运算放大器输入、输出、单电源和轨到轨问题
- 格式:pdf
- 大小:362.71 KB
- 文档页数:12
Rail to Rail 轨对轨运放传统的模拟集成器件,如运放、A/D、D/A等,其模拟引脚的电压范围一般都达不到电源,以运放为例,电源为+/-15V的运放,为确保性能(首先是不损坏,其次是不反相,最后是足够的共模抑制比),输入范围一般不要超过+/-10V,常温下也不要超过+/-12V;输出范围,负载10kohm时一般只有+/-11V,小负载电阻(600ohm)时只能保证+/-10V。
这对器件的应用带来很多不便。
rail-to-rail的器件,一般都是低压器件(+/-5V 或single +5V),输入输出电压都能达到电源(输入甚至可以超过)。
其原理上的秘诀便在于电流模+NPN/PNP互补输入结构。
rail-to-rail器件的某些设计思想,对我们自己设计电路也可以提供一些有益的思路。
现在rail-to-rail的单电源模拟器件已形成系列(如MAXIM,AD,TI等),在许多对性能(精度)要求不高的场合,我们可以考虑全部采用单+5V甚至+2.7V的模拟器件来构成我们的系统,这样模拟电路和数字电路便可以公用一个电源(不过要注意电源去耦)。
而且这类器件大量采用SOT封装,有利于设计出体积功耗都很小的产品。
rail-to-rail,即“轨至轨”,有时也称为“满摆幅”,是指输出(或输入)电压范围与电源电压相等或近似相等。
从输入方面来讲,其共模输入电压范围可以从负电源电压到正电源电压;从输出方面来讲,其输出电压范围可以从负电源电源到正电源电压。
也可以说,这是一个与供电电压密切相关的特性,对器件的输入或输出无失真动态范围有很大的影响,当ΔV 很小时(10mV--100mV),无失真动态范围最小电压为VSS+ΔV,最大值为VCC-ΔV,具有这样动态范围的运放就叫Rail to Rail运放。
理想状态下,器件的正常工作输入与输出电压范围可同时达到运放正负电源端的电压范围。
实际上,器件很难达到真正的“轨至轨”。
比较常见的“轨至轨”表现方式有,输入rail-to-rail;输入达到或超过Vee;输出比较接近rail-to-rail;在同一器件上的输入/输出实现(或接近)rail-to-rail。
运算放大器(常简称为“运放”)是广泛应用的、具有超高放大倍数的电路单元。
可以由分立的器件组成,也可以实现在半导体芯片当中。
随着半导体技术的发展,如今绝大部分的运放是以单片的形式存在。
现今运放的种类繁多,广泛应用于几乎所有的行业当中。
运放的输入电位通常要求高于负电源某一数值,而低于正电源某一数值。
经过特殊设计的运放可以允许输入电位在从负电源到正电源的整个区间变化,甚至稍微高于正电源或稍微低于负电源也被允许。
这种运放称为轨到轨(Rail-to-Rail)输入运算放大器。
1.历史
运算放大器最早被发明作为模拟信号的运算单元,是模拟电子计算机的基本组成部件,由真空电子管组成。
第一块集成运放电路是美国仙童(fairchild)公司发明的μA741,在60年代后期广泛流行。
直到今天μA741仍然是各大学电子工程系中讲解运放原理的典型教材。
2.原理
一般可将运放简单地视为:具有一个信号输出端口(Out)和同相、反相两个高阻抗输入端的高增益直接耦合电压放大单元,因此可采用运放制作同相、反相及差分放大器。
运放的供电方式分双电源供电与单电源供电两种。
对于双电源供电运放,其输出可在零电压两侧变化,在差动输入电压为零时输出也可置零。
采用单电源供电的运放,输出在电源与地之间的某一范围变化。
运放的输入电位通常要求高于负电源某一数值,而低于正电源某一数值。
经过特殊设计的运放可以允许输入电位在从负电源到正电源的整个区间变化,甚至稍微高于正电源或稍微低于负电源也被允许。
这种运放称为轨到轨(Rail-to-Rail)输入运算放大器。
运算放大器工作原理是什么?运算放大器简称运放,由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”。
