在△DBC 中,由余弦定理,得CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC =300+1 200-2×103×203×12=900,∴CD =30(海里),∴需要的时间t =3030=1(小时).故救援船到达D 点需要1小时.变式迁移1解如图所示,易知∠CAD =25°+35°=60°,在△BCD 中,cos B =312+202-2122×31×20=2331, 所以sin B =12331.在△ABC 中,AC =BC ·sin B sin A =24,由BC 2=AC 2+AB 2-2AC ·AB cos A ,得AB 2-24AB -385=0,解得AB =35,AB =-11(舍),所以AD =AB -BD =15.故此人在D 处距A 还有15千米.例2 解题导引 在测量高度时,要正确理解仰角、俯角的概念,画出准确的示意图,恰当地选取相关的三角形和正、余弦定理逐步进行求解.注意综合应用方程和平面几何、立体几何等知识.解 在△BCD 中,∠CBD =π-α-β.由正弦定理得BC sin ∠BDC =CD sin ∠CBD, 所以BC =CD ·sin ∠BDC sin ∠CBD =s ·sin βsin (α+β), 在Rt △ABC 中,AB =BC tan ∠ACB =s ·tan θsin βsin (α+β). 变式迁移2解由题意可知,在△BCD 中,CD =40,∠BCD =30°,∠DBC =135°,由正弦定理得,CD sin ∠DBC=BD sin ∠BCD, ∴BD =40sin 30°sin 135°=20 2.过B 作BE ⊥CD 于E ,显然当人在E 处时,测得塔的仰角最大,有∠BEA =30°.在Rt △BED 中,又∵∠BDE =180°-135°-30°=15°.∴BE =DB ·sin 15°=202×6-24=10(3-1).在Rt △ABE 中,AB =BE ·tan 30°=103(3-3)(米). 故所求的塔高为103(3-3)米.例3 解题导引 平面几何图形中研究或求有关长度、角度、面积的最值、优化设计等问题.而这些几何问题通常是转化到三角形中,利用正、余弦定理通过运算的方法加以解决.在解决某些具体问题时,常先引入变量,如边长、角度等,然后把要解三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之.若研究最值,常使用函数思想.解(1)由AB =H tan α,BD =h tan β,AD =H tan β及AB +BD =AD ,得H tan α+h tan β=H tan β,解得H =h tan αtan α-tan β=4×1.241.24-1.20=124(m). 因此,算出的电视塔的高度H 是124 m.(2)由题设知d =AB ,得tan α=H d .由AB =AD -BD =H tan β-h tan β,得tan β=H -h d .所以tan(α-β)=tan α-tan β1+tan αtan β=h d +H (H -h )d ≤h 2H (H -h ), 当且仅当d =H (H -h )d, 即d =H (H -h )=125×(125-4)=555时,上式取等号,所以当d =555时,tan(α-β)最大.因为0<β<α<π2,则0<α-β<π2,所以当d =555时,α-β最大.变式迁移3 解 设∠POB =θ,四边形面积为y ,则在△POC 中,由余弦定理得PC 2=OP 2+OC 2-2OP ·OC cos θ=5-4cos θ.∴y =S △OPC +S △PCD =12×1×2sin θ+34(5-4cos θ)=2sin(θ-π3)+534.∴当θ-π3=π2,即θ=5π6时,y max =2+534.所以四边形OPDC 面积的最大值为2+534.课后练习区1.D 2.A 3.C 4.C 5.C6.30 2 km 7.0.68.7043解析如图所示:设t h后,汽车由A行驶到D,摩托车由B行驶到E,则AD=80t,BE=50t.因为AB=200,所以BD=200-80t,问题就是求DE最小时t的值.由余弦定理得,DE2=BD2+BE2-2BD·BE cos 60°=(200-80t)2+2500t2-(200-80t)·50t=12900t2-42000t+40000.∴当t=7043时,DE最小.9.解在△ACD中,∠DAC=30°,∠ADC=60°-∠DAC=30°,所以CD=AC=0.1.………………………………………………………………………(2分)又∠BCD=180°-60°-60°=60°,所以△ABC≌△CBD,所以BA=BD.……………………………………………………………………………(6分)在△ABC中,ABsin∠BCA=ACsin∠ABC,即AB=AC·sin 60°sin 15°=32+620,…………………………………………………………(10分)所以BD=32+620≈0.33(km).故B、D的距离约为0.33 km.……………………………………………………………(12分) 10.解如图,连接A 1B 2,由题意知,A 1B 1=20,A 2B 2=102,A 1A 2=2060×302=102(海里).…………………………………………………………(2分)又∵∠B 2A 2A 1=180°-120°=60°,∴△A 1A 2B 2是等边三角形,∠B 1A 1B 2=105°-60°=45°.……………………………………………………………(6分)在△A 1B 2B 1中,由余弦定理得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2cos 45° =202+(102)2-2×20×102×22=200,∴B 1B 2=102(海里).…………………………………………………………………(10分)因此乙船的速度大小为10220×60=302(海里/小时).…………………………………………………………(12分)11.解方法一 (1)依题意,有A =23,T 4=3,又T =2πω,∴ω=π6.∴y =23sin π6x .(3分)当x =4时,y =23sin 2π3=3,∴M (4,3).又P (8,0),∴MP =42+32=5.…………………………………………………………(5分)(2)如图,连接MP ,在△MNP 中,∠MNP =120°,MP =5. 设∠PMN =θ,则0°<θ<60°.由正弦定理得MP sin 120°=NP sin θ=MN sin (60°-θ), ∴NP =1033sin θ,MN =1033sin(60°-θ),…………………………………………(8分)∴NP +MN =1033sin θ+1033sin(60°-θ) =1033⎝ ⎛⎭⎪⎫12sin θ+32cos θ=1033sin(θ+60°).…………………………………………(12分)∵0°<θ<60°,∴当θ=30°时,折线段赛道MNP 最长.即将∠PMN 设计为30°时,折线段赛道MNP 最长.…………………………………………………………………(14分)方法二 (1)同方法一.(2)连结MP .在△MNP 中,∠MNP =120°.MP =5,由余弦定理得,MN 2+NP 2-2MN ·NP ·cos ∠MNP =MP 2.………………………………(8分)即MN 2+NP 2+MN ·NP =25.故(MN +NP )2-25=MN ·NP ≤⎝ ⎛⎭⎪⎫MN +NP 22, ……………………………………………………………………………………………(10分)从而34(MN +NP )2≤25,即MN +NP ≤1033.当且仅当MN =NP 时等号成立.即设计为MN =NP 时,折线段赛道MNP 最长.…………………………………………………………………(14分)。
第2讲古典概型一、填空题1.从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是________.解析分别从两个集合中各取一个数,共有15种取法,其中满足b>a的有3种取法,故所求事件的概率P=315=1 5.答案1 52.若以连续掷两次骰子分别得到的点数m、n作为点P的横、纵坐标,则点P在直线x+y=5下方的概率为________.解析试验是连续掷两次骰子,故共包含6×6=36(个)基本事件.事件点P 在x+y=5下方,共包含(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)6个基本事件,故P=636=1 6.答案1 63.在一次招聘口试中,每位考生都要在5道备选试题中随机抽出3道题回答,答对其中2道题即为及格,若一位考生只会答5道题中的3道题,则这位考生能够及格的概率为________.解析要及格必须答对2道或3道题,共C23C12+C33=7(种)情形,故P=7C35=7 10.答案7 104.从三名男同学和n名女同学中任选三人参加一场辩论赛,已知三人中至少有一人是女生的概率是3435,则n=________.解析三人中没有女生的概率为C33C3n+3,∴三人中至少有一人是女生的概率为1-C 33C 3n +3. 由题意得1-C 33C 3n +3=3435,解得n =4.答案 n =45.下课后教室里最后还剩下2位男同学和2位女同学,如果没有2位同学一块走,则第二位走的是男同学的概率是________.解析 每个同学均可能在第二位走,故共有4种情况,而男同学有2个,故所求概率为P =24=12. 答案 126.某种饮料每箱装6听,其中有4听合格,2听不合格,现质检人员从中随机抽取2听进行检测,则检测出至少有一听不合格饮料的概率是________. 解析:从“6听饮料中任取2听饮料”这一随机试验中所有可能出现的基本事件共有15个,而“抽到不合格饮料”含有9个基本事件,所以检测到不合格饮料的概率为P =915=35. 答案 357.甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是________.解析 正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个等可能的基本事件.两条直线相互垂直的情况有5种(4组邻边和对角线),包括10个基本事件,所以概率等于518. 答案 5188. 一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为________.解析 基本事件为(1,1),(1,2),…,(1,8),(2,1),(2,2)…,(8,8),共64种.两球编号之和不小于15的情况有三种,分别为(7,8),(8,7),(8,8),∴所求概率为364. 答案 3649.连掷两次骰子分别得到点数m ,n ,向量a =(m ,n ),若b =(-1,1),△ABC 中AB→与a 同向,CB →与b 反向,则∠ABC 是钝角的概率是________. 解析 ∵∠ABC 是钝角,向量a =(m ,n ),b =(-1,1)夹角为锐角,∴n -m >0,m <n ,∴包含15个基本事件,又共有36个基本事件,∴∠ABC 是钝角的概率是512. 答案 51210.某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其它三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为________(用数字作答).解析 6节课共有A 66种排法,按要求共有三类排法,一类是三门文化课排列,有两个空,插入2节艺术课,有A 33A 23×2种排法;第二类,三门文化课排列有两个空,插入1节艺术课,有A 33·A 13·2A 33种排法;第三类,三门文化课相邻排列,有A 33A 44种排法.则满足条件的概率为 2A 33A 23+A 33A 13·2A 33+A 33A 44A 66=35.答案 35 二、解答题11.将一颗骰子先后抛掷2次,观察向上的点数,求:(1)两数中至少有一个奇数的概率;(2)以第一次向上的点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=15的内部的概率.解将一颗骰子先后抛掷2次,此问题中含有36个等可能基本事件.(1)记“两数中至少有一个奇数”为事件B,则事件B与“两数均为偶数”为对立事件,所以P(B)=1-936=3 4;即两数中至少有一个奇数的概率为34.(2)基本事件总数为36,点(x,y)在圆x2+y2=15的内部记为事件C,则C包含8个事件,所以P(C)=836=2 9.即点(x,y)在圆x2+y2=15的内部的概率为29.12.为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:(1)估计该校男生的人数;(2)估计该校学生身高在170~185 cm之间的概率;(3)从样本中身高在180~190 cm之间的男生中任选2人,求至少有1人身高在185~190 cm之间的概率.解(1)样本中男生人数为40,由分层抽样比例为10%估计全校男生人数为400.(2)由统计图知,样本中身高在170~185 cm之间的学生有14+13+4+3+1=35(人),样本容量为70,所以样本中学生身高在170~185 cm之间的频率f=3570=0.5.故由f估计该校学生身高在170~185 cm之间的概率P=0.5.(3)样本中身高在180~185 cm之间的男生有4人,设其编号为①②③④,样本中身高在185~190 cm之间的男生有2人,设其编号为⑤⑥.从上述6人中任选2人的树状图为:故从样本中身高在180~190 cm之间的男生中任选2人的所有可能结果数为15,至少有1人身高在185~190 cm之间的可能结果数为9,因此,所求概率P2=915=3 5.13.在某次测验中,有6位同学的平均成绩为75分.用x n表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:(1)求第66s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.解(1)∵这6位同学的平均成绩为75分,∴16(70+76+72+70+72+x6)=75,解得x6=90,这6位同学成绩的方差s2=16×[(70-75)2+(76-75)2+(72-75)2+(70-75)2+(72-75)2+(90-75)2]=49,∴标准差s=7.(2)从前5位同学中,随机地选出2位同学的成绩有:(70,76),(70,72),(70,70),(70,72),(76,72),(76,70),(76,72),(72,70),(72,72),(70,72),共10种,恰有1位同学成绩在区间(68,75)中的有:(70,76),(76,72),(76,70),(76,72),共4种,所求的概率为410=0.4,即恰有1位同学成绩在区间(68,75)中的概率为0.4. 14.设S是不等式x2-x-6≤0的解集,整数m,n∈S.(1)记“使得m+n=0成立的有序数组(m,n)”为事件A,试列举A包含的基本事件;(2)设ξ=m2,求ξ的分布列及其数学期望E(ξ).解(1)由x2-x-6≤0得-2≤x≤3,即S={x|-2≤x≤3}.由于m,n∈Z,m,n∈S且m+n=0,所以A包含的基本事件为:(-2,2),(2,-2),(-1,1),(1,-1),(0,0).(2)由于m的所有不同取值为-2,-1,0,1,2,3,所以ξ=m2的所有不同取值为0,1,4,9,且有P(ξ=0)=1 6,P(ξ=1)=26=13,P(ξ=4)=26=13,P(ξ=9)=1 6.故ξ的分布列为:所以E(ξ)=0×16+1×13+4×13+9×16=196.。
