差动继电器实验记录
- 格式:xls
- 大小:28.00 KB
- 文档页数:2
竭诚为您提供优质文档/双击可除差动继电器实验报告篇一:变压器差动保护实验实验内容实验二变压器差动保护实验(一)实验目的1.熟悉变压器纵差保护的组成原理及整定值的调整方法。
2.了解Y∕Δ接线的变压器,其电流互感器二次接线方式对减少不平衡电流的影响。
3.了解差动保护制动特性的特点。
(二)变压器纵联差动保护的基本原理1.变压器保护的配置变压器是十分重要和贵重的电力设备,电力部门中使用相当普遍。
变压器如发生故障将给供电的可靠性带来严重的后果,因此在变压器上应装设灵敏、快速、可靠和选择性好的保护装置。
变压器上装设的保护一般有两类:一种为主保护,如瓦斯保护,差动保护;另一种称后备保护,如过电流保护、低电压起动的过流保护等。
本试验台的主保护采用二次谐波制动原理的比率制动差动保护。
2.变压器纵联差动保护基本原理如图7-1所示为双绕组纵联差动保护的单相原理说明图,元件两侧的电流互感器的接线应使在正常和外部故障时流入继电器的电流为两侧电流之差,其值接近于零,继电器不动作;内部故障时流入继电器的电流为两侧电流之和,其值为短路电流,继电器动作。
但是,由于变压器高压侧和低压侧的额定电流不同,为了保证正常和外部故障时,变压器两侧的两个电流相等,从而使流入继电器的电流为零。
即:式中:KTAY、KTA△——分别为变压器Y侧和△侧电流互感器变比;KT——变压器变比。
显然要使正常和外部故障时流入继电器的电流为零,就必须适当选择两侧互感器的变比,使其比值等于变压器变比。
但是,实际上正常或外部故障时流入继电器的电流不会为零,即有不平衡电流出现。
原因是:(1)各侧电流互感器的磁化特性不可能一致。
(2)为满足(7-1)式要求,计算出的电流互感器的变比,与选用的标准化变比不可能相同;(3)当采用带负荷调压的变压器时,由于运行的需要为维持电压水平,常常变化变比KT,从而使(7-1)式不能得到满足。
(4)由图7-1可见,变压器一侧采用△接线,一侧采用Y接线,因而两侧电流的相位会出现30°的角度差,就会产生很大的不平衡电流(见图7-2)。
继电器控制实验报告单片机原理与应用技术实验报告(实验项目:控制继电器通断)****数学计算机科学系实验报告专业: 计算机科学与技术班级: 实验课程: 单片机原理与应用技术姓名: 学号: 实验室:硬件实验室同组同学: 实验时间: 2013年3月20日指导教师签字:成绩:实验项目:控制继电器通断一实验目的和要求1. 控制继电器通断,同时发出啪啪声。
2.掌握单片机使用。
二实验环境PC机一台,实验仪器一套三实验步骤及实验记录1.在pc机上,打开Keil C。
2.在Keil C中,新建一个工程文件,点击“Project-New Project?”菜单。
3. 选择工程文件要存放的路径 ,输入工程文件名 k2, 最后单击保存。
4. 在弹出的对话框中选择 CPU 厂商及型号。
5. 选择好 Atmel 公司的 89c51 后 , 单击确定。
6. 在接着出现的对话框中选择“是”。
7. 新建一个 C51 文件 , 点击file菜单下的NEW,或单击左上角的 New File 快捷键。
8. 保存新建的文件,单击SAVE。
9. 在出现的对话框中输入保存文件名MAIN.C,再单击“保存”。
10. 保存好后把此文件加入到工程中方法如下 : 用鼠标在 Source Group1 上单击右键 , 然后再单击 Add Files toGroup ‘Source Group 1'。
11. 选择要加入的文件 , 找到 MAIN.C 后 , 单击 Add, 然后单击 Close。
12. 在编辑框里输入代码如下:#include reg51.h //包含头文件sbit K2=P2 ;//定义继电器控制IO#define uchar unsigned char#define uint unsigned intdelay(uint time) //int型数据为16位,所以最大值为65535{uint i,j;//定义变量i,j,用于循环语句for(i=0;itime;i++)//for循环,循环50*time次for(j=0;j50;j++); //for循环,循环50次}void main() //主函数{while(1) //进入while死循环{K2=0; //断开继电器delay(5000); //延时K2=1; //导通继电器delay(5000); //延时}}13.单击快捷键或单击Project/Rebuild all the files,如果在错误与警告处看到 0 Error(s) 表示编译通过。
