浙教八年级(上)期末数学试卷1
- 格式:pdf
- 大小:417.74 KB
- 文档页数:6
一、选择题1.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9-B .8-C .7-D .6- 2.若关于x 的方程1044m x x x --=--无解,则m 的值是( ) A .2- B .2 C .3- D .33.分式242x x -+的值为0,则x 的值为( ) A .2- B .2-或2 C .2 D .1或2 4.下列各式中错误的是( )A .2c d c d c d c d d a a a a -+-----== B .5212525a a a +=++ C .1x y x y y x -=--- D .2211(1)(1)1x x x x -=--- 5.下列因式分解正确的是( )A .m 2+n 2=(m+n)(m-n)B .a 3-a=a(a+1)(a-1)C .a 2-2a+1=a(a-2)+1D .x 2+2x-1=(x-1)26.已知代数式2366x x -+的值为9,则代数式226x x -+的值为( ) A .18 B .12 C .9D .7 7.当代数式2()2020x y ++的值取到最小..时,代数式222||2||x y x y -+-=……( ) A .0B .2-C .0或2-D .以上答案都不对 8.下列各多项式中,能用平方差公式分解因式的是( ) A .21x -+ B .21x + C .21x -- D .221x x -+ 9.如图,在ABC ∆中,90,30C B ∠=︒∠=︒,以点A 为圆心,任意长为半径画弧分别交,AB AC 于点M 和N ,再分别以,M N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列结论不正确的是( )A .AD 是∠BAC 的平分线B .60ADC ∠=︒C .点D 在AB 的垂直平分线上 D . : 1:3DAC ABD S S ∆∆=10.如图,长方形纸片ABCD (长方形的对边平行且相等,每个角都为直角),将纸片沿EF 折叠,使点C 与点A 重合,下列结论:①AF AE =,②ABE AGF ≌,③AF CE =,④60AEF ∠=︒,其中正确的( )A .①②B .②③C .①②③D .①②③④ 11.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),当△ACP 与△BPQ 全等时,则点Q 的运动速度为( )cm/s .A .0.5B .1C .0.5或1.5D .1或1.5 12.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒二、填空题13.已知5a b +=,6ab =,b a a b+=______. 14.已知:4a b +=,2210a b +=,求11a b+=______. 15.计算:248(21)(21)(21)(21)1+++++=___________.16.如图,点C 在线段AB 上(不与点A ,B 重合),在AB 的上方分别作△ACD 和△BCE ,且AC =DC ,BC=EC ,∠ACD =∠BCE =α,连接AE ,BD 交于点P .下列结论:①AE=DB ;②当α=60°时,AD =BE ;③∠APB =2∠ADC ;④连接PC ,则PC 平分∠APB .其中正确的是__________.(把你认为正确结论的序号都填上)17.如图,在ABC 中,AB AC =,40B ∠=︒,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作40ADE ∠=︒,DE 交线段AC 于点E ,在点D 从B 向C 运动过程中,如果ADE 是等腰三角形,则BDA ∠的度数是____________18.分解因式:2a 2﹣8=______.19.如图,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为,D E ,若9,6AD DE ==,则BE 的长为________________________.20.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.三、解答题21.武汉某道路工程项目,若由甲、乙两工程队合作20天可完工;若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完工.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲、乙工程队合作施工时对道路交通有影响,独施工时对交通无影响且要求整个工期不能超过24天,问如何安排两队施工,对道路交通的影响会最小?22.计算:021|22|( 3.14)()2π---+- 23.把一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后拼成一个正方形(如图1).(1)请用两种不同的方法求图2中阴影部分的面积(直接用含m ,n 的代数式表示). 方法1:______________________________.方法2:______________________________.(2)根据(1)中结论,请你写出下列三个代数式()2m n +,()2m n -,mn 间的等量关系:________(3)根据(2)中的等量关系,解决如下问题:已知实数x ,y 满足6xy =,5x y -=,请求出x y +的值.24.如图1,△ABC 中AB =AC ,DE 垂直平分AB 分别交AB ,AC 于点D ,E .(1)若∠C =70°,则∠A 的大小为 ;(2)若AE =BC ,求∠A 的度数;(3)如图2,点M 是边BC 上的一个定点,若点N 在直线DE 上,当BN +MN 最小时,点N 在何处?请用无刻度直尺作出点N 的位置.(不需要说明理由,保留作图痕迹)25.如图,在平面直角坐标系中,AC CD =,已知()3,0A ,()0,3B ,()0,5C ,点D 在第一象限内,90DCA ∠=︒,AB 的延长线与DC 的延长线交于点M ,AC 与BD 交于点N .(1)OBA ∠的度数为________.(2)求点D 的坐标.(3)求证:AM DN =.26.()1若n 边形的内角和等于它外角和的3倍,求边数n .()2已知a ,b ,c 为三角形三边的长,化简:a b c b c a --+--.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】 先根据方程3211m x x =---有非负实数解,求得5m ≥-,由不等式组102x x m +≥⎧⎨+≤⎩有解求得3m ≤,得到m 的取值范围53m -≤≤,再根据10x -≠得3m ≠-,写出所有整数解计算其和即可.【详解】 解:3211m x x =--- 解得:52m x +=, ∵方程有非负实数解, ∴0x ≥即502m +≥, 得5m ≥-;∵不等式组102x x m +≥⎧⎨+≤⎩有解, ∴12x m -≤≤-,∴21m -≥-,得3m ≤,∴53m -≤≤,∵10x -≠,即502m +≠, ∴3m ≠-,∴满足条件的所有整数m 为:-5,-4,-2,-1,0,1,2,3,其和为:-6,故选:D .【点睛】此题考查利用分式方程解的情况求参数,根据不等式组的解的情况求参数,正确掌握方程及不等式组的解的情况确定m 的取值范围是解题的关键.2.D解析:D【分析】 根据方程1044m x x x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值.【详解】解:去分母得:m +1−x =0, ∵方程1044m x x x--=--无解, ∴x =4是方程的增根,∴m =3.故选:D .【点睛】 本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根. 3.C解析:C【分析】分式的值为零时,分子等于零,分母不等于零.【详解】解:依题意,得x 2-4=0,且x+2≠0,所以x 2=4,且x≠-2,解得,x=2.故选:C .【点睛】本题考查了求一个数的平方根,分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.C解析:C【分析】按同分母分式加减法则计算即可.【详解】A.2c d c d c d c d d a a a a -+-----==,正确; B.52521252525a a a a a ++==+++,正确; C.x y x y x y x y y x x y x y x y +-=+=-----,错误; D.222111(1)(1)(1)1x x x x x x --==----,正确. 故选:C【点睛】此题考查同分母分式的加减法的法则:同分母分式相加减,分母不变,分子相加减. 5.B解析:B【分析】根据因式分解的定义判断即可.【详解】解:A 、等号左右两边不相等,故错误;B 、a 3-a=a(a+1)(a-1),故正确;C 、右边不是整式的积,故错误;D 、等号左右两边不相等,故错误.故选:B .【点睛】因式分解与整式的乘法互为逆变形,并且因式分解是等式的恒等变形,变形前后一定相等.6.D解析:D【分析】将x 2﹣2x 当成一个整体,在第一个代数式中可求得x 2﹣2x =1,将其代入后面的代数式即能求得结果.【详解】解:∵3x 2﹣6x +6=9,即3(x 2﹣2x )=3,∴x 2﹣2x =1,∴x 2﹣2x +6=1+6=7.故选:D .【点睛】本题考查了代数式求值,解题的关键是将x 2﹣2x 当成一个整体来对待.7.A解析:A【分析】由题意,当0x y +=时,代数式取到最小值,则有x y =-,根据绝对值的意义进行化简,即可得到答案.【详解】解:根据题意,∵2()0x y +≥,∴当0x y +=时,代数式2()2020x y ++的值取到最小值2020,∴x y =-, ∴x y =-, ∴0x y --=, ∴22,x y x y ==,∴222||2||0x y x y -+-=;故选:A .【点睛】本题考查了乘方的定义,绝对值的意义,以及求代数式的值,解题的关键是掌握运算法则,正确得到0x y +=和x y =-. 8.A解析:A【分析】根据平方差公式:两个数平方的差,等于这两个数的和与差的平方解答.【详解】A 、21x -+,能用平方差公式分解因式;B 、21x +,不能用平方差公式分解因式;C 、21x --,不能用平方差公式分解因式;D 、221x x -+,不能用平方差公式分解因式;故选:A .【点睛】此题考查平方差公式:22()()a b a b a b -=+-,掌握公式中多项式的特点是解题的关键. 9.D解析:D【分析】根据题意作图可知:AD 是BAC ∠的平分线,即可判断A ;先求得∠BAC=60︒,由AD 是BAC ∠的平分线,求得∠CAD=∠BAD=30B ∠=︒,即可得到60ADC ∠=︒,即可判断B ;过点D 作DE ⊥AB 于E ,根据∠BAD=30B ∠=︒,证得△ABD 是等腰三角形,得到AE=BE ,即可判断C ;由30CAD ∠=︒,可得12CD AD =,由AD DB =,可得12DC DB =.可得::DAC ABD SS CD DB =,由12CD DB =,可得:1:21:3DAC ABD S S =≠,即可判断D . 【详解】解:根据作图方法可得AD 是BAC ∠的平分线,故A 正确;∵90,30C B ∠=︒∠=︒,∴60CAB ∠=︒.∵AD 是BAC ∠的平分线,∴30DAC DAB ∠=∠=︒.∴60ADC ∠=︒.故B 正确;过D 作DE ⊥AB∵30,30B DAB ∠=︒∠=︒,∴AD DB =.∴AE=BE∴点D 在AB 的垂直平分线上.故C 正确;∵30CAD ∠=︒,∴12CD AD =, ∵AD DB =, ∴12DC DB =. ∴12DAC CD AC S⋅=,12ABD DB AC S ⋅=, ∴::DAC ABD SS CD DB =, ∴12CD DB =, ∴:1:21:3DAC ABD S S =≠,故D 错误.故选择:D .【点睛】本题考查角平分线的作图方法及性质应用,线段垂直平分线的判定,等腰三角形的判定及性质,三角形内角和定理,熟练掌握各部分知识并综合应用是解题的关键.10.C解析:C【分析】根据翻折的性质可得∠AEF =∠CEF ,根据两直线平行,内错角相等可得∠AFE =∠CEF ,然后求出∠AEF =∠AFE ,根据等角对等边可得AE =AF ;根据HL 即可得到△ABE ≌AGF .根据等量代换即可得到AF =CE ;根据△AEF 是等腰三角形,不一定是等边三角形,即可得到∠AEF 不一定为60°.【详解】解:由翻折的性质得,∠AEF =∠CEF ,∵矩形ABCD 的对边AD ∥BC ,∴∠AFE =∠CEF ,∴∠AEF =∠AFE ,∴AE =AF ,故①正确,在Rt △ABE 和Rt △AGF 中,AE AF AB AG =⎧⎨=⎩, ∴Rt △ABE ≌Rt △AGF (HL ),故②正确,∵CE =AE ,AE =AF ,∴CE =AF ,故③正确;∵AE =AF ,∴△AEF 是等腰三角形,不一定是等边三角形,∴∠AEF 不一定为60°,故④错误;故选C .【点睛】本题考查了翻折变换的性质,等腰三角形的判定与性质,解题时注意:折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.D解析:D【分析】设点Q 的运动速度是x cm/s ,有两种情况:①AP=BP ,AC=BQ ,②AP=BQ ,AC=BP ,列出方程,求出方程的解即可.【详解】解:设点Q 的运动速度是x cm/s ,∵∠CAB=∠DBA ,∴△ACP 与△BPQ 全等,有两种情况:①AP=BP ,AC=BQ ,则1×t=4-1×t ,则3=2x ,解得:t=2,x=1.5;②AP=BQ ,AC=BP ,则1×t=tx ,4-1×t=3,解得:t=1,x=1,故选:D .【点睛】本题考查了全等三角形的判定的应用,以及一元一次方程的应用,掌握方程的思想和分类讨论思想是解此题的关键.12.C解析:C【分析】根据三角形内角和180︒求出∠BAC ,再由AD 是ABC ∆的角平分线求得∠DAC ,最后利用直角三角形的两个锐角互余求出∠ADE ,问题得到解决.【详解】解:∵40,60B C ︒︒∠=∠=,∴BAC=180B-C=80∠︒-∠∠︒,∵AD 是ABC ∆的角平分线, ∴1DAC=BAC=402∠∠︒, ∵DE AC ⊥,∴90DAC=50ADE ∠=︒-∠︒,故选:C .【点睛】本题考查了三角形的内角和定理,三角形的角平分线定义,直角三角形的两个锐角互余,正确理解三角形中角之间的关系是解本题的关键.二、填空题13.【分析】原式整理成再整体代入即可求解【详解】∵∴故答案为:【点睛】本题主要考查分式的加减法解题的关键是掌握分式的加减运算法则和完全平方公式 解析:136【分析】 原式整理成222()2b a b a a b ab a b ab ab++-+==,再整体代入即可求解. 【详解】∵5a b +=,6ab =, ∴222()2b a b a a b ab a b ab ab++-+== 25266-⨯=136=. 故答案为:136. 【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和完全平方公式. 14.【分析】根据a2+b2=(a+b )2-2ab 把相应数值代入即可求解【详解】解:∵a+b=4∴a2+b2=(a+b )2-2ab=10即42-2ab=10解得ab=3∴故答案为:【点睛】本题主要考查了完 解析:43【分析】根据a 2+b 2=(a+b )2-2ab ,把相应数值代入即可求解.【详解】解:∵a+b=4,∴a 2+b 2=(a+b )2-2ab=10,即42-2ab=10,解得ab=3. ∴1143a b a b ab ++== 故答案为:43. 【点睛】 本题主要考查了完全平方公式以及分式的运算,熟记公式是解答本题的关键. 15.216【分析】在原来的算式前面乘上(2-1)根据平方差公式进行计算即可求解【详解】原式======216故答案是:216【点睛】本题主要考查有理数的运算掌握平方差公式是解题的关键解析:216【分析】在原来的算式前面乘上(2-1),根据平方差公式,进行计算,即可求解.【详解】原式=248(21)(21)(21)(21)(21)1-+++++=2248(21)(21)(21)(21)1-++++=448(21)(21)(21)1-+++=88(21)(21)1-++=16(21)1-+=216.故答案是:216.【点睛】本题主要考查有理数的运算,掌握平方差公式,是解题的关键.16.①③④【分析】根据SAS 证明△ACE ≌△DCB 可判断①;根据△ACD 和△BCE 是等边三角形但AC 不一定等于BC 可判断②;由三角形的外角性质可判断③;由△ACE ≌△DCB 可知AE=BD 根据全等三角形的解析:①③④【分析】根据SAS 证明△ACE ≌△DCB 可判断①;根据△ACD 和△BCE 是等边三角形,但AC 不一定等于BC 可判断②;由三角形的外角性质可判断③;由△ACE ≌△DCB 可知AE=BD ,根据全等三角形的面积相等,从而证得AE 和BD 边上的高相等,即CH=CG ,最后根据角的平分线定理的逆定理即可证得∠APC=∠BPC ,故可判断④.