课时作业(七) [第7讲 二次函数](时间:45分钟 分值:100分)1.已知二次函数y =x 2-2ax +1在区间(2,3)内是单调函数,则实数a 的取值范围是( )A .a ≤2或a ≥3B .2≤a ≤3C .a ≤-3或a ≥-2D .-3≤a ≤-22.已知反比例函数y =k x 的图像如图K71所示,则二次函数y=2kx 2-x +k 2的图像大致为( )图K71K73.函数y =-x 2-2x +3的增区间是( )A .[-3,-1]B .[-1,1]C .(-∞,-3)D .[-1,+∞)4.有一批材料可以围成200 m 长的围墙,现用此材料在一边靠墙的地方围成一块矩形场地,且内部用此材料隔成三个面积相等的矩形(如图K73所示),则围成的矩形场地的最大面积为( )图K73A .1000 m 2B .2000 m 2C .2500 m 2D .3000 m 25.[2013·惠州模拟] 生产一定数量商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本为C (x )=12x 2+2x +20(万元),一万件的售价是20万元,为获取最大利润,该企业一个月应生产该商品的数量为( )A .36万件B .18万件C .22万件D .9万件6.某汽车运输公司购买了一批新型大客车投入营运,据市场分析,每辆客车营运的总利润y (10万元)与营运年数x (x ∈N *)满足二次函数关系,其图像如图K74所示,为了使营运的年平均利润最大,则每辆客车应营运( )图K74A .6年B .7年C .8年D .9年 7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)8.[2013·枣庄模拟] 已知函数f (x )=x 2+1的定义域为[a ,b ](a <b ),值域为[1,5],则在平面直角坐标系内,点(a ,b )的运动轨迹与两坐标轴所围成的图形的面积是( )A .8B .6C .4D .29.设函数f (x )=ax 2+bx +c (a <0)的定义域为D .若所有点(s ,f (t ))(s ,t ∈D )构成一个正方形区域,则a 的值为( )A .-2B .-4C .-8D .不能确定10.若二次函数的图像过点(4,-3),且x =3时,二次函数有最大值-1,则此函数的解析式为________.11.[2013·天津重点中学联考] 已知函数y =x 2+ax -1+2a 的值域为[0,+∞),则a 的取值范围是________.12.[2013·蚌埠一检] 数列{a n }是首项a 1=m ,公差d =2的等差数列,数列{b n }满足2b n =(n +1)a n .若对任意n ∈N *都有b n ≥b 5成立,则m 的取值范围是________.13.[2013·金丽衢十二校一联] 设f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=2x .若对任意的x ∈[a ,a +2],不等式f (x +a )≥f 2(x )恒成立,则实数a 的取值范围是________.14.(10分)某企业投资100万元引进一条农产品加工生产线,若不计维修、保养费用,预计投产后每年可创利33万元.该生产线投产后,从第1年到第x 年的维修、保养费用累计为y (万元),且y =ax 2+bx .若第1年的维修、保养费为2万元,第2年为4万元.(1)求y 的函数关系式;(2)投产后,这个企业在第几年就能收回投资?15.(13分)已知f (x )=ax 2+(2a -1)x -3在⎣⎢⎡⎦⎥⎤-32,2上的最大值为1,求实数a 的值.16.(12分)已知函数f (x )=ax 2+bx +1(a ,b 为实数),x ∈R ,F (x )=⎩⎪⎨⎪⎧f (x )(x >0),-f (x )(x <0).(1)若f (-1)=0,且函数f (x )的值域为[0,+∞),求F (x )的表达式;(2)在(1)的条件下,当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围;(3)设m ·n <0,m +n >0,a >0且f (x )为偶函数,判断F (m )+F (n )能否大于零.课时作业(七)1.A 2.D 3.A 4.C 5.B 6.B 7.C 8.C 9.B10.y =-2x 2+12x -19 11.a ≥4+2 3或a ≤4-2 312.[-22,-18] 13.⎝ ⎛⎦⎥⎤-∞,-32 14.(1)y =x 2+x (2)第4年 15.a =34或a =-3+2 22 16.(1)F (x )=⎩⎪⎨⎪⎧(x +1)2(x >0),-(x +1)2(x <0)(2)k ≥6或k ≤-2 (3)能大于零薄雾浓云愁永昼, 瑞脑消金兽。
第九章计数原理与概率、随机变量及其分布第一节分类加法计数原理与分步乘法计数原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N=m +n种不同方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.1.分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.2.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.[试一试]1.从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数有()A.30 B.20C.10 D.6解析:选D从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类,①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N=3+3=6种.2.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有()A.30个B.42个C.36个D.35个解析:选C∵a+b i为虚数,∴b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.1.应用两种原理解题(1)分清要完成的事情是什么?(2)分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;(3)有无特殊条件的限制;(4)检验是否有重漏.2.混合问题一般是先分类再分步,分类时标准要明确,做到不重复不遗漏.[练一练]1.(2013·郑州模拟)在2012年奥运选手选拔赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种解析:分两步安排这8名运动员.第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排.∴安排方式有4×3×2=24(种).第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道安排,所以安排方式有5×4×3×2×1=120(种).∴安排这8人的方式有24×120=2 880(种).答案:2 8802.(2014·湖南长郡中学、衡阳八中等十二校一联)用红、黄、蓝三种颜色去涂图中标号为1、2、…、9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1、5、9的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.解析:把区域分为三部分,第一部分1、5、9,有3种涂法.第二部分4、7、8,当5、7同色时,4、8各有2种涂法,共4种涂法;当5、7异色时,7有2种涂法,4、8均只有1种涂法,故第二部分共4+2=6种涂法.第三部分与第二部分一样,共6种涂法.由分步乘法计数原理,可得共有3×6×6=108种涂法.答案:108分类加法计数原理()A.50个B.45个C.36个D.35个解析:选C利用分类加法计数原理:8+7+6+5+4+3+2+1=36(个).2.五名篮球运动员比赛前将外衣放在休息室,比赛后都回到休息室取衣服.由于灯光暗淡,看不清自己的外衣,则至少有两人拿对自己的外衣的情况有()A.30种B.31种C.35种D.40种解析:选B分类:第一类,两人拿对:2×C2 5=20种;第二类,三人拿对:C3 5=10种;第三类,四人拿对与五人拿对一样,所以有1种.故共有20+10+1=31种.3.(2013·三门峡模拟)有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有()A.8种B.9种C.10种D.11种解析:选B设四位监考教师分别为A,B,C,D,所教班分别为a,b,c,d,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法,由分类加法计数原理共有3+3+3=9(种).[类题通法]利用分类加法计数原理解题时应注意(1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏;(2)分类时,注意完成这件事情的任何一种方法必须属于某一类,不能重复.分步乘法计数原理[典例](2014·本溪模拟)如图所示的几何体是由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有________种.[解析]先涂三棱锥P-ABC的三个侧面,然后涂三棱柱的三个侧面,共有C13×C12×C11×C12=3×2×1×2=12种不同的涂法.[答案]12[类题通法]利用分步乘法计数原理解决问题时应注意(1)要按事件发生的过程合理分步,即分步是有先后顺序的.(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这件事.(3)对完成每一步的不同方法数要根据条件准确确定.[针对训练]在航天员进行的一项太空实验中,先后要实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,则实验顺序的编排方法共有()A.24种B.48种C.96种D.144种解析:选C第一步安排A有2种方法;第二步在剩余的5个位置选取相邻的两个排B,C,有4种排法,而B,C位置互换有2种方法;第三步安排剩余的3个程序,有A33种排法,共有2×4×2×A33=96种.[典例](2014·黄冈质检)设集合I={1,2,3,4,5}.选择集合I的两个非空子集A和B,若集合B中最小的元素大于集合A中最大的元素,则不同的选择方法共有()A.50种B.49种C.48种D.47种[解析]从5个元素中选出2个元素,小的给集合A,大的给集合B,有C25=10种选择方法;从5个元素中选出3个元素,有C35=10种选择方法,再把这3个元素从小到大排列,中间有2个空,用一个隔板将其隔开,一边给集合A,一边给集合B,方法种数是2,故此时有10×2=20种选择方法;从5个元素中选出4个元素,有C45=5种选择方法,从小到大排列,中间有3个空,用一个隔板将其隔开,一边给集合A,一边给集合B,方法种数是3,故此时有5×3=15种选择方法;从5个元素中选出5个元素,有C55=1种选择方法,同理隔开方法有4种,故此时有1×4=4种选择方法.根据分类加法计数原理,总计为10+20+15+4=49种选择方法.故选B.[答案] B本例中条件若变为“A={1,2,3,4},B={5,6,7},C={8,9}现从中取出两个集合,再从这两个集合中各取出一个元素,组成一个含有两个元素的集合”,则可以组成多少个集合?解:(1)选集合A,B,有C14C13=12;(2)选集合A,C,有C14C12=8;(3)选集合B,C,有C13C12=6;故可以组成12+8+6=26个集合.[类题通法]在解决综合问题时,可能同时应用两个计数原理,即分类的方法可能要运用分步完成,分步的方法可能会采取分类的思想求.分清完成该事情是分类还是分步,“类”间互相独立,“步”间互相联系.[针对训练]上海某区政府召集5家企业的负责人开年终总结经验交流会,其中甲企业有2人到会,其余4家企业各有1人到会,会上推选3人发言,则这3人来自3家不同企业的可能情况的种数为________.解析:若3人中有一人来自甲企业,则共有C12C24种情况,若3人中没有甲企业的,则共有C34种情况,由分类加法计数原理可得,这3人来自3家不同企业的可能情况共有C12C24+C34=16(种).答案:16第二节排列与组合1.排列与排列数(1)排列:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数,记作A m n.2.组合与组合数(1)组合:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C m n.3.排列数、组合数的公式及性质1.易混淆排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关.2.计算A m n时易错算为n(n-1)(n-2)…(n-m).3.易混淆排列与排列数,排列是一个具体的排法,不是数是一件事,而排列数是所有排列的个数,是一个正整数.[试一试]1.电视台在直播2012伦敦奥运会时要连续插播5个广告,其中3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的是奥运宣传广告,且2个奥运宣传广告不能连播.则不同的播放方式有()A.120B.48C.36 D.18解析:选C有C12C13A33=36(种).2.2010年上海世博会某国将展出5件艺术作品,其中不同书法作品2件、不同绘画作品2件、标志性建筑设计1件,在展台上将这5件作品排成一排,要求2件书法作品必须相邻,2件绘画作品不能相邻,则该国展出这5件作品不同的方案有________种.(用数字作答)解析:将2件必须相邻的书法作品看作一个整体,同1件建筑设计展品全排列,再将2件不能相邻的绘画作品插空,故共有A22A22A23=24(种)不同的展出方案.答案:241.排列问题与组合问题的识别方法:当m>n2时,通常将计算Cmn转化为计算C n-mn.二是列等式,由C x n=C y n可得x=y或x+y=n.性质(3)主要用于恒等变形简化运算.[练一练]1.(2013·河北教学质量监测)有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次.A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名.请你分析一下,这五位学生的名次排列的种数为() A.6 B.18C.20 D.24解析:选B由题意知,名次排列的种数为C13A33=18.2.5个人站成一排,其中甲、乙两人不相邻的排法有________种.(用数字作答)解析:先排甲、乙之外的3人,有A33种排法,然后将甲、乙两人插入形成的4个空中,有A24种排法,故共有A33·A24=72(种)排法.答案:72排列问题1.数列{a n足上述条件的数列{a n}共有()A.30个B.31个C.60个D.61个解析:选A在数列的六项中,只要考虑两个非1的项的位置,即得不同数列,共有A26=30个不同的数列.2.(2013·东北三校联考)在数字1,2,3与符号“+”,“-”这五个元素的所有全排列中,任意两个数字都不相邻的全排列方法共有()A.6种B.12种C.18种D.24种解析:选B本题主要考查某些元素不相邻的问题,先排符号“+”,“-”,有A22种排列方法,此时两个符号中间与两端共有3个空位,把数字1,2,3“插空”,有A33种排列方法,因此满足题目要求的排列方法共有A22A33=12种.3.(2013·西安检测)8名游泳运动员参加男子100米的决赛,已知游泳池有从内到外编号依次为1,2,3,4,5,6,7,8的8条泳道,若指定的3名运动员所在的泳道编号必须是3个连续数字(如:5,6,7),则参加游泳的这8名运动员被安排泳道的方式共有()A.360种B.4 320种C.720种D.2 160种解析:选B法一:先从8个数字中取出3个连续的数字共有6种方法,将指定的3名运动员安排在这3个编号的泳道上,剩下的5名运动员安排在其他编号的5条泳道上,共有6A33A55=4 320种安排方式.法二:先将所在的泳道编号是3个连续数字的3名运动员全排列,有A33种排法,然后把他们捆绑在一起当作一名运动员,再与剩余5名运动员全排列,有A66种排法,故共有A33A66=4 320种安排方式.[类题通法]求解排列应用题的主要方法组合问题[典例](2013·重庆高考)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是________(用数字作答).[解析]直接法分类,3名骨科,内科、脑外科各1名;3名脑外科,骨科、内科各1名;3名内科,骨科、脑外科各1名;内科、脑外科各2名,骨科1名;骨科、内科各2名,脑外科1名;骨科、脑外科各2名,内科1名.所以选派种数为C33·C14·C15+C34·C13·C15+C35·C13·C14+C24·C25·C13+C23·C25·C14+C23·C24·C15=590.[答案]590[类题通法]组合两类问题的解法(1)“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”、“最多”的问题:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.[针对训练](2013·四平质检)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有()A.70种B.80种C.100种D.140种解析:选A法一(间接法):当选择的3名医生都是男医生或都是女医生时,共有C35+C34=14种组队方案.当从9名医生中选择3名医生时,共有C39=84种组队方案,所以男、女医生都有的组队方案共有84-14=70种.法二(直接法):当小分队中有1名女医生时,有C14C25=40种组队方案;当小分队中有2名女医生时,有C24C15=30种组队方案,故共有70种不同的组队方案.分组分配问题分组分配问题是排列、组合问题的综合应用,解决这类问题的一个基本指导思想就是先分组后分配。