主要是用在模拟电路中,比如放大器、比较器、模拟运算器,是电子工程师经常要用到的器件。
运算放大器是具有很高放大倍数的电路单元。
在实际电路中,通常结合反馈网络共同组成某种功能模块。
它是一种带有特殊耦合电路及反馈的放大器。
其输出信号可以是输入信号加、减或微分、积分等数学运算的结果。
运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。
而随着半导体技术的发展,大部分的运放是以单芯片的形式存在。
运放的种类繁多,广泛应用于电子行业当中。
要想更好用好运放,透彻地了解运算放大器工作原理是必须的。
一、运算放大器工作原理是什么?运算放大器(OperaTIonal Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(DifferenTIal-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。
一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。
最基本的运算放大器如图1-1。
一个运算放大器模组一般包括一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。
最基本的运算放大器通常使用运算放大器时,会将其输出端与其反相输入端(inverTIng input node)连接,形成一负反馈(negaTIve feedback)组态。
原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。
但是这并不代表运算放大器不能连接成正回馈(positive feedback),相反地,在很多需要产生震荡讯号的系统中,正回馈组态的运算放大器是很常见的组成元件。
轨至轨(rail to rail)概念(2009-11-25 09:14:28)转载▼分类:电子标签:杂谈从输入来说, 其共模输入电压范围可以从负电源到正电源电压; 从输出来看, 其输出电压范围可以从负电源到正电源电压。
Rail to Rail翻译成汉语即“轨到轨”,指器件的输入输出电压范围可以达到电源电压。
传统的模拟集成器件,如运放、A/D、D/A等,其模拟引脚的电压范围一般都达不到电源电压,以运放为例,电源为+/-15V的运放,为确保性能(首先是不损坏,其次是不反相,最后是足够的共模抑制比),输入范围一般不要超过+/-10V,常温下也不要超过+/-12V;输出范围,负载RL>10kohm时一般只有+/-11V,小负载电阻(600ohm)时只能保证+/-10V。
这对器件的应用带来很多不便。
Rail-to-Rail的器件,一般都是低压器件(+/-5V 或 single +5V),输入输出电压都能达到电源(输入甚至可以超过)。
其原理上的秘诀便在于电流模+NPN/PNP互补输入结构。
rail-to-rail器件的某些设计思想,对我们自己设计电路也可以提供一些有益的思路。
“轨到轨(rail-to-rail)”的特性即:它的输入或输出电压幅度即使达到电源电压的上下限,此时放大器也不会像常规运放那样发生饱和与翻转。
例如,在+5V单电源供电的条件下,即使输入、输出信号的幅值低到接近0V,或高至接近5V,信号也不会发生截止或饱和失真,从而大大增加了放大器的动态范围。
这在低电源供电的电路中尤其具有实际意义。
TLC2274(轨到轨)与OP07(非轨到轨)的输入输出范围如表2(厂家给出)及图2(实际测定)。
可以看到,TLC2274的动态范围可达4.8V,而OP07(及其它非轨到轨特性的运放)的动态范围仅3V左右。
轨至轨(rail to rail) 运放有一类特殊的放大器具有非常低的端边占用电压(headroom)要求,称之谓输出摆幅与供电电压相同(轨至轨rail to rail)放大器。
如何正确使用模拟电路中的运算放大器在模拟电路设计中,运算放大器(Operational Amplifier)扮演着重要的角色。
通过正确使用运算放大器,可以实现信号放大、滤波、积分、微分等功能。
