北京市西城区2013届高三第二次模拟考试理科数学试题(word版)
- 格式:doc
- 大小:1.48 MB
- 文档页数:15
北京市西城区2013年高三一模试卷 高三数学(理科)参考答案及评分标准 2013.4一、选择题:本大题共8小题,每小题5分,共40分.1. B ; 2.A ; 3.D ; 4.B ; 5.C ; 6.B ; 7.D ; 8.A .二、填空题:本大题共6小题,每小题5分,共30分.9.22230x y y +--=; 10.5; 11.32-12.152,5; 13.1 14.1,.注:12、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:依题意,得π()04f =, ………………1分即ππsincos 044a -==, (3)分解得 1a =. ………………5分(Ⅱ)解:由(Ⅰ)得 ()sin cos f x x x =-. ………………6分()()()cos g x f x f x x x =⋅-+(sin cos )(sin cos )2x x x x x =---+ ………………7分22(cos sin )2x x x =- ………………8分cos 22x x =+ ………………9分π2sin(2)6x =+. ………………10分由πππ2π22π262k x k -≤+≤+,得 ππππ36k x k -≤≤+,k ∈Z . (12)分所以 ()g x 的单调递增区间为ππ[π,π]36k k -+,k ∈Z . ………………13分16.(本小题满分13分)(Ⅰ)解:依题意,甲、乙两组的学生人数之比为 (35):(22)2:1++=, ……………1分所以,从甲组抽取的学生人数为2323⨯=;从乙组抽取的学生人数为1313⨯=.………2分设“从甲组抽取的同学中恰有1名女同学”为事件A , ………………3分则113528C C 15()C 28P A ⋅==, 故从甲组抽取的同学中恰有1名女同学的概率为1528. (5)分 (Ⅱ)解:随机变量X的所有取值为0,1,2,3. ………………6分21522184C C 5(0)C C 28P X ⋅===⋅, 111213525221218484C C C C C 25(1)C C C C 56P X ⋅⋅⋅==+=⋅⋅, 211113235221218484C C C C C 9(2)C C C C 28P X ⋅⋅⋅==+=⋅⋅, 21322184C C 3(3)C C 56P X ⋅===⋅.……………10分所以,随机变量X 的分布列为:………………11分5259350123285628564EX =⨯+⨯+⨯+⨯=. (13)分17.(本小题满分14分)(Ⅰ)证明:因为BC AB 2=,60ABC ︒∠=,在△ABC 中,由余弦定理可得 BC AC 3=,所以 BC AC ⊥. ………………2分 又因为 AC FB ⊥,所以⊥AC 平面FBC . ………………4分 (Ⅱ)解:因为⊥AC 平面FBC ,所以FC AC ⊥.因为FC CD ⊥,所以⊥FC 平面ABCD .………………5分 所以,,CA CF CB 两两互相垂直,如图建立的空间直角坐标系xyz C -. ………………6分在等腰梯形ABCD 中,可得 CB CD =.设1BC =,所以11(0,0,0),(0,1,0),,0),,1)22C A B D E --.所以)1,21,23(-=CE ,)0,0,3(=CA ,)0,1,0(=CB .设平面EAC 的法向量为=()x,y,z n ,则有0,0.CE CA ⎧⋅=⎪⎨⋅=⎪⎩n n 所以 10,20.x y z -+== 取1z =,得=n (0,2,1). (8)分设BC 与平面EAC 所成的角为θ,则||sin |cos ,|||||CB CB CB ⋅=〈〉==θn n n 所以 BC 与平面EAC 所成角的正弦值为552. (9)分(Ⅲ)解:线段ED 上不存在点Q ,使平面EAC ⊥平面QBC .证明如下: ………………10分假设线段ED 上存在点Q ,设),21,23(t Q - )10(≤≤t ,所以),21,23(t CQ -=.设平面QBC 的法向量为=m ),,(c b a ,则有0,0.CB CQ ⎧⋅=⎪⎨⋅=⎪⎩m m 所以 0,10.2b b tc =⎧-+= 取 1=c ,得=m )1,0,32(t -. (12)分要使平面EAC ⊥平面QBC ,只需0=⋅n m ,………………13分即002110⨯+⨯+⨯=, 此方程无解.所以线段ED 上不存在点Q ,使平面EAC ⊥平面QBC . ………………14分18.(本小题满分13分) (Ⅰ)解:()f x 的定义域为(0,)+∞, ………………1分且11()ax f x a x x -'=-=. ………………2分① 当0a ≤时,()0f x '<,故()f x 在(0,)+∞上单调递减.从而)(x f 没有极大值,也没有极小值. ………………3分② 当0a >时,令()0f x '=,得1x a =.()f x 和()f x '的情况如下:故()f x 的单调减区间为1(0,)a ;单调增区间为1(,)a +∞.从而)(x f 的极小值为1()1ln f aa =+;没有极大值. (5)分(Ⅱ)解:()g x 的定义域为R ,且 ()e 3axg x a '=+. ………………6分③ 当0a >时,显然 ()0g x '>,从而()g x 在R 上单调递增.由(Ⅰ)得,此时()f x 在1(,)a +∞上单调递增,符合题意. ………………8分④ 当0a =时,()g x 在R 上单调递增,()f x 在(0,)+∞上单调递减,不合题意.……9分⑤ 当0a <时,令()0g x '=,得013ln()x a a =-.()g x 和()g x '的情况如下表:当30a -≤<时,00x ≤,此时()g x 在0(,)x +∞上单调递增,由于()f x 在(0,)+∞上单调递减,不合题意. ………………11分当3a <-时,00x >,此时()g x 在0(,)x -∞上单调递减,由于()f x 在(0,)+∞上单调递减,符合题意. 综上,a 的取值范围是(,3)(0,)-∞-+∞. (13)分 19.(本小题满分14分)(Ⅰ)解:依题意,当直线AB 经过椭圆的顶点(0,)b 时,其倾斜角为60︒. ………………1分设 (,0)F c -,则tan 60bc ︒==.2分 将 b =代入 222a b c =+,解得 2a c =. ………………3分所以椭圆的离心率为12c e a ==. ………………4分(Ⅱ)解:由(Ⅰ),椭圆的方程可设为2222143x y c c +=. ………………5分 设11(,)A x y ,22(,)B x y .依题意,直线AB 不能与,x y 轴垂直,故设直线AB 的方程为()y k x c =+,将其代入2223412x y c +=,整理得222222(43)84120k x ck x k c c +++-=. ………………7分则2122843ck x x k -+=+,121226(2)43cky y k x x c k +=++=+,22243(,)4343ck ck G k k -++. (8)分因为 GD AB ⊥,所以 2223431443Dckk k ck x k +⨯=---+,2243D ck x k -=+. ………………9分因为 △GFD ∽△OED ,所以 2222222212222243()()||434343||()43ck ck ck S GD k k k ck S OD k ---++++==-+ (11)分222242222242(3)(3)99999()ck ck c k c k ck c k k ++===+>. ………………13分所以12S S 的取值范围是(9,)+∞. ………………14分20.(本小题满分13分)(Ⅰ)解:当5n =时,由51(,)||7i i i d A B a b ==-=∑,得5|12||24||12||21||3|7a -+-+-+-+-=,即 5|3|2a -=.由 *5a ∈N ,得 51a =,或55a =. ………………3分 (Ⅱ)(ⅰ)证明:设12(,,,)n A a a a =,12(,,,)n B b b b =,12(,,,)n C c c c =.因为 0∃>λ,使 AB BC λ=,所以 0∃>λ,使得 11221122(,,)((,,)n n n n b a b a b a c b c b c b ---=---λ,,,即 0∃>λ,使得 ()ii i i b a c b λ-=-,其中1,2,,i n =.所以i i b a -与(1,2,,)i i c b i n -=同为非负数或同为负数.………………5分所以11(,)(,)||||nni i i i i i d A B d B C a b b c ==+=-+-∑∑1(||||)ni i i i i b a c b ==-+-∑1||(,)ni i i c a d A C ==-=∑. ………………6分(ⅱ)解:设,,n A B C S ∈,且(,)(,)(,)d A B d B C d A C +=,此时不一定0∃>λ,使得AB BC λ=. ………………7分反例如下:取(1,1,1,,1)A =,(1,2,1,1,,1)B =,(2,2,2,1,1,,1)C ,则 (,)1d A B =,(,)2d B C =,(,)3d A C =,显然(,)(,)(,)d A B d B C d A C +=. 因为(0,1,0,0,,0)AB =,(1,0,1,0,0,,0)BC =,所以不存在>0λ,使得AB BC λ=. ………………8分(Ⅲ)解法一:因为 1(,)||ni i i d A B b a ==-∑,设(1,2,,)i i b a i n -=中有()m m n ≤项为非负数,n m -项为负数.不妨设1,2,,i m=时0i i b a -≥;1,2,,i m m n =++时,0i i b a -<.所以 1(,)||ni i i d A B b a ==-∑12121212[()()][()()]m m m m n m m n b b b a a a a a a b b b ++++=+++-+++++++-+++因为 (,)(,)d I A d I B p ==,所以11(1)(1)n niii i a b ==-=-∑∑, 整理得11n ni ii i a b===∑∑.所以 12121(,)||2[()]ni i m m i d A B b a b b b a a a ==-=+++-+++∑.……………10分因为121212()()m n m m n b b b b b b b b b +++++=+++-+++()()1p n n m p m ≤+--⨯=+; 又121m a a a m m+++≥⨯=,所以1212(,)2[()]m m d A B b b b a a a =+++-+++2[()]2p m m p ≤+-=.即 (,)2d A B p ≤. ……………12分 对于 (1,1,,1,1)A p =+,(1,1,1,,1)B p =+,有 A ,n B S ∈,且(,)(,)d I A d I B p ==,(,)2d A B p =.综上,(,)d A B 的最大值为2p . ……………13分 解法二:首先证明如下引理:设,x y ∈R ,则有 ||||||x y x y +≤+. 证明:因为 ||||x x x -≤≤,||||y y y -≤≤, 所以 (||||)||||x y x y x y -+≤+≤+,即 ||||||x y x y +≤+.所以11(,)|||(1)(1)|n ni i i i i i d A B b a b a ===-=-+-∑∑1(|1||1|)ni i i b a =≤-+-∑11|1||1|2nni i i i a b p===-+-=∑∑. ……………11分上式等号成立的条件为1i a =,或1i b =,所以 (,)2d A B p ≤. ……………12分 对于 (1,1,,1,1)A p =+,(1,1,1,,1)B p =+,有 A ,n B S ∈,且(,)(,)d I A d I B p ==,(,)2d A B p =.综上,(,)d A B 的最大值为2p . ……………13分。