【详解】解:①∵∠ACD=∠BCE ,∴∠ACD+∠DCE=∠DCE+∠BCE ,∴∠ACE=∠DCB ,在△ACE 和△DCB 中CA CD ACE DCB CE CB ⎧⎪∠∠⎨⎪⎩===,∴△ACE ≌△DCB (SAS ),∴AE=DG ,故①正确;②∵AC =DC ,BC=EC ,∠ACD =∠BCE =60°,∴△ACD 和△BCE 是等边三角形,∴AD=AC =DC ,BE=BC=EC ,但AC 不一定等于BC ,故AD 不一定等于BE ,所以②错误;③∵∠APB 是△APD 的外角,∴∠APD=∠ADP+∠DAP由①得△ACE ≌△DCB∴∠CAE=∠CDB∵AC=DC∴∠CAD=∠CDA∴∠APD=∠ADC+∠DAC=2∠ADC ,故③正确;④如图,分别过点C 作CH ⊥AE 于H ,CG ⊥BD 于G ,∵△ACE≌△DCB,∴AE=BD,S△ACE=S△DCB,∴AE和BD边上的高相等,即CH=CG,∴∠APC=∠BPC,故④正确;故答案为:①③④.【点睛】本题考查了等腰三角形的性质,等边三角形的判定与性质,全等三角形的判定和性质,角的平分线定理及其逆定理,本题的关键是借助三角形的面积相等求得对应高相等.17.110°或80°【分析】根据等腰三角形的性质先求出∠BAC的度数然后分3种情况:①AD=AE时②AD=ED时③当AE=DE时分别求解即可【详解】∵在△ABC中AB=AC∠B=40°∴∠B=∠C=40解析:110°或80°【分析】根据等腰三角形的性质,先求出∠BAC的度数,然后分3种情况:①AD=AE时,②AD=ED时,③当AE=DE时,分别求解,即可.【详解】∵在△ABC中,AB=AC,∠B=40°,∴∠B=∠C=40°∴∠BAC=100°,①AD=AE时,∠AED=∠ADE=40°,∴∠DAE=100°,此时,点D与点B重合,不符合题意舍去,②AD=ED时,∠DAE=∠DEA,∴∠DAE=1(180°−40°)=70°,2∴∠BAD=∠BAC−∠DAE=100°−70°=30°,∴∠BDA=180°−∠B−∠BAD=110°,③当AE=DE时,∠DAE=∠ADE=40°,∴∠BAD=100°−40°=60°,∴∠BDA=180°−40°−60°=80°,综上所述:∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,故答案是:110°或80°【点睛】此题主要考查学生对等腰三角形的性质,三角形内角和定理的理解和掌握,解本题的关键是分类讨论,是一道基础题目.18.2(a+2)(a-2)【分析】先提取公因式2再对余下的多项式利用平方差公式继续分解【详解】解:2a2-8=2(a2-4)=2(a+2)(a-2)故答案为:2(a+2)(a-2)【点睛】本题考查了用提解析:2(a+2)(a-2)【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【详解】解:2a2-8,=2(a2-4),=2(a+2)(a-2).故答案为:2(a+2)(a-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.19.3【分析】由AD⊥CEBE⊥CE可以得到∠BEC=∠CDA=90°再根据∠ACB=90°可以得到∠BCE=∠CAD从而求得△CEB≌△ADC然后利用全等三角形的性质可以求得BE的长【详解】解:∵∠A解析:3【分析】由AD⊥CE,BE⊥CE,可以得到∠BEC=∠CDA=90°,再根据∠ACB=90°,可以得到∠BCE=∠CAD,从而求得△CEB≌△ADC,然后利用全等三角形的性质可以求得BE的长.【详解】解:∵∠ACB=90°,BE⊥CE,AD⊥CE,∴∠BCE+∠DCA=90°,∠BEC=∠CDA=90°,∴∠ACD+∠CAD=90°,∴∠BCE=∠CAD,在△CEB和△ADC中,BCE CADBEC CDA AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CEB≌△ADC(AAS);∴BE=CD,CE=AD=9.∵DC=CE-DE,DE=6,∴DC=9-6=3,∴BE=3.故答案为:3【点睛】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.5或4【分析】先设长度为412的高分别是ab 边上的边c 上的高为h △ABC 的面积是S 根据三角形面积公式可求结合三角形三边的不等关系可得关于h 的不等式组解即可【详解】解:设长度为412的高分别是ab 边上解析:5或4.【分析】先设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求222,,412S S S a b c h===,结合三角形三边的不等关系,可得关于h 的不等式组,解即可.【详解】解:设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么 222,,412S S S a b c h===, 又∵a-b <c <a+b , ∴2222412412S S S S c -<<+, 即2233S S S h <<, 解得3<h <6,∴h=4或h=5,故答案为:5或4.【点睛】本题考查了三角形面积、三角形三边之间的关系、解不等式组.求出整数值后,能根据三边关系列出不等式组是解题关键.三、解答题21.(1)甲单独做需60天,乙单独做需30天;(2)应安排甲乙合作12天,然后再由乙队单独施工12天,对道路交通影响了会最小.【分析】(1)设甲单独做需x 天,则甲的工作效率为1x ,乙的工作效率为1120x-,根据“若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完成”,即可得出关于x 的分式方程,解之并检验后即可得出结论;(2)分两种情况:①若剩下工程甲单独做还需(603m -)天,②若剩下工程乙单独做还需(30 1.5)m -天,列出不等式,即可求解.【详解】(1)设甲单独做需x 天,则甲的工作效率为1x ,乙的工作效率为1120x-,401110120x x ⎛⎫∴+-= ⎪⎝⎭,解得:60x =, 经检验60x =为原方程的解,∴甲单独做需60天,乙单独做需30天;(2)设甲、乙合作了m 天①若剩下工程甲单独做还需1120603160m m -=- 60324m m ∴+-≤,解得:18m ≥;②若剩下工程乙单独做还需112030 1.5130m m -=- 30 1.524m m ∴+-≤,解得:12m ≥由①②可知m 的最小值为12,所以应安排甲乙合作12天,然后再由乙队单独施工12天,对道路交通影响了会最小.【点睛】本题主要考查分式的实际应用以及一元一次不等的实际应用,找到等量关系和不等量关系,列出方程和不等式,是解题的关键.22.5【分析】先计算绝对值、0指数、负指数,再加减.【详解】解:0212|( 3.14)()2π---+-214=+5=【点睛】本题考查了包含绝对值、0指数和负指数的实数计算,准确应用各种法则,熟练计算是解题关键.23.(1)方法1:()24m n mn +-,方法2:()2m n -;(2)()()224m n m n mn -=+-;(3)7x y += 【分析】(1)由题意知,阴影部分为一正方形,其边长正好为m ﹣n .根据正方形的面积公式即可求出图中阴影部分的面积,也可以用大正方形的面积减去四个小长方形的面积由图形可得:(2)大正方形的面积减去四个小长方形的面积正好等于图中阴影部分的面积.(3)(x +y )2正好表示大正方形的面积,(x ﹣y )2正好表示阴影部分小正方形的面积,xy 正好表示一个小长方形的面积.根据(2)中的等式代入计算即可.【详解】解:(1)()24m n mn +-;()2m n -.(2)()()224m n m n mn -=+-.(3)∵()()224x y x x y y +=-+,5x y -=,6xy =,∴()2254649x y +=+⨯=, ∴7x y +=.【点睛】本题考查了完全平方式和整式的混合运算,主要考查学生的理解能力和计算能力. 24.(1)40°;(2)36°;(3)见解析【分析】(1)根据等腰三角形的两底角相等和三角形内角和等于180°即可求解;(2)根据DE 垂直平分AB 可得BE =AE ,进而可知∠A =∠ABE ,再由AE =BC ,可得∠C =∠BEC ,进而得出∠ABC =∠C =2∠A ,再由三角形内角和即可求出∠A ;(3)由已知可知B 关于直线DE 的对称点是A 点,由此可知当A 、M 、N 三点在同一直线上时,BN +MN =AN +MN 最小.【详解】解:(1)∵AB =AC ,∴∠B =∠C ,∵∠C =70°,∴∠A =180°-70°-70°=40°,故答案为:40°;(2)如图:连接BE ,∵DE 垂直平分AB ,∴BE =AE ,∴∠A =∠ABE ,又∵AE =BC ,∴BE =BC ,∴∠C =∠BEC ,∵∠BEC =∠A +∠ABE =2∠A ,∴∠ABC =∠C =2∠A ,又∵∠A +∠ABC +∠C =180°,∴∠A +2∠A +2∠A =180°,∴∠A =36°;(3)如图,连接AM 交DE 于N 点;即N 点为所求.【点睛】本题主要考查了线段垂直平分线的性质、等腰三角形的性质、三角形内角和及最短路径等知识点,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键. 25.(1)45°;(2)()5,8D ;(3)见解析.【分析】(1)根据点A,点B 的坐标,得OA=OB,从而得到等腰直角三角形OAB 依此计算即可;(2) 过点D 作DE y ⊥轴,垂足为E ,证明DEC COA △△≌即可;(3)通过证明CDB CAB ∠=∠,实现DCN ACM △△≌的目标,问题得证.【详解】(1)∵()3,0A ,()0,3B ,∴OA=OB ,∴△AOB 是等腰直角三角形,∴∠OBA=45°,故填45°.(2)∵()0,5C ,∴5OC =.如图,过点D 作DE y ⊥轴,垂足为E ,∴90DEC AOC ∠=∠=︒.∵90DCA ∠=︒,AC CD =,∴90ECD BCA ECD EDC ∠+∠=∠+∠=︒,∴BCA EDC ∠=∠,∴()AAS DEC COA ≌△△, ∴5DE OC ==,3EC OA ==,∴8OE OC EC =+=,∴()5,8D .(3)证明:∵835BE OE OB =-=-=,∴BE DE =,∴DBE 是等腰直角三角形,∴45DBE ∠=︒. ∵45OBA ∠=︒,∴90DBA ∠=︒,∴90BAN ANB ∠+∠=︒.∵90DCA ∠=︒,∴90CDN DNC ∠+∠=︒.∵DNC ANB ∠=∠,∴CDB CAB ∠=∠.∵90DCA ∠=︒,∴90ACM DCN ∠=∠=︒.∵AC CD =,∴()ASA DCN ACM ≌△△, ∴AM DN =.【点睛】本题考查了等腰直角三角形的判定和性质,一线三直角全等模型,坐标与线段的关系,三角形的全等,解答时,能准确找到合适的全等三角形是解题的关键.26.()18;()22c .【分析】(1)根据多边形的内角和与外角和公式列出方程即可求解;(2)根据三角形的三边关系可得a c b +>,b c a +>,再根据化简绝对值的方法即可求解.【详解】解:()1由题意得:()18023603n ︒-=︒⨯,解得:8n =.()2∵a ,b ,c 为三角形三边的长,∴a c b +>,b c a +>, ∴a b c b c a --+--()()2a b c b c a b c a a c b c =-++-+=+-++-=.【点睛】此题主要考查多边形的内角和与外角和、三角形的三边关系的应用,解题的关键是熟知多边形的性质及去绝对值的方法.。
浙教版八年级(上)期末数学试卷一、选择题:本大题有10个小题,每小题3分,共30分在每小题给出的四个选项中,只有项是符合题目要求的1.(3分)下列函数中是一次函数的是()A.t=B.s=t(50﹣t)C.y=x2+2x D.y=6﹣2x2.(3分)若x>y,则下列变形正确的是()A.2x<2y B.﹣3x<﹣3y C.D.x+2<y+23.(3分)下列说法中,正确的是()A.所有的命题都有逆命题B.所有的定理都有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题4.(3分)把点A(﹣2,1)向下平移2个单位后得到点B,则点B的坐标是()A.(﹣2,3)B.(﹣2,﹣1)C.(0,1)D.(﹣4,1)5.(3分)在△ABC中,∠A,∠C与∠B的外角度数如图所示,则x的值是()A.60B.65C.70D.806.(3分)如图,函数y1=mx和y2=x+3的图象相交于点A(﹣1,2),则关于x的不等式mx>x+3的解集是()A.x<﹣1B.x>﹣1C.x<﹣2D.x>﹣27.(3分)以下列各组数为边长,能构成直角三角形的是()A.B.、、C.、、D.、、8.(3分)已知a,b为实数,则解是﹣1<x<1的不等式组可以是()A.B.C.D.9.(3分)在一次函数y=(2k+3)x+k+1的研究过程中,甲、乙同学得到如下结论:甲认为当k<﹣时,y随x的增大而减小;乙认为无论k取何值,函数必定经过定点(﹣,﹣).则下列判断正确的是()A.甲正确,乙错误B.甲错误,乙正确C.甲乙都正确D.甲乙都错误10.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,将边AB沿AE翻折,使点B落在BC上的点D 处,再将边AC沿AF翻折,使点C落在AD延长线上的点C′处,两条折痕与斜边BC分别交于点E,F,则线段C′F的长为()A.B.C.D.二、填空题:本大题有6个小题,每小题4分,共24分11.(4分)将语句“比x的3倍小1的数小于x的2倍”用不等式表示为.12.(4分)写出命题“对顶角相等”的逆命题.13.(4分)已知函数y=﹣3x+b,当x=﹣1时,y=﹣,则b=.14.(4分)若等腰三角形的一个内角为50°,则它的底角的度数为.15.(4分)已知一个直角三角形的斜边与直角边相差8cm,有一条直角边长为12cm,斜边上的中线长为.16.(4分)如图,已知点C(0,1),直线y=x+5与两坐标轴分别交于A,B两点.点D,E分别是OB,AB上的动点,则△CDE周长的最小值是.三、解答题:本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤17.(6分)如图,已知△ABC,请按下列要求作出图形:(1)用刻度尺画BC边上的高线.(2)用直尺和圆规画∠B的平分线.1.18.(8分)解下列不等式(组):(1)3x﹣5>2(2+3x)(2)19.(8分)已知点P(8﹣2m,m﹣1).(1)若点P在x轴上,求m的值.(2)若点P到两坐标轴的距离相等,求P点的坐标.20.(10分)如图,已知BD⊥AC,CF⊥AB.(1)若BE=AC,求证:△BFE≌△CF A.(2)取BC中点为G,连结FG,DG,求证:FG=DG.21.(10分)现计划把一批货物用一列火车运往某地.已知这列火车可挂A,B两种不同规格的货车厢共40节,使用A型车厢每节费用6000元,使用B型车厢每节费用为8000元.(1)设运送这批货物的总费用为y元,这列火车挂A型车厢x节,写出y关于x的函数表达式,并求出自变量x的取值范围;(2)已知A型车厢数不少于B型车厢数,运输总费用不低于276000元,问有哪些不同运送方案?22.(12分)设一次函数y=kx+b(k,b为常数,k≠0)的图象过A(1,3),B(﹣5,﹣3)两点.(1)求该函数表达式;(2)若点C(a+2,2a﹣1)在该函数图象上,求a的值;(3)设点P在x轴上,若S△ABP=12,求点P的坐标.23.(12分)背景:在数学课堂上,李老师给每个同学发了一张边长为6cm的正方形纸片,请同学们纸片上剪下一个有一边长为8cm的等腰三角形,要求等腰三角形的三个顶点都落在正方形的边上,且其中一个顶点与正方形的顶点重合,最终,通过合作讨论,同学们一共提供了5种不同的剪法(若剪下的三角形全等则视为同一种).注:正方形的每条边都相等,每个角都等于90°.(1)如图1是小明同学率先给出的剪法,其中AE=AF,EF=8cm,△AEF即为满足要求的等腰三角形,则小明同学剪下的三角形纸片的面积为cm2.(2)如图2是小王同学提出的另一种剪法,其中AE=8cm,且AF=EF,请帮助小王同学求出所得等腰△AEF 的腰长;(3)请在下列三个正方形中画出其余的三种剪法,并直接写出每种剪法所得的三角形纸片的面积.(注:每种情况的图和对应的面积都正确才得分)面积=面积=面积=参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分在每小题给出的四个选项中,只有项是符合题目要求的1.【解答】解:A、是反比例函数,故此选项错误;B、是二次函数,故此选项错误;C、是二次函数,故此选项错误;D、是一次函数,故此选项正确;故选:D.2.【解答】解:A、两边都乘以2,不等号的方向不变故A错误;B、两边都乘以13,不等号的方向改变,故B正确;C、两边都除以3,不等号的方向不变,故C错误;D、两边都加2,不等号的方向不变,故D错误;故选:B.3.【解答】解:A、每个命题都有逆命题,所以A选项正确;B、每个定理不一定有逆定理,所以B选项错误;C、真命题的逆命题不一定是真命题,所以C选项错误;D、假命题的逆命题不一定是假命题,所以D选项错误.故选:A.4.【解答】解:把点A(﹣2,1)向下平移2个单位后得到点B,则点B的坐标是(﹣2,1﹣2),即(﹣2,﹣1),故选:B.5.【解答】解:∵与∠ABC相邻的外角=∠A+∠C,∴x+65=x﹣5+x,解得x=70.