本文将介绍如何正确使用模拟电路中的运算放大器,以帮助读者更好地理解和应用这一关键电子元件。
一、运算放大器基础知识运算放大器是一种高增益、差模输入的集成电路,并且通常具有很大的输入阻抗和小的输出阻抗。
它由输入端、输出端和电源端组成。
1. 输入端:运算放大器的输入端通常有两个:非反馈输入端(非反)和反馈输入端(反馈)。
非反输入端为负号,反馈输入端为正号。
通过调整输入信号在这两个输入端的比例,可以实现信号放大和其他功能。
2. 输出端:运算放大器的输出端通常为单一的输出信号。
其输出信号的幅度和输入信号有一定的线性关系。
3. 电源端:运算放大器需要外部电源进行供电。
常见的供电电压为正负12V,也有其他型号和规格的运算放大器,供电电压和功耗需根据具体型号进行选择。
二、正确的运算放大器使用方法在实际应用中,为了正确使用运算放大器并获得期望的结果,我们需要注意以下几个方面。
1. 电源稳定性运算放大器对电源的稳定性要求较高。
因此,建议使用稳定的电源,可以采用电池、稳压电路或者稳定供电模块。
同时,供电电源的电压应在运算放大器的工作范围内,并保持供电电压的稳定性。
2. 输入端连接为保持运算放大器的正常工作,输入端需要合理连接。
一般情况下,将信号源通过电阻与非反馈输入端连接,而反馈输入端则可以通过电路中的元件,如电容或电阻进行连接。
3. 反馈电阻的选择反馈电阻的选择对于运算放大器的放大倍数和频率响应有着重要影响。
通过调整反馈电阻的大小可以改变运算放大器的放大倍数,同时也会影响运算放大器的频率响应。
因此,在选择反馈电阻时,需要综合考虑放大倍数和频率响应的需求。
4. 负载阻抗的合理匹配为了保证运算放大器的输出信号能够正常工作,负载阻抗的合理匹配非常重要。
运算放大器工作原理是什么?运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。
一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。
最基本的运算放大器如图1-1。
一个运算放大器模组一般包括一个正输入端(O P_P)、一个负输入端(OP_N)和一个输出端(OP_O)。
通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。
原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。
但是这并不代表运算放大器不能连接成正回馈(positive feedback),相反地,在很多需要产生震荡讯号的系统中,正回馈组态的运算放大器是很常见的组成元件。
开环回路运算放大器如图1-2。
当一个理想运算放大器采用开回路的方式工作时,其输出与输入电压的关系式如下:Vout = ( V+ -V-) * Aog其中Aog代表运算放大器的开环回路差动增益(open-loop differential gai由于运算放大器的开环回路增益非常高,因此就算输入端的差动讯号很小,仍然会让输出讯号「饱和」(saturation),导致非线性的失真出现。
因此运算放大器很少以开环回路出现在电路系统中,少数的例外是用运算放大器做比较器(comparat or),比较器的输出通常为逻辑准位元的「0」与「1」。
闭环负反馈将运算放大器的反向输入端与输出端连接起来,放大器电路就处在负反馈组态的状况,此时通常可以将电路简单地称为闭环放大器。
轨对轨运放(rail-to-rail)
轨对轨运放(rail-to-rail)
1.所谓轨对轨(rail-to-rail)运算放大器轨对轨放大器,指的是放大器输入和输出电压摆幅非常接近或几乎等于电源电压值。
2.不是所有的rail to rail 运放输入和输出都接近电源,有的只是输入有的只是输出,当然也有的输入输出都是rail to rail 的,该类运放的最大特点就是可以扩展信号的电压范围,但一般输出电流较小,在大电流的情况下并不能保证rail to rail
3.在低电源电压和单电源电压下可以有宽的输入共模电压范围和输出摆幅.