2013年北京市各区高三二模试题汇编--数列(理科)2013年北京市各区高三二模试题汇编--数列(理科)(2013年东城二模理科)各项均为正数的等比数列{}n a 的前n 项和为nS ,若32a =,425S S =,则1a 的值为___12 _____,4S 的值为____152____ (2013年东城二模理科)在数列{}na 中,若对任意的*n ∈N ,都有211n n n naa t aa +++-=(t为常数),则称数列{}na 为比等差数列,t 称为比公差.现给出以下命题:①等比数列一定是比等差数列,等差数列不一定是比等差数列;新 课 标 第 一 网 ②若数列{}na 满足122n n a n -=,则数列{}na 是比等差数列,且比公差12t =; ③若数列{}nc 满足11c =,21c =,12nn n c c c --=+(3n ≥),则该数列不是比等差数列;④若{}n a 是等差数列,{}n b 是等比数列,则数列{}n na b 是比等差数列.其中所有真命题的序号是_____①③ ___.(2013年西城二模理科)在等差数列{}na 中,25a=,1412a a+=,则na =______;设*21()1nn bn a =∈-N ,则数列{}nb 的前n 项和nS =______.(答案:21n +,4(1)n n +)(2013年海淀二模理科)已知数列{}na 是公比为q 的等比数列,且134a a⋅=,48a =,则1a q +的值为(D)A .3B .2C .3或2-D .3或(2013年丰台二模理科) 已知数列{a n }, 则“{a n }为等差数列”是“a 1+a 3=2a 2”的(C)(A )充要条件 (B )必要而不充分条件(C )充分而不必要条件 (D )既不充分又不必要条件(2013年海淀二模理科)若数列{}na 满足:存在正整数T ,对于任意正整数n都有n Tnaa +=成立,则称数列{}na 为周期数列,周期为T . 已知数列{}na 满足1(0)a m m =>,11, 1=1, 0 1.n n n n na a a a a +->⎧⎪⎨<≤⎪⎩,则下列结论中错误..的是(D ) A. 若34a =,则m 可以取3个不同的值 B.若m =则数列{}na 是周期为3的数列C.T ∀∈*N 且2T ≥,存在1m >,{}na 是周期为T 的数列D.Q m ∃∈且2m ≥,数列{}na 是周期数列(2013年朝阳二模理科)(14)数列{21}n-的前n 项1,3,7,,21n -组成集合{1,3,7,,21}()n n A n *=-∈N ,从集合nA 中任取k (1,2,3,,)k n =个数,其所有可能的k 个数的乘积的和为kT (若只取一个数,规定乘积为此数本身),记12nnST T T =+++.例如当1n =时,1{1}A =,11T =,11S =;当2n =时,2{1,3}A=,113T =+,213T=⨯,213137S=++⨯=.则当3n =时,3S = 63 ;试写出nS = (1)221n n +- .(2013年顺义二模理科)已知数列{}na 中,54+-=n a n,等比数列{}nb 的公比q 满数列;④若{}na 是等差数列,{}nb 是等比数列,则数列{}n na b 是比等差数列.其中所有真命题的序号是 ①② .(2013年东城二模理科)(本小题共13分)已知数列{}na ,11a =,2nnaa =,41n a-=,411n a +=(*n ∈N ).(1)求4a ,7a ;⑵是否存在正整数T ,使得对任意的*n ∈N ,有n Tna a +=; ⑶设3122310101010n na a a aS =+++++,问S 是否为有理数,说明理由 解:(Ⅰ)4211aa a ===;74210aa ⨯-==.(Ⅱ)假设存在正整数T ,使得对任意的*n ∈N ,有n Tna a +=.则存在无数个正整数T ,使得对任意的*n ∈N ,有n Tna a +=. 设T 为其中最小的正整数. 若T 为奇数,设21T t =-(*t ∈N ), 则41414124()10n n T n T n t aa a a ++++++-====.与已知411n a +=矛盾.若T 为偶数,设2T t =(*t ∈N ),则22n Tn na a a +==,而222n Tn t n taa a +++==从而n tnaa +=.而t T <,与T 为其中最小的正整数矛盾. 综上,不存在正整数T ,使得对任意的*n ∈N ,有n Tna a +=. (Ⅲ)若S 为有理数,即S 为无限循环小数, 则存在正整数0N ,T ,对任意的*n ∈N ,且0n N ≥,有n T naa +=.与(Ⅱ)同理,设T 为其中最小的正整数.若T 为奇数,设21T t =-(*t ∈N ), 当041n N +≥时,有41414124()10n n T n T n t aa a a ++++++-====.与已知411n a +=矛盾.若T 为偶数,设2T t =(*t ∈N ), 当0n N ≥时,有22n Tn naa a +==,而222n Tn t n taa a +++==从而n tnaa +=.而t T <,与T 为其中最小的正整数矛盾.故S 不是有理数. ……………13分(2013年西城二模理科)(本小题满分13分)已知集合1212{(,,,)|,,,nn nSx x x x x x =是正整数1,2,3,,n的一个排列}(2)n ≥,函数1,0,()1,0.x g x x >⎧=⎨-<⎩对于12(,,)nna a a S ∈…,定义:121()()(),{2,3,,}i i i i i b g a a g a a g a a i n -=-+-++-∈,10b =,称ib 为ia 的满意指数.排列12,,,nb b b 为排列12,,,na a a 的生成列;排列12,,,na a a 为排列12,,,nb b b 的母列.(Ⅰ)当6n =时,写出排列3,5,1,4,6,2的生成列及排列0,1,2,3,4,3--的母列;(Ⅱ)证明:若12,,,na a a 和12,,,na a a '''为nS 中两个不同排列,则它们的生成列也不同;(Ⅲ)对于nS 中的排列12,,,na a a ,定义变换τ:将排列12,,,na a a 从左至右第一个满意指数为负数的项调至首项,其它各项顺序不变,得到一个新的排列.证明:一定可以经过有限次变换τ将排列12,,,na a a 变换为各项满意指数均为非负数的排列.20.(本小题满分13分) (Ⅰ)解:当6n =时,排列3,5,1,4,6,2的生成列为0,1,2,1,4,3--; ………………2分排列0,1,2,3,4,3--的母列为3,2,4,1,6,5. ………………3分 (Ⅱ)证明:设12,,,na a a 的生成列是12,,,nb b b ;12,,,na a a '''的生成列是与12,,,nb b b '''.从右往左数,设排列12,,,na a a 与12,,,na a a '''第一个不同的项为ka 与ka ',即:nnaa '=,11n na a --'=,,11k ka a ++'=,kkaa '≠.显然n n b b '=,11n nb b --'=,,11k kb b ++'=,下面证明:k kb b '≠. ………………5分由满意指数的定义知,ia 的满意指数为排列12,,,na a a 中前1i -项中比i a 小的项的个数减去比i a 大的项的个数.由于排列12,,,na a a 的前k 项各不相同,设这k 项中有l 项比ka 小,则有1k l --项比ka 大,从而(1)21kbl k l l k =---=-+.同理,设排列12,,,na a a '''中有l '项比ka '小,则有1k l '--项比ka '大,从而21kb l k ''=-+.因为 12,,,ka a a 与12,,,ka a a '''是k 个不同数的两个不同排列,且kkaa '≠,所以 l l '≠, 从而 kkb b '≠. 所以排列12,,,na a a 和12,,,na a a '''的生成列也不同. ………………8分 (Ⅲ)证明:设排列12,,,na a a 的生成列为12,,,nb b b ,且ka 为12,,,na a a 中从左至右第一个满意指数为负数的项,所以1210,0,,0,1k k b b b b -≥≥≥≤-. ………………9分进行一次变换τ后,排列12,,,na a a 变换为1211,,,,,,kk k na a a a a a -+,设该排列的生成列为12,,,nb b b '''.所以 1212()()nn b b b b b b '''+++-+++121121[()()()][()()()]k k k k k k k k g a a g a a g a a g a a g a a g a a --=-+-++---+-++-1212[()()()]k k k k g a a g a a g a a -=--+-++-22k b =-≥.………………11分因此,经过一次变换τ后,整个排列的各项满意指数之和将至少增加2.因为ia 的满意指数1ib i ≤-,其中1,2,3,,i n=,所以,整个排列的各项满意指数之和不超过(1)123(1)2n n n -++++-=,即整个排列的各项满意指数之和为有限数, 所以经过有限次变换τ后,一定会使各项的满意指数均为非负数. ………………13分(2013年海淀二模理科)20. (本小题满分13分) 设A 是由m n ⨯个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(Ⅰ) 数表A 如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可); 表1(Ⅱ) 数表A 如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数..a 的所有可能值; (Ⅲ)对由m n ⨯个实数组成的m 行n 列的任意一个数表A ,22221212a a a a a a a a ------能否经过有限次“操作”以后,使得到的数表每行的各数之 表2和与每列的各数之和均为非负整数?请说明理由. 20.(I )解:法1:42123712371237210121012101-−−−−−→−−−−−→----改变第列改变第行法2:14123712371237210121012101----−−−−−→−−−−−→--改变第列改变第列…………………3分(II) 每一列所有数之和分别为2,0,2-,0,每一行所有数之和分别为1-,1;①如果首先操作第三列,则22221212a a a a a a a a -----则第一行之和为21a -,第二行之和为52a -,这两个数中,必须有一个为负数,另外一个为非负数,所以 12a ≤或52a ≥ 当12a ≤时,则接下来只能操作第一行, 22221212a a a a a a a a ------此时每列之和分别为2222,22,22,2a a a a --- 必有2220a-≥,解得0,1a =-当52a ≥时,则接下来操作第二行 22221212a a a a a a a a ------ 此时第4列和为负,不符合题意. ………………6分 ② 如果首先操作第一行22221212a a a a a a a a -----则每一列之和分别为22a -,222a -,22a -,22a当1a =时,每列各数之和已经非负,不需要进行第二次操作,舍掉当1a ≠时,22a -,22a -至少有一个为负数, 所以此时必须有2220a-≥,即11a -≤≤,所以0a =或1a =-经检验,0a =或1a =-符合要求 综上:0,1a =- …………………9分(III )能经过有限次操作以后,使得得到的数表所有的行和与所有的列和均为非负实数。
【解析分类汇编系列三:北京2013(二模)数学理】12:程序框图一、选择题1 .(2013北京西城高三二模数学理科)如图所示的程序框图表示求算式“235917⨯⨯⨯⨯”之值,则判断框内可以填入( ) A .10k ≤ B .16k ≤ C .22k ≤ D .34k ≤【答案】C第一次循环,满足条件,2,3S k ==;第二次循环,满足条件,23,5S k =⨯=;第三次循环,满足条件,235,9S k =⨯⨯=;第四次循环,满足条件,2359,17S k =⨯⨯⨯=;第五次循环,满足条件,235917,33S k =⨯⨯⨯⨯=,此时不满足条件输出。