电气与信息工程学院实验报告课程名称微型机继电保护基础(第四版)实验项目名称数字式差动继电器特性实验年级2010级班级电气1001学号201024050121姓名吴伟明实验日期2013年12月17日批阅教师签字成绩内容一、实验目的四、实验方法及步骤二、实验原理五、实验记录及数据处理三、实验仪器六、实验结果分析及问题讨论一、实验目的1、了解数字式差动继电器的算法。
2、测试数字式比率制动差动继电器的比率制动曲线特性。
二、实验原理比率制动式差动继电器的动作电流是随外部短路电流按比率增大,既能保证外部短路不误动,又能保证内部短路有较高的灵敏度。
同时考虑躲开正常运行时差动回路中的不平衡电流,其动作方程可表示为:(I d>I d.min)∩(I d>K I r)其中,I d表示计算所得的差动电流,I d.min表示差动继电器的起动差流整定值,I r表示计算所得的制动电流,K表示比率制动系数整定值。
比率制动式差动保护制动特性曲线如图1。
图1比率制动式差动保护制动特性曲线本实验装置差动电流I d表示为:I d=∣I1′+I2′∣。
式中I1′表示1侧的电流向量和经电流平衡系数调整后的2侧的电流向量。
I2′=K ph·I2.Re′,I2.Re′为2侧电流的实际电流,其中K ph 表示电流平衡的调整系数,用来消除两侧额定电流不等及两侧TA变比不等引起的电流不平衡,其中K ph固定取1。
本实验装置制动电流I r表示为:I r=∣I1′-I2′∣/2。
本实验装置构成的数字式比率制动差动继电器将I11作为1侧电流I1,将I31作为2侧电流I2。
三、实验仪器多功能微机保护实验台四、实验方法及步骤1.向多功能微机保护实验装置中下载差动继电器特性实验程序。
2.按要求接好连线:将测试仪的三相电流信号分别与多功能微机保护实验装置引到实验台面上的各接线端子按相连接即可。
将Ian 、Ibn 和Icn 用导线短接后连接到测试仪的I n 接线端上。
差动继电器实验报告篇一:继电保护实验报告继电保护实验报告学院:专业:电气工程及其自动化班级: XX级电气3班学号:姓名:指导老师 :实验二:常规继电器特性实验(一)电磁型电压、电流继电器的特性实验1.实验目的1)了解继电器基本分类方法及其结构。
2)熟悉几种常用继电器,如电流继电器、电压继电器、时间继电器、中间继电器、信号继电器等的构成原理。
3)学会调整、测量电磁型继电器的动作值、返回值和计算返回系数。
4)测量继电器的基本特性。
5)学习和设计多种继电器配合实验。
2.继电器的类型与原理继电器是电力系统常规继电保护的主要元件,它的种类繁多,原理与作用各异。
1)继电器的分类继电器按所反应的物理量的不同可分为电量与非电量的两种。
属于非电量的有瓦斯继电器、速度继电器等;反应电量的种类比较多,一般分类如下:(1)按结构原理分为:电磁型、感应型、整流型、晶体管型、微机型等。
(2)按继电器所反应的电量性质可分为:电流继电器、电压继电器、功率继电器、阻抗继电器、频率继电器等。
(3)按继电器的作用分为:起动动作继电器、中间继电器、时间继电器、信号继电器等。
近年来电力系统中已大量使用微机保护,整流型和晶体管型继电器以及感应型、电磁型继电器使用量已有减少。
2)电磁型继电器的构成原理继电保护中常用的有电流继电器、电压继电器、中间继电器、信号继电器、阻抗继电器、功率方向继电器、差动继电器等。
下面仅就常用的电磁继电器的构成及原理作要介绍。
信号继电器在保护装置中,作为整组装置或个别元件的动作指示器。
按电磁原理构成的信号继电器,当线圈通电时,衔铁被吸引,信号掉牌(指示灯亮)且触点闭合。
失去电源时,有的需手动复归,有的电动复归。
信号继电器有电压起动和电流起动两种。
3.实验内容1)电流继电器特性实验电流继电器动作、返回电流值测试实验。
实验步骤如下:(l)按图接线,将电流继电器的动作值整定为1.2A,使调压器输出指示为OV,滑线电阻的滑动触头放在中间位置。
实验:常规差动继电器特性测试一、实验目的1、了解常规差动继电器的工作原理,掌握设置继电器动作定值的方法。
2、掌握差动继电器特性的测试方法,测试差动继电器的比率制动曲线特性。
二、实验设备及器材1、TQXDB-IB 多功能继电保护实验培训系统2、LCD-4型变压器差动继电器 三、实验原理LCD-4型变压器差动继电器用于变压器差动保护中,作为主保护。