故选:C.6.【解答】解:∵函数y1=mx和y2=x+3的图象相交于点A(﹣1,2),∴不等式mx>x+3的解集为x<﹣1.故选:A.7.【解答】解:A、()2+()2≠()2,不能构成直角三角形;B、()2+()2≠()2,不能构成直角三角形;C、()2+()2=()2,能构成直角三角形,故本选项正确;D、()2+()2≠()2,不能构成直角三角形.故选:C.8.【解答】解:A、∵所给不等式组的解集为﹣1<x<1,那么a,b同号,设a>0,则b>0,解得x<,x>,解集都是正数;若同为负数可得到解集都是负数,故此选项错误;B、∵所给不等式组的解集为﹣1<x<1,那么a,b同号,设a>0,则b>0,解得x>,x<,解集都是正数;若同为负数可得到解集都是负数;故此选项错误;C、所给不等式组的解集为﹣1<x<1,那么a,b为一正一负,设a>0,则b<0,解得:x>,x<,∴原不等式组无解,同理得到把2个数的符号全部改变后也无解,故此选项错误;D、∵所给不等式组的解集为﹣1<x<1,那么a,b为一正一负,设a>0,则b<0,解得x<,x>,∴原不等式组有解,可能为﹣1<x<1,把2个数的符号全部改变后也如此,故此选项正确;故选:D.9.【解答】解:当k<﹣时,2k+3<0,即y随x的增大而减小,故甲的说法正确;在y=(2k+3)x+k+1中,当x=﹣时,y=﹣,即无论k取何值,函数必定经过定点(﹣,﹣),故乙的说法正确.故选:C.10.【解答】解:∵Rt△ABC中,∠BAC=90°,AB=6,AC=8,∴BC=10∵将边AB沿AE翻折,使点B落在BC上的点D处,∴∠AEC=∠AEB,∠BAE=∠DAE∵∠AED=180°∴∠CED=90°,即CE⊥AB∵S△ABC=AB×AC=AE×BC∴AE=4.8在Rt△ACE中,CE==6.4∵将边BC沿CF翻折,使点B落在CD的延长线上的点B′处∴CF=C'F,∠CAF=∠C'AF∵∠BAE+∠DAE+∠CAF+∠C'AF=∠ACB=90°∴∠EAF=45°,且CE⊥AE∴∠EAF=∠EF A=45°∴AE=EF=4.8∵CF=CE﹣EF=6.4﹣4.8=1.6∴C'F=1.6=故选:A.二、填空题:本大题有6个小题,每小题4分,共24分11.【解答】解:由题意得,该不等式为:3x﹣1<2x.故答案为3x﹣1<2x.12.【解答】解:命题“对顶角相等”的逆命题是如果两个角相等,那么这两个角是对顶角,故答案为:如果两个角相等,那么这两个角是对顶角.13.【解答】解:把x=﹣1,y=﹣代入y=﹣3x+b,可得:﹣=﹣3×(﹣1)+b,解得:b=﹣3,故答案为:﹣314.【解答】解:∵等腰三角形的一个内角为50°,若这个角为顶角,则底角为:(180°﹣50°)÷2=65°,若这个角为底角,则另一个底角也为50°,∴其一个底角的度数是65°或50°.故答案为:65°或50°.15.【解答】解:①若直角三角形的斜边与12cm长的直角边相差8cm,则斜边长为20cm,∴斜边上的中线长为10cm;②若直角三角形的斜边与xcm长的直角边相差8cm,则斜边长为(x+8)cm,由勾股定理可得,122+x2=(x+8)2,解得x=5,∴斜边长为13cm,∴斜边上的中线长为6.5cm;故答案为:10cm或6.5cm.16.【解答】解:如图,作点C关于OB的对称点C'(0,﹣1),作点C关于AB的对称点C'',连接C'C'',交AB于点E,交OB于点D,∵直线y=x+5与两坐标轴分别交于A,B两点∴点A(0,5),点B(﹣5,0)∴AO=BO,且∠AOB=90°,∴∠BAO=45°,∵点C关于OB的对称点C'(0,﹣1),∴AC'=6∵点C关于AB的对称点C'',∴AC=AC''=4,∠BAO=∠C''AB=45°∴∠C''AO=90°∴点C''(﹣4,5)∵由轴对称的性质,可得CE=C''E,CD=DC',∴当点C'',点E,点D,点C'共线时,△CDE的周长=CD+CE+DE=C''E+DE+C'D=C'C'',此时△CDE的周长最小,在Rt△AC'C''中,C'C''==2∴△CDE的周长最小值为2故答案为:2三、解答题:本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤17.【解答】解:(1)如图,AD为所作.(2)如图,BE为所作.18.【解答】解:(1)去括号,得3x﹣5>4+6x,移项、合并同类项,得﹣3x>9,系数化为,1得x<﹣3;(2),解①得x;解②得x≤1,所以,不等式组的解集为<x≤1.19.【解答】解:(1)∵点P(8﹣2m,m﹣1)在x轴上,∴m﹣1=0,解得:m=1;(2)∵点P到两坐标轴的距离相等,∴|8﹣2m|=|m﹣1|,∴8﹣2m=m﹣1或8﹣2m=1﹣m,解得:m=3或m=7,∴P(2,2)或(﹣6,6).20.【解答】证明:(1)∵BD⊥AC,CF⊥AB,∴∠BFE=∠CF A=90°,∵∠BEF=∠CED,∴∠FBE=∠FCA,在△BFE和△CF A中,∴△BFE≌△CF A(AAS);(2)∵BD⊥AC,CF⊥AB,∴△BFC和△BDC都是直角三角形,∵点G是BC边的中点,∴BC=2FG,BC=2DG,∴FG=DG.21.【解答】解:(1)设用A型车厢x节,则用B型车厢(40﹣x)节,总运费为y元,依题意,得y=6000x+8000(40﹣x)=﹣2000x+320000;∵,∴x的取值范围是0≤x≤40且x为整数,∴函数关系式为y=﹣2000x+320000(0≤x≤40且x为整数)(2)由题意得:,解得:20≤x≤22,∵x为整数,∴运送方案有:A型车厢20节,B型车厢20节;A型车厢21节,B型车厢19节;A型车厢22节,B型车厢18节.22.【解答】解:(1)根据题意得:解得:∴函数表达式为y=x+2(2)∵点C(a+2,2a﹣1)在该函数图象上,∴2a﹣1=a+2+2∴a=5(3)设点P(m,0)∵直线y=x+2与x轴相交∴交点坐标为(﹣2,0)∵S△ABP=|m+2|×|3|+|m+2|×|﹣3|=12∴|m+2|=4∴m=2或﹣6∴点P坐标(2,0)或(﹣6,0)23.【解答】解:(1)∵四边形ABCD是正方形,∴∠A=90°,∵AE=AF,∴△AEF是等腰直角三角形,∴S△AEF=×8×8×=16,故答案为16;(2)根据题意得,∠B=90°,AB=6,AE=8,∴由勾股定理可得BE=2,设AF=EF=x,则BF=6﹣x,∵Rt△BFE中,BF2+BE2=EF2,∴(6﹣x)2+(2)2=x2,解得x=,∴等腰△AEF的腰长为cm;(3)如图所示,S△CEF=(24﹣16)cm2;如图所示,S△AEF=(32﹣)cm2;如图所示,S△AEF=4cm2;故答案为:(24﹣16)cm2;(32﹣)cm2;4cm2.。
浙教新版八年级上册数学期末复习试题(1)一.选择题(共10小题,满分30分,每小题3分)1.下列甲骨文中,不是轴对称图形的是()A.B.C.D.2.如图,在由25个边长为1的小正方形拼成的网格中以AB为边画Rt△ABC,使点C在格点上,满足这样条件的点C共()个.A.5B.6C.7D.83.在平面直角坐标系中,若点A(a,﹣b)在第三象限,则点B(﹣ab,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,一次函数y=﹣2x+1的图象经过P1(﹣1,y1),P2(2,y2)两点,则()A.y1>y2B.y1<y2C.y1=y2D.y1≥y25.在数轴上表示a,b两数的点如图所示,则下列判断正确的是()A.a+b>0B.|a|>|b|C.ab>0D.a﹣b>06.下列命题是真命题的是()A.如果一个数的平方等于这个数本身,那么这个数一定是0B.如果一个数的平方根等于这个数本身,那么这个数一定是0C.如果一个数的算术平方根等于这个数本身,那么这个数定是0D.如果一个数的立方根等于这个数本身,那么这个数定是07.已知等腰三角形的一边长为2,周长为8,那么它的腰长为()A.2B.3C.2或3D.不能确定8.下列判断正确的个数是()①三角形的三条高都在三角形的内部,并且相交于一点;②两边及一角对应相等的两个三角形全等;③两角及一边对应相等的两个三角形全等;④到三角形的三边所在的直线距离相等的点有三个.A.4B.3C.2D.19.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打( )A .六折B .七折C .八折D .九折10.若y 关于x 的函数关系式为y =kx +1,当x =1时,y =2,则当x =﹣3时函数值是( )A .﹣1B .﹣2C .﹣3D .﹣4二.填空题(共6小题,满分18分,每小题3分)11.某会场座位号将“7排4号”记作(7,4),那么“3排5号”记作 .12.请你写出一个原命题与它的逆命题都是真命题的命题 .13.不等式>﹣3的非负整数解为 .14.关于x 的一元一次方程﹣2ax +3=﹣2x ﹣9的解为负数,且一次函数y =(2a ﹣7)x +a +2的图象不经过第三象限,则符合条件的整数a 的值之和为 .15.如图,在△ABC 和△DBC 中,∠A =40°,AB =AC =2,∠BDC =140°,BD =CD ,以点D 为顶点作∠MDN =70°,两边分别交AB ,AC 于点M ,N ,连接MN ,则△AMN 的周长为 .16.如图,点O 是边长为2的等边三角形ABC 内任意一点,且OD ⊥AC ,OE ⊥AB ,OF ⊥BC ,则OD +OE +OF = .三.解答题(共8小题,满分52分)17.解下列不等式或不等式组:(1);(2).18.如图,已知点D 为△ABC 的边AB 上一点,请在边AC 上确定一点E ,使得S △BCD =S △BCE (要求:尺规作图、保留作图痕迹、不写作法).19.如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.20.如图,直线y=kx+b与x轴,y轴分别交于点A,点B,点A的坐标为(﹣2,0),点B的坐标为(0,4).(1)求直线AB解析式;(2)如图,将△AOB向右平移6个单位长度,得到△A1O1B1,求线段OB1的长;(3)求(2)中△AOB扫过的面积.21.如图,Rt△ABC中,∠B=90°,点D在线段AB上,点E在线段AC上,将△ADE沿DE翻折,使得点A的对应点F落在线段BC上,且EF⊥BC.(1)求证:四边形ADFE为菱形;(2)若DE=5,∠C=30°,求CF的长.22.如图,已知直线l1:y1=﹣2x﹣3,直线l2:y2=x+3,l1与l2相交于点P,l1,l2分别与y轴相交于点A,B.(1)求点P的坐标.(2)若y1>y2>0,求x的取值范围.(3)点D(m,0)为x轴上的一个动点,过点D作x轴的垂线分别交l1和l2于点E,F,当EF=3时,求m的值.23.某市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过40立方米时,按2元/立方米计费;月用水量超过40立方米时,其中的40立方米仍按2元/立方米收费,超过部分按3.5元/立方米计费.设每户家庭月用水量为x立方米.(1)当x不超过40时,应收水费为(用x的代数式表示);当x超过40时,应收水费为(用x的代数式表示化简后的结果);(2)小明家四月份用水26立方米,五月份用水52立方米,请帮小明计算一下他家这两个月一共应交多少元水费?(3)小明家六月份交水费150元,请帮小明计算一下他家这个月用水量多少立方米?24.如图1,OA=2,OB=4,以点A为顶点,AB为腰在第三象限作等腰直角△ABC.(Ⅰ)求C点的坐标;(Ⅱ)如图2,OA=2,P为y轴负半轴上的一个动点,若以P为直角顶点,PA为腰等腰直角△APD,过D作DE⊥x轴于E点,求OP﹣DE的值;(Ⅲ)如图3,点F坐标为(﹣4,﹣4),点G(0,m)在y轴负半轴,点H(n,0)x轴的正半轴,且FH⊥FG,求m+n的值.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:A.是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项符合题意;C.是轴对称图形,故本选项不合题意;D.是轴对称图形,故本选项不合题意;故选:B.2.解:根据题意可得以AB为边画直角△ABC,使点C在格点上,满足这样条件的点C共8个.故选:D.3.解:∵点A(a,﹣b)在第三象限,∴a<0,﹣b<0,∴b>0,∴﹣ab>0,∴点B(﹣ab,b)所在的象限是第一象限.故选:A.4.解:∵一次函数y=﹣2x+1的图象经过P1(﹣1,y1),P2(2,y2)两点,∴y1=3,y2=﹣3.∵3>﹣3,∴y1>y2.故选:A.5.解:根据数轴上点的位置得:b<0<a,且|b|>|a|,∴a+b<0,|a|<|b|,ab<0,a﹣b>0,故选:D.6.解:A、如果一个数的平方等于这个数本身,那么这个数一定是0或1,本选项说法是假命题;B、如果一个数的平方根等于这个数本身,那么这个数一定是0,本选项说法是真命题;C、如果一个数的算术平方根等于这个数本身,那么这个数定是0或1,本选项说法是假命题;D、如果一个数的立方根等于这个数本身,那么这个数定是0或±1,本选项说法是假命题;故选:B.7.解:当腰长为2时,底边长为8﹣2×2=4,三角形的三边长为2,2,4,不能构成三角形;当底边长为2时,腰长为(8﹣2)÷2=3,三角形的三边长为3,3,2,能构成三角形;所以等腰三角形的腰长为3.故选:B.8.解:①只有当三角形是锐角三角形时,三条高才在三角形的内部,此选项错误;②有两边及一角对应相等的两个三角形全等,此选项错误;③有两角和一边对应相等,满足AAS或ASA,此选项正确;④在三角形内部到三边距离相等的点是三条内角平分线的交点,交点重合,只有一点;在三角形的外部到三条边所在直线距离相等的点是外角平分线的交点,交点不重合,有三个.则到三角形三边所在直线距离相等的点有4个.正确的有一个③,故选:D.9.解:设打x折,根据题意得120•﹣80≥80×5%,解得x≥7.所以最低可打七折.故选:B.10.解:x=1,y=2代入y=kx+1得2=k+1,解得,k=1,所以y关于x的函数解析式是y=x+1;当x=﹣3时,y=﹣3+1=﹣2.故选:B.二.填空题(共6小题,满分18分,每小题3分)11.解:∵“7排4号”记作(7,4),∴3排5号记作(3,5).故答案为:(3,5).12.解:原命题:两直线平行、同位角相等,它的逆命题:同位角相等,两直线平行,故答案为:原命题:两直线平行、同位角相等,它的逆命题:同位角相等,两直线平行.13.解:>﹣3,3(x﹣3)﹣(6x﹣1)>﹣18,3x﹣9﹣6x+1>﹣18,﹣3x>﹣10,x<,所以不等式的非负整数解是0,1,2,3.14.解:∵一次函数y=(2a﹣7)x+a+2的图象不经过第三象限,∴2a﹣7<0且a+2≥0.∴﹣2≤a<3.5.解一元一次方程﹣2ax+3=﹣2x﹣9得到:x=.∵关于x的一元一次方程﹣2ax+3=﹣2x﹣9的解为负数,∴<0.∴a﹣1<0,∴a<1.综上所述,a的取值范围为﹣2≤a<1.∴整数a的值为:﹣2、﹣1、0,共有3个,∴符合条件的整数a的值之和为﹣3.故答案为﹣3.15.解:延长AC至E,使CE=BM,连接DE.∵BD=CD,且∠BDC=140°,∴∠DBC=∠DCB=20°,∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠ECD=∠NCD=∠MBD=90°,在△BDM和△CDE中,,∴△BDM≌△CDE(SAS),∴MD=ED,∠MDB=∠EDC,∴∠MDE=∠BDC=140°,∵∠MDN=70°,∴∠EDN=70°=∠MDN,在△MDN和△EDN中,,∴△MDN≌△EDN(SAS),∴MN=EN=CN+CE,∴△AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案为:4.16.解:连接OA、OB、OC,过A作AQ⊥BC于Q,∵△ABC是边长为2的等边三角形,∴AB=AC=BC=2,BQ=CQ==1,由勾股定理得:AQ===,∵S△ABC =S△ABO+S△BCO+S△ACO,∴=++,∴=,∴=×2×(OE+OF+OD),解得:OD+OE+OF=,故答案为:.三.解答题(共8小题,满分52分)17.解:(1)去分母得:2(3+4x)﹣6>3+12x,6+8x﹣6>3+12x,8x﹣12x>3﹣6+6,﹣4x>3,;(2)解不等式①得:x<3,解不等式②得:x≥2,所以不等式组的解集是2≤x<3.18.解:如图,点E即为所求.19.【问题解决】证明:在CD上截取CH=CE,如图1所示:∵△ABC是等边三角形,∴∠ECH=60°,∴△CEH是等边三角形,∴EH=EC=CH,∠CEH=60°,∵△DEF是等边三角形,∴DE=FE,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC,在△DEH和△FEC中,,∴△DEH≌△FEC(SAS),∴DH=CF,∴CD=CH+DH=CE+CF,∴CE+CF=CD;【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形,∴∠A=∠B=60°,过D作DG∥AB,交AC的延长线于点G,如图2所示:∵GD∥AB,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC=60°,∴△GCD为等边三角形,∴DG=CD=CG,∠GDC=60°,∵△EDF为等边三角形,∴ED=DF,∠EDF=∠GDC=60°,∴∠EDG=∠FDC,在△EGD和△FCD中,,∴△EGD≌△FCD(SAS),∴EG=FC,∴FC=EG=CG+CE=CD+CE.20.