所以条件应满足1733k <<,即当22k ≤,满足,所以选C.2 .(2013北京朝阳二模数学理科试题)执行如图所示的程序框图.若输出的结果是16,则判断框内的条件是( )A .6n >?B .7n ≥?C .8n >?D .9n >?【答案】C第一次循环,1,3S n ==,不满足条件,循环。
第二次循环,134,5S n =+==,不满足条件,循环。
第三次循环,459,7S n =+==,不满足条件,循环。
第四次循环,9716,9S n =+==,满足条件,输出。
所以判断框内的条件是8n >,选C.3.(2013北京顺义二模数学理科)执行如图所示的程序框图,输出的s 值为( )A .10-B .3-C .4D .5【答案】A第一次运行,满足条件循环211,2s k =-==。
第二次运行,满足条件循环2120,3s k =⨯-==。
第三次运行,满足条件循环2033,4s k =⨯-=-=。
第四次运行,满足条件循环2(3)410,5s k =⨯--=-=。
此时不满足条件,输出10s =-,选A.4.(2013北京东城高三二模数学理科)阅读程序框图,运行相应的程序,当输入x 的值为25-时,输出x 的值为( )A .1B .2C .3D .4【答案】D若输入x 的值为25-时,则14x =-=,循环11x ==,此时不满足条件,输出3114x =⨯+=,选D.二、填空题5.(2013北京昌平二模数学理科)执行如图所示的程序框图,若①是6i <时,输出的S 值为_________;若①是2013i <时,输出的S 值为_________.【答案】5;2013若①是6i <时。
【解析分类汇编系列三:北京2013(二模)数学理】3:三角函数一、选择题1.(2013北京东城高三二模数学理科)已知3sin()45x π-=,那么sin 2x 的值为 ( )A .325B .725C .925D .1825【答案】B 2237sin 2cos(2)cos 2()12sin ()12()244525x x x x πππ=-=-=--=-⨯=,选B.2.(2013北京丰台二模数学理科)下列四个函数中,最小正周期为π,且图象关于直线12x π=对称的是( )A .sin()23x y π=+B .sin()23x y π=-C .sin(2)3y x π=+D .sin(2)3y x π=-【答案】C因为函数的周期是π,所以2T ππω==,解得2ω=,排除A,B.当12x π=时,sin(2)sin11232y πππ=⨯+==为最大值,所以sin(2)3y x π=+图象关于直线12x π=对称,选C.(2013北京房山区二模数学理科试题)在△ABC 中,角A ,B ,C 所对的边分别是a b c ,,.326a b A π===,,,则tan B = .由正弦定理得32sin sin6Bπ=,解得1sin 3B =.因为a b >,所以B A <,即cos B ==,所以sin tan cos B B B ===3.(2013北京顺义二模数学理科)设ABC ∆的内角C B A ,,的对边分别为c b a ,,,且5,4,31cos ==∠=b B A π,则=C sin __________,ABC ∆的面积=S __________.由1cos 3A =得sin A =.所以s i n s i n ()s i n c o s c o s s iC B C B CB C =+=+13==.由正弦定理sin sin a bA B =得20sin sin 3b a A B =⋅==,所以ABC ∆的面积为1sin2S ab C =120523=⨯⨯=4.(2013北京西城高三二模数学理科)在△ABC 中,2BC =,AC =,3B π=,则AB =______;△ABC 的面积是______.【答案】3由余弦定理得2222cos3AC AB BC AB BC π=+-⋅,即2742AB AB =+-,所以2230AB AB --=,解得3AB=或1AB =-,舍去。
【解析分类汇编系列三:北京2013(二模)数学理】9:圆锥曲线一、选择题1 .(2013北京东城高三二模数学理科)过抛物线24yx =焦点的直线交抛物线于A ,B 两点,若10AB =,则AB 的中点到y 轴的距离等于 ( )A .1B .2C .3D .4【答案】D抛物线24y x =的焦点(1,0),准线为l :1x =-,设AB 的中点为 E ,过 A 、E 、B 分别作准线的垂线,垂足分别为 C 、F 、D ,EF 交纵轴于点H ,如图所示:则由EF 为直角梯形的中位线知522AC BD ABEF +===,所以1514EH EF =-=-=,即则B 的中点到y轴的距离等于4.选D.2.(2013北京朝阳二模数学理科试题)若双曲线22221(0,0)x y a b a b-=>>的渐近线与抛物线22y x =+有公共点,则此双曲线的离心率的取值范围是( )A .[3,)+∞B .(3,)+∞C .(1,3]D .(1,3)【答案】A双曲线的渐近线为b y x a =±,不妨取b y x a =,代入抛物线得22bx x a=+,即220b x x a -+=,要使渐近线与抛物线22y x =+有公共点,则2()80ba∆=-≥,即228b a ≥,又22228b c a a =-≥,所以229c a ≥,所以29,3e e ≥≥。
所以此双曲线的离心率的取值范围是[3,)+∞,选A.3 .(2013北京海淀二模数学理科)双曲线C 的左右焦点分别为12,F F ,且2F 恰为抛物线24y x =的焦点,设双曲线C 与该抛物线的一个交点为A ,若12AF F ∆是以1AF 为底边的等腰三角形,则双曲线C 的离心率为 ( )AB .1C .1D .2+【答案】B抛物线的焦点为(1,0),即2(1,0)F ,所以双曲线中1c =。
双曲线C 与该抛物线的一个交点为A ,(不妨设在第一象限)若12AF F ∆是以1AF 为底边的等腰三角形,则抛物线的准线过双曲线的左焦点。
北京市西城区2013届高三下学期(4月)一模数学(理)试卷2013.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{|02}A x x =<<,2{|10}B x x =->,那么U A B = ð (A ){|01}x x << (B ){|01}x x <≤(C ){|12}x x <<(D ){|12}x x ≤<【答案】B【解析】2{|10}={11}B x x x x x =->><-或,所以{|11U B x x =-≤≤ð,所以{01}U A B x x =<≤ ð,选B.2.若复数i2ia +的实部与虚部相等,则实数a = (A )1- (B )1(C )2-(D )2【答案】A 【解析】i ()112i 2222a a i i ai a i ++-===---,因为i 2i a +的实部与虚部相等,所以122a=-,即1a =-,选A.3.执行如图所示的程序框图.若输出3y =-,则输入角=θ (A )π6 (B )π6-(C )π3(D )π3-【答案】D【解析】由题意知sin ,4tan ,42y πθθππθθ⎧<⎪⎪=⎨⎪≤≤⎪⎩。
因为31y =-<-,所以只有tan 3θ=-,因为42ππθ≤≤,所以3πθ=-,选D.4.从甲、乙等5名志愿者中选出4名,分别从事A ,B ,C ,D 四项不同的工作,每人承担一项.若甲、乙二人均不能从事A 工作,则不同的工作分配方案共有 (A )60种 (B )72种 (C )84种 (D )96种【答案】B【解析】若选甲不选乙,则有133318C A =种。
若选乙不选甲,则有133318C A =种。
若选甲,乙都选,则有21332336C C A =种,所以共有72种,选B.5.某正三棱柱的三视图如图所示,其中正(主)视 图是边长为2的正方形,该正三棱柱的表面积是 (A )63+ (B )123+ (C )1223+ (D )2423+ 【答案】C【解析】由三视图可知,正三棱柱的高为2,底面边长为2,所以底面积为213222322⨯⨯⨯=,侧面积为32212⨯⨯=,所以正三棱柱的表面积是1223+,选C.6.等比数列{}n a 中,10a >,则“13a a <”是“36a a <”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件【答案】B【解析】由13a a <得211a a q <,且30a >,解得21q >,即1q >或1q <-。
北京市西城区2013年高三一模试卷数 学(理科) 2013.4一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{|02}A x x =<<,2{|10}B x x =->,那么U A B = ð (A ){|01}x x << (B ){|01}x x <≤(C ){|12}x x <<(D ){|12}x x ≤<2.若复数i2ia +的实部与虚部相等,则实数a = (A )1- (B )1(C )2-(D )23.执行如图所示的程序框图.若输出y =角=θ (A )π6 (B )π6-(C )π3(D )π3-4.从甲、乙等5名志愿者中选出4名,分别从事A ,B ,C ,D 四项不同的工作,每人承担一项.若甲、乙二人均不能从事A 工作,则不同的工作分配方案共有 (A )60种 (B )72种(C )84种(D )96种5.某正三棱柱的三视图如图所示,其中正(主)视 图是边长为2的正方形,该正三棱柱的表面积是 (A)6(B)12(C)12+(D)24+6.等比数列{}n a 中,10a >,则“13a a <”是“36a a <”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7.已知函数22()log 2log ()f x x x c =-+,其中0c >.若对于任意的(0,)x ∈+∞,都有()1f x ≤,则c 的取值范围是(A )1(0,]4(B )1[,)4+∞(C )1(0,]8(D )1[,)8+∞8.如图,正方体1111ABCD A BC D -中,P 为底面ABCD 上的动点,1PE AC ⊥于E ,且PA PE =,则点P 的 轨迹是 (A )线段 (B )圆弧(C )椭圆的一部分(D )抛物线的一部分第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.已知曲线C 的参数方程为2cos 12sin x y =⎧⎨=+⎩αα(α为参数),则曲线C 的直角坐标方程为 .10.设等差数列{}n a 的公差不为0,其前n 项和是n S .若23S S =,0S =,则k =______.11.如图,正六边形ABCDEF 的边长为1,则AC DB ⋅=______.12.如图,已知AB 是圆O 的直径,P 在AB 的延长线上,PC切圆O 于点C ,CD OP ⊥于D .若6CD =,10CP =, 则圆O 的半径长为______;BP =______.13.在直角坐标系xOy 中,点B 与点(1,0)A -关于原点O 对称.点00(,)P x y 在抛物线24y x =上,且直线AP 与BP 的斜率之积等于2,则0x =______. 14.记实数12,,,n x x x 中的最大数为12max{,,,}n x x x ,最小数为12min{,,,}n x x x .设△ABC的三边边长分别为,,a b c ,且a b c ≤≤,定义△ABC 的倾斜度为max{,,}min{,a b ca tbc a b=⋅,}b cc a. (ⅰ)若△ABC 为等腰三角形,则t =______; (ⅱ)设1a =,则t 的取值范围是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()sin cos f x x a x =-的一个零点是π4. (Ⅰ)求实数a 的值;(Ⅱ)设()()()cos g x f x f x x x =⋅-+,求()g x 的单调递增区间.16.