LCD-4型差动继电器为整流型继电器,由差动元件和瞬动元件两部分组成。
差动元件由差动工作回路、二次谐波制动回路、比率制动回路和直流比较回路所组成。
LCD-4型变压器差动继电器内部未设置平衡绕组及抽头,因TA 变比不一致而引起的不平衡电流通过专用自耦变流器补偿消除。
谐波制动系数通常调整在0.2-0.25之间。
通过切换片1QP 实现三种不同的比率制动系数0.4、0.5、0.6。
过切换片2QP 获得1、1.5、2、2.5A 四个不同的整定值。
四、实验内容及步骤1、实验接线。
如图所示完成实验接线。
差动继电器AK24V+24V-I1电流输出电流表特性实验信号源I1I2I2nI2电流输出电流表I1n差动继电器特性测试实验连线图2、整定值设置。
将差动继电器动作值整定为2A ,制动系数设置为0.5。
3、打开特性实验信号源开关。
调节I2输出到2A ,然后调节I1输出使得I1逐渐增加,当继电器动作时记录I1电流值,将值记入表1中。
4、改变I2输出电流值为2.5A 、3A 、3.5A 、4A 、4.5A 、5A 重复步骤3,将数据记入表1中。
5、将“制动系数”整定为0.4和0.6,重复步骤3-4,再次测试继电器的制动曲线,将三次测试得到的曲线d I = f(r I ) 画在同一个坐标图中进行比较。
五、实验数据及分析处理表1 差动继电器特性实验(制动系数0.5)表2 差动继电器特性实验(制动系数0.4)表3 差动继电器特性实验(制动系数0.6)六、实验注意事项1、本实验为强电类实验,实验中如有异常情况,应立即停止实验并切断电源。
lcd-4差动继电器特性分析结果
1.差动保护功能:LCD-4差动继电器能够检测电路中的差动电流,并在差动电流超过设定阈值时触发动作。
这种保护功能可以有效地防止电路中的故障电流引起的损坏或事故。
2.高精度测量:LCD-4差动继电器采用先进的电流传感器和测量电路,能够实现高精度的电流测量。
其测量误差较小,可靠性和稳定性较高,适用于各种精密电气设备的保护。
3.快速动作:LCD-4差动继电器在检测到差动电流超过设定阈值时,能够迅速地触发动作,并切断电路。
其快速动作特性可以有效地缩短故障电流存在时间,降低对设备的损害程度。
4.多功能保护:LCD-4差动继电器不仅具有差动保护功能,还可以实现过电流、过载、过压、欠压等多种保护功能。
通过合理设置参数,可以满足不同电气设备的保护需求。
5.远程监控与控制:LCD-4差动继电器支持远程监控与控制功能,可以通过网络或其他通信方式实时监测继电器的状态,并进行远程控制。
这种功能方便了设备的管理和维护,提高了工作效率。
LCD-4差动继电器具有差动保护、高精度测量、快速动作、多功能保护和远程监控与控制等特性。
它在各种电气设备中广泛应用,为设备的安全运行提供了可靠保障。
一、实验目的1. 理解主变差动保护的基本原理和作用。
2. 掌握主变差动保护的实验方法及步骤。
3. 分析实验数据,验证差动保护的性能。
二、实验原理主变差动保护是一种重要的继电保护装置,用于保护电力系统中的主变压器。
它的工作原理是基于差动原理,通过比较主变压器两侧的电流,当两侧电流不相等时,说明主变压器内部存在故障,此时差动保护装置会发出动作信号,切断故障电路,保护主变压器及其连接的设备。
实验中,主变差动保护采用BCH-2型差动继电器,通过测量主变压器两侧的电流,比较其差值,当差值超过整定值时,继电器动作,发出保护信号。
三、实验设备1. 主变压器:三相三绕组降压变压器,容量Se40.5MVA,电压110/22.5%kV/385/22.5%kV/11kV,接线方式:Ydd11-11,变压器额定电流:213A/608A/2130A。
2. BCH-2型差动继电器。
3. 电流互感器:带有气隙的D级铁芯互感器。
4. 实验控制箱。
5. 示波器。
6. 电源。
四、实验步骤1. 连接实验电路,确保各设备连接正确。
2. 调整电流互感器变比,使其满足实验要求。
3. 设置差动继电器整定值,包括差动线圈匝数、继电器动作电流和灵敏度。
4. 通电运行,观察差动继电器动作情况。
5. 改变主变压器两侧电流,观察差动继电器动作情况。
6. 记录实验数据,分析差动保护性能。