4.轨至轨输入,有的称之为满电源摆幅(R-R)性能,可以获得零交越失真,适合驱动ADC,而不会造成差动线性衰减。
实现高精密度应用。
有轨至轨运放和轨至轨比较器。
5.rail-to-rail,只是一个概念,其实就是正负电源(±V)供电运算放大器。
2. 所说,我不能苟同。
其实一切高深的复杂的电路,追根朔源,都可以看作由简单的分离元件组成。
运算放大器供电方式:
1,±V
2,+V和GND。
常见问答轨到轨输出运算放大器具备哪些优势?John ArdizzoniAnalog Devices Inc.在低电源电压应用中,无论是使用单电源,或是低电压双极性电源,放大器的输入范围和输出摆幅都有一定的限制,有限的输入范围和受限的输出摆幅都会减小放大器的动态范围。
轨到轨放大器不仅有助于扩展这个动态范围,而且还能提高性能。
放大器通常采用射极跟随器(源跟随器)或共发射极(共源极)输出级电路。
射极跟随器可提供较低的失真,但输出摆幅也较小,这是因为输出级晶体管需要在线性区域工作,这样会使输出摆幅减小约1V。
轨到轨输出放大器一般采用共射极或共源极输出电路,虽然这种输出电路无法提供像射极跟随器那么好的性能,但它能提供更宽的摆幅。
轨到轨输出的摆幅能够非常接近电源轨,但由于晶体管上有一定的压降,所以也不能完全达到轨电压,不过两者的差值在几毫伏之内。
场效应管(FET)输入运算放大器能带来什么好处?FET输入的运算放大器具备几个优势。
由于它具有极低的输入偏置电流,通常在pA范围内,因而对输入电路产生的负载也极低,这样就可使用大的源电阻,而不会引入明显的失调电压误差(大小为输入偏置电流与源电阻的乘积)。
由于输入偏置电流如此之低,因此将运算放大器用于反相配置时,就没有必要补偿输入失调电压误差。
在这种配置中,补偿放大器的一种常用方法是采用一个电阻将同相输入端连接到地,该电阻的阻值是反馈和增益设置电阻的并联组合,但现在由于电流很低,这里也不再需要此电阻,因此简化了电路。
FET输入运算放大器的一种常见应用就是在光电二极管检测器应用中作为电流-电压转换器(I-V转换器)。
在这些应用中,光电二极管的电流非常小,因此强制要求所用运算放大器必须具备极低的输入偏置电流,这样才能确保所有的光电二极管电流都通过反馈电阻(产生输出电压),而不是进入运算放大器中,否则将会在运算放大器电流-电压转换器的预期输出电压中引入误差。
放大器输出阻抗和输出驱动能力如何影响系统性能?低输出阻抗之所以重要是有多方面的原因。
运放中“轨至轨”运行真正含义是什么?
有关单电源运放的一个热门讨论话题是:它们是否能够做轨至轨的输入或输出运行。
单电源运放的供应商都声称自己的放大器有轨至轨输入能力,但芯片设计者必须做出某些折衷,才能实现这类性能。
图1 这个运放的组合输入级采用PMOS和NMOS差分对,因此输入电压范围可以从正电压轨直到负电压轨。
一款常见单电源放大器的输入结构是有并联的PMOS和NMOS差分输入级,它结合了这些级的优点,实现了真正的轨至轨输入运行(图1)。
当
VIN+接近于负电压轨时,PMOS晶体管完全导通,而NMOS晶体管完全截止。
当输入接近于正电压轨时,使用NMOS晶体管,而PMOS晶体管则截止。
虽然图1中小功率精密运放OPA344的输入级可以轨至轨输入工作,但电路设计者必须解决性能的折衷问题。
按图1中的设计结构,在放大器共模输入区间内,偏移电压会有很宽的变化范围。
在接近地的区域,输入级PMOS 偏移误差成份占主要地位。
在接近正电源轨的区域,则主要是NMOS偏移误差。
普通运放和轨到轨运放区别
输入级区别:
图a是rail-to-rail输入型运放的输入级,它使用两对输入放大管,在输入在正电源和负电源之间摆动时,信号也从一对输入管转移到另一对进行放大,在交越点附近,会引入额外的失真和电压偏移。
图b是普通运放的输入级,使用典型的差分对做放大。
输出级差别
图a是具备rail-to-rail输出能力的运放的输出级,使用共射组态,将输出提升到Vss+Vce(sat)到VCC-Vce(sat),图b是普通运放的输出级,使用射级跟随器,饱和压降为Vbe+Vce(sat),Vce(sat)来源于恒流源,Vbe为输出级的射级压降。
最简单讲解运算放大器的工作原理运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。
一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。
最基本的运算放大器如图1-1。
一个运算放大器模组一般包括一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。
通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。
原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。
但是这并不代表运算放大器不能连接成正回馈(positive feedback),相反地,在很多需要产生震荡讯号的系统中,正回馈组态的运算放大器是很常见的组成元件。