解:(1)∵点A的坐标为(﹣2,0),把A(﹣2,0)和B(0,4)代入y=kx+b中得:,解得:,∴直线AB解析式为:y=2x+4;(2)∵∠AOB=90°,∴∠AO1B1=90°,由平移得:OO1=6,O1B1=OB=4,由勾股定理得:OB1==2,即线段OB1的长是2;(3)△AOB扫过的面积+4×6=28.21.证明:(1)∵将△ADE沿DE翻折,使得点A的对应点F落在线段BC上,∴AE=EF,AD=DF,∠AED=∠FED,∠ADE=∠EDF,∵EF⊥BC,∴∠EFC=90°=∠B,∴EF∥AB,∴∠ADE=∠DEF,∴∠FDE=∠DEF,∴DF=EF,∴AD=AE=EF=DF,∴四边形ADFE为菱形;(2)∵∠B=90°,∠C=30°,∴∠A=60°,∵AD=AE,∴△ADE是等边三角形,∴AE=DE=5=EF,∵EF⊥BC,∠C=30°,∴EC=2EF=10,∴FC===5.22.解:(1)根据题意,得:,解得:,∴点P的坐标为(﹣2,1).(2)在直线l2:y2=x+3中,令y=0,解得x=﹣3,由图象可知:若y1>y2>0,x的取值范围是﹣3<x<﹣2;(2)由题意可知E(m,﹣2m﹣3),F(m,m+3),∵EF=3,∴|﹣2m﹣3﹣m﹣3|=3,解得:m=﹣3或m=﹣1.23.解:(1)由题意可得,当x不超过40时,应收水费为2x元,当当x超过40时,应收水费为:40×2+3.5(x﹣40)=(3.5x﹣60)(元),故答案为:2x元,(3.5x﹣60)元;(2)由题意可得,小明家四月份的水费为:26×2=52(元),五月份的水费为3.5×52﹣60=122(元),∵52+122=174(元),∴小明家这两个月一共应交174元水费;(3)设小明家这个月用水量x立方米,∵40×2=80<150,∴3.5x﹣60=150,解得x=60,答:小明家这个月用水量60立方米.24.解:(Ⅰ)如图1,过C作CM⊥x轴于M点,如图1所示:∵CM⊥OA,AC⊥AB,∴∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,∴∠MAC=∠OBA,在△MAC和△OBA中,,∴△MAC≌△OBA(AAS),∴CM=OA=2,MA=OB=4,∴OM=6,∴点C的坐标为(﹣6,﹣2),故答案为(﹣6,﹣2);(Ⅱ)如图2,过D作DQ⊥OP于Q点,则四边形OEDQ是矩形,∴DE=OQ,∵∠APO+∠QPD=90°,∠APO+∠OAP=90°,∴∠QPD=∠OAP,在△AOP和△PDQ中,,∴△AOP≌△PDQ(AAS),∴AO=PQ=2,∴OP﹣DE=OP﹣OQ=PQ=OA=2;(Ⅲ)如图3,过点F分别作FS⊥x轴于S点,FT⊥y轴于T点,则∠HSF=∠GTF=90°=∠SOT,∴四边形OSFT是正方形,∴FS=FT=4,∠EFT=90°=∠HFG,∴∠HFS=∠GFT,在△FSH和△FTG中,,∴△FSH≌△FTG(AAS),∴GT=HS,又∵G(0,m),H(n,0),点F坐标为(﹣4,﹣4),∴OT═OS=4,∴GT=﹣4﹣m,HS=n﹣(﹣4)=n+4,∴﹣4﹣m=n+4,∴m+n=﹣8.。
浙教版八年级第一学期期末数学试卷(考试时间:80分钟 满分50分)一、选择题(每小题2分,共10分)1、如图,直线l 1:1y x =+与直线2l :12y x =--把平面直角坐标系分成四个部分,点(12-,1)在( ) (A )第一部分 (B )第二部分 (C )第三部分 (D )第四部分 2、下列说法正确的个数有( )①等边三角形有三条对称轴;②在△ABC 中,若222a b c +≠,则△ABC 不是直角三角形;③等腰三角形的一边长为4,另一边长9,则它的周长为17或22;④一个三角形中至少有两个锐角。
(A )1个 (B )2个 (C )3个 (D )4个 3、已知一组数据6,8,10,x 的中位数与平均数相等,这样的x 有( ) (A )1个(B ) 2个 (C )3个(D )4个以上(含4个)4、在平面直角坐标系中,O 为坐标原点,直线221+=x y 与x 轴交于点P ,点Q 在直线上,且满足△OPQ 为等腰三角形,则这样的Q 点有( )个 (A )1 (B )2 (C )3 (D )4 5、如图所示,已知Rt ABC ∆中,90B ∠=,3AB =,4BC =,,,D E F 分别是三边,,AB BC CA 上的点,则DE EF FD ++的最小值为( )(A )125(B )245 (C )5 (D )6二、填空题(每小题2分,共12分)6、一个样本为1、3、2、2、,,a b c .已知这个样本的众数为3,平均数为2,那么这个样本的方差为_________.7、已知不等式30x a -≤的正整数解为1,2,3,则a 的取值范围是 .A 'B'BCA8、在一个仓库里堆积着正方体的货箱若干,要搬运这些箱子很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个办法:将这堆货物的三种视图画了出来,如图,你能根据三视图,帮他清点一下箱子的数量吗?这些箱子共有 个9、如图,有一种动画程序,屏幕上方正方形区域ABCD 表示黑色物体甲,其中A ( 1,1 ) B ( 2,1 ) C ( 2,2 ) D ( 1,2 ),用信号枪沿直线2y x b =+发射信号,当信号遇到区域甲时,甲由黑变白,则当b 的取值范围为___________时,甲能由黑变白.10、如图,在直角三角形ABC 中,∠C=90°,∠A=25°,以直角顶点C 为旋转中心,将△ABC 旋转到△A ’B ’C 的位置,其中A ’、B ’分别是A 、B 的对应点,且点B 在斜边A ’B ’上,直角边CA ’交AB 于点D ,则∠DCA 的度数_____________。
浙教版八年级上册数学期末考试试题一、单选题1.在△ABC中,△A=60°,△B=50°,则△C的度数为()A.60°B.30°C.70°D.50°2.下列图案中为轴对称图形的是()A.B.C.D.3.在平面直角坐标系中,点P(1,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.若x<y,则下列结论成立的是()A.x+2>y+2B.-2x<-2y C.3x>3y D.1-x>1-y 5.已知正比例函数y=2x,下列各点在该函数图象上的是()A.(1,2)B.(2,1)C.(1,12)D.(-12,1)6.不等式10x+>的解集在数轴上表示正确的是()A.B.C.D.7.如图,已知AD=AE,添加下列条件仍无法证明△ABE△△ACD的是()A.AB=AC B.△B=△CC.BE=CD D.△ADC=△AEB8.如图,在△ABC中,AB=AC,分别以点A,C为圆心,大于12AC的长为半径画弧,两弧相交于点E、F,直线EF交BC于点D.连接AD,已知AC=4,△ABD的周长是10,则BC的长是()A.5B.6C.7D.89.若一次函数y=(m-1)x+m-2的图象不经过第二象限,则m的取值范围是()A.m>1B.m<2C.1<m<2D.1<m≤210.如图,牧童在A处牧马,牧童的家在B处,A,B处到河岸的距离分别是AC=300m,BD=500m,且C,D两地之间的距离为600m.牧童从A处将马牵到河边去饮水,再牵回家,他至少要走的路程是()A.1400m B.(500+mC.1000m D.(300+m二、填空题11.函数1=自变量x的取值范围是_____.yx12.如图,在△ABC中,△ACB=90°,CE是△ABC的角平分线,△AEC=105°,则△B=___°.13.在平面直角坐标系中,将点A(a,1)先向右平移3个单位,再向下平移2个单位,得到点B(5,b),则ab的值为___.14.某批电子产品进价为300元/件,售价为400元/件.为提高销量,商店准备将这批电子产品降价出售,若要保证单件利润率不低于20%,则最多可降价___元.15.古代数学问题△“今有垣高一丈,倚木于垣,上与垣齐.引木却行一尺,其木至地.问木长几何?”其内容可表述为△“有一面墙,高1丈.将一根木杆斜靠在墙上,使木杆的上端与墙的上端对齐,下端落在地面上,如果使木杆下端从此时的位置向远离墙的方向移动1尺,则木杆上端恰好沿着墙滑落到地面上,则木杆长为___尺.”(说明:1丈=10尺)16.如图,在平面直角坐标系中,一次函数y=-2x+4的图象与x轴、y轴分别交于点A和点B,过点B的直线BC:y=kx+b交x轴于点C(-8,0).(1)k的值为___;(2)点M为直线BC上一点,若△MAB=△ABO,则点M的坐标是___.三、解答题17.解不等式组20620xx+≥⎧⎨-⎩>,并把解表示在数轴上.18.如图,△D=△ACB=△E=90°,AC=BC.求证:△ADC△△CEB.19.某公交车司机统计了月乘车人数x(人)与月利润y(元)的部分数据如下表,假设每位乘客的公交票价固定不变,公交车月支出费用为6000元.(月利润=月收入-月支出费用)(1)根据函数的定义,y是关于x的函数吗?(2)结合表格解答下列问题:△公交车票的单价是多少元?△当x=2750时,y 的值是多少?它的实际意义是什么?20.已知:如图,在△ABC 中,△B=30°,△ACB=45°,AD 是BC 边上的高线,CE 是AB 边上的中线.(1)求证:AE=CD ; (2)求△ACE 的度数.21.已知一次函数y=kx+b(k≠0)的图象过点(0,1). (1)若函数图象还经过点(-1,3), △求这个函数的表达式;△若点P (a ,a +3)关于x 轴的对称点恰好落在该函数的图象上,求a 的值. (2)若函数图象与x 轴的交点的横坐标0x 满足2<0x <3,求k 的取值范围.22.已知,一次函数y=12x +4的图象与x 轴、y 轴分别交于点A ,点B ,点C 的坐标为(-2,0).(1)求点A ,点B 的坐标;(2)过点C 作直线CD ,与AB 交于点D ,且2AOB ACD S S △△,求点D 的坐标;(3)连接BC ,将△OBC 沿x 轴向左平移得到△O′B′C′,再将以A ,B ,B′,C′为顶点的四边形沿O′B′剪开得到两个图形.若用这两个图形拼成不重叠且无缝隙的图形恰好是三角形,求△OBC 平移的距离.23.如图,△ABC中,AB=AC,BE△AC于E,且D、E分别是AB、AC的中点.延长BC 至点F,使CF=CE.(1)求△ABC的度数;(2)求证:BE=FE;(3)若AB=2,求△CEF的面积.24.如图,有88⨯的正方形网格(每个小正方形的边长为1),按要求作图并计算.(1)在88⨯的正方形网格中建立平面直角坐标系,使点A的坐标为(2,4),点B的坐标为(4,2);(2)将点A向下平移6个单位,再关于y轴对称得到点C,求点C坐标;(3)画出三角形ABC,请判断ABC的形状并说明理由.25.项目研究:剪等腰三角形(1)动手尝试:如图,有甲,乙两张三角形纸片,甲三角形纸片的内角分别为40°,60°,80°;乙三角形纸片的内角分别为35°,40°,105°,你能把每一张三角形纸片剪成两个等腰三角形吗?若能,请画出剪痕并标出各角的度数;若不能,请说明理由.(2)项目研究:结合上述尝试,请思考归纳出一张三角形纸片能剪成两个等腰三角形需具备的条件,并画出相应的示意图说明剪法.参考答案1.C【分析】根据三角形内角和定理计算即可. 【详解】解:△6050A B ∠=︒∠=︒,,△180180605070C A B ∠=︒-∠-∠=︒-︒-︒=︒ , 故选:C .【点睛】本题考查了三角形内角和定理的应用,掌握三角形内角和等于180°是解题的关键. 2.D【分析】由题意依据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,以此进行分析判断即可.【详解】解:选项A 、B 、C 均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项D 能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形, 故选:D .【点睛】本题主要考查了轴对称图形的概念.寻找一条直线,使得直线两旁的部分折叠后可重合是解题的关键. 3.A【分析】根据在各象限内,点坐标的符号规律即可得. 【详解】解:△10>,30>,∴在平面直角坐标系中,点P(1,3)所在的象限是第一象限,故选:A.【点睛】本题考查了坐标系中各象限内的坐标特点,熟练掌握点坐标的符号规律是解题关键:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).4.D【分析】根据不等式的性质求解即可.【详解】解:A、由x<y,可得x+2<y+2,原结论不成立,不符合题意;B、由x<y,可得-2x>-2y,原结论不成立,不符合题意;C、由x<y,可得3x<3y,原结论不成立,不符合题意;D、由x<y,可得-x>-y,则1-x>1-y,原结论成立,符合题意;故选D.【点睛】本题主要考查了不等式的性质,熟知不等式两边同时加上或减去一个整式,不等式方向不改变,不等式两边同时乘以或除以一个正数,不等式不改变方向,不等式两边同时乘以或除以一个负数,不等式改变方向是解题的关键.5.A【分析】分别求出当横坐标为1、2、12-的时候的函数值即可得到答案.【详解】解:当x=1时,y=2,当x=2时,y=4,当12x=-时,y=-1,△点(1,2)在正比例函数y=2x上,点(2,1),点(1,12),点(12-,1)不在正比例函数y=2x上,故选A.【点睛】本题主要考查了正比例函数的性质,熟知在函数图象上的点一定满足函数解析式是解题的关键.6.D【分析】根据不等式的性质,求出不等式的解集即可.【详解】△10x+>△x>-1在数轴上表示D选项是正确的;故选:D【点睛】本题主要考查了解不等式并把解集在数轴上表示,熟练的掌握不等式的性质,会求不等式的解集,是解题的关键.注意:“>、<”在数轴上是空心小圆圈,“≥、≤”在数轴上是实心小圆点.7.C【分析】在△ABE和△ACD中, 已知AD=AE, 且公共角△A=△A, 因此再添加一组角相等或边相等的条件即可证明△ABE△△ACD, 依据全等三角形判定定理对各个选项进行判断即可得到答案.【详解】解:AD=AE, △A=△A,当AB=AC时, △ABE△△ACD, 选项A与题意不符,当△B=△C时, △ABE△△ACD, 选项B与题意不符,当BE=CD时, △ABE与△ACD不一定全等, 选项C与题意相符,当△ADC=△AEB时, △ABE△△ACD, 选项D与题意不符.故选C.【点睛】由题意可知, 本题需要借助全等三角形的判定进行分析, 关键是熟练掌握全等三角形的判定定理;8.B【分析】由线段垂直平分线的性质得到AD=CD,再根据△ABD的周长为10,推出AC+CD+BD=10,由此即可得到答案.【详解】解:由作图方法可知直线EF是线段AC的垂直平分线,△AD=CD,△△ABD的周长为10,△AB+AD+BD=10,△AC=AB,AD=CD,△AC+CD+BD=10,△CD+BD=10-AC=6,即BC=6,故选B.【点睛】本题主要考查了线段垂直平分线的性质,线段垂直平分线的尺规作图,熟知线段垂直平分线上的点到线段两端的距离相等是解题的关键.9.D【分析】根据一次函数图象不经过第二象限可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围.【详解】解:△y =(m−1)x +m−2的图象不经过第二象限,△1020m m ->⎧⎨-≤⎩, 解得:1<m≤2, 故选:D .【点睛】本题考查一次函数图象与系数的关系:△k >0,b >0△y =kx +b 的图象在一、二、三象限;△k >0,b <0△y =kx +b 的图象在一、三、四象限;△k <0,b >0△y =kx +b 的图象在一、二、四象限;△k <0,b <0△y =kx +b 的图象在二、三、四象限.也考查了一元一次不等式组的解法. 10.C【分析】作点A 关于CD 的对称点E ,过点E 作BD 的垂线,交BD 延长线于点F ,连接BE 交CD 于点O ,连接OA ,先根据矩形的判定与性质、勾股定理可得1000m BE =,再根据轴对称的性质、两点之间线段最短即可得.【详解】解:如图,作点A 关于CD 的对称点E ,过点E 作BD 的垂线,交BD 延长线于点F ,连接BE 交CD 于点O ,连接OA ,则,300m OA OE CE AC ===,四边形CDFE 是矩形, 600m,300m EF CD DF CE ∴====,500m BD =,800m BF BD DF ∴=+=,1000m BE ∴==,由两点之间线段最短可知,牧童要走的路程OA OB OE OB +=+,它的最小值为BE 的长,即为1000m ,故选:C .【点睛】本题考查了矩形的判定与性质、勾股定理、轴对称的性质、两点之间线段最短,利用轴对称的性质找出牧童要走的最短路程是解题关键. 11.x≠0.【分析】根据分母不等于0即可得出答案. 【详解】解:根据题意得,x≠0. 故答案为:x≠0.【点睛】本题主要考查自变量的取值范围,掌握分是有意义的条件是解题的关键. 12.60【分析】先根据角平分线的定义求出△BCE 的度数,再利用三角形外角的性质即可求出△B 的度数.【详解】解:△CE 平分△ACB ,△ACB=90°,△1452BCE ACB ==︒∠∠,△△AEC=105°,△△B=△AEC -△BCE=60°, 故答案为:60. 13.-2【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案. 