五、实验数据及分析1. 实验数据如下:| 差动线圈匝数(Wcd.js) | 继电器动作电流(Idz) | 灵敏度(K1m) || ----------------------- | --------------------- | -------------- || 6 | 10A | 2.1 |2. 实验过程中,当主变压器两侧电流相等时,差动继电器不动作;当主变压器两侧电流不等时,差动继电器动作,发出保护信号。
3. 分析实验数据,可知:(1)差动继电器动作电流和灵敏度满足实验要求,能够有效保护主变压器。
差动本实验主要内容是:测试差动继电器的比率制动曲线特性。
方法:由测试仪自动产生和调整加入差流继电器中的电流信号I1和I2,对继电器的比率制动特性进行自动测试。
测试仪调整I1和I2的原则是:根据设定的每一个固定制动电流I r,按发生区外故障的情况搜索差动继电器的动作边界所对应的I d。
步骤:1. 下载相应程序。
2. 将差动继电器整定为2A动作值,制动系数设置为0.5。
3. 打开测试仪电源,在PC机上运行继电保护信号测试系统软件,进入“差动特性”模块。
图2-4-2 差动特性试验主界面4. 设置“控制参数”。
“I1,I2定义”:设置继电器电流线圈I1,I2与测试仪的连接方式,以及I2的相位。
在搜索I d的过程中一般按发生区外故障的情况搜索动作边界,I1的相位固定为0°,则I2的相位应为180°。
实验中可将I1接A相电流,I2接C相电流。
见图2-4-2。
“测试定义(I d,I r)”:设置差动继电器的动作方程。
LCD-4整流型差动继电器采用的差动电流和制动电流的构成方式为:I d =∣I1+I2∣,I r=∣I1-I2∣,参见图2-4-3。
“固定I r”:根据需要设置待测试的制动点I r的变化范围和等间距变换步长。
即I r从起点出发,每隔一个步长选择一个制动点进行测试,寻找该制动点下的动作电流。
图2-4-3测试定义(I d,I r)设置“搜索I d”:设置每个I r基点下,动作电流I d的搜索方法。
包括:搜索起点、搜索终点、I d动作门槛、搜索时的每步时间和间断时间以及搜索精度,参见图2-4-4。
具体可参见《TQWX-II微机型继电保护试验测试仪用户手册》。
图2-4-4为减少搜索时间,搜索起点可根据整定的继电器差流动作值输入一个合适的百分比值,并输入相应的I d动作门槛。
由于继电器的比率制动系数一般小于1,因此搜索终点一般不超过100%。
5. 按“开始试验”按钮进行试验,测试过程中动态变化着的I侧电流I1和II 侧电流I2大小在界面的“电流输出显示”区中实时显示,同时在界面的“测试结果”观测区中得到测出的比率制动系数K Zd。
二十一、BCH-2差动继电器特性实验一、实验目的熟悉差动继电器的工作原理、实际结构、基本特性,掌握执行元件和工作安匝的整定调试方法。
二、预习与思考1、BCH—2型差动继电器为何具有较强的躲开励磁涌流的能力2、当差动继电器的差动线圈接入正弦交流时,有短路线圈和无短路线圈对BCH—2型继电器的动作安匝有何影响当Wd"/Wdˊ值变化时对继电器的动作安匝有何影响3、在励磁涌流时,当Wd"/Wdˊ值变化时或Wd"/Wdˊ按比例增加时,对继电器的动作安匝有何影响三、用途与特点BCH-2型差动继电器用于两绕组或三绕组电力变压器以及交流发电机的单相差动保护线路中,并作为主保护。
该继电器能较好地躲过在非故障状态时所出现的暂态电流的干扰。
例如当电力变压器空载合闸,或短路切除后电压恢复时出现很大的涌磁电流,其瞬间值常达到额定电流的5—10倍; 这时差动保护不会误动作。
当发生区内(即两电流互感器间)短路时,却能迅速切除故障。
四、原理说明BCH-2型差动继电器系由执行元件电磁式继电器DL—11/及一个中间快速饱和变流器组成。
中间速饱和变流器的导磁体是三柱形的铁心。
在导磁体的中间柱上置有工作(差动)绕组、平衡(I、II)绕组和短路绕组,此短路绕组与右侧柱上的短路绕组相连接。
在导磁体的左侧柱上置有二次绕组,它与执行元件相连接。
速饱和变流器的所有绕组都是制成带有抽头的,这样就可以对继电器的参数进行阶段性的调整。
当用BCH-2继电器保护电力变压器时,平衡绕组的圈数根据这样的条件来选择:即当发生穿越性短路时,所有绕组的安匝数相等。
当用继电器保护两绕组变压器时,动作电流可以在更细致的范围内进行调整,因为这时可以利用两个平衡绕组。
中间速饱和变流器及执行元件放在一个外壳中,继电器可以作成前接线或后接线(本实验装置设计为挂箱面板接线)两种形式。
用插头螺丝选择快速饱和变流器绝缘安装板上相应的插孔,即可对差动继电器动作电流、平衡电流,抑制励磁涌流进行需调整。