第二章函数、导数及其应用第一节函数及其表示1.函数映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图像法、列表法. 3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.1.解决函数的一些问题时,易忽视“定义域优先”的原则. 2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A 到B 的一个映射,A 、B 若不是数集,则这个映射便不是函数.3.误把分段函数理解为几种函数组成. [试一试]1.(2013·江西高考)函数y =x ln(1-x )的定义域为( ) A .(0,1) B .[0,1) C .(0,1]D .[0,1]解析:选B 根据题意得⎩⎪⎨⎪⎧1-x >0,x ≥0,解得0≤x <1,即所求定义域为[0,1).2.若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .0解析:选B f (10)=lg 10=1,故f (f (10))=f (1)=12+1=2.求函数解析式的四种常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).[练一练]1.设g (x )=2x +3,g (x +2)=f (x ),则f (x )等于( ) A .-2x +1 B .2x -1 C .2x -3 D .2x +7答案:D2.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (x )=________. 答案:x 2-4x +3函数与映射的概念1.下列四组函数中,表示同一函数的是( )A .y =x -1与y =(x -1)2B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lg x100答案:D2.以下给出的同组函数中,是否表示同一函数?为什么? (1)f 1:y =xx ;f 2:y =1.(2)f 1:y =⎩⎪⎨⎪⎧1,x ≤1,2,1<x <2,3,x ≥2;f 2:(3)f 1:y =2x ;f 2:如图所示.解:(1)不同函数.f 1(x )的定义域为{x ∈R|x ≠0},f 2(x )的定义域为R.(2)同一函数.x 与y 的对应关系完全相同且定义域相同,它们是同一函数的不同表示方式.(3)同一函数.理由同②. [类题通法]两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x 表示,但也可用其他字母表示,如:f (x )=2x -1,g (t )=2t -1,h (m )=2m -1均表示同一函数.函数的定义域问题角度一 求给定函数解析式的定义域 1.(1)(2013·山东高考)函数f (x )= 1-2x +1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)(2013·安徽高考)函数y =ln ⎝⎛⎭⎪⎫1+1x +1-x 2的定义域为________.函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分.归纳起来常见的命题角度有:(1)求给定函数解析式的定义域; (2)已知f x的定义域,求f gx的定义域;(3)已知定义域确定参数问题.解析:(1)由题意,自变量x 应满足⎩⎪⎨⎪⎧1-2x≥0,x +3>0,解得⎩⎪⎨⎪⎧x ≤0,x >-3,∴-3<x ≤0.(2)要使函数有意义,需⎩⎨⎧1+1x >0,1-x 2≥0,即⎩⎨⎧x +1x>0,x 2≤1,即⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1,解得0<x ≤1,所以定义域为(0,1]. 答案:(1)A (2)(0,1]角度二 已知f (x )的定义域,求f (g (x ))的定义域2.已知函数f (x )的定义域是[-1,1],求f (log 2x )的定义域. 解:∵函数f (x )的定义域是[-1,1],∴-1≤log 2x ≤1,∴12≤x ≤2.故f (log 2x )的定义域为⎣⎢⎡⎦⎥⎤12,2. 角度三 已知定义域确定参数问题 3.(2014·合肥模拟)若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.解析:函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥1,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.答案:[-1,0] [类题通法]简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解.(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.求函数的解析式[典例] (1)已知f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ); (4)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式.[解] (1)由于f ⎝⎛⎭⎪⎫x +1x =x 2+1x 2=⎝⎛⎭⎪⎫x +1x 2-2,所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2(x ≥2或x ≤-2). (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1(x >1).(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R). (4)当x ∈(-1,1)时,有 2f (x )-f (-x )=lg(x +1).① 以-x 代x ,得2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x ),得f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1). [类题通法]求函数解析式常用的方法(1)待定系数法;(2)换元法(换元后要注意新元的取值范围); (3)配凑法;(4)解方程组法. [针对训练]1.已知f (x +1)=x +2x ,求f (x )的解析式. 解:法一:设t =x +1, 则x =(t -1)2(t ≥1);代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1(x ≥1).法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1(x +1≥1),即f (x )=x 2-1(x ≥1).2.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根, ∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1.分段函数[典例] (1)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.(2)(2013·福建高考)已知函数f (x )=⎩⎨⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________. [解析] (1)当a >0时,1-a <1,1+a >1. 这时f (1-a )=2(1-a )+a =2-a , f (1+a )=-(1+a )-2a =-1-3a .由f (1-a )=f (1+a )得2-a =-1-3a ,解得a =-32. 不合题意,舍去.当a <0时,1-a >1,1+a <1,这时f (1-a )=-(1-a )-2a =-1-a ,f (1+a )=2(1+a )+a =2+3a .由f (1-a )=f (1+a )得-1-a =2+3a ,解得a =-34. 综上可知,a 的值为-34. (2)∵π4∈⎣⎢⎡⎭⎪⎫0,π2, ∴f ⎝ ⎛⎭⎪⎫π4=-tan π4=-1, ∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=f (-1)=2×(-1)3=-2. [答案] (1)-34 (2)-2 [类题通法]分段函数“两种”题型的求解策略(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.(2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.提醒:当分段函数的自变量范围不确定时,应分类讨论. [针对训练]设函数f (x )=⎩⎨⎧2-x ,x ∈(-∞,1),x 2,x ∈[1,+∞),若f (x )>4,则x 的取值范围是______.解析:当x <1时,由f (x )>4,得2-x >4,即x <-2; 当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2,由于x≥1,所以x>2.综上可得x<-2或x>2.答案:(-∞,-2)∪(2,+∞)第二节函数的单调性与最值1.增函数、减函数一般地,设函数f(x)的定义域为I,区间D⊆I,如果对于任意x1,x2∈D,且x1<x2,则有:(1)f(x)在区间D上是增函数⇔f(x1)<f(x2);(2)f(x)在区间D上是减函数⇔f(x1)>f(x2).2.单调区间的定义若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间.3.函数的最值1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.2.两函数f (x ),g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但f (x )·g (x ),1f (x )等的单调性与其正负有关,切不可盲目类比.[试一试]1.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2) B .y =-x +1C .y =⎝ ⎛⎭⎪⎫12xD .y =x +1x解析:选A 选项A 的函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.函数f (x )=x 2-2x (x ∈[-2,4])的单调增区间为______;f (x )max=________.解析:函数f (x )的对称轴x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8.答案:[1,4] 81.判断函数单调性的四种方法(1)定义法:取值、作差、变形、定号、下结论;(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数;(3)图像法:如果f (x )是以图像形式给出的,或者f (x )的图像易作出,可由图像的直观性判断函数单调性.(4)导数法:利用导函数的正负判断函数单调性.2.求函数最值的五个常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值. (2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(4)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.(5)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值.提醒:在求函数的值域或最值时,应先确定函数的定义域. [练一练]1.(2013·北京高考)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( )A .y =1xB .y =e -xC .y =-x 2+1 D. y =lg|x |答案:C2.函数f (x )=1x +1在区间[2,3]上的最大值是________,最小值是________.答案:15 110求函数的单调区间1.函数f (x )=log 5(2x +1)的单调增区间是________.解析:要使y =log 5(2x +1)有意义,则2x +1>0,即x >-12,而y =log 5u 为(0,+∞)上的增函数,当x >-12时,u =2x +1也为R 上的增函数,故原函数的单调增区间是⎝⎛⎭⎪⎫-12,+∞.答案:⎝⎛⎭⎪⎫-12,+∞2.函数y =x -|1-x |的单调增区间为________.解析:y =x -|1-x |=⎩⎪⎨⎪⎧1, x ≥1,2x -1, x <1.作出该函数的图像如图所示.由图像可知,该函数的单调增区间是(-∞,1]. 答案:(-∞,1]3.设函数y =f (x )在(-∞,+∞)内有定义.对于给定的正数k ,定义函数f k (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤k ,k ,f (x )>k ,取函数f (x )=2-|x |.当k =12时,函数f k (x )的单调递增区间为( )A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)解析:选C 由f (x )>12,得-1<x <1.由f (x )≤12,得x ≤-1或x ≥1.所以f 12(x )=⎩⎨⎧2-x ,x ≥1,12,-1<x <1,2x,x ≤-1.故f 12(x )的单调递增区间为(-∞,-1).[类题通法]求函数单调区间的方法与判断函数单调性的方法相同即: (1)定义法;(2)复合法;(3)图像法;(4)导数法.函数单调性的判断[典例] 试讨论函数f (x )=x +kx (k >0)的单调性.[解] 法一:由解析式可知,函数的定义域是(-∞,0)∪(0,+∞).在(0,+∞)内任取x 1,x 2,令x 1<x 2,那么f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫x 2+k x 2-⎝ ⎛⎭⎪⎫x 1+k x 1=(x 2-x 1)+k ⎝ ⎛⎭⎪⎫1x 2-1x 1=(x 2-x 1)x 1x 2-k x 1x 2. 因为0<x 1<x 2,所以x 2-x 1>0,x 1x 2>0. 故当x 1,x 2∈(k ,+∞)时,f (x 1)<f (x 2), 即函数在(k ,+∞)上单调递增. 当x 1,x 2∈(0,k )时,f (x 1)>f (x 2), 即函数在(0,k )上单调递减.考虑到函数f (x )=x +kx (k >0)是奇函数,在关于原点对称的区间上具有相同的单调性,故在(-∞,-k )上单调递增,在(-k ,0)上单调递减.综上,函数f (x )在(-∞,-k )和(k ,+∞)上单调递增,在(-k ,0)和(0,k )上单调递减.法二:f ′(x )=1-k x 2.令f ′(x )>0得x 2>k ,即x ∈(-∞,-k )或x ∈(k ,+∞),故函数的单调增区间为(-∞,-k )和(k ,+∞).令f ′(x )<0得x 2<k ,即x ∈(-k ,0)或x ∈(0,k ),故函数的单调减区间为(-k ,0)和(0,k ).故函数f (x )在(-∞,-k )和(k ,+∞)上单调递增,在(-k ,0)和(0,k )上单调递减.[类题通法]1.利用定义判断或证明函数的单调性时,作差后要注意差式的分解变形彻底.2.利用导数法证明函数的单调性时,求导运算及导函数符号判断要准确.[针对训练]判断函数g (x )=-2xx -1在 (1,+∞)上的单调性.解:任取x 1,x 2∈(1,+∞),且x 1<x 2, 则g (x 1)-g (x 2)=-2x 1x 1-1--2x 2x 2-1=2(x 1-x 2)(x 1-1)(x 2-1),由于1<x 1<x 2,所以x 1-x 2<0,(x 1-1)(x 2-1)>0, 因此g (x 1)-g (x 2)<0,即g (x 1)<g (x 2).故g (x )在(1,+∞)上是增函数.函数单调性的应用角度一 求函数的值域或最值1.已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数; (2)求f (x )在[-3,3]上的最大值和最小值. 解:(1)证明:∵函数f (x )对于任意x ,y ∈R , 总有f (x )+f (y )=f (x +y ), ∴令x =y =0,得f (0)=0. 再令y =-x ,得f (-x )=-f (x ). 在R 上任取x 1>x 2,则x 1-x 2>0, f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2).又∵当x >0时,f (x )<0, 而x 1-x 2>0,∴f (x 1-x 2)<0, 即f (x 1)<f (x 2).因此f (x )在R 上是减函数. (2)∵f (x )在R 上是减函数, ∴f (x )在[-3,3]上也是减函数,∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3). 而f (3)=3f (1)=-2,f (-3)=-f (3)=2. ∴f (x )在[-3,3]上的最大值为2,最小值为-2. 角度二 比较两个函数值或两个自变量的大小2.已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选B ∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0,当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0. 角度三 解函数不等式3.