【详解】解:将点(,1)A a 向右平移3个单位,再向下平移2个单位得到点B , 则点B 的坐标为(3,1)a +-. 又△点B 的坐标为(5,b ) △2,1a b ==-, △2ab =-, 故答案为:2-. 14.40【分析】设降价x 元,利用单件利润率不低于20%列出不等式,求解即可.100%-=⨯售价成本利润率成本.【详解】解:设降价x 元,则利润率为400300100%300x --⨯,△列得不等式:400300100%20%300x --⨯≥, 解得:40x ≤ △最多可降价40元.故答案为:40.【点睛】本题考查一元一次不等式的实际应用,根据题意列出不等式是解题的关键. 15.1012##50.5##1502【分析】当木杆的上端与墙头平齐时,木杆与墙、地面构成直角三角形,设木杆长为x 尺,则木杆底端离墙有()1x -尺,根据勾股定理可列出方程,解方程即可得出答案.【详解】解:如图,设木杆AB 长为x 尺,则木杆底端B 离墙的距离即BC 的长有()1x -尺,在Rt ABC 中,222AC BC AB +=,△()222101x x +-=, 解得:1012x = 故答案为:1012. 【点睛】本题考查了勾股定理的应用,由实际问题抽象出直角三角形,从而运用勾股定理列出方程是解题的关键.16. 12 (-2,3),(2,5)【分析】(1)由y=-2x+4求得点,A B 的坐标,根据,B C 的坐标待定系数法求解析式即可求解;(2)根据题意画出图形,分M 在B 点左边与右边两种情况分类讨论即可求解.【详解】(1)解:△一次函数y=-2x+4的图象与x 轴、y 轴分别交于点A 和点B , 令0y =,得2x =,则()2,0A ,令0x =,得4y =,则()0,4B ,将()0,4B ,()8,0C -代入y=kx+b ,得480b k b =⎧⎨-+=⎩, 解得124k b ⎧=⎪⎨⎪=⎩,△直线BC 得到解析式为142y x =+, 故答案为:12;(2)△()2,0A ,()0,4B ,()8,0C -,△10AB BC AC ==,△222AB BC AC +=,△90ABC ∠=︒,如图,△MAB=△ABO ,点M 为直线BC 上△当M 在B 点右侧时,△△MAB=△ABO ,点M 为直线BC 上∴AM OB ∥,所以M 的横坐标为2,代入142y x =+,得5y =,所以M ()2,5,△当M 在B 点左侧时,如果,设AM 交y 轴于点N ,△△MAB=△ABO ,△AN NB =,设()0,N n ,所以4BN n AN =-=,在Rt AON △中,222AN AO ON =+,△()22242n n -=+, 解得32n =, △30,2N ⎛⎫⎪⎝⎭,设AN 解析式为y sx t =+,2032s t t +=⎧⎪⎨=⎪⎩,解得3432s t ⎧=-⎪⎪⎨⎪=⎪⎩,△AN 的解析式为3342y x =-+,联立,AN AB 解析式得1423342y x y x ⎧=+⎪⎪⎨⎪=-+⎪⎩,解得:23x y =-⎧⎨=⎩,△M ()2,3-,综上,M ()2,5,()2,3-,故答案为:M ()2,5或()2,3-17.-2≤x <3,数轴表示见详解【分析】分别解不等式,求出不等式组的解集,然后在数轴上表示即可.【详解】解:解不等式△,得x≥-2,解不等式△,得x<3,把△,△两个不等式的解表示在数轴上,如下图:△不等式组的解是-2≤x <3.18.证明见详解【分析】一线三直角的全等三角形模型,使用AAS 证明即可.【详解】证明:△△D=△ACB=△E=90°,△△DAC+△ACD=△ACD+△ECB=90°,即△DAC=△ECB .在△ADC 与△CEB 中,90D E DAC ECB AC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩△△ADC△△CEB .19.(1)y 是关于x 的函数,理由见详解(2)△2元;△当x=2750时,函数值y=-500,实际意义是:月乘车人数为2750人时,公交车本月亏损500元.【分析】(1)根据函数的定义:在一个变化过程中,因变量随着自变量的变化而变化,对于每一个确定的自变量都有唯一确定的因变量与之对应,进行解答即可;(2)结合表格进行解答即可.(1)解:根据函数的定义可知:y 是关于x 的函数.(2)解:△由题意得:公交车票价:6000÷3000=2(元).△当x=2750时,函数值y=-500,实际意义是:月乘车人数为2750人时,公交车本月亏损500元.20.(1)证明见详解(2)30°【分析】(1)根据AD 是BC 边上的高线,△B=30°得到AD=AE=12AB ,计算得到△ACB=△CAD =45°得到AD=CD ,从而得到AE=CD ;(2)利用直角三角形斜边上得中线等于斜边的一半和等量代换得到DE=BE=AE=CD ,从而得到△EDB =△B =30°,△ECD=12EDB ∠=15°,再用减法得到△ACE=△ACD -△ECD=30°. (1)证明:△AD 是BC 边上的高线,△△ADB=△ADC=90°,△△B=30°, △AD=12AB , △CE 是中线, △AE=12AB , △AD=AE .△△ACB=45°,△ADC=90°,△△ACB=△CAD =45°△AD=CD ,△AE=CD .(2)连接DE ,△在Rt△ADB 中,E 是AB 中点, △DE=BE=AE=CD=12AB , △△EDB =△B =30°,△ECD=△CED △△ECD=12EDB ∠=15°, △△ACE=△ACD -△ECD=45°-15°=30°.21.(1)△y=-2x+1;△4(2)-12<k <-13【分析】(1)△把点(0,1),(-1,3)代入y=kx+b ,待定系数法求解析式即可求解;△P(a ,a +3)关于x 轴对称的对称点是(a ,-a -3),代入解析式即可求解;(2)把x=2,y=0; x=3,y=0代入一次函数解析式,求出对应的k 值,即可求解.(1)解:△把点(0,1),(-1,3)代入y=kx+b ,得,1,3b k b =⎧⎨-+=⎩解得:1,2b k =⎧⎨=-⎩△一次函数的表达式为y=-2x+1.△P(a ,a +3)关于x 轴对称的对称点是(a ,-a -3),△该对称点在函数的图象上,△-a -3=-2a +1,△a =4.(2)由已知,得y=kx+1,把x=2,y=0代入,得0=2k+1,解得k=-12,把x=3,y=0代入,得0=3k+1,解得k=-13, △k 的取值范围是-12<k <-13. 22.(1)点A 的坐标为(-8,0),点B 的坐标为(0,4);(2)(-83,83)或(403-,83-); (3)2或8或12.【分析】(1)分别令y=0求x ,令x=0求y ,可以得到点A ,点B 的坐标;(2)利用2AOB ACD S S =△△,点A ,点B 的坐标得到8ACD S =△,设点D 的横坐标为a ,AC 边上的高线长为h ,则h=|12a +4|=83,解出a ,从而得到点D 的坐标; (3)分三种情况讨论,然后根据剪下的部分和要拼补的部分全等来求平移距离即可.(1)解:将y=0代入表达式得:0=12x+4,解得:8x =-,将x=0代入表达式,得:y=4,△点A 的坐标为(-8,0),点B 的坐标为(0,4).(2)△点C 的坐标为(-2,0),△(86)2AC -=--=,△2AOBACD S S =△△, △12ACD AOB S S =△△=12×12×8×4=8, 设点D 的横坐标为a ,AC 边上的高线长为h ,则h=|12a +4| △1163822ACD S AC h h h =⨯=⨯⨯==△ △h=83, △83=|12a +4|,解得:a=-83或-403,当a=-83时,12a +4=83当a=-403时,12a +4=83-,△点D 的坐标为(-83,83)或(403-,83-).(3)△如图1,△要拼成无缝不重叠的三角形,△△O'C'B'△△O'EA ,△O'A =O'B'=OB =4,△OO'=4+8=12,△平移的距离为12.△如图2,△要拼成无缝不重叠的三角形,则A 与O'重合,△OO'=OA=8,△平移的距离为8.△如图3,△要拼成无缝不重叠的三角形,△△B'BE△△O'C'E ,△B'B=O'C'=OC=2,△平移的距离为2.综上所述:平移的距离为2或8或12.23.(1) △ABC=60°;(2)证明见解析;(3)4ECF S .【详解】试题分析:(1)根据等边三角形的判定得出△ABC 是等边三角形,即可得出△ABC 的度数;(2)根据BE=FE 得出△F=△CEF=30°,再等边三角形的性质得出△EBC=30°,即可证明;(3)过E 点作EG△BC ,根据三角形面积解答即可.试题解析:(1)△BE△AC 于E ,E 是AC 的中点,△△ABC 是等腰三角形,即AB=BC ,△AB=AC ,△△ABC 是等边三角形,△△ABC=60°;(2)△CF=CE ,△△F=△CEF ,△△ACB=60°=△F+△CEF ,△△F=30°,△△ABC 是等边三角形,BE△AC ,△△EBC=30°,△△F=△EBC ,△BE=EF ;(3)过E 点作EG△BC ,如图:△BE△AC ,△EBC=30°,AB=BC=2,CE=1=CF ,在△BEC 中,EG=·CE BE BC =△11224ECF S =⨯⨯=. 考点:1.等边三角形的判定与性质;2.等边三角形的性质.24.(1)画图见解析;(2)(2,2)C -;(3)ABC 为等腰三角形.【详解】试题分析:(1)将A 点向左平移2个单位,再向处平移4个单位即可得到原点,然后建立坐标系即可;(2)先平移,然后再根据关于y 轴对称的点的坐标特征即可得;(3)利用勾股定理求出各边的长,比较即可得.试题解析:(1)如图所示;-,再关于y轴对称,(2)A向下平移6个单位得到点(2,2)C--;△(2,2)(3)AC===BC==又AB==,ABC为等腰三角形.△AC BC25.见详解【分析】(1)根据等腰三角形的与三角形内角和定理将甲分成两个底角分别为40°与80°的等腰三角形,将乙分成两个底角分别为35°与70°的等腰三角形即可求解;(2)分为三类情况讨论,分别画出图形,结合等腰三角形的性质与三角形内角和即可求解.【详解】解:(1)如图所示,(2)分为三类,如图△,直角三角形一定可以剪成两个等腰三角形,剪痕为斜边上的中线;如图△,原三角形中有一个角是另一个角的两倍,且最小角小于45°;如图△,原三角形中有一个角是另一个角的三倍.【点睛】本题考查了等腰三角形的定义,三角形的内角和定理,三角形外角的性质,分类讨论找到规律是解题的关键.21。
一、选择题(每题4分,共20分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 下列方程中,x=2是它的解的是()A. 2x + 3 = 7B. 3x - 4 = 2C. 4x + 5 = 10D. 5x - 6 = 83. 已知二次函数y=ax^2+bx+c的图象开口向上,且a≠0,若a=1,b=-4,c=3,则该函数的顶点坐标是()A. (2, 3)B. (2, -3)C. (-2, 3)D. (-2, -3)4. 在平面直角坐标系中,点A(3, 4)关于y轴的对称点B的坐标是()A. (3, -4)B. (-3, 4)C. (-3, -4)D. (3, 4)5. 已知等腰三角形ABC中,AB=AC,且底边BC=6cm,腰AB=8cm,则顶角A的度数是()A. 45°B. 60°C. 90°D. 120°二、填空题(每题4分,共20分)6. 若方程2(x-1) + 3 = 5的解为x=,则x的值是______。
7. 已知一元二次方程x^2 - 5x + 6 = 0的两个根为x1和x2,则x1+x2的值是______。
8. 在平面直角坐标系中,点P(2, -3)到原点O的距离是______。
9. 已知三角形ABC的三个内角A、B、C的度数分别为30°、60°、90°,则该三角形是______三角形。
10. 已知等边三角形ABC的边长为a,则其高为______。
三、解答题(共60分)11. (10分)解下列方程组:$$\begin{cases}2x + 3y = 8 \\x - y = 1\end{cases}$$12. (12分)已知二次函数y = -2x^2 + 4x + 3,求:(1)该函数的顶点坐标;(2)该函数的对称轴方程;(3)当x取何值时,y有最大值?最大值是多少?13. (12分)在平面直角坐标系中,点A(3, 4)关于x轴的对称点为A',点B(-2, 1)关于y轴的对称点为B',求线段A'B'的长度。
浙教版八年级(上)期末数学试卷及答案一、选择题(本题有10小题,每小题4分,共40分)1.下列四个图形中,是轴对称图形的是()A.B.C.D.2.已知三角形的三边长分别为2、x、10,若x为正整数,则这样的三角形个数为()A.1B.2C.3D.43.下列说法中正确的是()A.使式子有意义的是x>﹣3B.使是正整数的最小整数n是3C.若正方形的边长为3cm,则面积为30cm2D.计算3÷×的结果是34.若点P在一次函数y=﹣x+4的图象上,则点P一定不在()A.第一象限B.第二象限C.第三象限D.第四象限5.如图,BE=CF,AB=DE,添加下列哪一个条件可以推证△ABC≌△DEF()A.BC=EF B.∠A=∠D C.AC∥DF D.∠B=∠DEF6.如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.40°B.45°C.47.5°D.50°7.关于x的不等式2x+a≤1只有2个正整数解,则a的取值范围为()A.﹣5<a<﹣3B.﹣5≤a<﹣3C.﹣5<a≤﹣3D.﹣5≤a≤﹣38.已知一次函数y1=ax+b和y2=bx+a(ab≠0且a≠b),这两个函数的图象可能是()A.B.C.D.9.如图,过点A0(0,1)作y轴的垂线交直线l:y=x于点A1,过点A1作直线l的垂线,交y轴于点A2,过点A2作y轴的垂线交直线l于点A3,…,这样依次下去,得到△A0A1A2,△A2A3A4,△A4A5A6,…,其面积分别记为S1,S2,S3,…,则S100为()A.()100B.(3)100C.3×4199D.3×239510.如图,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI上,若AC+BC=6,空白部分面积为10.5,则AB的长为()A.3B.C.2D.二、填空题(本题有6小题,每小题5分,共30分)11.命题“对顶角相等”的逆命题是.12.一次函数y=(2m﹣6)x+5中,y随x的增大而减小,则m的取值范围是.13.将点P(﹣2,﹣3)向左平移3个长度单位,再向上平移2个长度单位得到点Q,则点Q的坐标是.14.已知一次函数y=kx+b的图象如图所示,则关于x的不等式3kx﹣b>0的解集为.15.如图在△ABC中,∠ACB=90°,∠BAC=30°,将△ABC绕C点按逆时针方向旋转α角(0°<α<90°),得到△A′B′C,设A′C交AB边于D,连结AA′,若△AA'D是等腰三角形,则旋转角α的度数为.16.如图,在△ABC中,D是AC边上的中点,连接BD,把△BDC沿BD翻折,得到△BDC′,DC′与AB交于点A′,连接AC′,若AD=AC′=4,BD=6,则点D到BC的距离为.三、解答题(本题有8小题,共80分)17.解下面一元一次不等式组,并写出它的所有非负整数解..18.计算:(1)×;(2)已知|﹣a|+=0,求a2﹣2+2+b2的值.19.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.20.如图,在8×8网格纸中,每个小正方形的边长都为1.(1)请在网格纸中建立平面直角坐标系,使点A、C的坐标分别为(﹣4,4),(﹣1,3),并写出点B的坐标为;(2)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;(3)在y轴上求作一点P,使△P AB的周长最小,并直接写出点P的坐标.21.镇海制米厂接到加工大米的任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务.乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间x(天)之间的关系如图1所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图2所示,请结合图象回答下列问题:(1)甲车间每天加工大米吨,a=;(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式;(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好第二节车厢和第三节车厢都装满?22.某土特产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题:土特产品种甲乙丙每辆汽车运载量(吨)865每吨土特产获利(百元)121610(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式.(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.23.我们新定义一种三角形:若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,两边交点为勾股顶点.