(本小题满分13分)某班有甲、乙两个学习小组,两组的人数如下:现采用分层抽样的方法(层内采用简单随机抽样)从甲、乙两组中共抽取3名同学进行学业检测.(Ⅰ)求从甲组抽取的同学中恰有1名女同学的概率;(Ⅱ)记X 为抽取的3名同学中男同学的人数,求随机变量X 的分布列和数学期望.17.(本小题满分14分)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD ,BC AB 2=,60ABC ︒∠=,AC FB ⊥.(Ⅰ)求证:⊥AC 平面FBC ;(Ⅱ)求BC 与平面EAC 所成角的正弦值;(Ⅲ)线段ED 上是否存在点Q ,使平面EAC ⊥平面QBC ? 证明你的结论.18.(本小题满分13分)已知函数()ln f x ax x =-,()e 3axg x x =+,其中a ∈R .(Ⅰ)求)(x f 的极值;(Ⅱ)若存在区间M ,使)(x f 和()g x 在区间M 上具有相同的单调性,求a 的取值范围.19.(本小题满分14分)如图,椭圆22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线交椭圆于A ,B 两点.当直线AB 经过椭圆的一个顶点时,其倾斜角恰为60︒. (Ⅰ)求该椭圆的离心率;(Ⅱ)设线段AB 的中点为G ,AB 的中垂线与x 轴和y 轴分别交于,D E 两点.记△GFD 的面积为1S ,△OED (O 为原点)的面积为2S ,求12S S20.(本小题满分13分)已知集合*12{|(,,,),,1,2,,}(2)n n i S X X x x x x i n n ==∈=≥N .对于12(,,,)n A a a a = ,12(,,,)n n B b b b S =∈ ,定义1122(,,,)n n AB b a b a b a =---;1212(,,,)(,,,)()n n a a a a a a =∈R λλλλλ;A 与B 之间的距离为1(,)||ni i i d A B a b ==-∑.(Ⅰ)当5n =时,设5(1,2,1,2,)A a =,(2,4,2,1,3)B =.若(,)7d A B =,求5a ;(Ⅱ)(ⅰ)证明:若,,n A B C S ∈,且0∃>λ,使AB BC λ=,则(,)(,)(,)d ABd BC d AC +=; (ⅱ)设,,n A B C S ∈,且(,)(,)(,)d AB dBC d AC +=.是否一定0∃>λ,使AB BC λ=?说明理由;(Ⅲ)记(1,1,,1)n I S =∈ .若A ,n B S ∈,且(,)(,)d I A d I B p ==,求(,)d A B 的最大值.北京市西城区2013年高三一模试卷高三数学(理科)参考答案及评分标准2013.4一、选择题:本大题共8小题,每小题5分,共40分.1. B ; 2.A ; 3.D ; 4.B ; 5.C ; 6.B ; 7.D ; 8.A .二、填空题:本大题共6小题,每小题5分,共30分.9.22230x y y +--=; 10.5; 11.32-12.152,5; 13.1 14.1,. 注:12、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:依题意,得π()04f =, ………………1分即 ππsincos 044a -==,………………3分 解得 1a =. ………………5分 (Ⅱ)解:由(Ⅰ)得 ()sin cos f x x x =-. ………………6分()()()cos g x f x f x x x =⋅-+(sin cos )(sin cos )2x x x x x =--- ………………7分22(cos sin )2x x x =- ………………8分cos22x x = ………………9分π2sin(2)6x =+. ………………10分由 πππ2π22π262k x k -≤+≤+,得 ππππ36k x k -≤≤+,k ∈Z . ………………12分所以 ()g x 的单调递增区间为ππ[π,π]36k k -+,k ∈Z . ………………13分16.(本小题满分13分)(Ⅰ)解:依题意,甲、乙两组的学生人数之比为 (35):(22)2:1++=, ……………1分所以,从甲组抽取的学生人数为2323⨯=;从乙组抽取的学生人数为1313⨯=.………2分 设“从甲组抽取的同学中恰有1名女同学”为事件A , ………………3分则 113528C C 15()C 28P A ⋅==, 故从甲组抽取的同学中恰有1名女同学的概率为1528. ………………5分 (Ⅱ)解:随机变量X 的所有取值为0,1,2,3. ………………6分21522184C C 5(0)C C 28P X ⋅===⋅, 111213525221218484C C C C C 25(1)C C C C 56P X ⋅⋅⋅==+=⋅⋅, 211113235221218484C C C C C 9(2)C C C C 28P X ⋅⋅⋅==+=⋅⋅, 21322184C C 3(3)C C 56P X ⋅===⋅.……………10分 所以,随机变量X 的分布列为:………………11分5259350123285628564EX =⨯+⨯+⨯+⨯=. ………………13分17.(本小题满分14分)(Ⅰ)证明:因为BC AB 2=,60ABC ︒∠=,在△ABC 中,由余弦定理可得 BC AC 3=, 所以 BC AC ⊥. ………………2分 又因为 AC FB ⊥,所以⊥AC 平面FBC . ………………4分 (Ⅱ)解:因为⊥AC 平面FBC ,所以FC AC ⊥.因为FC CD ⊥,所以⊥FC 平面ABCD . ………………5分所以,,CA CF CB 两两互相垂直,如图建立的空间直角坐标系xyz C -. ………………6分在等腰梯形ABCD 中,可得 CB CD =. 设1BC =,所以11(0,0,0),(0,1,0),(,,0),(,,1)2222C A BDE --. 所以 )1,21,23(-=,)0,0,3(=CA ,)0,1,0(=CB . 设平面EAC 的法向量为=()x,y,z n ,则有0,0.CE CA ⎧⋅=⎪⎨⋅=⎪⎩n n 所以10,20.x y z -+== 取1z =,得=n (0,2,1). ………………8分 设BC 与平面EAC 所成的角为θ,则||sin |cos ,|5||||CB CB CB ⋅=〈〉==θn n n 所以 BC 与平面EAC 所成角的正弦值为552. ………………9分 (Ⅲ)解:线段ED 上不存在点Q ,使平面EAC ⊥平面QBC .证明如下: ………………10分假设线段ED 上存在点Q ,设 ),21,23(t Q - )10(≤≤t ,所以),21,23(t CQ -=. 设平面QBC 的法向量为=m ),,(c b a ,则有0,0.CB CQ ⎧⋅=⎪⎨⋅=⎪⎩m m 所以0,10.2b b tc =⎧-+= 取 1=c ,得=m )1,0,32(t -. ………………12分 要使平面EAC ⊥平面QBC ,只需0=⋅n m , ………………13分即002110⨯+⨯+⨯=, 此方程无解. 所以线段ED 上不存在点Q ,使平面EAC ⊥平面QBC . ………………14分18.(本小题满分13分)(Ⅰ)解:()f x 的定义域为(0,)+∞, ………………1分且 11()ax f x a x x-'=-=. ………………2分 ① 当0a ≤时,()0f x '<,故()f x 在(0,)+∞上单调递减.从而)(x f 没有极大值,也没有极小值. ………………3分② 当0a >时,令()0f x '=,得1x a=. ()f x 和()f x '的情况如下:故()f x 的单调减区间为(0,)a ;单调增区间为(,)a+∞. 从而)(x f 的极小值为1()1ln f a a=+;没有极大值. ………………5分 (Ⅱ)解:()g x 的定义域为R ,且 ()e 3ax g x a '=+. ………………6分 ③ 当0a >时,显然 ()0g x '>,从而()g x 在R 上单调递增.由(Ⅰ)得,此时()f x 在1(,)a+∞上单调递增,符合题意. ………………8分 ④ 当0a =时,()g x 在R 上单调递增,()f x 在(0,)+∞上单调递减,不合题意.……9分⑤ 当0a <时,令()0g x '=,得013ln()x a a=-. ()g x 和()g x '的情况如下表:当30a -≤<时,00x ≤,此时()g x 在0(,)x +∞上单调递增,由于()f x 在(0,)+∞上单调递减,不合题意. ………………11分当3a <-时,00x >,此时()g x 在0(,)x -∞上单调递减,由于()f x 在(0,)+∞上单调递减,符合题意.综上,a 的取值范围是(,3)(0,)-∞-+∞ . ………………13分19.(本小题满分14分)(Ⅰ)解:依题意,当直线AB 经过椭圆的顶点(0,)b 时,其倾斜角为60︒. ………………1分设 (,0)F c -, 则tan 60bc︒==.………………2分 将 b = 代入 222a b c =+,解得 2a c =.………………3分 所以椭圆的离心率为 12c e a ==. ………………4分 (Ⅱ)解:由(Ⅰ),椭圆的方程可设为2222143x y c c+=. ………………5分设11(,)A x y ,22(,)B x y .依题意,直线AB 不能与,x y 轴垂直,故设直线AB 的方程为()y k x c =+,将其代入2223412x y c +=,整理得 222222(43)84120k x ck x k c c +++-=. ………………7分则 2122843ck x x k -+=+,121226(2)43ck y y k x x c k +=++=+,22243(,)4343ck ckG k k -++. ………………8分 因为 GD AB ⊥,所以 2223431443Dckk k ck x k +⨯=---+,2243D ck x k -=+. ………………9分 因为 △GFD ∽△OED ,所以 2222222212222243()()||434343||()43ck ck ck S GD k k k ck S OD k ---++++==-+ ………………11分 222242222242(3)(3)99999()ck ck c k c k ck c k k++===+>. ………………13分 所以12S S 的取值范围是(9,)+∞. ………………14分20.(本小题满分13分)(Ⅰ)解:当5n =时,由51(,)||7i ii d A B a b ==-=∑, 得 5|12||24||12||21||3|7a -+-+-+-+-=,即 5|3|2a -=.由 *5a ∈N ,得 51a =,或55a =. ………………3分 (Ⅱ)(ⅰ)证明:设12(,,,)n A a a a = ,12(,,,)n B b b b = ,12(,,,)n C c c c = .因为 0∃>λ,使 AB BC λ= ,所以 0∃>λ,使得 11221122(,,)((,,)n n n n b a b a b a c b c b c b ---=--- λ,,, 即 0∃>λ,使得 ()i i i i b a c b λ-=-,其中1,2,,i n = .所以 i i b a -与(1,2,,)i i c b i n -= 同为非负数或同为负数. ………………5分 所以 11(,)(,)||||n n i i i ii i d A B d B C a b b c ==+=-+-∑∑ 1(||||)n i i i i i b a c b ==-+-∑1||(,)n i i i c a d A C ==-=∑. ………………6分(ⅱ)解:设,,n A B C S ∈,且(,)(,)(,)d A B d B C d A C +=,此时不一定0∃>λ,使得 AB BC λ= . ………………7分反例如下:取(1,1,1,,1)A = ,(1,2,1,1,,1)B = ,(2,2,2,1,1,,1)C ,则 (,)1d A B =,(,)2d B C =,(,)3d A C =,显然(,)(,)(,)d A B d B C d A C +=.