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,则不等式f (a 2-4)>f (3a )的解集为( )A .(2,6)B .(-1,4)C .(1,4)D .(-3,5)解析:选B 作出函数f (x )的图像,如图所示,则函数f (x )在R 上是单调递减的.由f (a 2-4)>f (3a ),可得a 2-4<3a ,整理得a 2-3a -4<0,即(a +1)(a -4)<0,解得-1<a <4,所以不等式的解集为(-1,4).角度四 求参数的取值范围或值4.已知函数f (x )=⎩⎨⎧(a -2)x ,x ≥2,⎝ ⎛⎭⎪⎫12x-1,x <2满足对任意的实数x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为( )A .(-∞,2) B.⎝ ⎛⎦⎥⎤-∞,138 C .(-∞,2]D.⎣⎢⎡⎭⎪⎫138,2 解析:选B 函数f (x )是R 上的减函数,于是有⎩⎨⎧a -2<0,(a -2)×2≤⎝ ⎛⎭⎪⎫122-1,由此解得a ≤138,即实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,138 .[类题通法]1.含“f ”不等式的解法首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意g (x )与h (x )的取值应在外层函数的定义域内.2.比较函数值大小的思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图像法求解.第三节函数的奇偶性及周期性1.函数的奇偶性2.周期性 (1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.1.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.判断函数f (x )的奇偶性时,必须对定义域内的每一个x ,均有f (-x )=-f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)、f (-x 0)=f (x 0).3.分段函数奇偶性判定时,f (-x 0)=f (x 0)利用函数在定义域某一区间上不是奇偶函数而否定函数在整个定义域上的奇偶性是错误的.[试一试]1.(2013·广东高考)定义域为R 的四个函数y =x 3,y =2x ,y =x 2+1,y =2sin x 中,奇函数的个数是( )A .4B .3C .2D .1解析:选C 由奇函数的概念可知,y =x 3,y =2sin x 是奇函数. 2.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .-13 B.13 C.12 D .-12解析:选B ∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数, ∴a -1+2a =0,∴a =13.又f (-x )=f (x ), ∴b =0,∴a +b =13.1.判断函数奇偶性的两个方法 (1)定义法:(2)图像法:2.周期性常用的结论对f (x )定义域内任一自变量的值x : (1)若f (x +a )=-f (x ),则T =2a ; (2)若f (x +a )=1f (x ),则T =2a ;(3)若f (x +a )=-1f (x ),则T =2a .(a >0)[练一练]已知定义在R 上的函数f (x )满足f (x )=-f ⎝⎛⎭⎪⎫x +32,且f (1)=2,则f (2 014)=________.解析:∵f (x )=-f ⎝⎛⎭⎪⎫x +32,∴f (x +3)=f ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫x +32+32=-f ⎝⎛⎭⎪⎫x +32=f (x ).∴f (x )是以3为周期的周期函数. 则f (2 014)=f (671×3+1)=f (1)=2. 答案:2函数奇偶性的判断1.判断下列函数的奇偶性. (1)f (x )=1-x 2+x 2-1; (2)f (x )=3-2x +2x -3; (3)f (x )=3x -3-x ; (4)f (x )=4-x 2|x +3|-3;(5)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.解:(1)∵由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x =±1, ∴f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0, 即f (x )=±f (-x ).∴f (x )既是奇函数又是偶函数.(2)∵函数f (x )=3-2x +2x -3的定义域为⎩⎨⎧⎭⎬⎫32,不关于坐标原点对称,∴函数f (x )既不是奇函数,也不是偶函数. (3)∵f (x )的定义域为R ,∴f (-x )=3-x -3x =-(3x -3-x )=-f (x ), 所以f (x )为奇函数.(4)∵由⎩⎪⎨⎪⎧4-x 2≥0,|x +3|-3≠0,得-2≤x ≤2且x ≠0.∴f (x )的定义域为[-2,0)∪(0,2], ∴f (x )=4-x 2|x +3|-3=4-x 2(x +3)-3=4-x 2x ,∴f (-x )=-f (x ),∴f (x )是奇函数.(5)易知函数的定义域为(-∞,0)∪(0,+∞)关于原点对称,又当x >0时,f (x )=x 2+x ,则当x <0时,-x >0, 故f (-x )=x 2-x =f (x );当x <0时,f (x )=x 2-x ,则当x >0时,-x <0,故f (-x )=x 2+x =f (x ),故原函数是偶函数.[类题通法]判断函数奇偶性除利用定义法和图像法,应学会利用性质,具体如下:(1)“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;(2)“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;(3)“奇·偶”是奇,“奇÷偶”是奇.函数奇偶性的应用[典例] (1)已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________.(2)已知奇函数f (x )的定义域为[-2,2],且在区间[-2,0]上递减,求满足f (1-m )+f (1-m 2)<0的实数m 的取值范围.[解析] (1)∵y =f (x )+x 2是奇函数,且x =1时,y =2,∴当x =-1时,y =-2,即f (-1)+(-1)2=-2,得f (-1)=-3,所以g (-1)=f (-1)+2=-1. [答案] -1[解] (2)∵f (x )的定义域为[-2,2],∴⎩⎪⎨⎪⎧-2≤1-m ≤2,-2≤1-m 2≤2,解得-1≤m ≤ 3.① 又f (x )为奇函数,且在[-2,0]上递减, ∴f (x )在[-2,2]上递减,∴f (1-m )<-f (1-m 2)=f (m 2-1)⇒1-m >m 2-1,即-2<m <1.② 综合①②可知,-1≤m <1.解:改变.∵f (x )为奇函数且在[-2,0]上递增, ∴f (x )在[-2,2]上递增. ∴m 2-1>1-m . 即m >1或m <-2. 由例(2)①知1<m ≤ 3. 故m 的取值范围为(1,3].[类题通法]应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解. (2)求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)求函数解析式中参数的值:利用待定系数法求解,根据f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.(4)画函数图像和判断单调性:利用奇偶性可画出另一对称区间上的图像及判断另一区间上的单调性.[针对训练]1.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞),(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)解析:选A 由题意知x ∈[0,+∞)时,f (x )为减函数且当x ∈R 时,f (x )的图像关于直线x =0对称,所以f (1)>f (-2)>f (3),故选A.2.(1)设函数f (x )=x (e x +a e -x )(x ∈R)是偶函数,则实数a 的值为________.(2)已知函数y =f (x )是R 上的偶函数,且在(-∞,0]上是减函数,若f (a )≥f (2),则实数a 的取值范围是________.解析:(1)∵函数f (x )=x (e x +a e -x )(x ∈R)是偶函数,∴设g (x )=e x +a e -x ,x ∈R ,由题意知,g (x )为奇函数,∴g (0)=0, 则1+a =0,即a =-1.(2)∵y =f (x )是R 上的偶函数,且在(-∞,0]上是减函数, ∴函数y =f (x )在[0,+∞)上是增函数. ∴当a >0时,由f (a )≥f (2)可得a ≥2, 当a <0时,由f (a )≥f (2)=f (-2),可得a ≤-2. 所以实数a 的取值范围是(-∞,-2]∪[2,+∞). 答案:(1)-1 (2)(-∞,-2]∪[2,+∞)函数的周期性及其应用[典例] 已知函数f (x )对任意的实数满足:f (x +3)=-1f (x ),且当-3≤x <-1时,f (x )=-(x +2)2,当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2 014)=________.[解析] ∵对任意x ∈R ,都有f (x +3)=-1f (x ),∴f (x +6)=f (x +3+3) =-1f (x +3)=-1-1f (x )=f (x ),∴f (x )是以6为周期的周期函数,∵当-3≤x <-1时, f (x )=-(x +2)2, 当-1≤x <3时,f (x )=x ,∴f (1)=1,f (2)=2,f (3)=f (-3)=-1, f (4)=f (-2)=0,f (5)=f (-1)=-1,f (6)=f (0)=0. ∴f (1)+f (2)+…+f (6)=1,∴f (1)+f (2)+…+f (6)=f (7)+f (8)+…+f (12)=…=f (2 005)+f (2 006)+…+f (2 010)=1,∴f (1)+f (2)+…+f (2 010)=1×2 0106=335.而f (2 011)+f (2 012)+f (2 013)+f (2 014)=f (1)+f (2)+f (3)+f (4)=1+2-1+0=2,∴f (1)+f (2)+…+f (2 014)=335+2=337. [答案] 337 [类题通法]函数周期性的判定与应用(1)判断函数的周期只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.(2)根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期.[针对训练]设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数; (2)当x ∈[2,4]时,求f (x )的解析式. 解:(1)证明:∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴f (x )是周期为4的周期函数. (2)∵x ∈[2,4],∴-x ∈[-4,-2],∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8. 又∵f (4-x )=f (-x )=-f (x ), ∴-f (x )=-x 2+6x -8, 即f (x )=x 2-6x +8,x ∈[2,4].第四节函数的图像1.利用描点法作函数图像其基本步骤是列表、描点、连线,具体为:首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性);其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点);最后:描点,连线.2.利用图像变换法作函数的图像 (1)平移变换:y =f (x )――――――――――→a >0,右移a 个单位a <0,左移|a |个单位y =f (x -a ); y =f (x )―――――――――→b >0,上移b 个单位b <0,下移|b |个单位y =f (x )+b . (2)伸缩变换:y =f (x )10111ωωωω<<>−−−−−−−−→,伸原的倍,短原的长为来缩为来y =f (ωx );y =f (x )――――――――――――→A >1,伸为原来的A 倍0<A <1,缩为原来的A 倍y =Af (x ).(3)对称变换:y =f (x )―――――――――→关于x 轴对称y =-f (x ); y =f (x )――――――→关于y 轴对称y =f (-x ); y =f (x )――――――――→关于原点对称y =-f (-x ). (4)翻折变换:y =f (x )―――――――――――――――→去掉y 轴左边图,保留y 轴右边图将y 轴右边的图像翻折到左边去y =f (|x |); y =f (x )―――――――――→留下x 轴上方图将x 轴下方图翻折上去y =|f (x )|.1.在解决函数图像的变换问题时,要遵循“只能对函数关系式中的x ,y 变换”的原则,写出每一次的变换所得图像对应的解析式,这样才能避免出错.2.明确一个函数的图像关于y 轴对称与两个函数的图像关于y 轴对称的不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系.[试一试](2014·安徽“江南十校”联考)函数y =log 2(|x |+1)的图像大致是( )解析:选B 首先判断定义域为R.又f (-x )=f (x ).所以函数y =log 2(|x |+1)为偶函数,当x >0时,y =log 2(x +1).故选B.1.数形结合思想借助函数图像,可以研究函数的定义域、值域、单调性、奇偶性、对称性等性质;利用函数的图像,还可以判断方程f (x )=g (x )的解的个数、求不等式的解集等.2.分类讨论思想画函数图像时,如果解析式中含参数,还要对参数进行讨论,分别画出其图像.[练一练]若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是________.解析:由题意a =|x |+x令y =|x |+x =⎩⎪⎨⎪⎧2x ,x ≥0,0,x <0,图像如图所示,故要使a=|x |+x 只有一解则a >0.答案:(0,+∞)作函数的图像分别画出下列函数的图像: (1)y =|lg x |; (2)y =2x +2; (3)y =x 2-2|x |-1.解:(1)y =⎩⎪⎨⎪⎧lg x ,x ≥1,-lg x ,0<x <1.图像如图1.(2)将y =2x 的图像向左平移2个单位.图像如图2.(3)y =⎩⎪⎨⎪⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0.图像如图3.[类题通法]画函数图像的一般方法(1)直接法.当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出;(2)图像变换法.若函数图像可由某个基本函数的图像经过平移、翻折、对称得到,可利用图像变换作出,但要注意变换顺序.对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.识图与辨图[典例] (1)(2013·福建高考)函数f (x )=ln(x 2+1)的图像大致是( )(2)(2012·湖北高考)已知定义在区间[0,2]上的函数y =f (x )的图像如图所示,则y =-f (2-x )的图像为( )[解析] (1)f (x )=ln(x 2+1),x ∈R , 当x =0时,f (0)=ln 1=0, 即f (x )过点(0,0),排除B ,D.∵f (-x )=ln[(-x )2+1]=ln(x 2+1)=f (x ), ∴f (x )是偶函数,其图像关于y 轴对称,故选A. (2)法一:由y =f (x )的图像知f (x )=⎩⎪⎨⎪⎧x (0≤x ≤1),1(1<x ≤2).当x ∈[0,2]时,2-x ∈[0,2],所以f (2-x )=⎩⎪⎨⎪⎧1(0≤x ≤1),2-x (1<x ≤2),故y =-f (2-x )=⎩⎪⎨⎪⎧-1(0≤x ≤1),x -2(1<x ≤2).法二:当x =0时,-f (2-x )=-f (2)=-1; 当x =1时,-f (2-x )=-f (1)=-1. 观察各选项,可知应选B. [答案] (1)A (2)B [类题通法]识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图像的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图像特征,联想相关函数模型,利用这一函数模型来分析解决问题.