●特例感知①等腰直角三角形勾股高三角形(请填写“是”或者“不是”);②如图1,已知△ABC为勾股高三角形,其中C为勾股顶点,CD是AB边上的高.若BD=2AD=2,试求线段CD的长度.●深入探究如图2,已知△ABC为勾股高三角形,其中C为勾股顶点且CA>CB,CD是AB边上的高.试探究线段AD与CB的数量关系,并给予证明;●推广应用如图3,等腰△ABC为勾股高三角形,其中AB=AC>BC,CD为AB边上的高,过点D向BC边引平行线与AC 边交于点E.若CE=a,试求线段DE的长度.24.如图(1),在平面直角坐标系中,直线y=﹣x+4交坐标轴于A、B两点,过点C(﹣4,0)作CD交AB于D,交y轴于点E.且△COE≌△BOA.(1)求B点坐标为;线段OA的长为;(2)确定直线CD解析式,求出点D坐标;(3)如图2,点M是线段CE上一动点(不与点C、E重合),ON⊥OM交AB于点N,连接MN.①点M移动过程中,线段OM与ON数量关系是否不变,并证明;②当△OMN面积最小时,求点M的坐标和△OMN面积.参考答案与试题解析一.选择题(共10小题)1.下列四个图形中,是轴对称图形的是()A.B.C.D.【分析】利用轴对称图形的定义对各选项进行判断.【解答】解:A选项和D选项中的图形既不是中心对称也不是轴对称图形,B选项中的图形为中心对称图形,C 选项中的图形既是中心对称也是轴对称图.故选:C.2.已知三角形的三边长分别为2、x、10,若x为正整数,则这样的三角形个数为()A.1B.2C.3D.4【分析】先根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出x的取值范围,然后根据若x 为正整数,即可选择答案.【解答】解:∵10﹣2=8,10+2=12,∴8<x<12,∵若x为正整数,∴x的可能取值是9,10,11,故这样的三角形共有3个.故选:C.3.下列说法中正确的是()A.使式子有意义的是x>﹣3B.使是正整数的最小整数n是3C.若正方形的边长为3cm,则面积为30cm2D.计算3÷×的结果是3【分析】直接利用二次根式有意义的条件以及二次根式的乘除运算法则分别计算得出答案.【解答】解:A、使式子有意义的是x≥﹣3,故此选项错误;B、使是正整数的最小整数n是3,故此选项正确;C、若正方形的边长为3cm,则面积为90cm2,故此选项错误;D、3÷×的结果是1,故此选项错误;故选:B.4.若点P在一次函数y=﹣x+4的图象上,则点P一定不在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】结合一次函数图象与系数的关系即可得出一次函数y=﹣x+4的图象经过第一、二、四象限,此题得解.【解答】解:∵﹣1<0,4>0,∴一次函数y=﹣x+4的图象经过第一、二、四象限,即不经过第三象限.∵点P在一次函数y=﹣x+4的图象上,∴点P一定不在第三象限.故选:C.5.如图,BE=CF,AB=DE,添加下列哪一个条件可以推证△ABC≌△DEF()A.BC=EF B.∠A=∠D C.AC∥DF D.∠B=∠DEF【分析】根据题目中的条件,可以得到BC=EF,AB=DE,然后即可判断各个选项中添加的条件是否能使得△ABC≌△DEF,从而可以解答本题.【解答】解:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,又∵AB=DE,∴添加条件BC=EF,不能判断△ABC≌△DEF,故选项A不符合题意;添加条件∠A=∠D,不能判断△ABC≌△DEF,故选项B不符合题意;添加条件AC∥DF,可以得到∠ACB=∠F,不能判断△ABC≌△DEF,故选项C不符合题意;添加条件∠B=∠DEF,可以得到△ABC≌△DEF(SAS),故选项D符合题意;故选:D.6.如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.40°B.45°C.47.5°D.50°【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【解答】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°﹣17.5°=72.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°﹣∠ABC﹣∠C=180°﹣35°﹣50°=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°﹣50°=45°,故选:B.7.关于x的不等式2x+a≤1只有2个正整数解,则a的取值范围为()A.﹣5<a<﹣3B.﹣5≤a<﹣3C.﹣5<a≤﹣3D.﹣5≤a≤﹣3【分析】首先解不等式求得不等式的解集,然后根据不等式只有两个正整数解即可得到一个关于a的不等式,求得a的值.【解答】解:解不等式2x+a≤1得:x≤,不等式有两个正整数解,一定是1和2,根据题意得:2≤<3,解得:﹣5<a≤﹣3.故选:C.8.已知一次函数y1=ax+b和y2=bx+a(ab≠0且a≠b),这两个函数的图象可能是()A.B.C.D.【分析】根据题意和一次函数的性质,可以判断各个选项中的图象是否正确,本题得以解决.【解答】解:当a>0,b>0时,一次函数y1=ax+b的图象经过第一、二、三象限,y2=bx+a的图象经过第一、二、三象限,故选项A错误,选项B错误,选项D正确;当a<0,b>0时,一次函数y1=ax+b的图象经过第一、二、四象限,y2=bx+a的图象经过第一、三、四象限,故选项C错误;故选:D.9.如图,过点A0(0,1)作y轴的垂线交直线l:y=x于点A1,过点A1作直线l的垂线,交y轴于点A2,过点A2作y轴的垂线交直线l于点A3,…,这样依次下去,得到△A0A1A2,△A2A3A4,△A4A5A6,…,其面积分别记为S1,S2,S3,…,则S100为()A.()100B.(3)100C.3×4199D.3×2395【分析】本题需先求出OA1和OA2的长,再根据题意得出OA n=2n,把纵坐标代入解析式求得横坐标,然后根据三角形相似的性质即可求得S100.【解答】解:∵点A0的坐标是(0,1),∴OA0=1,∵点A1在直线y=x上,∴OA1=2,A0A1=,∴OA2=4,∴OA3=8,∴OA4=16,得出OA n=2n,∴A n A n+1=2n•,∴OA198=2198,A198A199=2198•,∵S1=(4﹣1)•=,∵A2A1∥A200A199,∴△A0A1A2∽△A198A199A200,∴=()2,∴S=2396•=3×2395故选:D.10.如图,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI上,若AC+BC=6,空白部分面积为10.5,则AB的长为()A.3B.C.2D.【分析】根据余角的性质得到∠F AC=∠ABC,根据全等三角形的性质得到S△F AM=S△ABN,推出S△ABC=S四边形FNCM,根据勾股定理得到AC2+BC2=AB2,解方程组得到3AB2=57,于是得到结论.【解答】解:∵四边形ABGF是正方形,∴∠F AB=∠AFG=∠ACB=90°,∴∠F AC+∠BAC=∠F AC+∠ABC=90°,∴∠F AC=∠ABC,在△F AM与△ABN中,,∴△F AM≌△ABN(AAS),∴S△F AM=S△ABN,∴S△ABC=S四边形FNCM,∵在△ABC中,∠ACB=90°,∴AC2+BC2=AB2,∵AC+BC=6,∴(AC+BC)2=AC2+BC2+2AC•BC=36,∴AB2+2AC•BC=36,∵AB2﹣2S△ABC=10.5,∴AB2﹣AC•BC=10.5,∴3AB2=57,解得AB=或﹣(负值舍去).故选:B.二.填空题(共6小题)11.命题“对顶角相等”的逆命题是相等的角为对顶角.【分析】交换原命题的题设与结论即可得到其逆命题.【解答】解:命题“对顶角相等”的逆命题是“相等的角为对顶角”.故答案为:相等的角为对顶角.12.一次函数y=(2m﹣6)x+5中,y随x的增大而减小,则m的取值范围是m<3.【分析】利用一次函数图象与系数的关系列出关于m的不等式2m﹣6<0,然后解不等式即可.【解答】解:∵一次函数y=(2m﹣6)x+5中,y随x的增大而减小,∴2m﹣6<0,解得,m<3;故答案是:m<3.13.将点P(﹣2,﹣3)向左平移3个长度单位,再向上平移2个长度单位得到点Q,则点Q的坐标是(﹣5,﹣1).【分析】让P的横坐标减3,纵坐标加2即可得到点Q的坐标.【解答】解:根据题意,点Q的横坐标为:﹣2﹣3=﹣5;纵坐标为﹣3+2=﹣1;即点Q的坐标是(﹣5,﹣1).故答案为:(﹣5,﹣1).14.已知一次函数y=kx+b的图象如图所示,则关于x的不等式3kx﹣b>0的解集为x<2.【分析】直接利用图象把(﹣6,0)代入,进而得出k,b之间的关系,再利用一元一次不等式解法得出答案.【解答】解:∵图象过(﹣6,0),则0=﹣6k+b,则b=6k,故3kx﹣b=3kx﹣6k>0,∵k<0,∴x﹣2<0,解得:x<2.故答案为:x<2.15.如图在△ABC中,∠ACB=90°,∠BAC=30°,将△ABC绕C点按逆时针方向旋转α角(0°<α<90°),得到△A′B′C,设A′C交AB边于D,连结AA′,若△AA'D是等腰三角形,则旋转角α的度数为20°或40°.【分析】根据旋转的性质可得AC=CA',根据等腰三角形的两底角相等求出∠AA'C=∠CAA',再表示出∠DAA',根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠ADA',然后分①∠AA'C=∠DAA',②∠AA'C=∠ADA',③∠DAA'=∠ADA'三种情况讨论求解.【解答】解:∵△ABC绕C点逆时针方向旋转得到△A'B'C,∴AC=CA',∴∠AA'C=∠CAA'=(180°﹣α),∴∠DAA'=∠CAA'﹣∠BAC=(180°﹣α)﹣30°,根据三角形的外角性质,∠ADA'=∠BAC+∠ACA'=30°+α,△ADA'是等腰三角形,分三种情况讨论,①∠AA'C=∠DAA'时,(180°﹣α)=(180°﹣α)﹣30°,无解,②∠AA'C=∠ADA'时,(180°﹣α)=30°+α,解得α=40°,③∠DAA'=∠ADA'时,(180°﹣α)﹣30°=30°+α,解得α=20°,综上所述,旋转角α度数为20°或40°.故答案为:20°或40°.16.如图,在△ABC中,D是AC边上的中点,连接BD,把△BDC沿BD翻折,得到△BDC′,DC′与AB交于点A′,连接AC′,若AD=AC′=4,BD=6,则点D到BC的距离为.【分析】连接CC',交BD于点M,过点D作DH⊥BC'于点H,由翻折知,△BDC≌△BDC',BD垂直平分CC',证△ADC'为等边三角形,利用解直角三角形求出DM=2,C'M=DM=2,BM=4,在Rt△BMC'中,利用勾股定理求出BC'的长,在△BDC'中利用面积法求出DH的长,则可得出答案.【解答】解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,∵AD=AC′=4,D是AC边上的中点,∴DC=AD=4,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=4,BC=BC',CM=C'M,∴AD=AC′=DC'=4,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=×60°=30°,在Rt△C'DM中,∠DC'C=30°,DC'=4,∴DM=2,C'M=DM=2,∴BM=BD﹣DM=6﹣2=4,在Rt△BMC'中,BC'===2,∵S△BDC'=BC'•DH=BD•C'M,∴2×DH=6×2,∴DH=,∵∠DCB=∠DBC',∴点D到BC的距离为.故答案为:.三.解答题17.解下面一元一次不等式组,并写出它的所有非负整数解..【分析】求出不等式组的解集,根据不等式组的解集求出即可.【解答】解:,解不等式①得x>﹣1;解不等式②得x≤2;∴原不等式组的解集为﹣1<x≤2,∴原不等式组的所有非负整数解为0,1,2.18.计算:(1)×;(2)已知|﹣a|+=0,求a2﹣2+2+b2的值.【分析】(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据|﹣a|+=0,可以得到a、b的值,然后将所求式子变形,再将a、b的值代入即可解答本题.【解答】解:(1)×=4÷﹣+2=4﹣+2=4+;(2)∵|﹣a|+=0,∴﹣a=0,b﹣2=0,∴a=,b=2,∴a2﹣2+2+b2=(a﹣)2+b2=(﹣)2+22=02+4=0+4=4.19.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.【分析】(1)首先根据等腰三角形的性质得到∠ABC=∠ACB,然后利用高线的定义得到∠ECB=∠DBC,从而得证;(2)首先求出∠A的度数,进而求出∠BOC的度数.【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD、CE是△ABC的两条高线,∴∠BEC=∠BDC=90°∴△BEC≌△CDB∴∠DBC=∠ECB,BE=CD在△BOE和△COD中∵∠BOE=∠COD,BE=CD,∠BEC=∠BDE=90°∴△BOE≌△COD,∴OB=OC;(2)∵∠ABC=50°,AB=AC,∴∠A=180°﹣2×50°=80°,∴∠DOE+∠A=180°∴∠BOC=∠DOE=180°﹣80°=100°.20.如图,在8×8网格纸中,每个小正方形的边长都为1.(1)请在网格纸中建立平面直角坐标系,使点A、C的坐标分别为(﹣4,4),(﹣1,3),并写出点B的坐标为(﹣2,1);(2)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;(3)在y轴上求作一点P,使△P AB的周长最小,并直接写出点P的坐标.【分析】(1)根据平面直角坐标系的特点作出坐标系,写出点B的坐标;(2)分别作出点A、B、C关于y轴的对称的点,然后顺次连接,写出B1点的坐标;(3)作点B关于y轴的对称点,连接AB1,与y轴的交点即为点P.【解答】解:(1)所作图形如图所示:B(﹣2,1);(2)所作图形如图所示:B1(2,1);(3)所作的点如图所示,P(0,2).故答案为:(﹣2,1).21.镇海制米厂接到加工大米的任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务.乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间x(天)之间的关系如图1所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图2所示,请结合图象回答下列问题:(1)甲车间每天加工大米20吨,a=15;(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式;(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好第二节车厢和第三节车厢都装满?【分析】(1)根据题意,由图2得出两个车间同时加工和甲单独加工的速度;(2)用待定系数法解决问题;(3)求出两个车间每天加工速度分别计算两个55吨完成的时间.【解答】解:(1)由图象可知,第一天甲乙共加工220﹣185=35吨,第二天,乙停止工作,甲单独加工185﹣165=20吨,则乙一天加工35﹣20=15吨.a=15,故答案为:20,15;(2)设y=kx+b,把(2,15),(5,120)代入,,解得,∴y=35x﹣55;(3)由图2可知,当w=220﹣55=165时,恰好是第二天加工结束.当2≤x≤5时,两个车间每天加工速度为=55(吨),∴再加工2天装满第二节车厢和第三节车厢.22.某土特产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题:土特产品种甲乙丙每辆汽车运载量(吨)865每吨土特产获利(百元)121610(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式.(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.【分析】(1)因为公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售,设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,则装运丙特产的车辆数为(20﹣x﹣y),且8x+6y+5(20﹣x﹣y)=120,整理即得y与x之间的函数关系式.(2)因为装运每种土特产的车辆都不少于3辆,所以x≥3,y≥3,20﹣x﹣y≥3,结合(1)的答案,就可得到关于x的不等式组,又因x是正整数,从而可求x的取值,进而确定方案.(3)可设此次销售利润为W百元,由表格可得W=8x•12+6(20﹣3x)•16+5[20﹣x﹣(20﹣3x)]•10=﹣92x+1920,根据y随x的变化规律,结合(2)中所求,就可确定使利润最大的方案.【解答】解:(1)∵8x+6y+5(20﹣x﹣y)=120,∴y=20﹣3x.∴y与x之间的函数关系式为y=20﹣3x.(3分)(2)由x≥3,y=20﹣3x≥3,即20﹣3x≥3可得3≤x≤5,又∵x为正整数,∴x=3,4,5.(5分)故车辆的安排有三种方案,即:方案一:甲种3辆乙种11辆丙种6辆;方案二:甲种4辆乙种8辆丙种8辆;方案三:甲种5辆乙种5辆丙种10辆.