开环回路运算放大器如图1-2。
当一个理想运算放大器采用开回路的方式工作时,其输出与输入电压的关系式如下:Vout = ( V+ -V-) * Aog其中Aog代表运算放大器的开环回路差动增益(open-loop differential gai由于运算放大器的开环回路增益非常高,因此就算输入端的差动讯号很小,仍然会让输出讯号「饱和」(saturation),导致非线性的失真出现。
因此运算放大器很少以开环回路出现在电路系统中,少数的例外是用运算放大器做比较器(comparator),比较器的输出通常为逻辑准位元的「0」与「1」。
闭环负反馈将运算放大器的反向输入端与输出端连接起来,放大器电路就处在负反馈组态的状况,此时通常可以将电路简单地称为闭环放大器。
科技名词定义中文名称:运算放大器英文名称:operational amplifier定义:可以对电信号进行运算,一般具有高增益、高输入阻抗和低输出阻抗的放大器。
应用学科:电力(一级学科);通论(二级学科)本内容由全国科学技术名词审定委员会审定公布求助编辑百科名片运算放大器运算放大器(简称“运放”)是具有很高放大倍数的电路单元。
在实际电路中,通常结合反馈网络共同组成某种功能模块。
由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”。
运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。
随着半导体技术的发展,大部分的运放是以单芯片的形式存在。
运放的种类繁多,广泛应用于电子行业当中。
目录运算放大器的发展历史运算放大器的工作原理运算放大器的类型通用型运算放大器高阻型运算放大器低温漂型运算放大器高速型运算放大器低功耗型运算放大器高压大功率型运算放大器可编程控制运算放大器运算放大器的主要参数共模输入电阻(RINCM)直流共模抑制(CMRDC)交流共模抑制(CMRAC)增益带宽积(GBW)输入偏置电流(IB)输入偏置电流温漂(TCIB)输入失调电流(IOS)输入失调电流温漂(TCIOS)差模输入电阻(RIN)输出电压摆幅(VO)功耗(Pd)电源抑制比(PSRR)转换速率/压摆率(SR)电源电流(ICC、IDD)单位增益带宽(BW)输入失调电压(VOS)输入失调电压温漂(TCVOS) 输入电容(CIN)输入电压范围(VIN)输入电压噪声密度(eN)输入电流噪声密度(iN)运算放大器的应用运算放大器的简易测量运算放大器的发展历史运算放大器的工作原理运算放大器的类型通用型运算放大器高阻型运算放大器低温漂型运算放大器高速型运算放大器低功耗型运算放大器高压大功率型运算放大器可编程控制运算放大器运算放大器的主要参数共模输入电阻(RINCM)直流共模抑制(CMRDC)交流共模抑制(CMRAC)增益带宽积(GBW)输入偏置电流(IB)输入偏置电流温漂(TCIB) 输入失调电流(IOS)输入失调电流温漂(TCIOS) 差模输入电阻(RIN)输出阻抗(ZO)输出电压摆幅(VO)功耗(Pd)电源抑制比(PSRR)转换速率/压摆率(SR)电源电流(ICC、IDD)单位增益带宽(BW)输入失调电压(VOS)输入失调电压温漂(TCVOS)输入电容(CIN)输入电压范围(VIN)输入电压噪声密度(eN)输入电流噪声密度(iN)运算放大器的应用运算放大器的简易测量展开编辑本段运算放大器的发展历史第一个使用真空管设计的放大器大约在1930年前后完成,这个放大器可以执行加与减的工作。
单电源运算放大器输出不能实现轨对轨摆动采购员谨防:输出摆幅达到最大值之前,线性就已经开始下降。
单电源运算放大器不能真正实现输出的轨对轨摆动。
接近轨时,放大器呈现出非线性。
对线性工作,单电源放大器的输出每轨都能达到50到300mV(图1)。
单电源放大器,轨对轨输出的广告造成安全的错觉。
图1显示了驱动轨输出时,典型单电源放大器的输出摆幅。
在输出摆幅达到最大值之前,放大器的线性就已经开始大幅下降,放大器输出不能达到任何电源电压。
为使直流开环增益指标达到要求,只有假设放大器处于线性工作输出范围。
直流开环增益用分贝表示为20 log(ΔVOUT/ΔVOS),其中VOUT为电压输出,VOS为输入偏置电压。
驱动输出为高时,VH为输出直流开环增益测量的最大电压。
VOH为相对于输出所能达到VDD的绝对电压最大值。
VL为输出直流开环增益测量的最小电压,VOL为输出所能达到的绝对电压最小值。
VH小于VOH,而VL大于VOL。
从信号流的观点看,运算放大器驱动ADC时,输出限制轨对轨摆幅。
图2a中FFT图显示了5V系统中,放大器结合ADC对1KHz信号的响应。
放大器典型的闭环带宽约为3MHz,上升速率为2.3V/µsec。
放大器输出电压在140 mV到4.66V摆动。
在5V供电系统中,信号到电源的差距为140 mV。
对这个放大器,VOL最小为比地电压高15 mV,而VOH最大为VDD–20 mV。
图2a通过显示2、3、4kHz等频率下的失真,说明了单电源供电的CMOS放大器输出范围的非线性。