[针对训练]1.(2014·佛山一模)函数f (x )=⎩⎨⎧3x ,x ≤1,log 13x ,x >1,则y =f (x +1)的图像大致是( )解析:选B 作出f (x )=⎩⎨⎧3x ,x ≤1,log 13x ,x >1的图像,如图.再把f (x )的图像向左平移一个单位, 可得到y =f (x +1)的图像.故选B.2.如图,函数f (x )的图像是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f ⎝ ⎛⎭⎪⎫1f (3)的值等于________.解析:∵由图像知f (3)=1,∴1f (3)=1.∴f ⎝ ⎛⎭⎪⎫1f (3)=f (1)=2. 答案:2函数图像的应用角度一 确定方程根的个数1.(2014·日照一模)已知f (x )=⎩⎪⎨⎪⎧|lg x |,x >0,2|x |,x ≤0,则函数y =2f 2(x )-3f (x )+1的零点个数是________.解析:方程2f 2(x )-3f (x )+1=0的解为f (x )=12或1.作出y =f (x )的图像,由图像知零点的个数为5.答案:5角度二 求参数的取值范围2.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -1),x ∈R.若函数y =f (x )-c 的图像与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-1,1]∪(2,+∞)B .(-2,-1]∪(1,2]C .(-∞,-2)∪(1,2]D .[-2,-1]解析:选B ∵a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1,∴函数f (x )=(x 2-2)⊗(x -1)=⎩⎪⎨⎪⎧x 2-2,-1≤x ≤2,x -1,x <-1或x >2.结合图像可知,当c ∈(-2,-1]∪(1,2]时,函数f (x )与y =c 的图像有两个公共点,∴c 的取值范围是(-2,-1]∪(1,2].角度三 求不等式的解集3.函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图像如图所示,那么不等式f (x )cos x <0的解集为________.解析:在⎝⎛⎭⎪⎫0,π2上y =cos x >0, 在⎝⎛⎭⎪⎫π2,4上y =cos x <0.由f (x )的图像知在⎝ ⎛⎭⎪⎫1,π2上f (x )cos x <0,因为f (x )为偶函数,y =cos x 也是偶函数, 所以y =f (x )cos x 为偶函数,所以f (x )cos x <0的解集为⎝ ⎛⎭⎪⎫-π2,-1∪⎝ ⎛⎭⎪⎫1,π2. 答案:⎝ ⎛⎭⎪⎫-π2,-1∪⎝ ⎛⎭⎪⎫1,π2 [类题通法]1.研究函数性质时一般要借助于函数图像,体现了数形结合思想;2.有些不等式问题常转化为两函数图像的上、下关系来解决; 3.方程解的问题常转化为两熟悉的函数图像的交点个数问题来解决.第五节二次函数与幂函数1.五种常见幂函数的图像与性质2.二次函数解析式的三种形式(1)一般式:f (x)=ax 2+bx +c (a ≠0); (2)顶点式:f (x )=a (x -m )2+n (a ≠0); (3)零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 3.二次函数的图像和性质1.研究函数f (x )=ax 2+bx +c 的性质,易忽视a 的取值情况而盲目认为f (x )为二次函数.2.形如y =x α(α∈R)才是幂函数,如y =3x 12不是幂函数. [试一试]1.若f (x )既是幂函数又是二次函数,则f (x )可以是( ) A .f (x )=x 2-1 B .f (x )=5x 2 C .f (x )=-x 2 D .f (x )=x 2答案:D2.已知函数f (x )=ax 2+x +5的图像在x 轴上方,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,120 B.⎝ ⎛⎭⎪⎫-∞,-120 C.⎝ ⎛⎭⎪⎫120,+∞ D.⎝ ⎛⎭⎪⎫-120,0 解析:选C 由题意知⎩⎪⎨⎪⎧ a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,1-20a <0得a >120.1.函数y =f (x )对称轴的判断方法(1)对于二次函数y =f (x ),如果定义域内有不同两点x 1,x 2且f (x 1)=f (x 2),那么函数y =f (x )的图像关于x =x 1+x 22对称.(2)二次函数y =f (x )对定义域内所有x ,都有f (a +x )=f (a -x )成立的充要条件是函数y =f (x )的图像关于直线x =a 对称(a 为常数).2.与二次函数有关的不等式恒成立两个条件(1)ax 2+bx +c >0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a >0,b 2-4ac <0.(2)ax 2+bx +c <0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a <0,b 2-4ac <0.3.两种数学思想(1)数形结合是讨论二次函数问题的基本方法.特别是涉及二次方程、二次不等式的时候常常要结合图形寻找思路.(2)含字母系数的二次函数问题经常使用的方法是分类讨论.比如讨论二次函数的对称轴与给定区间的位置关系,讨论二次方程根的大小等.[练一练]如果函数f (x )=x 2+(a +2)x +b (x ∈[a ,b ])的图像关于直线x =1对称,则函数f (x )的最小值为________.解析:由题意知⎩⎨⎧-a +22=1,a +b =2,得⎩⎪⎨⎪⎧a =-4,b =6. 则f (x )=x 2-2x +6=(x -1)2+5≥5.答案:51.幂函数y =f (x )的图像过点(4,2),则幂函数y =f (x )的图像是( )解析:选C 令f (x )=x α,则4α=2,∴α=12,∴f (x )=x 12.2.图中曲线是幂函数y =x α在第一象限的图像.已知n 取±2,±12四个值,则相应于曲线C 1,C 2,C 3,C 4的α值依次为________.答案:2,12,-12,-23.设a =⎝ ⎛⎭⎪⎫3525,b =⎝ ⎛⎭⎪⎫2535,c =⎝ ⎛⎭⎪⎫2525,则a ,b ,c 的大小关系是________.解析:∵y =x 25(x >0)为增函数,∴a >c .∵y =⎝ ⎛⎭⎪⎫25x (x ∈R)为减函数,∴c >b ,∴a >c >b . 答案:a >c >b [类题通法]1.幂函数y =x α的图像与性质由于α的值不同而比较复杂,一般从两个方面考查:(1)α的正负:α>0时,图像过原点和(1,1),在第一象限的图像上升;α<0时,图像不过原点,在第一象限的图像下降.(2)曲线在第一象限的凹凸性:α>1时,曲线下凸;0<α<1时,曲线上凸;α<0时,曲线下凸.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数.借助其单调性进行比较,准确掌握各个幂函数的图像和性质是解题的关键.[典例] 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.[解] 法一(利用一般式): 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数为f (x )=-4x 2+4x +7. 法二(利用顶点式): 设f (x )=a (x -m )2+n . ∵f (2)=f (-1),∴抛物线的对称轴为x =2+(-1)2=12.∴m =12.又根据题意函数有最大值8,∴n =8. ∴y =f (x )=a ⎝ ⎛⎭⎪⎫x -122+8. ∵f (2)=-1,∴a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4, ∴f (x )=-4⎝⎛⎭⎪⎫x -122+8=-4x 2+4x +7.法三(利用零点式):由已知f (x )+1=0两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1.又函数有最大值y max =8,即4a (-2a -1)-a 24a =8. 解得a =-4或a =0(舍).∴所求函数的解析式为f (x )=-4x 2+4x +7. [类题通法]求二次函数解析式的方法根据已知条件确定二次函数解析式,一般用待定系数法,规律如下:[针对训练]已知y =f (x )为二次函数,且f (0)=-5,f (-1)=-4,f (2)=-5,求此二次函数的解析式.解:设f (x )=ax 2+bx +c (a ≠0),因为f (0)=-5,f (-1)=-4,f (2)=-5, 所以⎩⎪⎨⎪⎧c =-5,a -b +c =-4,4a +2b +c =-5,解得a =13,b =-23,c =-5, 故f (x )=13x 2-23x -5.二次函数的图像与性质角度一 轴定区间定求最值1.已知函数f (x )=x 2+2ax +3,x ∈[-4,6] (1)当a =-2时,求f (x )的最值; (2)当a =1时,求f (|x |)的单调区间.解:(1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6],∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增, ∴f (x )的最小值是f (2)=-1, 又f (-4)=35,f (6)=15, 故f (x )的最大值是35.(2)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=⎩⎪⎨⎪⎧x 2+2x +3,x ∈(0,6],x 2-2x +3,x ∈[-6,0].∴f (|x |)的单调递增区间是(0,6], 单调递减区间是[-6,0].角度二 轴动区间定求最值2.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,求a 的值.解:函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1,对称轴方程为x =a .(1)当a <0时,f (x )max =f (0)=1-a , ∴1-a =2,∴a =-1.(2)当0≤a ≤1时,f (x )max =a 2-a +1, ∴a 2-a +1=2,∴a 2-a -1=0, ∴a =1±52(舍).(3)当a >1时,f (x )max =f (1)=a ,∴a =2. 综上可知,a =-1或a =2. 角度三 轴定区间动求最值3.设函数y =x 2-2x ,x ∈[-2,a ],若函数的最小值为g (a ),求g (a ).解:∵函数y =x 2-2x =(x -1)2-1, ∴对称轴为直线x =1,∵x =1不一定在区间[-2,a ]内, ∴应进行讨论.当-2<a ≤1时,函数在[-2,a ]上单调递减,则当x =a 时,y 取得最小值,即y min =a 2-2a ;当a >1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增,则当x =1时,y 取得最小值,即y min =-1.综上,g (a )=⎩⎪⎨⎪⎧a 2-2a ,-2<a ≤1,-1,a >1.[类题通法]影响二次函数在闭区间上的最大值与最小值的要素和求法: (1)最值与抛物线的开口方向、对称轴位置、闭区间三个要素有关.(2)常结合二次函数在该区间上的单调性或图像求解,在区间的端点或二次函数图像的顶点处取得最值.当开口方向或对称轴位置或区间不确定时要分情况讨论.第六节指数与指数函数1.根式的性质。
§2.7 函数的图象1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象. 2.图象变换(1)平移变换(2)对称变换①y =f (x )――→关于x 轴对称y =-f (x );②y =f (x )――→关于y 轴对称y =f (-x );③y =f (x )――→关于原点对称y =-f (-x );④y =a x (a >0且a ≠1)――→关于y =x 对称y =log a x (a >0且a ≠1).⑤y =f (x )――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|.⑥y =f (x )――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |). (3)伸缩变换②y =f (x )――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变 y =af (x ).1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)当x ∈(0,+∞)时,函数y =|f (x )|与y =f (|x |)的图象相同.( × ) (2)函数y =af (x )与y =f (ax )(a >0且a ≠1)的图象相同.( × ) (3)函数y =f (x )与y =-f (x )的图象关于原点对称.( × )(4)若函数y =f (x )满足f (1+x )=f (1-x ),则函数f (x )的图象关于直线x =1对称.( √ )(5)将函数y =f (-x )的图象向右平移1个单位得到函数y =f (-x -1)的图象.( × ) (6)不论a (a >0且a ≠1)取何值,函数y =log a 2|x -1|的图象恒过定点(2,0).( × ) 2.(2013·某某)函数y =x cos x +sin x 的图象大致为( )答案 D解析 函数y =x cos x +sin x 为奇函数,排除B.取x =π2,排除C ;取x =π,排除A ,故选D.3.(2013·)函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )等于( ) A .e x +1B .e x -1 C .e-x +1D .e-x -1答案 D解析 与y =e x 图象关于y 轴对称的函数为y =e -x .依题意,f (x )图象向右平移一个单位,得y =e -x 的图象.∴f (x )的图象由y =e -x 的图象向左平移一个单位得到.∴f (x )=e -(x +1)=e -x -1.4.已知图①中的图象对应的函数为y =f (x ),则图②中的图象对应的函数为( )A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (|x |) 答案 C解析 y =f (-|x |)=⎩⎪⎨⎪⎧f (-x ),x ≥0f (x ),x <0.5.已知函数f (x )=⎩⎪⎨⎪⎧2,x >m ,x 2+4x +2,x ≤m 的图象与直线y =x 恰有三个公共点,则实数m 的取值X 围是( )A .(-∞,-1]B .[-1,2)C .[-1,2]D .[2,+∞) 答案 B解析 方法一 特值法,令m =2,排除C 、D ,令m =0,排除A ,故选B. 方法二 令x 2+4x +2=x ,解得x =-1或x =-2, 所以三个解必须为-1,-2和2,所以有-1≤m <2.故选B.题型一 作函数的图象例1 分别画出下列函数的图象: (1)y =|lg x |; (2)y =2x +2;(3)y =x 2-2|x |-1; (4)y =x +2x -1.思维启迪 根据一些常见函数的图象,通过平移、对称等变换可以作出函数图象.解 (1)y =⎩⎪⎨⎪⎧lg x (x ≥1),-lg x (0<x <1)图象如图①.(2)将y =2x 的图象向左平移2个单位.图象如图②.(3)y =⎩⎪⎨⎪⎧x 2-2x -1 (x ≥0)x 2+2x -1 (x <0).图象如图③.(4)因y =1+3x -1,先作出y =3x 的图象,将其图象向右平移1个单位,再向上平移1个单位,即得y =x +2x -1的图象,如图④.思维升华 (1)常见的几种函数图象如二次函数、反比例函数、指数函数、对数函数、幂函数、形如y =x +mx (m >0)的函数是图象变换的基础;(2)掌握平移变换、伸缩变换、对称变换等常用方法技巧,可以帮助我们简化作图过程. 作出下列函数的图象.(1)y =sin |x |;(2)y =x +2x +3.解 (1)当x ≥0时,y =sin |x |与y =sin x 的图象完全相同, 又y =sin |x |为偶函数,其图象关于y 轴对称,其图象如图.(2)y =x +2x +3=1-1x +3,该函数图象可由函数y =-1x 向左平移3个单位再向上平移1个单位得到,如下图所示.题型二 识图与辨图例2 (1)(2013·某某)函数y =x 33x -1的图象大致是( )(2)已知f (x )=⎩⎨⎧-2x ,(-1≤x ≤0)x ,(0<x ≤1),则下列函数的图象错误的是( )思维启迪 (1)根据函数的定义域,特殊点和函数值的符号判断;(2)正确把握图象变换的特征,结合f (x )的图象辨识. 