(7分)(3)设此次销售利润为W百元,W=8x•12+6(20﹣3x)•16+5[20﹣x﹣(20﹣3x)]•10=﹣92x+1920.∵W随x的增大而减小,又x=3,4,5∴当x=3时,W最大=1644(百元)=16.44万元.答:要使此次销售获利最大,应采用(2)中方案一,即甲种3辆,乙种11辆,丙种6辆,最大利润为16.44万元.(10分)23.我们新定义一种三角形:若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,两边交点为勾股顶点.●特例感知①等腰直角三角形是勾股高三角形(请填写“是”或者“不是”);②如图1,已知△ABC为勾股高三角形,其中C为勾股顶点,CD是AB边上的高.若BD=2AD=2,试求线段CD的长度.●深入探究如图2,已知△ABC为勾股高三角形,其中C为勾股顶点且CA>CB,CD是AB边上的高.试探究线段AD与CB的数量关系,并给予证明;●推广应用如图3,等腰△ABC为勾股高三角形,其中AB=AC>BC,CD为AB边上的高,过点D向BC边引平行线与AC 边交于点E.若CE=a,试求线段DE的长度.【分析】●特例感知:①根据勾股高三角形的定义即可判断;②如图1,根据勾股定理可得:CB2=CD2+4,CA2=CD2+1,于是CD2=(CD2+4)﹣(CD2+1)=3,即可解决问题;●深入探究:由CA2﹣CB2=CD2可得:CA2﹣CD2=CB2,而CA2﹣CD2=AD2,即可推出AD2=CB2;●推广应用:过点A向ED引垂线,垂足为G,只要证明△AGD≌△CDB(AAS),即可解决问题;【解答】解:●特例感知:①等腰直角三角形是勾股高三角形.故答案为是.②如图1中,根据勾股定理可得:CB2=CD2+4,CA2=CD2+1,于是CD2=(CD2+4)﹣(CD2+1)=3,∴CD=.●深入探究:如图2中,由CA2﹣CB2=CD2可得:CA2﹣CD2=CB2,而CA2﹣CD2=AD2,∴AD2=CB2,即AD=CB;●推广应用:过点A向ED引垂线,垂足为G,∵“勾股高三角形”△ABC为等腰三角形,且AB=AC>BC,∴只能是AC2﹣BC2=CD2,由上问可知AD=BC……①.又ED∥BC,∴∠1=∠B……②.而∠AGD=∠CDB=90°……③,∴△AGD≌△CDB(AAS),∴DG=BD.易知△ADE与△ABC均为等腰三角形,根据三线合一原理可知ED=2DG=2BD.又AB=AC,AD=AE,∴BD=EC=a,∴ED=2a.24.如图(1),在平面直角坐标系中,直线y=﹣x+4交坐标轴于A、B两点,过点C(﹣4,0)作CD交AB于D,交y轴于点E.且△COE≌△BOA.(1)求B点坐标为(0,4);线段OA的长为3;(2)确定直线CD解析式,求出点D坐标;(3)如图2,点M是线段CE上一动点(不与点C、E重合),ON⊥OM交AB于点N,连接MN.①点M移动过程中,线段OM与ON数量关系是否不变,并证明;②当△OMN面积最小时,求点M的坐标和△OMN面积.【分析】(1)根据直线y=﹣x+4交坐标轴于A、B两点,点A在x轴上,点B在y轴上,可以求得点B的坐标和OA的长;(2)根据△COE≌△BOA,可以得到OE=OA,再根据点A的坐标可以的大点E的坐标即可求得直线CE的解析式,然后与直线y=﹣x+4联立方程组,即可求得点D的坐标;(3)①根据题目中的条件,可以证明△OME≌△ONA,即可得到OM和ON的数量关系;②要求△OMN面积最小值,由OM=ON,OM⊥ON,可知当OM取得最小值时即可,当OM⊥CE时,OM取得最小值,然后根据勾股定理和等积法可以求得OM的长,即可求得点M的坐标,本题得以解决.【解答】解:(1)∵直线y=﹣x+4交坐标轴于A、B两点,∴当y=0时,x=3,当x=0时,y=4,∴点A的坐标为(3,0),点B的坐标为(0,4),∴OA=3;故答案为:(0,4),3;(2)∵过点C(﹣4,0)作CD交AB于D,交y轴于点E.且△COE≌△BOA,∴OC=4,OC=OB,OE=OA,∵点A(3,0),∴OA=3,∴OE=3,∴点E的坐标为(0,3),设过点C(﹣4,0),点E(0,3)的直线解析式为y=kx+b,,得,∴直线CE的解析式为y=x+3,即直线CD的解析式为y=x+3,由,得,即点D的坐标为(,);(3)①线段OM与ON数量关系是OM=ON保持不变,证明:∵△COE≌△BOA,∴OE=OA,∠OEM=∠OAN,∵∠BOA=90°,ON⊥OM,∴∠MON=∠BOA=90°,∴∠MOE+∠EON=∠EON+∠NOA,∴∠MOE=∠NOA,在△MOE和△NOA中,,∴△MOE≌△NOA(ASA),∴OM=ON,即线段OM与ON数量关系是OM=ON保持不变;②由①知OM=ON,∵OM⊥ON,∴△OMN面积是:=,∴当OM取得最小值时,△OMN面积取得最小值,∵OC=4,OE=3,∠COE=90°,∴CE=5,∵当OM⊥CE时,OM取得最小值,∴,∴,解得,OM=,∴△OMN面积取得最小值是:=,当△OMN取得最小值时,设此时点M的坐标为(a,a+3),∴=,解得,a=﹣,∴a+3=,∴点M的坐标为(,),由上可得,当△OMN面积最小时,点M的坐标是(,)和△OMN面积是。
浙教版数学八年级上册期末考试试卷一、选择题(共10小题,每题3分,共30分).1.下列长度的三条线段能组成三角形的是()A.1,2.5,3.5B.4,6,10C.20,11,8D.5,8,12 2.在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A.B.C.D.3.如图,雷达探测器发现了A,B,C,D,E,F六个目标.目标C,F的位置分别表示为C(6,120°),F(5,210°),按照此方法表示目标A,B,D,E的位置时,其中表示正确的是()A.A(4,30°)B.B(1,90°)C.D(4,240°)D.E(3,60°)4.在△ABC纸片上有一点P,且PA=PB,则P点一定()A.是边AB的中点B.在边AB的垂直平分线上C.在边AB的高线上D.在边AB的中线上5.若a>b,则下列不等式变形正确的是()A.3a<3b B.ac2>bc2C.a﹣c>b﹣c D.﹣ac<﹣bc 6.对假命题“若a>b,则a2>b2”举一个反例,符合要求的反例是()A.a=﹣1,b=﹣2B.a=2,b=一1C.a=2,b=1D.a=﹣1,b=0 7.下列函数中,自变量x的取值范围为x<1的是()A.B.C.D.8.直线y1=k1x+b与直线y2=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b≤k2x的解集为()A.x>﹣3B.x<﹣3C.x≤﹣3D.x≥﹣39.小明和爸爸从家里出发,沿同一路线到学校.小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店购买水果花费了5分钟,这时发现小明已经跑到前面,爸爸骑车速度增加60米/分钟,结果与小明同时到达学校.小明和爸爸两人离开家的路程s(米)与爸爸出发时间t(分钟)之间的函数图象如图所示.则下列说法错误的是()A.a=15B.小明的速度是150米/分钟C.爸爸从家到商店的速度为200米/分钟D.爸爸出发7分钟追上小明10.如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A.B.C.256D.二、填空题(本题有6小题,每小题4分,共24分)11.写出一个正比例函数,使其图象经过第二、四象限:.12.以A(﹣2,7),B(﹣2,﹣2)为端点的线段上任意一点的坐标可表示为(﹣2,y)(﹣2≤y≤7).现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为.13.如图,在△ABC中,点E在AB上,D为AC的中点,过点C作CF∥AB交ED的延长线于点F.若AB=15cm,CF=10cm,则BE=cm.14.有一种感冒止咳药品的说明书上写着:“每日用量90~120mg(包括90mg和120mg),分2~3次服用”.若一次服用这种药品的剂量为amg,则a的取值的范围为.15.如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC上一点,将△BCD,△ADE 沿CD,DE翻折,点A,B恰好重合于点P处,若△PCD中有一个角等于48°,则∠A =.16.已知直线y=x+2与函数y=图象交于A,B两点(点A在点B的左边).(1)点A的坐标是;(2)已知O是坐标原点,现把两个函数图象水平向右平移m个单位,点A,B平移后的对应点分别为A′,B′,连接OA′,OB′.当m=时,|OA'﹣OB'|取最大值.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.解不等式组.18.如图,在平面直角坐标系xOy中,△ABO的三个顶点坐标分别为A(0,﹣3),B(2,0),O(0,0).(1)将△OAB关于x轴作轴对称变换,在图1中画出对称后的图形,并涂黑.(2)将△OAB先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形,并涂黑.19.已知一次函数y=kx+b的图象经过点A(﹣4,0),B(2,6)两点.(1)求一次函数y=kx+b的表达式.(2)在直角坐标系中,画出这个函数的图象.(3)求这个一次函数与坐标轴围成的三角形面积.20.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:21.为了“不忘历史,学习英雄”,学校开展“红色丰碑”演讲比赛;王老师负责为获奖同学购买奖品,现甲、乙两个商店正在做促销活动,分别给出了不同的优惠方案:甲商店优惠方案:购买奖品金额超过300元后,超出300元的部分按8折收费;乙商店优惠方案:购买奖品金额超过500元后,超出500元的部分按a折收费;如果王老师到乙商店购买奖品,当奖品金额是600元时,实际需支付570元.(1)填空:a=.(2)如果王老师到甲商店购买奖品金额x元,求实际支付y元与奖品金额x元之间的函数表达式.(3)如果王老师购买奖品的金额超过800元,那么到哪个商店进行采购更合算?22.我们发现,“用不同的方式表示同一图形的面积”可以解决计算线段的有关问题,这种方法称为面积法.(1)如图1,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD是斜边AB边上的高线.用“面积法”求CD的长.(2)如图2,在等腰三角形ABC中,AB=AC=13,BC=10,P为底边BC上的任意一=S△ABP+S△ACP,点,过点P作PM⊥AB,PN⊥AC,垂足分别为M,N,连接AP,利用S△ABC 求PM+PN的值.(3)如图3,有一直角三角形纸片ABC,∠ACB=90°,AC=4,BC=6.点D在斜边AB上,连接CD,将△ADC沿CD折叠,点A的对应点A′落在BC边上,求折叠后纸片重叠部分的面积.23.已知直线l:y=kx+3k+1(k>0)经过定点A.(1)探求定点A的坐标.把函数表达式作如下变形:y=kx+3k+1=k(x+3)+1,当x =﹣3时,可以消去k,求出y=1,则定点A的坐标为.(2)如图1,已知△BCD各顶点的坐标分别为B(0,1),C(﹣4,1),D(0,4),直线l将△BCD的周长分成7:17两部分,求k的值.(3)如图2,设直线l与y轴交于点P,另一条直线y=(k﹣1)x+3k﹣2与y轴交于点Q,交直线l于点E,点F是EQ的中点.当点P从(0,5)沿y轴正方向运动到(0,10)时,求点F运动经过的路径长.24.在平面直角坐标系中,点A的坐标为(4,0),直线l是经过点(0,)且平行于x 轴的直线,点B在直线l上,连接AB,设点B的横坐标为m(m>0).(1)如图1,当m=9时,以AB为直角边作等腰直角三角形ABC,使∠BAC=90°,求直线BC的函数表达式.(2)在图2中以AB为直角边作等腰直角三角形ABD,使∠ABD=90°,连接OD,求△AOD的面积(用含m的代数式表示).(3)在图3中以AB为边作等腰直角三角形ABP,当点P落在直线y=x+上时,求m的值.参考答案一、选择题(共10小题,每题3分,共30分).1.下列长度的三条线段能组成三角形的是()A.1,2.5,3.5B.4,6,10C.20,11,8D.5,8,12【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.解:A、1+2.5=3.5,不能够组成三角形;B、4+6=10,不能组成三角形;C、11+8<20,不能组成三角形;D、5+8>12,能组成三角形.故选:D.2.在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.3.如图,雷达探测器发现了A,B,C,D,E,F六个目标.目标C,F的位置分别表示为C(6,120°),F(5,210°),按照此方法表示目标A,B,D,E的位置时,其中表示正确的是()A.A(4,30°)B.B(1,90°)C.D(4,240°)D.E(3,60°)【分析】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别判断各选项即可得解.解:由题意可知A、B、D、E的坐标可表示为:A(5,30°),故A选项错误;B(2,90°),故B选项错误;D(4,240°),故C选项正确;E(3,300°),故D选项错误.故选:C.4.在△ABC纸片上有一点P,且PA=PB,则P点一定()A.是边AB的中点B.在边AB的垂直平分线上C.在边AB的高线上D.在边AB的中线上【分析】根据线段垂直平分线的判定定理解答.解:∵PA=PB,∴P点在在边AB的垂直平分线上,故选:B.5.若a>b,则下列不等式变形正确的是()A.3a<3b B.ac2>bc2C.a﹣c>b﹣c D.﹣ac<﹣bc 【分析】根据不等式的性质逐一进行判断即可.不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.解:A.因为a>b,所以3a>3b,故本选项不合题意;B.不妨设c=0,则ac2=bc2,故本选项不合题意;C.因为a>b,所以a﹣c>b﹣c,故本选项符合题意;D.不妨设c=0,则﹣ac=﹣bc,故本选项不合题意;故选:C.6.对假命题“若a>b,则a2>b2”举一个反例,符合要求的反例是()A.a=﹣1,b=﹣2B.a=2,b=一1C.a=2,b=1D.a=﹣1,b=0【分析】根据有理数的大小比较法则、有理数的乘方法则计算,判断即可.解:当a=﹣1,b=﹣2时,a>b,而a2<b2,∴“若a>b,则a2>b2”是假命题,故选:A.7.下列函数中,自变量x的取值范围为x<1的是()A.B.C.D.【分析】根据函数自变量的取值得到x<1的取值的选项即可.解:A、自变量的取值为x≠1,不符合题意;B、自变量的取值为x≠0,不符合题意;C、自变量的取值为x≤1,不符合题意;D、自变量的取值为x<1,符合题意.故选:D.8.直线y1=k1x+b与直线y2=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b≤k2x的解集为()A.x>﹣3B.x<﹣3C.x≤﹣3D.x≥﹣3【分析】结合函数图象,写出直线y2=k2x在直线y1=k1x+b上方所对应的自变量的范围即可.解:∵直线y1=k1x+b与直线y2=k2x的交点的横坐标为﹣3,∴当x≤﹣3时,y2≥y1,∴关于x的不等式k1x+b≤k2x的解集为x≤﹣3.故选:C.9.小明和爸爸从家里出发,沿同一路线到学校.小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店购买水果花费了5分钟,这时发现小明已经跑到前面,爸爸骑车速度增加60米/分钟,结果与小明同时到达学校.小明和爸爸两人离开家的路程s(米)与爸爸出发时间t(分钟)之间的函数图象如图所示.则下列说法错误的是()A.a=15B.小明的速度是150米/分钟C.爸爸从家到商店的速度为200米/分钟D.爸爸出发7分钟追上小明【分析】由图象可得a的值;根据小明的路程和时间可得速度;设爸爸从家到商店的速度是x米/分钟,列一元一次方程可求解;根据追及问题中相距路程÷速度差=时间可得答案.解:线段BC是爸爸买水果的时间5分钟,a=10+5=15,故A不符合题意;由图象可得小明的速度是3300÷(20+2)=150(米/分钟),故B不符合题意;设爸爸从家到商店的速度是x米/分钟,则从商店到学校的速度是(x+60)米/分钟,依题意得,10x+(20﹣15)(x+60)=3300,解得x=200,所以爸爸从家到商店的速度是200米/分钟,故C不符合题意;爸爸追上小明得时间是150×2÷(200﹣150)=6(分钟),故D符合题意.故选:D.10.如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A.B.C.256D.【分析】根据题意求出点B1,B2,B3的坐标,然后找出B点坐标的变化规律,把B n的坐标用含n的式子表示出来,取n=9,即可求出B9的横坐标.解:∵△OA1B1是等边三角形,OA1=1,∴B1的横坐标为,OA1=OB1,设B1(,y),则,解答y=或y=(舍),∴B1(,),∴OB1所在的直线的解析式为y=x,∵OA1=1,∠OA1C=30°,△OA1B1是等边三角形,∴∠B1A1C=90°,∵∠O1BA1=∠B1B2A2=60°,∴B1A1∥B2A2,∴∠B1A1C=∠B2A2A1=90°,∴∠B1A2A1=30°,∴B1A2=2A1B1=2,∴B2的横坐标为,∴y=x=,∴B2(,),同理:B3(,),B4(,),总结规律:B1的横坐标为,B2的横坐标为+1=,B3的横坐标为+1+2=,B4的横坐标为+1+2+4=,...,∴点B9的横坐标是1+2+4+8+16+32+64=.