因为(0,1,0,0,,0)AB = ,(1,0,1,0,0,,0)BC = ,所以不存在>0λ,使得AB BC λ= . ………………8分(Ⅲ)解法一:因为 1(,)||ni ii d A B b a ==-∑, 设(1,2,,)i i b a i n -= 中有()m m n ≤项为非负数,n m -项为负数.不妨设1,2,,i m = 时0i i b a -≥;1,2,,i m m n =++ 时,0i i b a -<.所以 1(,)||ni ii d A B b a ==-∑12121212[()()][()()]m m m m n m m n b b b a a a a a a b b b ++++=+++-+++++++-+++因为 (,)(,)d I A d I B p ==,所以 11(1)(1)n n i i i i a b ==-=-∑∑, 整理得 11n ni ii i a b ===∑∑. 所以 12121(,)||2[()]n i i m m i d A B b a b b b a a a ==-=+++-+++∑ .……………10分因为 121212()()m n m m n b b b b b b b b b +++++=+++-+++()()1p n n m p m ≤+--⨯=+;又 121m a a a m m +++≥⨯= ,所以 1212(,)2[()]m m d A B b b b a a a =+++-+++2[()]2p m m p ≤+-=.即 (,)2d A B p ≤. ……………12分对于 (1,1,,1,1)A p =+ ,(1,1,1,,1)B p =+ ,有 A ,n B S ∈,且(,)(,)d I A d I B p ==,(,)2d A B p =.综上,(,)d A B 的最大值为2p . ……………13分 解法二:首先证明如下引理:设,x y ∈R ,则有 ||||||x y x y +≤+.证明:因为 ||||x x x -≤≤,||||y y y -≤≤,所以 (||||)||||x y x y x y -+≤+≤+,即 ||||||x y x y +≤+.所以 11(,)|||(1)(1)|n ni i i ii i d A B b a b a ===-=-+-∑∑ 1(|1||1|)n i i i b a =≤-+-∑11|1||1|2nni i i i a b p ===-+-=∑∑. ……………11分上式等号成立的条件为1i a =,或1i b =,所以 (,)2d A B p ≤. ……………12分对于 (1,1,,1,1)A p =+ ,(1,1,1,,1)B p =+ ,有 A ,n B S ∈,且(,)(,)d I A d I B p ==,(,)2d A B p =.综上,(,)d A B 的最大值为2p . ……………13分。
北京市西城区2013年高三二模试卷高三数学(理科) 2013.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集{0,1,2,3,4}U =,集合{0,1,2,3}A =,{2,3,4}B =,那么()U A B = ð (A ){0,1} (B ){2,3} (C ){0,1,4} (D ){0,1,2,3,4}2.在复平面内,复数1z 的对应点是1(1,1)Z ,2z 的对应点是2(1,1)Z -,则12z z ⋅= (A )1 (B )2(C )i -(D )i3.在极坐标系中,圆心为(1,)2π,且过极点的圆的方程是 (A )2sin =ρθ (B )2sin =-ρθ(C )2cos =ρθ(D )2cos =-ρθ4.如图所示的程序框图表示求算式“235917⨯⨯⨯⨯” 之值, 则判断框内可以填入 (A )10k ≤ (B )16k ≤ (C )22k ≤ (D )34k ≤5.设122a =,133b =,3log 2c =,则 (A )b a c << (B )a b c << (C )c b a << (D )c a b <<6.对于直线m ,n 和平面α,β,使m ⊥α成立的一个充分条件是 (A )m n ⊥,n ∥α(B )m ∥β,⊥βα (C )m ⊥β,n ⊥β,n ⊥α (D )m n ⊥,n ⊥β,⊥βα7.已知正六边形ABCDEF 的边长是2,一条抛物线恰好经过该六边形的四个顶点,则抛物线的焦点到准线的距离是(A (B (C (D )8.已知函数()[]f x x x =-,其中[]x 表示不超过实数x 的最大整数.若关于x 的方程()f x kx k =+有三个不同的实根,则实数k 的取值范围是 (A )111[1,)(,]243-- (B )111(1,][,)243--(C )111[,)(,1]342--(D )111(,][,1)342--第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.右图是甲,乙两组各6名同学身高(单位:cm )数据 的茎叶图.记甲,乙两组数据的平均数依次为x 甲和x 乙, 则 x 甲______x 乙. (填入:“>”,“=”,或“<”)10.5(21)x -的展开式中3x 项的系数是______.(用数字作答)11.在△ABC 中,2BC =,AC 3B π=,则AB =______;△ABC 的面积是______.12.如图,AB 是半圆O 的直径,P 在AB 的延长线上,PD 与半圆O 相切于点C ,AD PD ⊥.若4PC =,2PB =,则CD =______.13.在等差数列{}n a 中,25a =,1412a a +=,则n a =______;设*21()1n n b n a =∈-N ,则数列{}n b 的前n 项和n S =______.14.已知正数,,a b c 满足a b ab +=,a b c abc ++=,则c 的取值范围是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)如图,在直角坐标系xOy 中,角α的顶点是原点,始边与x 轴正半轴重合,终边交单位圆于点A ,且,)62ππ∈(α.将角α的终边按逆时针方向旋转3π,交单位圆于点B .记),(),,(2211y x B y x A .(Ⅰ)若311=x ,求2x ; (Ⅱ)分别过,A B 作x 轴的垂线,垂足依次为,C D .记△AOC 的面积为1S ,△BOD 的面积为2S .若122S S =,求角α的值.16.(本小题满分13分)某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励. (Ⅰ)求1名顾客摸球3次停止摸奖的概率;(Ⅱ)记X 为1名顾客摸奖获得的奖金数额,求随机变量X 的分布列和数学期望. 17.(本小题满分14分)如图1,四棱锥ABCD P -中,⊥PD 底面ABCD ,面AB C D 是直角梯形,M 为侧棱PD 上一点.该四棱锥的俯视图和侧(左)视图如图2所示. (Ⅰ)证明:⊥BC 平面PBD ; (Ⅱ)证明:AM ∥平面PBC ;(Ⅲ)线段CD 上是否存在点N ,使AM 与BN 所成角的余弦值为43?若存在,找到所有符合要求的点N ,并求CN 的长;若不存在,说明理由.18.(本小题满分13分)如图,椭圆22:1(01)y C x m m+=<<的左顶点为A ,M 是椭圆C 上异于点A 的任意一点,点P 与点A 关于点M 对称.(Ⅰ)若点P 的坐标为9(5,求m 的值;(Ⅱ)若椭圆C 上存在点M ,使得OP OM ⊥,求m 19.(本小题满分14分)已知函数322()2(2)13f x x x a x =-+-+,其中a ∈R . (Ⅰ)若2a =,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求()f x 在区间[2,3]上的最大值和最小值. 20.(本小题满分13分)已知集合1212{(,,,)|,,,n n n S x x x x x x = 是正整数1,2,3,,n 的一个排列}(2)n ≥,函数1,0,()1,0.x g x x >⎧=⎨-<⎩对于12(,,)n n a a a S ∈…,定义:121()()(),{2,3,,}i i i i i b g a a g a a g a a i n -=-+-++-∈ ,10b =,称i b 为i a 的满意指数.排列12,,,n b b b 为排列12,,,n a a a 的生成列;排列12,,,n a a a 为排列12,,,n b b b 的母列.(Ⅰ)当6n =时,写出排列3,5,1,4,6,2的生成列及排列0,1,2,3,4,3--的母列;(Ⅱ)证明:若12,,,n a a a 和12,,,n a a a ''' 为n S 中两个不同排列,则它们的生成列也不同;(Ⅲ)对于n S 中的排列12,,,n a a a ,定义变换τ:将排列12,,,n a a a 从左至右第一个满意指数为负数的项调至首项,其它各项顺序不变,得到一个新的排列.证明:一定可以经过有限次变换τ将排列12,,,n a a a 变换为各项满意指数均为非负数的排列.北京市西城区2013年高三二模试卷高三数学(理科)参考答案及评分标准2013.5一、选择题:本大题共8小题,每小题5分,共40分.1.C ; 2.B ; 3.A ; 4.C ; 5.D ; 6.C ; 7.B ; 8.B .二、填空题:本大题共6小题,每小题5分,共30分.9.>; 10.80; 11.3; 12.125; 13.21n +,4(1)nn +; 14.4(1,]3.注:11、13题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分)(Ⅰ)解:由三角函数定义,得 1cos x =α,2cos()3x π=+α.2分因为 ,)62ππ∈(α,1cos 3=α,所以 sin 3==α. …………3分所以 21cos()cos 32x π=+==αα-α. ………………5分(Ⅱ)解:依题意得 1sin y =α,2sin()3y π=+α. 所以 111111cos sin sin 2224S x y ==⋅=ααα, ………………7分 2221112||[cos()]sin()sin(2)223343S x y πππ==-+⋅+=-+ααα. ……………9分依题意得 2sin 22sin(2)3π=-+αα, 整理得 cos 20=α. ………………11分因为 62ππ<<α, 所以 23π<<πα, 所以 22π=α, 即 4π=α. ………………13分16.(本小题满分13分)(Ⅰ)解:设“1名顾客摸球3次停止摸奖”为事件A , ………………1分则 2334A 1()A 4P A ==,故1名顾客摸球3次停止摸奖的概率为14. ………………4分 (Ⅱ)解:随机变量X 的所有取值为0,5,10,15,20. ………………5分1(0)4P X ==, 2224A 1(5)A 6P X ===, 222344A 11(10)A A 6P X ==+=, 122234C A 1(15)A 6P X ⋅===, 3344A 1(20)A 4P X ===. ………………10分 所以,随机变量X 的分布列为:………………11分11111051015201046664EX =⨯+⨯+⨯+⨯+⨯=. ………………13分17.(本小题满分14分)【方法一】(Ⅰ)证明:由俯视图可得,222BD BC CD +=,所以 BD BC ⊥. ………………1分 又因为 ⊥PD 平面ABCD ,所以 PD BC ⊥, ………………3分所以 ⊥BC 平面PBD . ………………4分(Ⅱ)证明:取PC 上一点Q ,使:1:4PQ PC =,连结MQ ,BQ . ………………5分由左视图知 4:1:=PD PM ,所以 MQ ∥CD ,14MQ CD =.…………6分 在△BCD 中,易得60CDB ︒∠=,所以 30ADB ︒∠=.又 2=BD , 所以1AB =,AD =.又因为 AB ∥CD ,CD AB 41=,所以 AB ∥MQ ,AB MQ =. 所以四边形ABQM 为平行四边形,所以 AM ∥BQ .