答案 (1)C (2)D解析 (1)由3x-1≠0得x ≠0,∴函数y =x 33x -1的定义域为{x |x ≠0},可排除选项A ;当x=-1时,y =(-1)313-1=32>0,可排除选项B ;当x =2时,y =1,当x =4时,y =6480,但从选项D 的函数图象可以看出函数在(0,+∞)上是单调递增函数,两者矛盾,可排除选项D.故选C.(2)先在坐标平面内画出函数y =f (x )的图象,再将函数y =f (x )的图象向右平移1个单位长度即可得到y =f (x -1)的图象,因此A 正确;作函数y =f (x )的图象关于y 轴的对称图形,即可得到y =f (-x )的图象,因此B 正确; y =f (x )的值域是[0,2],因此y =|f (x )|的图象与y =f (x )的图象重合,C 正确;y =f (|x |)的定义域是[-1,1],且是一个偶函数,当0≤x ≤1时,y =f (|x |)=x ,相应这部分图象不是一条线段,因此选项D 不正确. 综上所述,选D.思维升华 函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.(1)已知函数f (x )=1ln (x +1)-x,则y =f (x )的图象大致为( )(2)把函数y =f (x )=(x -2)2+2的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数解析式是( )A .y =(x -3)2+3B .y =(x -3)2+1C .y =(x -1)2+3D .y =(x -1)2+1 答案 (1)B (2)C解析 (1)(特殊值检验法)当x =0时,函数无意义,排除选项D 中的图象,当x =1e -1时,f (1e -1)=1ln (1e -1+1)-(1e -1)=-e<0,排除选项A 、C 中的图象,故只能是选项B 中的图象.(注:这里选取特殊值x =(1e -1)∈(-1,0),这个值可以直接排除选项A 、C ,这种取特值的技巧在解题中很有用处)(2)把函数y =f (x )的图象向左平移1个单位,即把其中x 换成x +1, 于是得y =[(x +1)-2]2+2=(x -1)2+2, 再向上平移1个单位,即得到y =(x -1)2+2+1 =(x -1)2+3.题型三 函数图象的应用例3(1)当0<x ≤12时,4x <log a x ,则a 的取值X 围是( )A .(0,22)B .(22,1)C .(1,2)D .(2,2)(2)(2013·某某)函数f (x )=2ln x 的图象与函数g (x )=x 2-4x +5的图象的交点个数为( ) A .3 B .2 C .1 D .0思维启迪 (1)可以通过函数y =4x 和y =log a x 图象的位置、特征确定a 的X 围; (2)画两函数图象、观察即可. 答案 (1)B (2)B解析 (1)方法一 ∵0<x ≤12,∴1<4x ≤2,∴log a x >4x >1,∴0<a <1. 令f (x )=4x ,g (x )=log a x ,当x =12时,f (12)=2.(如图)而g (12)=log a 12=2,∴a =22.又∵g (x )=log a x ,x 0∈(0,1),a 1,a 2∈(0,1)且a 1<a 2时,log a 2x 0>log a 1x 0,∴要使当0<x ≤12时,4x <log a x 成立,需22<a <1.故选B. 方法二 ∵0<x ≤12,∴1<4x ≤2,∴log a x >4x >1,∴0<a <1,排除答案C ,D ;取a =12,x =12,则有421=2,log 2112=1,显然4x <log a x 不成立,排除答案A ;故选B.(2)画出两个函数f (x ),g (x )的图象,由图知f (x ),g (x )的图象的交点个数为2.思维升华 (1)根据函数图象,可以比较函数值大小,确定参数X 围; (2)利用函数图象,可以解决一些形如f (x )=g (x )方程的解或函数零点问题.(1)已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有( ) A .10个 B .9个 C .8个 D .1个(2)直线y =1与曲线y =x 2-|x |+a 有四个交点,则a 的取值X 围是________.答案 (1)A(2)1<a <54解析 (1)观察图象可知,共有10个交点.(2)y =⎩⎪⎨⎪⎧x 2-x +a ,x ≥0,x 2+x +a ,x <0,作出图象,如图所示.此曲线与y 轴交于(0,a )点,最小值为a -14,要使y =1与其有四个交点,只需a -14<1<a ,∴1<a <54.高考中的函数图象及应用问题一、已知函数解析式确定函数图象典例:(5分)函数y =f (x )的图象如图所示,则函数的图象大致是( )思维启迪 根据函数的定义域、值域、单调性和特征点确定函数图象. 解析 由函数y =f (x )的图象知,当x ∈(0,2)时,f (x )≥1, 所以log 21f (x )≤0.又函数f (x )在(0,1)上是减函数,在(1,2)上是增函数, 所以y =log 21f (x )在(0,1)上是增函数,在(1,2)上是减函数.结合各选项知,选C. 答案 C温馨提醒 (1)确定函数的图象,要从函数的性质出发,利用数形结合的思想. (2)对于给出图象的选择题,可以结合函数的某一性质或特殊点进行排除. 二、函数图象的变换问题典例:(5分)若函数y =f (x )的图象如图所示,则函数y =-f (x +1)的图象大致为( )思维启迪 从y =f (x )的图象可先得到y =-f (x )的图象,再得y =-f (x +1)的图象. 解析 要想由y =f (x )的图象得到y =-f (x +1)的图象,需要先将y =f (x )的图象关于x 轴对称得到y =-f (x )的图象,然后再向左平移一个单位得到y =-f (x +1)的图象,根据上述步骤可知C 正确. 答案 C温馨提醒 (1)对图象的变换问题,从f (x )到f (ax +b ),可以先进行平移变换,也可以先进行伸缩变换,要注意变换过程中两者的区别. (2)图象变换也可利用特征点的变换进行确定.三、图象应用典例:(5分)已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值X 围是________.思维启迪 先作函数y =|x 2-1|x -1的图象,然后利用函数y =kx -2图象过(0,-2)以及与y=|x 2-1|x -1图象两个交点确定k 的X 围. 解析 根据绝对值的意义,y =|x 2-1|x -1=⎩⎪⎨⎪⎧x +1(x >1或x <-1),-x -1(-1≤x <1).在直角坐标系中作出该函数的图象,如图中实线所示.根据图象可知, 当0<k <1或1<k <4时有两个交点. 答案 (0,1)∪(1,4)温馨提醒 (1)本题求解利用了数形结合的思想,数形结合的思想包括“以形助数”或“以数辅形”两个方面,本题属于“以形助数”,是指把某些抽象的问题直观化、生动化,能够变抽象思维为形象思维,解释数学问题的本质.(2)利用函数图象也可以确定不等式解的情况,解题时可对方程或不等式适当变形,选择合适的函数进行作图.方法与技巧(1)可通过研究函数的性质如定义域、值域、奇偶性、周期性、单调性等等;(2)可通过函数图象的变换如平移变换、对称变换、伸缩变换等;(3)可通过方程的同解变形,如作函数y =1-x 2的图象.2.合理处理识图题与用图题 (1)识图对于给定函数的图象,要从图象的左右、上下分布X 围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系. (2)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.常用函数图象研究含参数的方程或不等式解集的情况. 失误与防X(1)解题时要注意运用“以形助数”或“以数辅形”;(2)要注意一个函数的图象自身对称和两个不同的函数图象对称的区别.A组专项基础训练一、选择题1.函数y=ln(1-x)的大致图象为()答案 C解析将函数y=ln x的图象关于y轴对折,得到y=ln(-x)的图象,再向右平移1个单位即得y=ln(1-x)的图象.故选C.2.函数y=5x与函数y=-15x的图象关于()A.x轴对称B.y轴对称C.原点对称D.直线y=x对称答案 C解析y=-15x=-5-x,可将函数y=5x中的x,y分别换成-x,-y得到,故两者图象关于原点对称.3.若log a2<0(a>0,且a≠1),则函数f(x)=log a(x+1)的图象大致是()答案 B解析∵log a2<0,∴0<a<1,由f(x)=log a(x+1)单调性可知A、D错误,再由定义域知B选项正确.4.为了得到函数y=lg x+310的图象,只需把函数y=lg x的图象上所有的点()A.向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度答案 C解析 y =lg x +310=lg(x +3)-1, 将y =lg x 的图象向左平移3个单位长度得到y =lg(x +3)的图象,再向下平移1个单位长度,得到y =lg(x +3)-1的图象.5.使log 2(-x )<x +1成立的x 的取值X 围是( )A .(-1,0)B .[-1,0)C .(-2,0)D .[-2,0)答案 A解析 在同一坐标系内作出y =log 2(-x ),y =x +1的图象,知满足条件的x ∈(-1,0),故选A.二、填空题6.已知f (x )=(13)x ,若f (x )的图象关于直线x =1对称的图象对应的函数为g (x ),则g (x )的表达式为________.答案 g (x )=3x -2解析 设g (x )上的任意一点A (x ,y ),则该点关于直线x =1的对称点B 为B (2-x ,y ),而该点在f (x )的图象上.∴y =(13)2-x =3x -2,即g (x )=3x -2. 7.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为__________.答案 6解析 f (x )=min{2x ,x +2,10-x }(x ≥0)的图象如图.令x +2=10-x ,得x =4.当x =4时,f (x )取最大值,f (4)=6.8.已知函数f (x )=⎩⎪⎨⎪⎧2x , x ≥2,(x -1)3, x <2.若关于x 的方程f (x )=k 有两个不 同的实根,则实数k 的取值X 围是________.答案 (0,1)解析 画出分段函数f (x )的图象如图所示,结合图象可以看出,若f (x )=k 有两个不同的实根,也即函数y =f (x )的图象与y =k 有两个不同的交点,k 的取值X 围为(0,1).三、解答题9.已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0.(1)某某数m 的值;(2)作出函数f (x )的图象;(3)根据图象指出f (x )的单调递减区间;(4)若方程f (x )=a 只有一个实数根,求a 的取值X 围.解 (1)∵f (4)=0,∴4|m -4|=0,即m =4.(2)f (x )=x |x -4|=⎩⎪⎨⎪⎧x (x -4)=(x -2)2-4,x ≥4,-x (x -4)=-(x -2)2+4,x <4. f (x )的图象如图所示:(3)f (x )的减区间是[2,4].(4)从f (x )的图象可知,当a >4或a <0时,f (x )的图象与直线y =a 只有一个交点,方程f (x )=a 只有一个实数根,即a 的取值X 围是(-∞,0)∪(4,+∞).10.已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称. (1)求f (x )的解析式;(2)若g (x )=f (x )+a x,且g (x )在区间(0,2]上为减函数,某某数a 的取值X 围. 解 (1)设f (x )图象上任一点P (x ,y ),则点P 关于(0,1)点的对称点P ′(-x,2-y )在h (x )的图象上,即2-y =-x -1x +2,∴y =f (x )=x +1x(x ≠0). (2)g (x )=f (x )+a x =x +a +1x ,g ′(x )=1-a +1x2. ∵g (x )在(0,2]上为减函数,∴1-a +1x2≤0在(0,2]上恒成立,即a +1≥x 2在(0,2]上恒成立,∴a +1≥4,即a ≥3,故a 的取值X 围是[3,+∞).B 组 专项能力提升1.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x -1,x ≥0,x 2-2x -1,x <0,则对任意x 1,x 2∈R ,若0<|x 1|<|x 2|,下列不等式成立的是( )A .f (x 1)+f (x 2)<0B .f (x 1)+f (x 2)>0C .f (x 1)-f (x 2)>0D .f (x 1)-f (x 2)<0答案 D解析 函数f (x )的图象如图所示:且f (-x )=f (x ),从而函数f (x )是偶函数且在[0,+∞)上是增函数.又0<|x 1|<|x 2|,∴f (x 2)>f (x 1),即f (x 1)-f (x 2)<0.2.函数y =11-x的图象与函数y =2sin πx (-2≤x ≤4)的图象所有交点的横坐标之和等于( ) A .2 B .4 C .6 D .8答案 D解析 令1-x =t ,则x =1-t .由-2≤x ≤4,知-2≤1-t ≤4,所以-3≤t ≤3.又y =2sin πx =2sin π(1-t )=2sin πt .在同一坐标系下作出y =1t和y =2sin πt 的图象.由图可知两函数图象在[-3,3]上共有8个交点,且这8个交点两两关于原点对称. 因此这8个交点的横坐标的和为0,即t 1+t 2+…+t 8=0.也就是1-x 1+1-x 2+…+1-x 8=0,因此x 1+x 2+…+x 8=8.3.若函数f (x )=(2-m )x x 2+m的图象如图,则m 的取值X 围是________. 答案 1<m <2解析 ∵函数的定义域为R ,∴x 2+m 恒不等于零,∴m >0.由图象知,当x >0时,f (x )>0,∴2-m >0⇒m <2.又∵在(0,+∞)上函数f (x )在x =x 0(x 0>1)处取得最大值,而f (x )=2-m x +m x, ∴x 0=m >1⇒m >1.综上,1<m <2.4.已知函数y =f (x )的定义域为R ,并对一切实数x ,都满足f (2+x )=f (2-x ).(1)证明:函数y =f (x )的图象关于直线x =2对称;(2)若f (x )是偶函数,且x ∈[0,2]时,f (x )=2x -1,求x ∈[-4,0]时f (x )的表达式.(1)证明 设P (x 0,y 0)是函数y =f (x )图象上任一点,则y 0=f (x 0),点P 关于直线x =2的对称点为P ′(4-x 0,y 0).因为f (4-x 0)=f [2+(2-x 0)]=f [2-(2-x 0)]=f (x 0)=y 0,所以P ′也在y =f (x )的图象上,所以函数y =f (x )的图象关于直线x =2对称.(2)解 当x ∈[-2,0]时,-x ∈[0,2],所以f (-x )=-2x -1.又因为f (x )为偶函数,所以f (x )=f (-x )=-2x -1,x ∈[-2,0].当x ∈[-4,-2]时,4+x ∈[0,2],所以f (4+x )=2(4+x )-1=2x +7,而f (4+x )=f (-x )=f (x ),所以f (x )=2x +7,x ∈[-4,-2].所以f (x )=⎩⎪⎨⎪⎧ 2x +7,x ∈[-4,-2],-2x -1,x ∈[-2,0].5.已知函数f (x )=|x 2-4x +3|.(1)求函数f (x )的单调区间,并指出其增减性;(2)求集合M ={m |使方程f (x )=m 有四个不相等的实根}.解 f (x )=⎩⎪⎨⎪⎧ (x -2)2-1, x ∈(-∞,1]∪[3,+∞)-(x -2)2+1, x ∈(1,3)作出函数图象如图.(1)函数的增区间为[1,2],[3,+∞);函数的减区间为(-∞,1],[2,3].(2)在同一坐标系中作出y =f (x )和y =m 的图象,使两函数图象有四个不同的交点(如图).由图知0<m <1,∴M ={m |0<m <1}.。