通过减少每个轨的放大器输出信号到272 mV,在仅有ADC失真时数据理想。
(图2b)点击看原图使用单电源运放,要仔细阅读手册。
一些单电源运放有输出域电荷泵,允许放大器输出摆动达到和超出供电电源轨。
在任何情况下,务必要读数据手册和参考开环增益测试条件。
英文原文:Single-supply amplifier outputs don't swing rail to railBuyer beware: Linearity starts to degrade long before reaching the output-swing maximums.By Bonnie Baker -- EDN, 9/3/2007Single-supply amplifiers do not truly swing rail to rail at the output. Near the rail, the amplifier is nonlinear. For linear operation, the output of single-supply amplifiers can come within only 50 to 300 mV of each rail (Figure 1).Single-supply-amplifier, rail-to-rail-output ads can give a false sense of security. Figure 1 shows a typical single-supply amplifier’s output swing as you drive the output to the rails.The amplifier’s linearity starts to degrade long before reaching the output-swing maximums, and the amplifier output never reaches either rail.The conditions of the dc-open-loop-gain specification define the amplifier’s linear operating output range. The dc open loop gain in decibelsis 20 log(ΔVOUT/ΔVOS), where VOUT is the output voltage and VOS is the input offset voltage. When you drive the output high, VH is the maximum voltage level at the output in the dc-open-loop-gain measurement. VOH is the absolute maximum voltage level with respect to VDD (drain-to-drain voltage) that the output can reach. VL is the minimum voltage level at the output in the dc-open-loop-gain measurement, and VOL is the absolute minimum voltage level that the output can reach. VH is less than VOH, and VL is greater than VOL.From a signal-chain perspective, you can see an op amp’s output limitations to swinging rail to rail when the op amp is driving an ADC. The FFT plot in Figure 2a shows the amplifier/ADC-combination response to a 1-kHz signal in a 5V system. The amplifier’s typical closed-loop bandwidth is about 3 MHz with a typical slew rate of 2.3V/µsec. The amplifier output voltage swings from 140 mV to 4.66V. In this 5V-supply system, the headroom between the signal and rails is 140 mV. For this amplifier, the VOL minimum specification is 15 mV above ground. The VOH maximum specification is VDD–20 mV.Figure 2a illustrates the