………………8分 因为 ⊄AM 平面PBC ,BQ ⊂平面PBC ,所以 直线AM ∥平面PBC . ………………9分 (Ⅲ)解:线段CD 上存在点N ,使AM 与BN 所成角的余弦值为43.证明如下:……10分因为 ⊥PD 平面ABCD ,DC DA ⊥,建立如图所示的空间直角坐标系xyz D -. 所以 )3,0,0(),0,4,0(),0,1,3(),0,0,3(),0,0,0(M C B A D . 设 )0,,0(t N ,其中40≤≤t . ………………11分 所以)3,0,3(-=AM ,)0,1,3(--=t BN .要使AM 与BN 所成角的余弦值为43,则有 ||||||AM BN AM BN ⋅=,……………12分所以43)1(332|3|2=-+⋅t ,解得 0=t 或2,均适合40≤≤t .…………13分 故点N 位于D 点处,此时4CN =;或CD 中点处,此时2CN =,有AM 与BN 所成角的余弦值为43. ………………14分 【方法二】(Ⅰ)证明:因为⊥PD 平面ABCD ,DC DA ⊥的空间直角坐标系xyz D -.在△BCD 中,易得60CDB ︒∠=,所以 30ADB ︒∠=因为 2=BD , 所以1AB =, AD =由俯视图和左视图可得:)4,0,0(),3,0,0(),0,4,0(),0,1,3(),0,0,3(),0,0,0(P M C B A D .所以 )0,3,3(-=,)0,1,3(=.因为 0001333=⋅+⋅+⋅-=⋅DB BC ,所以BD BC ⊥. ………………2分 又因为 ⊥PD 平面ABCD ,所以 PD BC ⊥, ………………3分 所以 ⊥BC 平面PBD . ………………4分(Ⅱ)证明:设平面PBC 的法向量为=()x,y,z n ,则有 0,0.PC BC ⎧⋅=⎪⎨⋅=⎪⎩n n 因为 )0,3,3(-=,)4,4,0(-=,所以 440,30.y z y -=⎧⎪⎨+=⎪⎩ 取1=y ,得=n )1,1,3(. ………………6分因为 )3,0,3(-=, 所以 ⋅AM =n 03101)3(3=⋅+⋅+-⋅. ………………8分因为 ⊄AM 平面PBC ,所以 直线AM ∥平面PBC . ………………9分(Ⅲ)解:线段CD 上存在点N ,使AM 与BN 所成角的余弦值为43.证明如下:………10分设 )0,,0(t N ,其中40≤≤t . ………………11分 所以 )3,0,3(-=AM ,)0,1,3(--=t BN . 要使AM 与BN 所成角的余弦值为43,则有 43||||=⋅BN AM BN AM ,…………12分 所以43)1(332|3|2=-+⋅t ,解得0=t 或2,均适合40≤≤t . ………13分 故点N 位于D 点处,此时4CN =;或CD 中点处,此时2CN =,有AM 与BN 所成角的余弦值为43. ………………14分18.(本小题满分13分)(Ⅰ)解:依题意,M 是线段AP 的中点,因为(1,0)A -,9(,55P ,所以 点M 的坐标为2(,55.………………2分由点M 在椭圆C 上,所以41212525m+=, ………………4分 解得 47m =. ………………5分(Ⅱ)解:设00(,)M x y ,则 2201y x m+=,且011x -<<. ① ………………6分 因为 M 是线段AP 的中点,所以 00(21,2)P x y +. ………………7分 因为 OP OM ⊥,所以 2000(21)20x x y ++=.② ………………8分由 ①,② 消去0y ,整理得 20020222x x m x +=-. ………………10分 所以00111622(2)82m x x =+≤++-+, ………………12分 当且仅当02x =- 所以 m的取值范围是1(0,2. ………………13分19.(本小题满分14分)(Ⅰ)解:()f x 的定义域为R , 且 2()242f x x x a '=-+-. ……………2分当2a =时,1(1)3f =-,(1)2f '=-, 所以曲线()y f x =在点(1,(1))f 处的切线方程为 12(1)3y x +=--, 即6350x y +-=. ………………4分(Ⅱ)解:方程()0f x '=的判别式为8a =∆.(ⅰ)当0a ≤时,()0f x '≥,所以()f x 在区间(2,3)上单调递增,所以()f x 在区间[2,3]上的最小值是7(2)23f a =-;最大值是(3)73f a =-. ………………6分 (ⅱ)当0a >时,令()0f x '=,得11x =21x =+. ()f x 和()f x '的情况如下:故()f x 的单调增区间为(,12-∞-,(1)2++∞;单调减区间为(1+. ………………8分① 当02a <≤时,22x ≤,此时()f x 在区间(2,3)上单调递增,所以()f x 在区间[2,3]上的最小值是7(2)23f a =-;最大值是(3)73f a =-. ………………10分② 当28a <<时,1223x x <<<,此时()f x 在区间2(2,)x 上单调递减,在区间2(,3)x 上单调递增,所以()f x 在区间[2,3]上的最小值是 25()3f x a =-.………………11分 因为 14(3)(2)3f f a -=-, 所以 当1423a <≤时,()f x 在区间[2,3]上的最大值是(3)73f a =-;当1483a <<时,()f x 在区间[2,3]上的最大值是7(2)23f a =-. ………………12分③ 当8a ≥时,1223x x <<≤,此时()f x 在区间(2,3)上单调递减, 所以()f x 在区间[2,3]上的最小值是(3)73f a =-;最大值是7(2)23f a =-.………………14分综上,当2a ≤时,()f x 在区间[2,3]上的最小值是723a -,最大值是73a -;当1423a <≤时,()f x 在区间[2,3]上的最小值是53a -73a -;当1483a <<时,()f x 在区间[2,3]上的最小值是533a --723a -;当8a ≥时,()f x 在区间[2,3]上的最小值是73a -,最大值是723a -.20.(本小题满分13分)(Ⅰ)解:当6n =时,排列3,5,1,4,6,2的生成列为0,1,2,1,4,3--; ………………2分排列0,1,2,3,4,3--的母列为3,2,4,1,6,5. ………………3分(Ⅱ)证明:设12,,,n a a a 的生成列是12,,,n b b b ;12,,,n a a a ''' 的生成列是与12,,,n b b b ''' .从右往左数,设排列12,,,n a a a 与12,,,n a a a ''' 第一个不同的项为k a 与k a ',即:n na a '=,11n n a a --'=, ,11k k a a ++'=,k k a a '≠. 显然 n nb b '=,11n n b b --'=, ,11k k b b ++'=,下面证明:k k b b '≠. ………………5分由满意指数的定义知,i a 的满意指数为排列12,,,n a a a 中前1i -项中比i a 小的项的个数减去比i a 大的项的个数.由于排列12,,,n a a a 的前k 项各不相同,设这k 项中有l 项比k a 小,则有1k l --项比k a 大,从而(1)21k b l k l l k =---=-+.同理,设排列12,,,n a a a ''' 中有l '项比k a '小,则有1k l '--项比k a '大,从而21kb l k ''=-+. 因为 12,,,k a a a 与12,,,k a a a ''' 是k 个不同数的两个不同排列,且k k a a '≠, 所以 l l '≠, 从而 k kb b '≠. 所以排列12,,,n a a a 和12,,,n a a a ''' 的生成列也不同. ………………8分 (Ⅲ)证明:设排列12,,,n a a a 的生成列为12,,,n b b b ,且k a 为12,,,n a a a 中从左至右第一个满意指数为负数的项,所以 1210,0,,0,1k k b b b b -≥≥≥≤- . ………………9分进行一次变换τ后,排列12,,,n a a a 变换为1211,,,,,,k k k n a a a a a a -+ ,设该排列的生成列为12,,,n b b b ''' . 所以 1212()()n n b b b b b b '''+++-+++ 121121[()()()][()()()]k k k k k k k k g a a g a a g a a g a a g a a g a a --=-+-++---+-++- 1212[()()()]k k k k g a a g a a g a a-=--+-++-22k b =-≥. ………………11分因此,经过一次变换τ后,整个排列的各项满意指数之和将至少增加2. 因为i a 的满意指数1i b i ≤-,其中1,2,3,,i n = ,所以,整个排列的各项满意指数之和不超过(1)123(1)2n nn -++++-= , 即整个排列的各项满意指数之和为有限数,所以经过有限次变换τ后,一定会使各项的满意指数均为非负数. ……13分。
2013年北京市各区高三二模试题汇编--圆锥曲线(理科)(2013年东城二模理科)过抛物线24y x =焦点的直线交抛物线于A ,B 两点,若10AB =,则AB的中点到y 轴的距离等于( D )A .1 B .2 C .3 D .4(2013年东城二模理科)(本小题共13分)已知椭圆C :22221x y a b+=(0a b >>)的离心率e =()0A a ,,()0B b -,. ⑴ 求椭圆C 的方程; ⑵ 若椭圆C 上一动点()00P x y ,关于直线2y x =的对称点为()111P x y ,,求2211x y +的取值范围.⑶ 如果直线1y kx =+(0k ≠)交椭圆C 于不同的两点E ,F ,且E ,F 都在以B 为圆心的圆上,求k 的值.解: (Ⅰ)因为c a =,222a b c -=,所以 2a b =. 因为原点到直线AB :1x ya b -=的距离d = 解得4a =,2b =. 故所求椭圆C 的方程为221164x y +=.(Ⅱ)因为点()00,P x y 关于直线2y x =的对称点为()111,P x y , 所以 011010121,2.22y y x x y y x x-⎧⨯=-⎪-⎪⎨++⎪=⨯⎪⎩解得 001435y x x -=,001345y x y +=. 所以22221100x y x y +=+. 因为点()00,P x y 在椭圆C :221164x y+=上,所以22222011344x x y x y +=+=+.因为044x -≤≤, 所以2211416x y ≤+≤.所以2211x y +的取值范围为[]4,16.(Ⅲ)由题意221,1164y kx x y =+⎧⎪⎨+=⎪⎩消去y ,整理得22(14)8120k x kx ++-=.可知0∆>. 设22(,)E x y ,33(,)F x y ,EF 的中点是(,)M M M x y , 则2324214M x x k x k +-==+,21114M My kx k =+=+.所以21M BM M y k x k +==-.所以20M M x ky k ++=. 即 224201414k kk k k-++=++. 又因为0k ≠, 所以218k =.所以k =. ………………………………13分(2013年西城二模理科)7.已知正六边形ABCDEF 的边长是2,一条抛物线恰好经过该六边形的四个顶点,则抛物线的焦点到准线的距离是( B )(A(B(C(D)(2013年西城二模理科)如图,椭圆22:1(01)y C x m m+=<<的左顶点为A ,M 是椭圆C 上异于点A 的任意一点,点P 与点A 关于点M 对称.(Ⅰ)若点P的坐标为9(,55,求m 的值;(Ⅱ)若椭圆C 上存在点M ,使得OP OM ⊥,求m 的取值范围. (Ⅰ)解:依题意,M 是线段AP 的中点,因为(1,0)A -,9(5P 所以 点M 的坐标为2(5.………………2分由点M 在椭圆C 上, 所以 41212525m+=, 解得 47m =. ………………5分 (Ⅱ)解:设00(,)M x y ,则 2201y x m+=,且011x -<<.