课时作业(八)A [第8讲 指数与对数的运算](时间:30分钟 分值:80分)1.Log 22=( )A .- 2B . 2C .-12D .122.[](-2)2-1=( )A. 2 B .- 2C.22 D .-22 3.若log m n ·log 3m =2,则n =( )A .m 3B .m 2C .9D .8 4.给出下列各式:36a 3=2a ,4a 2+b 2=a +b ,3-2=6(-2)2,-342=42(-3)4,其中正确的式子的个数是( )A .0B .1C .2D .35.若log 32=a ,则log 38-2log 36用a 表示为( )A .a -2B .3a -(1+a )2C .5a -2D .3a -2-a 26.化简5log25[(lg2)2+lg 52]的结果是( )A .lg 15B .lg 5C .lg 215 D .lg 257.若a >1,b <0,且a b +a -b =22,则a b -a -b 的值等于( ) A. 6 B .±2C .-2D .28.(1+1322-) (1+1162-) (1+182-) (1+142-) (1+122-)=( )A .12(1-1322-)B .12(1-1322-)-1C .(1-1322-)-1D .129.已知23a =49(a >0)________.10. (14)-2+(16 2)0-327=________. 11.已知x ,y ,z 都是大于1的正数,m >0,且log x m =24,log y m =40,log xyz m =12,则log z m =________. 12.(13分)化简下列各式:(1)(x -1+x +x 0) (12x --12x );(2) 222233----++x y x y-222233------x y x y ; (3)(a 3+a -3)(a 3-a -3)÷[(a 4+a -4+1)(a -a -1)].13.(12分)设a ,b ,c 是直角三角形的三边长,其中c 为斜边长,且c ≠1.求证:log (c +b )a +log (c -b )a =2log (c +b )a ·log (c -b )a .课时作业(八)B [第8讲 指数与对数的运算](时间:30分钟 分值:80分)1.给出下列四个式子: ①6(-27)2=±3;②3-2x 2=(16x 8)112; ③7a 7+b 7=a +b ;④10(-2)5x 10y 15=-|x |y ·-2y (y <0). 其中错误的有( )A .1个B .2个C .3个D .4个2.化简2-(2k +1)-2-(2k -1)+2-2k 等于( )A .2-2kB .2-(2k -1)C .-2-(2k +1)D .23.52532log 125-=________.4.(log 23+log 89)(log 34+log 98+log 32)=________.5.对任意实数x ,下列等式恒成立的是( )A .1223⎛⎫ ⎪⎝⎭x =13xB .2132x ⎛⎫ ⎪⎝⎭=13x C .1335x ⎛⎫ ⎪⎝⎭=15x D .3153x --⎛⎫ ⎪⎝⎭=15x 61142⎛⎫ ⎪⎝⎭a b (a ,b >0)的结果是( ) A.b a B .abC.a b D .a 2b7.若log 513·log 36·log 6x =2,则x =( )A.15B.125C .lg 15D .lg 1258.若lg a ,lg b 是方程2x 2-4x +1=0的两个实根,则(lg a b )2的值等于( )A .2B .12C .4D .149.化简:4111442111244-⎛⎫- ⎪ ⎪ ⎪-⎝⎭a b b a a b =________. 10.若log a x =1,log b x =2,log c x =4,则log abc x =________.11.若log 1227=a ,则log 616的值为用a 表示________.12.(13分)计算下列各题:(1)log 225·log 322·log 59;(2)(log 29+log 419)(log 32+log 90.5); (3)lg(3+5+3-5);(4)log 2(1+32)+log 2(1-32);(5)(lg 5)2+lg 2·lg 5+lg 2;(6)lg 5(lg 8+lg 1000)+2+lg 16+lg 0.06.13.(12分)当x >0,y >0,且x (x +y )=3 y (x +5y )时,求2x +xy +3yx +xy -y 的值.课时作业(八)A1.D 2.C 3.C 4.A 5.A 6.B 7.C 8.B 9.3 10.14 11.60 12.(1) 32x -32x (2)-23xy xy (3)a +1a 13.略课时作业(八)B1.C 2.C 3.1 4.152 5.C 6.C 7.B 8.A 9.a b10.47 11.4(3-a )3+a 12.(1)6 (2)12 (3)12 (4)-2 (5)1 (6)1 13.2薄雾浓云愁永昼, 瑞脑消金兽。
课时作业 (十五 ) [ 第 15 讲利用导数研究函数的最值、优化问题、方程与不等式 ](时间: 45 分钟分值:100分)1.函数 y=xe x的最小值是 ()A .- 1B.- e1C.-e D.不存在2.某城市在发展过程中,交通情况渐渐遇到关注,据相关统计数据显示,从上午 6 时到 9 时,车辆经过该市某一路段的用时 y(分钟 ) 与车辆进入该路段的时辰 t 之间的关系可近似地用以下函数给出: y1 332629=-8t -4t +36t-4 .则在这段时间内,经过该路段用时最多的进入时辰是 ()A.6 时B.7 时C.8 时D.9 时3.[2013 ·河南十所名校联考 ] e,π分别是自然对数的底数和圆周率,则以下不等式中不建立的是()A.e>3πB.logπ e+log eπ>1C.log e+(log π)2>2πeeπD.e -e>e -π4. [2013 ·吉林实验中学模拟 ] 已知 f(x)=x3- 6x2+ 9x- abc,a<b<c,且 f(a)=f(b)=f(c)=0.现给出以下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0;⑤abc<4;⑥a bc>4.此中正确结论的序号是()A .①③⑤B.①④⑥C.②③⑤D.②④⑥5.定义在R上的可导函数f(x)知足 f(-x)=f(x),f(x-2)=f(x+2),且当 x∈[0,2]时, f(x)= e x+12xf′(0),则 f(27)与 f(163)的大小关系是()716A .f(2>f( 3 )716B.f(2=f( 3 )716C.f(2<f( 3 )D.不确立1π6.[2013 ·郑州二检 ] 已知函数 f(x)=2x-cos x,则方程 f(x)=4的全部根的和为 ()ππ3πA.0 B.4 C.2 D.27.[2013·青岛一模 ]已知函数 f(x)=2x-1,关于知足 0<x1<x2<2的随意 x1,x2,给出以下结论:①(x2-x1)[f(x2)-f(x1)]<0 ;②x2f(x1)<x1f(x2);③f(x2)-f(x1)>x1-x2;④f( x1)+f( x2)>f(x1+x2).22此中正确结论的序号是()A .①②B.①③C.②④D.③④8.[2013 ·日照二模 ] 已知定义在R上的可导函数 f(x)的导函数为f′(x),知足 f′(x)<f(x),且 f(x+2)为偶函数, f(4)=1,则不等式 f(x)<e x 的解集为 ()A .(-2,+∞ )B.(0,+∞ )C.(1,+∞ )D.(4,+∞ )3-3x 在(a,6-a2上有最小值,.·厦门质检]若函数f(x)=x)9 [2013则实数 a 的取值范围是 ()A .(- 5,1)B.[- 5,1)C.[-2,1)D.(-2,1)10.[2013 ·长春四调 ] 已知函数 f(x)=x3+2x·f′(-1),则 f(x)在区间 [ -2,3]上的值域是 ________.图 K15- 111.[2013 ·宁波五校联考 ] 已知函数 f′(x),g′(x)分别是二次函数f(x)和三次函数 g(x)的导函数,它们在同一坐标系内的图像如图 K15-1所示.设函数 h(x)=f(x)-g(x),则 h(-1),h(0),h(1)的大小关系为____________________用(“<连”接 ).12.[2013 ·江苏镇江一模] 在平面直角坐标系xOy 中,已知A(1,0),函数 y=e x的图像与 y 轴的交点为 B,P 为函数 y=e x图像上的任→→意一点,则 OP·AB的最小值为 ________.13.[2013 ·德州模拟 ] 已知函数 f(x)=xe x,g(x)=- (x+1)2+a.若存在x1,x2∈R,使得f(x2)≤g(x1)建立,则实数 a 的取值范围是________.12 14.(10 分)[2013 陕·西西工大附中模拟 ] 已知函数 f(x)=2ax - (2a+1)x+2ln x(a∈R).(1)若曲线 y=f(x)在 x=1 和 x=3 处的切线相互平行,求 a 的值及函数 f(x)的单一区间;(2)设 g(x)=(x2-2x)e x,若对随意 x1∈(0,2],均存在 x2∈(0,2],使得 f(x1)<g(x2),求 a 的取值范围.15.(13 分)某商场销售某种商品的经验表示,该商品每天的销售a量 y(单位:千克 )与销售价钱 x(单位:元 /千克 )知足关系式 y=x-3+10(x-6)2,此中 3<x<6,a 为常数.已知销售价钱为 5 元/千克时,每天可售出该商品 11 千克.(1)求 a 的值;(2)若该商品的成本为 3 元/千克,试确立销售价钱 x 的值,使商场每天销售该商品所获取的收益最大.a16.(12 分)[2013 琼·海模拟 ] 已知函数φ(x)=x+1,a 为正常数.9(1)若 f(x)=ln x+φ(x),且 a=2,求函数 f(x)的单一递加区间;(2)若 g(x)=|ln x|+φ(x),且对随意 x1, x2∈(0,2],x1≠x2,都有g(x2)- g(x1)<-1,求 a 的取值范围.x2-x1课时作业 (十五 )1.C 2.C 3.D 4.C 5.C 6.C 7.D 8.B 9.C 10.[-42,9] 11.h(0)<h(1)<h(-1) 12.1113. -e,+∞14.(1)a=2函数 f(x)的单一递加区间为0,3,(2,+∞ ),单323调递减区间为2,2(2)a>ln 2-115.(1)a=2 (2)4 元/千克127 16.(1)函数 f(x)的单一递加区间为 (0,2),(2,+∞ ) (2)a≥2。
学案29 等差数列及其前n 项和导学目标: 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.了解等差数列与一次函数的关系.4.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.自主梳理1.等差数列的有关定义(1)一般地,如果一个数列从第____项起,每一项与它的前一项的____等于同一个常数,那么这个数列就叫做等差数列.符号表示为____________ (n ∈N *,d 为常数).(2)数列a ,A ,b 成等差数列的充要条件是__________,其中A 叫做a ,b 的__________.2.等差数列的有关公式(1)通项公式:a n =________,a n =a m +________ (m ,n ∈N *). (2)前n 项和公式:S n =__________=____________. 3.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n .数列{a n }是等差数列的充要条件是其前n 项和公式S n =__________.4.等差数列的性质(1)若m +n =p +q (m ,n ,p ,q ∈N *),则有__________,特别地,当m +n =2p 时,______________.(2)等差数列中,S m ,S 2m -S m ,S 3m -S 2m 成等差数列.(3)等差数列的单调性:若公差d >0,则数列为____________;若d <0,则数列为__________;若d =0,则数列为________.自我检测 1.(2010·北京海淀区模拟)已知等差数列{a n }中,a 5+a 9-a 7=10,记S n =a 1+a 2+…+a n ,则S 13的值为 ( )A .130B .260C .156D .1682.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于 ( )A .1 B.53 C .2 D .33.(2010·泰安一模)设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于 ( )A .1B .-1C .2 D.12 4.(2010·湖南师大附中)若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7等于 ( )A .12B .13C .14D .155.设等差数列{a n }的前n 项和为S n .若S 9=72,则a 2+a 4+a 9=________.探究点一 等差数列的基本量运算例1 等差数列{a n }的前n 项和记为S n .已知a 10=30,a 20=50, (1)求通项a n ;(2)若S n =242,求n .变式迁移1 设等差数列{a n }的公差为d (d ≠0),它的前10项和S 10=110,且a 1,a 2,a 4成等比数列,求公差d 和通项公式a n .探究点二 等差数列的判定例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大值和最小值,并说明理由.变式迁移2 已知数列{a n }中,a 1=5且a n =2a n -1+2n -1(n ≥2且n ∈N *).(1)求a 2,a 3的值.(2)是否存在实数λ,使得数列{a n +λ2n }为等差数列?若存在,求出λ的值;若不存在,说明理由.探究点三 等差数列性质的应用例3 若一个等差数列的前5项之和为34,最后5项之和为146,且所有项的和为360,求这个数列的项数.变式迁移3 已知数列{a n }是等差数列.(1)前四项和为21,末四项和为67,且前n 项和为286,求n ; (2)若S n =20,S 2n =38,求S 3n ;(3)若项数为奇数,且奇数项和为44,偶数项和为33,求数列的中间项和项数.探究点四 等差数列的综合应用 例4 (2011·厦门月考)已知数列{a n }满足2a n +1=a n +a n +2 (n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72.若b n =12a n -30,求数列{b n }的前n 项和的最小值.变式迁移4 在等差数列{a n }中,a 16+a 17+a 18=a 9=-36,其前n 项和为S n .(1)求S n 的最小值,并求出S n 取最小值时n 的值. (2)求T n =|a 1|+|a 2|+…+|a n |.1.等差数列的判断方法有:(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列. (2)中项公式:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列. (3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(4)前n 项和公式:S n =An 2+Bn (A 、B 为常数)⇔{a n }是等差数列. 2.对于等差数列有关计算问题主要围绕着通项公式和前n 项和公式,在两个公式中共五个量a 1、d 、n 、a n 、S n ,已知其中三个量可求出剩余的量,而a 与d 是最基本的,它可以确定等差数列的通项公式和前n 项和公式.3.要注意等差数列通项公式和前n 项和公式的灵活应用,如a n=a m +(n -m )d ,S 2n -1=(2n -1)a n 等.4.在遇到三个数成等差数列问题时,可设三个数为①a ,a +d ,a +2d ;②a -d ,a ,a +d ;③a -d ,a +d ,a +3d 等可视具体情况而定.(满分:75分)一、选择题(每小题5分,共25分) 1.(2010·重庆)在等差数列{a n }中,a 1+a 9=10,则a 5的值为 ( )A .5B .6C .8D .10 2.(2010·全国Ⅱ)如果等差数列{}a n 中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7= ( )A .14B .21C .28D .35 3.(2010·山东潍坊五校联合高三期中)已知{a n }是等差数列,a 1=-9,S 3=S 7,那么使其前n 项和S n 最小的n 是 ( )A .4B .5C .6D .74.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为 ( )A .14B .15C .16D .175.等差数列{a n }的前n 项和满足S 20=S 40,下列结论中正确的是 ( )A .S 30是S n 中的最大值B .S 30是S n 中的最小值6.(2010·辽宁)设S n为等差数列{a n}的前n项和,若S3=3,S6=24,则a9=________.7.(2009·海南,宁夏)等差数列{a n}的前n项和为S n,已知a m-1+a m+1-a2m=0,S2m-1=38,则m=________.8.在数列{a n}中,若点(n,a n)在经过点(5,3)的定直线l上,则数列{a n}的前9项和S9=________.三、解答题(共38分)9.(12分)(2011·莆田模拟)设{a n}是一个公差为d (d≠0)的等差数列,它的前10项和S10=110,且a22=a1a4.(1)证明:a1=d;(2)求公差d的值和数列{a n}的通项公式.10.