nonlinearity-output-stage effects with a single-supply CMOS amplifier by showing distortion at 2, 3, and 4 kHz and so on. By reducing the amplifier’s output signal to 272 mV from each rail, the data looks perfect with only the ADC distortion (Figure 2b).When using a single-supply amplifier, read the fine print! Some single-supply amps have output-stage charge pumps, allowing the amplifier’s output swing to go to and well beyond the power-supply rails. In every case, read your data sheet and refer to the conditions on the open-loop-gain test.。
运算放大器正向放大电路单一电源运算放大器是一种广泛应用于电路设计中的放大器。
它主要用于放大微弱信号,以提高信号强度,并能实现信号的线性放大。
本文将介绍运算放大器正向放大电路的基本原理、电路组成、工作方式以及一些常见应用示例,希望能为读者提供一定的指导意义。
运算放大器正向放大电路的基本原理是利用电压放大器的特性,对输入信号进行放大。
它主要由一个运算放大器芯片和相关的电阻、电容等元件组成。
其中,芯片通常包含多个放大器输入端和一个输出端。
电路输入与输出之间的放大倍数可以通过调节芯片的反馈电阻来实现。
在运算放大器正向放大电路中,输入信号通常通过一个电阻与运算放大器的非反相输入端相连接,同时通过另一个电阻与运算放大器的反相输入端相连接。
这样,输入信号经过放大后,通过输出端输出。
运算放大器正向放大电路的工作方式是基于运算放大器的特性,即非反相输入端和反相输入端的电压差趋近于零。
当输入信号从电阻流过时,根据欧姆定律,会在反相输入端产生一定大小的电流。
为了让反相输入端电压趋向于零,运算放大器会将输出信号通过反馈电阻反馈到非反相输入端,以调节电流的大小,使得输入信号与输出信号之间的误差尽可能小。
运算放大器正向放大电路的应用非常广泛。
它可以用于音频放大器、滤波器、传感器信号放大电路等。
例如,我们可以将运算放大器正向放大电路用于音频放大器中,将微弱的音频信号放大到足够的水平,以驱动扬声器产生音频声音。
另外,也可以将它应用于传感器信号放大电路中,将传感器采集的微弱信号放大,以便进行后续的处理和分析。
总之,运算放大器正向放大电路是一种非常重要的电路设计中的组成部分。
它的基本原理是利用运算放大器芯片的特性,对输入信号进行放大。
通过调节反馈电阻,可以实现信号的线性放大,并将其应用于不同的场景中。
因此,了解和掌握运算放大器正向放大电路的原理与应用,对于电路设计工程师来说,具有重要的指导意义。
200516Microcontrollers &Embedded Systems 69 在此详细介绍其基本设计思想。
该子系统负责将来自BSP 15编码图像数据按照系统定义的数据存储算法进行存储,并处理远程PC 客户端、本地遥控器或面板操作请求的数据检索、备份、回放命令,将检索到的录像记录文件列表、录像数据文件给其他处理子系统。
主要完成以下功能:◆图像数据的IDE 存储;◆录像记录文件列表的检索;◆录像数据文件的IDE 检索;◆IDE 硬盘的管理,包括硬盘的切换、硬盘的启动、硬盘读写操作的控制等。
该子系统包括以下几个处理模块:写图像数据处理模块、读图像数据处理模块和数据检索处理模块。
(1)写图像数据处理将BSP 15送来的图像编码数据按照定义的格式与规范写入硬盘,并且在设计中为了减少频繁读写对硬盘使用寿命的影响,尽量减少频繁的硬盘寻道操作。
在图像数据的写处理中,为了录像数据快速定位和快速检索,系统中需要建立必须的数据块索引映射关系。
硬盘的切换控制,在没有数据的回放或备份情况下,一般只有一个硬盘处于IDL E 工作状态,而其他盘处于STANDB Y 的待命状态。
在STANDB Y 状态下,硬盘的电机是停转的,而从ST ANDBY 状态到IDL E 状态的切换时间一般需要7~8s 。
为了避免图像编码数据因等待硬盘启动时间过长而造成的数据溢出,当IDE 硬盘即将写满时,预先将下一个将要写的盘启动起来,由ST ANDB Y 状态切换到IDL E 状态,而IDE 硬盘写满后,由IDL E 状态切换到ST ANDB Y 状态,这样既降低系统运行的功耗,又提高了IDE 的使用寿命。
(2)读图像数据处理根据OSD 的面板操作或远程网络客户端请求,从硬盘中读出图像数据,根据命令的来源将检索的结果数据送给BSP 15编解码子系统以实现本地回放的功能,或将检索的数据送通信子系统发送到网络介质实现远程网络的备份和回放。