①……6因为 M 是线段AP 的中点,所以 00(21,2)P x y +. ………7分 因为 OP OM ⊥,所以 2000(21)20x x y ++=.② …………8分由 ①,② 消去0y ,整理得 20020222x x m x +=-. ……………10分 所以 00111622(2)82m x x =+≤++-+, ………………12分当且仅当 02x =-时,上式等号成立. 所以m 的取值范围是1(0,]24-. ………13分 (2013年海淀二模理科)双曲线C 的左右焦点分别为12,F F ,且2F 恰为抛物线24y x =的焦点,设双曲线C 与该抛物线的一个交点为A ,若12AF F ∆是以1AF 为底边的等腰三角形,则双曲线C 的离心率为( B )11 D.2(2013年海淀二模理科)14.在平面直角坐标系中,动点(,)P x y 到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P 的轨迹为曲线W .(I) 给出下列三个结论:①曲线W 关于原点对称;②曲线W 关于直线y x =对称; ③曲线W 与x 轴非负半轴,y 轴非负半轴围成的封闭图形的面积小于12; 其中,所有正确结论的序号是_②③___;(Ⅱ)曲线W 上的点到原点距离的最小值为___2___.(2013年海淀二模理科)19. (本小题满分14分)已知椭圆:M 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60 的菱形的四个顶点.(I )求椭圆M 的方程;(II )直线l 与椭圆M 交于A ,B 两点,且线段AB 的垂直平分线经过点1(0,)2-,求AOB ∆(O 为原点)面积的最大值.19.解:(I)因为椭圆:M 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60的菱形的四个顶点,所以1a b ==,椭圆M 的方程为2213x y +=……4分 (II)设1122(,),(,),A x y B x y 因为AB 的垂直平分线通过点1(0,)2-, 显然直线AB 有斜率,当直线AB 的斜率为0时,则AB 的垂直平分线为y 轴,则1212,x x y y =-=所以111111=|2||||||||2AOB S x y x y x ∆===2211(3)322x x +-=,所以AOB S ∆≤1||x =时,AOB S ∆ ………………7分当直线AB 的斜率不为0时,则设AB 的方程为y kx t =+所以2213y kx t x y =+⎧⎪⎨+=⎪⎩,代入得到222(31)6330k x ktx t +++-= 当224(933)0k t ∆=+->, 即2231k t +>①方程有两个不同的解又122631kt x x k -+=+,1223231x x ktk +-=+ …………8分 所以122231y y t k +=+,又1212112202y y x x k ++=-+-,化简得到2314k t += ② 代入①,得到04t << ………10分又原点到直线的距离为d =12|||AB x x =-=所以1=||||2AOB S AB d ∆=化简得到AOB S ∆ …………12分 因为04t <<,所以当2t =时,即k =AOB S ∆综上,AOB ∆…………………14分 (2013年朝阳二模理科)(4)若双曲线22221(0,0)x y a b a b-=>>的渐近线与抛物线22y x =+有公共点,则此双曲线的离心率的取值范围是(A)A .[3,)+∞B .(3,)+∞C .(1,3]D .(1,3)(2013年朝阳二模理科)(19)(本小题满分14分)已知椭圆2222:1x y C a b+=(0)a b >>的右焦点为F (1,0),短轴的端点分别为12,B B ,且12FB FB a ⋅=-.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点F 且斜率为k (0)k ≠的直线l 交椭圆于,M N 两点,弦MN 的垂直平分线与x 轴相交于点D .设弦MN 的中点为P ,试求DP MN的取值范围.(19)(本小题满分14分)解:(Ⅰ)依题意不妨设1(0,)B b -,2(0,)B b ,则1(1,)FB b =-- ,2(1,)FB b =- .由12FB FB a ⋅=-,得21b a -=-.又因为221a b -=,解得2,a b ==.所以椭圆C 的方程为22143x y +=. ……………4分 (Ⅱ)依题直线l 的方程为(1)y k x =-.由22(1),143y k x x y =-⎧⎪⎨+=⎪⎩得2222(34)84120k x k x k +-+-=.设11(,)M x y ,22(,)N x y ,则2122834k x x k +=+,212241234k x x k -=+. …………6分所以弦MN 的中点为22243(,)3434k k P k k-++. ……………7分所以MN === 2212(1)43k k +=+. ……………9分 直线PD 的方程为222314()4343k k y x k k k +=--++, 由0y =,得2243k x k =+,则22(,0)43k D k +,所以DP =. …………11分所以224312(1)43DP k k MN k +==++=. ……………12分 又因为211k +>,所以21011k <<+.所以104<<.所以DP MN的取值范围是1(0,)4. ……………………14分 (2013年丰台二模理科)若双曲线C:2221(0)3x y a a -=>则抛物线28y x =的焦点到C 的渐近线距离是。
北京市西城区2013届高三第二次模拟考试数学(理科) 2013.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集{0,1,2,3,4}U =,集合{0,1,2,3}A =,{2,3,4}B =,那么()U A B = ð (A ){0,1} (B ){2,3} (C ){0,1,4} (D ){0,1,2,3,4}2.在复平面内,复数1z 的对应点是1(1,1)Z ,2z 的对应点是2(1,1)Z -,则12z z ⋅= (A )1 (B )2(C )i -(D )i3.在极坐标系中,圆心为(1,)2π,且过极点的圆的方程是 (A )2sin =ρθ (B )2sin =-ρθ(C )2cos =ρθ(D )2cos =-ρθ4.如图所示的程序框图表示求算式“235917⨯⨯⨯⨯” 之值, 则判断框内可以填入 (A )10k ≤ (B )16k ≤ (C )22k ≤ (D )34k ≤5.设122a =,133b =,3log 2c =,则 (A )b a c << (B )a b c << (C )c b a << (D )c a b <<6.对于直线m ,n 和平面α,β,使m ⊥α成立的一个充分条件是 (A )m n ⊥,n ∥α(B )m ∥β,⊥βα (C )m ⊥β,n ⊥β,n ⊥α (D )m n ⊥,n ⊥β,⊥βα7.已知正六边形ABCDEF 的边长是2,一条抛物线恰好经过该六边形的四个顶点,则抛物线的焦点到准线的距离是(A )4(B )32(C 3(D )8.已知函数()[]f x x x =-,其中[]x 表示不超过实数x 的最大整数.若关于x 的方程()f x kx k =+有三个不同的实根,则实数k 的取值范围是 (A )111[1,)(,]243-- (B )111(1,][,)243--(C )111[,)(,1]342--(D )111(,][,1)342--第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.右图是甲,乙两组各6名同学身高(单位:cm )数据 的茎叶图.记甲,乙两组数据的平均数依次为x 甲和x 乙, 则 x 甲______x 乙. (填入:“>”,“=”,或“<”)10.5(21)x -的展开式中3x 项的系数是______.(用数字作答)11.在△ABC 中,2BC =,AC =,3B π=,则AB =______;△ABC 的面积是______.12.如图,AB 是半圆O 的直径,P 在AB 的延长线上,PD 与半圆O 相切于点C ,AD PD ⊥.若4PC =,2PB =,则CD =______.13.在等差数列{}n a 中,25a =,1412a a +=,则n a =______;设*21()1n n b n a =∈-N ,则数列{}n b 的前n 项和n S =______.14.已知正数,,a b c 满足a b ab +=,a b c abc ++=,则c 的取值范围是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)如图,在直角坐标系xOy 中,角α的顶点是原点,始边与x 轴正半轴重合,终边交单位圆于点A ,且,)62ππ∈(α.将角α的终边按逆时针方向旋转3π,交单位圆于点B .记),(),,(2211y x B y x A .(Ⅰ)若311=x ,求2x ; (Ⅱ)分别过,A B 作x 轴的垂线,垂足依次为,C D .记△AOC 的面积为1S ,△BOD 的面积为2S .若122S S =,求角α的值.16.(本小题满分13分)某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励. (Ⅰ)求1名顾客摸球3次停止摸奖的概率;(Ⅱ)记X 为1名顾客摸奖获得的奖金数额,求随机变量X 的分布列和数学期望. 17.(本小题满分14分)如图1,四棱锥ABCD P -中,⊥PD 底面ABCD ,面ABCD 是直角梯形,M 为侧棱PD 上一点.该四棱锥的俯视图和侧(左)视图如图2所示. (Ⅰ)证明:⊥BC 平面PBD ; (Ⅱ)证明:AM ∥平面PBC ;(Ⅲ)线段CD 上是否存在点N ,使AM 与BN 所成角的余弦值为43?若存在,找到所有符合要求的点N ,并求CN 的长;若不存在,说明理由.18.(本小题满分13分)如图,椭圆22:1(01)y C x m m+=<<的左顶点为A ,M 是椭圆C 上异于点A 的任意一点,点P 与点A 关于点M 对称.(Ⅰ)若点P 的坐标为9(,55,求m 的值;(Ⅱ)若椭圆C 上存在点M ,使得OP OM ⊥,求m 19.(本小题满分14分)已知函数322()2(2)13f x x x a x =-+-+,其中a ∈R . (Ⅰ)若2a =,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求()f x 在区间[2,3]上的最大值和最小值. 20.(本小题满分13分)已知集合1212{(,,,)|,,,n n n S x x x x x x =是正整数1,2,3,,n 的一个排列}(2)n ≥,函数1,0,()1,0.x g x x >⎧=⎨-<⎩ 对于12(,,)n n a a a S ∈…,定义:121()()(),{2,3,,}i i i i i b g a a g a a g a a i n -=-+-++-∈ ,10b =,称i b 为i a 的满意指数.排列12,,,n b b b 为排列12,,,n a a a 的生成列;排列12,,,n a a a 为排列12,,,n b b b 的母列.(Ⅰ)当6n =时,写出排列3,5,1,4,6,2的生成列及排列0,1,2,3,4,3--的母列;(Ⅱ)证明:若12,,,n a a a 和12,,,n a a a ''' 为n S 中两个不同排列,则它们的生成列也不同;(Ⅲ)对于n S 中的排列12,,,n a a a ,定义变换τ:将排列12,,,n a a a 从左至右第一个满意指数为负数的项调至首项,其它各项顺序不变,得到一个新的排列.证明:一定可以经过有限次变换τ将排列12,,,n a a a 变换为各项满意指数均为非负数的排列.北京市西城区2013年高三二模试卷高三数学(理科)参考答案及评分标准2013.5一、选择题:本大题共8小题,每小题5分,共40分.1.C ; 2.B ; 3.A ; 4.C ; 5.D ; 6.C ; 7.B ; 8.B .