(12分)(2010·山东)已知等差数列{a n}满足:a3=7,a5+a7=26,{a n}的前n项和为S n.(1)求a n及S n;(2)令b n=1a2n-1(n∈N*),求数列{b n}的前n项和T n.11.(14分)(2010·广东湛师附中第六次月考)在数列{a n}中,a1=1,3a n a n-1+a n-a n-1=0(n≥2).(1)证明数列{1a n}是等差数列;(2)求数列{a n}的通项;(3)若λa n+1a n+1≥λ对任意n≥2的整数恒成立,求实数λ的取值范围.答案自主梳理1.(1)2 差 a n +1-a n =d (2)A =a +b2 等差中项2.(1)a 1+(n -1)d (n -m )d (2)na 1+n (n -1)2d (a 1+a n )n2 3.An 2+Bn 4.(1)a m +a n =a p +a q a m +a n =2a p (3)递增数列 递减数列 常数列自我检测1.A 2.C 3.A 4.B 5.24 课堂活动区例1 解题导引 (1)等差数列{a n }中,a 1和d 是两个基本量,用它们可以表示数列中的任何一项,利用等差数列的通项公式与前n 项和公式,列方程组解a 1和d ,是解决等差数列问题的常用方法;(2)由a 1,d ,n ,a n ,S n 这五个量中的三个量可求出其余两个量,需选用恰当的公式,利用方程组观点求解.解 (1)由a n =a 1+(n -1)d ,a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧ a 1+9d =30,a 1+19d =50, 解得⎩⎪⎨⎪⎧a 1=12,d =2.所以a n =2n +10.(2)由S n =na 1+n (n -1)2d ,S n =242.得12n +n (n -1)2×2=242. 解得n =11或n =-22(舍去). 变式迁移1 解 由题意,知 ⎩⎨⎧S 10=10a 1+10×92d =110,(a 1+d )2=a 1·(a 1+3d ),即⎩⎪⎨⎪⎧2a 1+9d =22,a 1d =d 2.∵d ≠0,∴a 1=d .解得a 1=d =2,∴a n =2n .例2 解题导引 1.等差数列的判定通常有两种方法:第一种是利用定义,即a n -a n -1=d (常数)(n ≥2),第二种是利用等差中项,即2a n =a n +1+a n -1 (n ≥2).2.解选择、填空题时,亦可用通项或前n 项和直接判断. (1)通项法:若数列{a n }的通项公式为n 的一次函数,即a n =An +B ,则{a n }是等差数列.(2)前n 项和法:若数列{a n }的前n 项和S n 是S n =An 2+Bn 的形式(A ,B 是常数),则{a n }为等差数列.3.若判断一个数列不是等差数列,则只需说明任意连续三项不(1)证明 ∵a n =2-1a n -1 (n ≥2,n ∈N *),b n =1a n -1,∴当n ≥2时,b n -b n -1=1a n -1-1a n -1-1=1⎝ ⎛⎭⎪⎫2-1a n -1-1-1a n -1-1 =a n -1a n -1-1-1a n -1-1=1. 又b 1=1a 1-1=-52.∴数列{b n }是以-52为首项,以1为公差的等差数列.(2)解 由(1)知,b n =n -72,则a n =1+1b n=1+22n -7,设函数f (x )=1+22x -7,易知f (x )在区间⎝ ⎛⎭⎪⎫-∞,72和⎝ ⎛⎭⎪⎫72,+∞内为减函数.∴当n =3时,a n 取得最小值-1; 当n =4时,a n 取得最大值3.变式迁移2 解 (1)∵a 1=5,∴a 2=2a 1+22-1=13, a 3=2a 2+23-1=33.(2)假设存在实数λ,使得数列{a n +λ2n }为等差数列.设b n =a n +λ2n ,由{b n }为等差数列,则有2b 2=b 1+b 3.∴2×a 2+λ22=a 1+λ2+a 3+λ23. ∴13+λ2=5+λ2+33+λ8, 解得λ=-1.事实上,b n +1-b n =a n +1-12n +1-a n -12n=12n +1[(a n +1-2a n )+1]=12n +1[(2n +1-1)+1]=1. 综上可知,存在实数λ=-1,使得数列{a n +λ2n }为首项为2、公差例3 解题导引 本题可运用倒序求和的方法和等差数列的性质:若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q ,从中我们可以体会运用性质解决问题的方便与简捷,应注意运用;也可用整体思想(把a 1+n -12d 看作整体).解 方法一 设此等差数列为{a n }共n 项, 依题意有a 1+a 2+a 3+a 4+a 5=34,① a n +a n -1+a n -2+a n -3+a n -4=146. ② 根据等差数列性质,得a 5+a n -4=a 4+a n -3=a 3+a n -2=a 2+a n -1=a 1+a n .将①②两式相加,得(a 1+a n )+(a 2+a n -1)+(a 3+a n -2)+(a 4+a n -3)+(a 5+a n -4)=5(a 1+a n )=180,∴a 1+a n =36.由S n =n (a 1+a n )2=36n2=360,得n =20. 所以该等差数列有20项.方法二 设此等差数列共有n 项,首项为a 1,公差为d ,则S 5=5a 1+5×42d =34,①S n -S n -5=[n (n -1)d 2+na 1]-[(n -5)a 1+(n -5)(n -6)2d ] =5a 1+(5n -15)d =146.②①②两式相加可得10a 1+5(n -1)d =180,∴a 1+n -12d =18,代入S n =na 1+n (n -1)2d =n ⎝⎛⎭⎪⎫a 1+n -12d =360, 得18n =360,∴n =20.所以该数列的项数为20项.变式迁移3 解 (1)依题意,知a 1+a 2+a 3+a 4=21, a n -3+a n -2+a n -1+a n =67,∴a 1+a 2+a 3+a 4+a n -3+a n -2+a n -1+a n =88.∴a 1+a n =884=22.∵S n =n (a 1+a n )2=286,∴n =26.(2)∵S n ,S 2n -S n ,S 3n -S 2n 成等差数列, ∴S 3n =3(S 2n -S n )=54.(3)设项数为2n -1 (n ∈N *),则奇数项有n 项,偶数项有n -1项,中间项为a n ,则S 奇=(a 1+a 2n -1)·n 2=n ·a n =44, S 偶=(a 2+a 2n -2)·(n -1)2=(n -1)·a n =33, ∴n n -1=43. ∴n =4,a n =11.∴数列的中间项为11,项数为7.例4 解题导引 若{a n }是等差数列, 求前n 项和的最值时,(1)若a 1>0,d <0,且满足⎩⎪⎨⎪⎧ a n ≥0a n +1≤0,前n 项和S n 最大;(2)若a 1<0,d >0,且满足⎩⎪⎨⎪⎧a n ≤0a n +1≥0,前n 项和S n 最小;(3)除上面方法外,还可将{a n }的前n 项和的最值问题看作S n 关于n 的二次函数最值问题,利用二次函数的图象或配方法求解,注意n ∈N *.解 方法一 ∵2a n +1=a n +a n +2,∴{a n }是等差数列. 设{a n }的首项为a 1,公差为d ,由a 3=10,S 6=72, 得⎩⎪⎨⎪⎧ a 1+2d =106a 1+15d =72,∴⎩⎪⎨⎪⎧a 1=2d =4. ∴a n =4n -2.则b n =12a n -30=2n -31. 解⎩⎪⎨⎪⎧2n -31≤0,2(n +1)-31≥0,得292≤n ≤312. ∵n ∈N *,∴n =15.∴{b n }前15项为负值. ∴S 15最小. 可知b 1=-29,d =2,∴S 15=15×(-29+2×15-31)2=-225. 方法二 同方法一求出b n =2n -31.∵S n =n (-29+2n -31)2=n 2-30n =(n -15)2-225, ∴当n =15时,S n 有最小值,且最小值为-225.变式迁移4 解 (1)设等差数列{a n }的首项为a 1,公差为d , ∵a 16+a 17+a 18=3a 17=-36,∴a 17=-12,∴d =a 17-a 917-9=3,∴a n =a 9+(n -9)·d =3n -63, a n +1=3n -60, 令⎩⎪⎨⎪⎧a n =3n -63≤0a n +1=3n -60≥0,得20≤n ≤21, ∴S 20=S 21=-630,∴n =20或21时,S n 最小且最小值为-630.(2)由(1)知前20项小于零,第21项等于0,以后各项均为正数.当n ≤21时,T n =-S n =-32n 2+1232n .当n >21时,T n =S n -2S 21=32n 2-1232n +1 260.综上,T n =⎩⎪⎨⎪⎧-32n 2+1232n (n ≤21,n ∈N *)32n 2-1232n +1 260 (n >21,n ∈N *).课后练习区1.A 2.C 3.B 4.C 5.D 6.15 7.10 8.279.(1)证明 ∵{a n }是等差数列,∴a 2=a 1+d ,a 4=a 1+3d ,又a 22=a 1a 4,于是(a 1+d )2=a 1(a 1+3d ),即a 21+2a 1d +d 2=a 21+3a 1d (d ≠0).化简得a 1=d .…………………………(6分)(2)解 由条件S 10=110和S 10=10a 1+10×92d ,得到10a 1+45d =110.由(1)知,a 1=d ,代入上式得55d =110, 故d =2,a n =a 1+(n -1)d =2n .因此,数列{a n }的通项公式为a n =2n ,n ∈N *.…………………………………………(12分)10.解 (1)设等差数列{a n }的首项为a 1,公差为d ,由于a 3=7,a 5+a 7=26,所以a 1+2d =7,2a 1+10d =26, 解得a 1=3,d =2.…………………………………………………………………………(4分)由于a n =a 1+(n -1)d ,S n =n (a 1+a n )2, 所以a n =2n +1,S n =n (n +2).…………………………………………………………(6分)(2)因为a n =2n +1,所以a 2n -1=4n (n +1),因此b n =14n (n +1)=14⎝ ⎛⎭⎪⎫1n -1n +1.………………………………………………………(8分) 故T n =b 1+b 2+…+b n=14⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1 =14⎝⎛⎭⎪⎫1-1n +1=n 4(n +1). 所以数列{b n }的前n 项和T n =n 4(n +1).…………………………………………………(12分) 11.(1)证明 将3a n a n -1+a n -a n -1=0(n ≥2)整理得1a n-1a n -1=3(n ≥2).所以数列{1a n}为以1为首项,3为公差的等差数列.…………………………………(4分)(2)解 由(1)可得1a n=1+3(n -1)=3n -2, 所以a n =13n -2.……………………………………………………………………………(7分)(3)解 若λa n +1a n +1≥λ对n ≥2的整数恒成立, 即λ3n -2+3n +1≥λ对n ≥2的整数恒成立. 整理得λ≤(3n +1)(3n -2)3(n -1)………………………………………………………………(9分)令c n =(3n +1)(3n -2)3(n -1)c n +1-c n =(3n +4)(3n +1)3n -(3n +1)(3n -2)3(n -1)=(3n +1)(3n -4)3n (n -1).………………………(11分)因为n ≥2,所以c n +1-c n >0,即数列{c n }为单调递增数列,所以c 2最小,c 2=283. 所以λ的取值范围为(-∞,283].……………………………………………………(14分)。
课时作业(二十一) [第21讲 三角函数的图像与性质]
(时间:45分钟 分值:100分)
1.[2013·陕西西工大附中适应性训练] 函数f (x )=sin x cos x 的最小值是( )
A .-1 B.12
C .-12
D .1
2.[2013·琼海模拟] 函数y =sin 4x +cos 4x 的最小正周期是( )
A.π2 B .π
C.π4
D.3π2
3.[2013·青岛一模] 下列函数中周期为π且为偶函数的是( )
A .y =sin(2x -π2)
B .y =cos(2x -π2)
C .y =sin(x +π2)
D .y =cos(x +π2)
4.[2013·陕西榆林一中七模] 下列函数中,周期为π,且在区间⎣⎢⎡⎦
⎥⎤π4,3π4上单调递增的是( ) A .y =sin 2x
B .y =cos 2x
C .y =-sin 2x
D .y =-cos 2x
5.[2013·西安五校三模] 函数f (x )=lg|sin x |是( )
A .最小正周期为π的奇函数
B .最小正周期为2π的奇函数
C .最小正周期为π的偶函数
D .最小正周期为2π的偶函数
6.[2013·泰安一检] 当x =π4时,函数f (x )=A sin(x +φ)(A >0)取得
最小值,则函数y =f (3π4-x )是( )
A .奇函数且其图像关于点π2,0对称
B .偶函数且其图像关于点(π,0)对称
C .奇函数且其图像关于直线x =π2对称
D .偶函数且其图像关于点(π2,0)对称
7.[2013·昆明检测] 已知函数f (x )=2sin x (3cos x -sin x )+1,若f (x -φ)为偶函数,则φ的一个值为( )
A.π2
B.π3
C.π4
D.π6
8.已知函数f (x )=2sin 2(x +π4)-cos 2x ,则f (x )的最小正周期T 和
其图像的一条对称轴方程是( )
A .2π,x =π8
B .2π,x =3π8
C .π,x =π8
D .π,x =3π8
9.[2013·东北三省三校一联] 已知函数y =A sin(ωx +φ)+k 的最
大值为4,最小值为0,最小正周期为π2,直线x =π3是其图像的一条
对称轴,则下面各式中符合条件的解析式为( )
A .y =4sin(4x +π6)
B .y =2sin(2x +π3)+2
C .y =2sin(4x +π3)+2
D .y =2sin(4x +π6)+2
10.[2013·江苏卷] 函数y =3sin ⎝ ⎛⎭
⎪⎫2x +π4的最小正周期为
________.
11.[2013·新课标全国卷Ⅰ] 设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=________.
12.[2013·陕西西工大附中适应性训练] 函数f (x )=sin 2x +3sin
x ·cos x 在⎣⎢⎡⎦
⎥⎤π4,π2上的最小值是________. 13.[2013·济南模拟] 若函数f (x )=2sin(π6x +π3) (-2<x <10)的图像
与x 轴交于点A ,过点A 的直线l 与函数的图像交于B ,C 两点,则(OB →+OC →)·OA
→=________.
14.(10分)已知函数f (x )=⎩
⎪⎨⎪⎧sin x (sin x ≥cos x ),cos x (cos x >sin x ). (1)画出f (x )的图像,并写出其单调区间、最大值、最小值;
(2)判断f (x )是否为周期函数,如果是,求出其最小正周期.
15.(13分)已知函数f (x )=cos(2x -π3)+2sin(x -π4)sin(x +π4).
(1)求函数f (x )的最小正周期和图像的对称轴方程;
(2)求函数f (x )在区间⎣⎢⎡⎦
⎥⎤-π12,π2上的值域.
16.(1)(6分)[2013·北京大兴区一模] 函数f (x )=1-cos 2x cos x ( )
A .在区间(-π2,π2)上递增
B .在区间⎝ ⎛⎦
⎥⎤-π2,0上递增,在区间0,π2上递减 C .在区间(-π2,π2)上递减
D .在区间⎝ ⎛⎦⎥⎤-π2,0上递减,在区间⎣⎢⎡⎭
⎪⎫0,π2上递增 (2)(6分)[2013·山东临沂模拟] 函数y =e sin x (-π≤x ≤π)的大致图像为( )
图K211
课时作业(二十一)
1.C 2.A 3.A 4.C 5.C 6.C 7.B 8.D 9.D
10.π 11.-2 55 12.1 13.32
14.(1)图像略.
函数f (x )的单调增区间为⎣
⎢⎡⎦⎥⎤2k π+π4,2k π+π2,⎣
⎢⎡⎦⎥⎤2k π+5π4,2k π+2π(k ∈Z ),单调减区间为⎣⎢⎡⎦⎥⎤2k π,2k π+π4,⎣
⎢⎡⎦⎥⎤2k π+π2,2k π+5π4(k ∈Z ),f (x )max =1,f (x )min =-22 (2)f (x )为周期函数,最小正周期T =2π
15.(1)周期T =π,对称轴方程为x =k π2+π3(k ∈Z )
(2)⎣⎢⎡⎦
⎥⎤-32,1 16.(1)D (2)D。