二、填空题:本大题共6小题,每小题5分,共30分.9.>; 10.80; 11.3; 12.125; 13.21n +,4(1)n n +; 14.4(1,]3. 注:11、13题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分)(Ⅰ)解:由三角函数定义,得 1cos x =α,2cos()3x π=+α.2分因为 ,)62ππ∈(α,1cos 3=α,所以 sin ==α. ………………3分 所211cos()cos 3226x π-=+==αα-α. ………………5分(Ⅱ)解:依题意得 1sin y =α,2sin()3y π=+α. 所以111111cos sin sin 2224S x y ==⋅=ααα, ………………7分2221112||[cos()]sin()sin(2)223343S x y πππ==-+⋅+=-+ααα. ……………9分依题意得 2sin 22sin(2)3π=-+αα, 整理得cos 20=α. ………………11分因为 62ππ<<α, 所以 23π<<πα, 所以22π=α, 即4π=α. ………………13分16.(本小题满分13分)(Ⅰ)解:设“1名顾客摸球3次停止摸奖”为事件A , ………………1分则 2334A 1()A 4P A ==,故1名顾客摸球3次停止摸奖的概率为14. ………………4分 (Ⅱ)解:随机变量X 的所有取值为0,5,10,15,20. ………………5分1(0)4P X ==, 2224A 1(5)A 6P X ===, 222344A 11(10)A A 6P X ==+=, 122234C A 1(15)A 6P X ⋅===, 3344A 1(20)A 4P X ===. ………………10分所以,随机变量X 的分布列为:………………11分11111051015201046664EX =⨯+⨯+⨯+⨯+⨯=. ………………13分17.(本小题满分14分)【方法一】(Ⅰ)证明:由俯视图可得,222BD BC CD +=,所以 BD BC ⊥. ………………1分 又因为 ⊥PD 平面ABCD ,所以 PD BC ⊥, ………………3分 所以⊥BC 平面PBD . ………………4分(Ⅱ)证明:取PC 上一点Q ,使:1:4PQ P C =,连结MQ ,BQ . ………………5分由左视图知4:1:=PD PM ,所以MQ∥CD,14MQ CD =. ………………6分 在△BCD 中,易得60CDB ︒∠=,所以 30ADB ︒∠=.又 2=BD , 所以1AB =,AD =又因为 AB ∥CD ,CD AB 41=,所以 AB ∥MQ ,AB MQ =. 所以四边形ABQM 为平行四边形,所以AM∥BQ . ………………8分因为 ⊄AM 平面PBC ,BQ ⊂平面PBC , 所以直线AM∥平面PBC . ………………9分(Ⅲ)解:线段CD 上存在点N ,使AM 与BN 所成角的余弦值为43.证明如下:………10分因为 ⊥PD 平面ABCD ,DC DA ⊥,建立如图所示的空间直角坐标系xyz D -. 所以 )3,0,0(),0,4,0(),0,1,3(),0,0,3(),0,0,0(M C B A D . 设)0,,0(t N ,其中40≤≤t . ………………11分所以)3,0,3(-=AM ,)0,1,3(--=t BN .要使AM与BN所成角的余弦值为43,则有||4||||AM BN AM BN ⋅= , ………………12分 所以43)1(332|3|2=-+⋅t ,解得 0=t 或2,均适合40≤≤t . ………………13分故点N 位于D 点处,此时4CN =;或CD 中点处,此时2CN =,有AM 与BN 所成角的余弦值为43. ………………14分 【方法二】(Ⅰ)证明:因为⊥PD 平面ABCD ,DC DA ⊥的空间直角坐标系xyz D -.在△BCD 中,易得60CDB ︒∠=,所以 30ADB ︒∠=因为 2=BD , 所以1AB =, AD .由俯视图和左视图可得:第 10 页 共 15 页 金太阳新课标资源网)4,0,0(),3,0,0(),0,4,0(),0,1,3(),0,0,3(),0,0,0(P M C B A D .所以 )0,3,3(-=BC ,)0,1,3(=DB . 因为001333=⋅+⋅+⋅-=⋅,所以BD BC ⊥. ………………2分又因为⊥PD 平面A B,所以PD BC ⊥, ………………3分所以⊥BC 平面PBD . ………………4分(Ⅱ)证明:设平面PBC 的法向量为=()x,y,z n ,则有 0,0.PC BC ⎧⋅=⎪⎨⋅=⎪⎩n n 因为 )0,3,3(-=BC ,)4,4,0(-=PC , 所以440,330.y z x y -=⎧⎪⎨+=⎪⎩ 取1=y ,得=n )1,1,3(. ………………6分因为 )3,0,3(-=AM , 所以⋅AM =n 03101)3(3=⋅+⋅+-⋅. ………………8分因为 ⊄AM 平面PBC , 所以直线AM∥平面PBC . ………………9分(Ⅲ)解:线段CD 上存在点N ,使AM 与BN 所成角的余弦值为43.证明如下:………10分设)0,,0(t N ,其中40≤≤t . ………………11分所以 )3,0,3(-=AM ,)0,1,3(--=t BN .金太阳新课标资源网要使AM与BN所成角的余弦值为43,则有43||||=⋅BN AM , ………………12分 所以43)1(332|3|2=-+⋅t ,解得0=t 或2,均适合40≤≤t . ………………13分故点N 位于D 点处,此时4CN =;或CD 中点处,此时2CN =,有AM 与BN 所成角的余弦值为43. ………………14分18.(本小题满分13分)(Ⅰ)解:依题意,M 是线段AP 的中点,因为(1,0)A -,943(5P ,所以 点M 的坐标为223(5.………………2分由点M 在椭圆C 上, 所以41212525m+=, ………………4分 解得47m =. ………………5分 (Ⅱ)解:设00(,)M x y ,则 2201y x m+=,且011x -<<. ① ………………6分 因为 M 是线段AP 的中点, 所以金太阳新课标资源网00(21,2)P x y +. ………………7分因为 OP OM ⊥,所以 2000(21)20x x y ++=.② ………………8分由 ①,② 消去0y ,整理得 20020222x x m x +=-. ………………10分所以00111622(2)82m x x =+≤++-+, ………………12分 当且仅当 023x =-时,上式等号成立. 所以m的取值范围是1(0,2. ………………13分19.(本小题满分14分)(Ⅰ)解:()f x 的定义域为R , 且 2()242f x x x a '=-+-. ………………2分当2a =时,1(1)3f =-,(1)2f '=-, 所以曲线()y f x =在点(1,(1))f 处的切线方程为 12(1)3y x +=--, 即6350x y +-=. ………………4分(Ⅱ)解:方程()0f x '=的判别式为8a =∆.(ⅰ)当0a ≤时,()0f x '≥,所以()f x 在区间(2,3)上单调递增,所以()f x 在区间[2,3]金太阳新课标资源网上的最小值是7(2)23f a =-;最大值是(3)73f a =-. ………………6分(ⅱ)当0a >时,令()0f x '=,得11x =,或21x =. ()f x 和()f x '的情况如下:故()f x 的单调增区间为(,1-∞,(1)+∞;单调减区间为(122-+. ………………8分① 当02a <≤时,22x ≤,此时()f x 在区间(2,3)上单调递增,所以()f x 在区间[2,3]上的最小值是7(2)23f a =-;最大值是(3)73f a =-. ………………10分② 当28a <<时,1223x x <<<,此时()f x 在区间2(2,)x 上单调递减,在区间2(,3)x 上单调递增,所以()f x 在区间[2上的最小值是25()33f x a =--. ………………11分因为 14(3)(2)3f f a -=-, 所以 当1423a <≤时,()f x 在区间[2,3]上的最大值是(3)73f a =-;当金太阳新课标资源网1483a <<时,()f x 在区间[2,3]上的最大值是7(2)23f a =-. ………………12分③ 当8a ≥时,1223x x <<≤,此时()f x 在区间(2,3)上单调递减, 所以()f x 在区间[2,3上的最小值是(3)73f a =-;最大值是7(2)23f a =-.………………14分 综上,当2a ≤时,()f x 在区间[2,3]上的最小值是723a -,最大值是73a -; 当1423a <≤时,()f x 在区间[2,3]上的最小值是533a --,最大值是73a -; 当1483a <<时,()f x 在区间[2,3]上的最小值是533a --最大值是723a -; 当8a ≥时,()f x 在区间[2,3]上的最小值是73a -,最大值是723a -.20.(本小题满分13分)(Ⅰ)解:当6n =时,排列3,5,1,4,6,2的生成列为0,1,2,1,4,3--; ………………2分排列0,--的母列为3,2,4,1,6,5. ………………3分(Ⅱ)证明:设12,,,n a a a 的生成列是12,,,n b b b ;12,,,n a a a ''' 的生成列是与12,,,n b b b ''' . 从右往左数,设排列12,,,n a a a 与12,,,n a a a ''' 第一个不同的项为k a 与k a ',即:n na a '=,11n n a a --'=, ,11k k a a ++'=,k k a a '≠. 显然 n nb b '=,11n n b b --'=, ,11k k b b ++'=,下面证明:k k b b '≠. ………………5分由满意指数的定义知,i a 的满意指数为排列12,,,n a a a 中前1i -项中比i a 小的项的个数减去比i a 大的项的个数.金太阳新课标资源网由于排列12,,,n a a a 的前k 项各不相同,设这k 项中有l 项比k a 小,则有1k l --项比k a 大,从而(1)21k b l k l l k =---=-+.同理,设排列12,,,n a a a ''' 中有l '项比k a '小,则有1k l '--项比k a '大,从而21kb l k ''=-+. 因为 12,,,k a a a 与12,,,k a a a ''' 是k 个不同数的两个不同排列,且k k a a '≠, 所以 l l '≠, 从而 k kb b '≠. 所以排列12,,,na a a 和12,,,n a a a ''' 的生成列也不同. ………………8分(Ⅲ)证明:设排列12,,,n a a a 的生成列为12,,,n b b b ,且k a 为12,,,n a a a 中从左至右第一个满意指数为负数的项,所以1210,0,,0,1k k b b b b -≥≥≥≤- . ………………9分进行一次变换τ后,排列12,,,n a a a 变换为1211,,,,,,k k k n a a a a a a -+ ,设该排列的生成列为12,,,n b b b ''' . 所以 1212()()n n b b b b b b '''+++-+++ 121121[()()()][()()()]k k k k k k k k g a a g a a g a a g a a g a a g a a --=-+-++---+-++- 1212[()()()]k k k k g a a g a a g a a -=--+-++- 22k b =-≥. ………………11分因此,经过一次变换τ后,整个排列的各项满意指数之和将至少增加2. 因为i a 的满意指数1i b i ≤-,其中1,2,3,,i n = ,所以,整个排列的各项满意指数之和不超过(1)123(1)2n nn -++++-= , 即整个排列的各项满意指数之和为有限数, 所以经过有限次变换τ后,一定会使各项的满意指数均为非负数. ………………13分。