故选:B.二、填空题(本题有6小题,每小题4分,共24分)11.写出一个正比例函数,使其图象经过第二、四象限:y=﹣x(答案不唯一).【分析】先设出此正比例函数的解析式,再根据正比例函数的图象经过二、四象限确定出k的符号,再写出符合条件的正比例函数即可.解:设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过二、四象限,∴k<0,∴符合条件的正比例函数解析式可以为:y=﹣x(答案不唯一).故答案为:y=﹣x(答案不唯一).12.以A(﹣2,7),B(﹣2,﹣2)为端点的线段上任意一点的坐标可表示为(﹣2,y)(﹣2≤y≤7).现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为(5,y)(﹣2≤y≤7).【分析】根据平移时,点的坐标变化规律“左减右加”进行计算即可.解:现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为(5,y)(﹣2≤y≤7),故答案为:(5,y)(﹣2≤y≤7).13.如图,在△ABC中,点E在AB上,D为AC的中点,过点C作CF∥AB交ED的延长线于点F.若AB=15cm,CF=10cm,则BE=5cm.【分析】根据CF∥AB就可以得出∠A=∠DCF,∠AED=∠F,证明△ADE≌△CDF (AAS),由全等三角形的性质得出AE=CF,则可得出答案.解:∵CF∥AB,∴∠AED=∠F,∠FCD=∠A.∵点D为AC的中点,∴AD=CD.在△ADE和△CDF中,,∴△ADE≌△CDF(AAS).∴AE=CF,∵AB=15cm,CF=10cm,∴BE=AB﹣AE=AB﹣CF=15﹣10=5(cm).故答案为5.14.有一种感冒止咳药品的说明书上写着:“每日用量90~120mg(包括90mg和120mg),分2~3次服用”.若一次服用这种药品的剂量为amg,则a的取值的范围为30≤a≤60.【分析】一次服用剂量a=,故可求出服用剂量的最大值和最小值,而一次服用的剂量应介于两者之间,依题意列出不等式即可.解:由题意,当每日用量90mg,分3次服用时,一次服用的剂量最小为=30mg;当每日用量120mg,分2次服用时,一次服用的剂量最大为=60mg;故一次服用这种药品的剂量范围是30mg~60mg.故答案为:30≤a≤60.15.如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC上一点,将△BCD,△ADE 沿CD,DE翻折,点A,B恰好重合于点P处,若△PCD中有一个角等于48°,则∠A =42°或24°.【分析】由折叠的性质得出AD=PD=BD,∠CPD=∠B,∠PDC=∠BDC,∠PCD=∠DCB,由直角三角形斜边上的中线性质得出CD=AB=AD=BD,由等腰三角形的性质得出∠ACD=∠A,∠DCB=∠B,中分三种情况讨论即可.解:由折叠可得,AD=PD=BD,∠CPD=∠B,∠PDC=∠BDC,∠PCD=∠DCB,∴D是AB的中点∴CD=AB=AD=BD,∴∠ACD=∠A,∠DCB=∠B,当∠CPD=48°时,∠B=48°,∴∠A=90°﹣∠B=42°;当∠PCD=48°时,∠DCB=∠B=48°,∴∠A=42°;当∠PDC=48°时,∵∠PCD=DCB=48°,∠BDC=∠A+∠ACD,∴∠A=∠BDC=24°;故答案为:42°或24°.16.已知直线y=x+2与函数y=图象交于A,B两点(点A在点B的左边).(1)点A的坐标是(﹣,);(2)已知O是坐标原点,现把两个函数图象水平向右平移m个单位,点A,B平移后的对应点分别为A′,B′,连接OA′,OB′.当m=6时,|OA'﹣OB'|取最大值.【分析】(1)因为点A在点B左边,联立方程y=x+2与y=﹣x﹣1求解.(2)O,A',B'共线时满足题意,用含m代数式分别表示A',B'坐标,然后代入正比例函数解析式求出m即可.解:(1)联立方程,解得,∴A(﹣,),故答案为:(﹣,).(2)联立方程,解得,∴点B坐标为(,),将A,B向右平移m个单位得A'(﹣+m,),B'(+m,),∴OA'=,OB'=,∵三角形中两边之差小于第三边,∴O,A,B三点共线时,|OA'﹣OB'|取最大值,最大值为AB长度,设O,A,B所在直线正比例函数为y=kx,将A',B'坐标代入可得:,解得m=6.故答案为:6.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.解不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式3x﹣2≤x,得:x≤1,解不等式<,得:x>﹣7,∴不等式组的解集为﹣7<x≤1.18.如图,在平面直角坐标系xOy中,△ABO的三个顶点坐标分别为A(0,﹣3),B(2,0),O(0,0).(1)将△OAB关于x轴作轴对称变换,在图1中画出对称后的图形,并涂黑.(2)将△OAB先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形,并涂黑.【分析】(1)直接利用轴对称图形的性质得出对应点位置得出答案;(2)直接利用平移的性质得出对应点位置,进而得出答案.解:(1)如图1所示:△CBO即为所求;(2)如图2所示:△A′B′O′即为所求.19.已知一次函数y=kx+b的图象经过点A(﹣4,0),B(2,6)两点.(1)求一次函数y=kx+b的表达式.(2)在直角坐标系中,画出这个函数的图象.(3)求这个一次函数与坐标轴围成的三角形面积.【分析】(1)将两点代入,运用待定系数法求解;(2)两点法即可确定函数的图象.(3)求出与x轴及y轴的交点坐标,然后根据面积公式求解即可.解:(1)∵一次函数y=kx+b的图象经过两点A(﹣4,0)、B(2,6),∴,∴函数解析式为:y=x+4;(2)函数图象如图;(3)一次函数y=x+4与y轴的交点为C(0,4),∴△AOC的面积=4×4÷2=8.20.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:可以为①②③;结论:④.(均填写序号)证明:【分析】此题可以分成三种情况:情况一:题设:①②③;结论:④,可以利用SAS定理证明△ABC≌△DEF;情况二:题设:①③④;结论:②,可以利用AAS证明△ABC≌△DEF;情况三:题设:②③④;结论:①,可以利用ASA证明△ABC≌△DEF,再根据全等三角形的性质可推出结论.【解答】情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.21.为了“不忘历史,学习英雄”,学校开展“红色丰碑”演讲比赛;王老师负责为获奖同学购买奖品,现甲、乙两个商店正在做促销活动,分别给出了不同的优惠方案:甲商店优惠方案:购买奖品金额超过300元后,超出300元的部分按8折收费;乙商店优惠方案:购买奖品金额超过500元后,超出500元的部分按a折收费;如果王老师到乙商店购买奖品,当奖品金额是600元时,实际需支付570元.(1)填空:a=7.(2)如果王老师到甲商店购买奖品金额x元,求实际支付y元与奖品金额x元之间的函数表达式.(3)如果王老师购买奖品的金额超过800元,那么到哪个商店进行采购更合算?【分析】(1)由“当金额是600元时,实际只需支付了570”可得方程300+(600﹣300)×=570,再解即可;与奖品金额x元之间的函数表达式;(2)根据甲商店优惠方案即可求出y甲与奖品金额x元之间的函数表达式,再结合(2)的结论列方程和(3)根据题意求出y乙不等式解答即可.解:(1)由题意,得500+(600﹣500)×=570,解得x=7,故答案为:7;(2)由题意,得y=;甲=0.7x+150(x>500),(3)由题意,得y乙0.8x+60=0.7x+150,解得x=900,0.8x+60>0.7x+150,解得x>900,0.8x+60<0.7x+150,解得x<900,当800<x<900时,到甲商店更合算;当x=900时,两家商店任选一个;当x>900时,到乙商店更合算.22.我们发现,“用不同的方式表示同一图形的面积”可以解决计算线段的有关问题,这种方法称为面积法.(1)如图1,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD是斜边AB边上的高线.用“面积法”求CD的长.(2)如图2,在等腰三角形ABC中,AB=AC=13,BC=10,P为底边BC上的任意一=S△ABP+S△ACP,点,过点P作PM⊥AB,PN⊥AC,垂足分别为M,N,连接AP,利用S△ABC 求PM+PN的值.(3)如图3,有一直角三角形纸片ABC,∠ACB=90°,AC=4,BC=6.点D在斜边AB上,连接CD,将△ADC沿CD折叠,点A的对应点A′落在BC边上,求折叠后纸片重叠部分的面积.【分析】(1)利用勾股定理求出AB,再利用面积法求出CD即可.(2)如图2中,过点A作AH⊥BC于H.利用勾股定理求出AH,再利用面积法求出PM+PN即可.(3)如图,过点D作DM⊥AC于M,DN⊥EC于N.利用角平分线的性质定理证明PM =PN,再利用面积法求出PM,可得结论.解:(1)如图1中,∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵CD⊥AB,=•AC•BC=•AB•CD,∴S△ABC∴CD==.(2)如图2中,过点A作AH⊥BC于H.∵AB=AC=13,BC=10,∴BH=CH=5,∴AH===12,=•BC•AH=•AB•PM+•AC•PN,∵S△ABC∴×13×PM+×13×PN=×10×12,∴PM+PN=.(3)如图,过点D作DM⊥AC于M,DN⊥EC于N.∵∠ACD=∠ECD,DM⊥AC,DN⊥CE,∴DM=DN,+s△BCD=S△ACB,∵S△ACD∴×4×DM+×6×DN=×4×6,∴DM=DN=,=•CA′•DN=×4×=.∴S△A′CD23.已知直线l:y=kx+3k+1(k>0)经过定点A.(1)探求定点A的坐标.把函数表达式作如下变形:y=kx+3k+1=k(x+3)+1,当x =﹣3时,可以消去k,求出y=1,则定点A的坐标为(﹣3,1).(2)如图1,已知△BCD各顶点的坐标分别为B(0,1),C(﹣4,1),D(0,4),直线l将△BCD的周长分成7:17两部分,求k的值.(3)如图2,设直线l与y轴交于点P,另一条直线y=(k﹣1)x+3k﹣2与y轴交于点Q,交直线l于点E,点F是EQ的中点.当点P从(0,5)沿y轴正方向运动到(0,10)时,求点F运动经过的路径长.【分析】(1)x=﹣3时,y的值与k无关,都为1,即得定点A(﹣3,1),(2)由A(﹣3,1),B(0,1),C(﹣4,1),D(0,4),得AB=3,BC=4,BD=3,CD=5,直线l将△BCD的周长分成7:17两部分,则两部分的长分别为:12×=,12×=,①若AB+BN=,得N(0,),将N(0,)代入y=kx+3k+1,即解得k=﹣,②若AC+CM=,可得M(﹣2,),把M(﹣2,)代入y=kx+3k+1,解得:k=;(3)由求得E(﹣3,1),故E与A重合,而点F是EQ的中点,得x F=﹣,根据y=kx+3k+1、y=(k﹣1)x+3k﹣2可得P(0,3k+1)、Q(0,3k﹣2),故PQ=3,可知点P从(0,5)沿y轴正方向运动到(0,10),则Q从(0,2)运动到(0,7),F从(﹣,)运动到(﹣,4),即可得F运动的路程为.解:(1)∵x=﹣3时,y的值与k无关,都为1,∴定点A(﹣3,1),故答案为:(﹣3,1);(2)∵A(﹣3,1),B(0,1),C(﹣4,1),D(0,4),∴AB=3,BC=4,BD=3,∵∠CDB=90°,∴CD===5,∴△BCD的周长为BD+CD+BC=12,∵直线l将△BCD的周长分成7:17两部分,∴两部分的长分别为:12×=,12×=,①若AB+BN=,如图:∴3+BN=,∴BN=,∴N(0,),将N(0,)代入y=kx+3k+1得:=3k+1,解得k=﹣,②若AC+CM=,如图:∴1+CM=,∴CM=,∴CM=CD,∴M为CD中点,∴M(﹣2,),把M(﹣2,)代入y=kx+3k+1得:=﹣2k+3k+1,解得:k=,综上所述,k的值为﹣或;(3)由得,∴E(﹣3,1),∴E与A重合,∵点F是EQ的中点,∴x F=﹣,而由y=kx+3k+1、y=(k﹣1)x+3k﹣2可得P(0,3k+1)、Q(0,3k﹣2),∴PQ=3,∵点P从(0,5)沿y轴正方向运动到(0,10),∴Q从(0,2)运动到(0,7),∴F从(﹣,)运动到(﹣,4),∴F运动的路程为:4﹣=.24.在平面直角坐标系中,点A的坐标为(4,0),直线l是经过点(0,)且平行于x 轴的直线,点B在直线l上,连接AB,设点B的横坐标为m(m>0).(1)如图1,当m=9时,以AB为直角边作等腰直角三角形ABC,使∠BAC=90°,求直线BC的函数表达式.(2)在图2中以AB为直角边作等腰直角三角形ABD,使∠ABD=90°,连接OD,求△AOD的面积(用含m的代数式表示).(3)在图3中以AB为边作等腰直角三角形ABP,当点P落在直线y=x+上时,求m的值.【分析】(1)作CN⊥轴于N,BM⊥轴于M,易证Rt△NCA Rt△MAB,可求得点C的坐标为(,5),再利用待定系数法即可求解;(2)过B作直线EF⊥轴于F,过D作DE⊥EF交直线EF于E,易证Rt△FAB≌Rt△EBD,可求得点D的坐标为(m﹣,m﹣)或(m+,﹣m),再利用三角形面积公式即可求解;(3)题中只给定了AB为直角边,所以分∠ABP=90°或∠BAP=90°两种情况讨论,即可求解.解:(1)作CN⊥轴于N,BM⊥轴于M,∵∠BAC=90°,∴∠NAC+∠NCA=∠NAC+∠MAB=90°,∴∠NCA=∠MAB,∵CA=AB,∴Rt△NCA Rt△MAB,∴NC=MA,NA=MB,∵点B的横坐标为,∴点B的坐标为(9,),∴NC=MA=MO﹣OA=9﹣4=5,NA=MB=,ON=OA﹣NA=,∴点C的坐标为(,5),设直线BC的解析式为y=kx+b,将(9,),(,5)代入,得:,解得:,∴直线BC的解析式为y=﹣x+;(2)过B作直线EF⊥轴于F,过D1作D1E⊥EF交直线EF于E,过D2作D2E⊥EF交直线EF于M,同理可证Rt△FAB≌Rt△EBD1≌Rt△MBD2,∴AF=BE=MB,FB=D1E=D2M,∵点B的横坐标为m,∴AF=BE=MB=m﹣4,FB=D1E=D2M=,点D1的坐标为(m﹣,m﹣4+),即D1的坐标为(m﹣,m﹣),点D2的坐标为(m+,﹣m+4),即D2的坐标为(m+,﹣m),=,∵S△OAD1D点位于直线AB左侧时,当0<m<1.5时,S=×4×(﹣m)=3﹣2m;当m≥1.5时,S=×4×(m﹣)=2m﹣3;D点位于直线AB右侧时,当0<m<6.5时,S=×4×(﹣m)=13﹣2m;当m≥6.5时,S=×4×(m﹣)=2m﹣13;(3)①当∠ABP=90°时,由(2)可知D与P重合,∴点P的坐标为(m﹣,m﹣),当点P落在直线y=上时,m﹣=,解得:m=,②当∠BAP=90°时,同理可证明Rt△HAP≌Rt△GBA,∵点B的坐标为(m,),∴PH=AG=m﹣4,AH=BG=,∴点P的坐标为(4﹣,m﹣4),即(,m﹣4),当点P落在直线y=上时,m﹣4=,解得:m=,综上,m的值为或.。
八年级上学期期末数学试卷一、选择题:每小题2分,共20分.1.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A.75°B.60°C.45°D.30°2.若a<b,则下列各式中一定成立的是()A.﹣a<﹣b B.2a>2b C.a﹣1<b﹣1D.ac2<bc2A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°4.如图,是一台自动测温记录仪的图象,它反映了嵊州市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3∠B.从0时至14时,气温随时间增长而上升C.14时气温最高为8∠D.从14时至24时,气温随时间增长而下降5.如图,在方格纸中,以AB为一边作∠ABP,使之与∠ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个6.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.7.如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()A.A点B.B点C.C点D.D点8.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3B.4C.5D.69.运算与推理以下是甲、乙两人得到+>的推理过程:(甲)因为>=3,>=2,所以+>3+2=5.又=<=5,所以+>.(乙)作一个直角三角形,两直角边长分别为,.利用勾股定理得斜边长的平方为,所以+>.对于两个人的推理,下列说法中正确的是()A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确10.如图,函数y=mx﹣4m(m是常数,且m≠0)的图象分别交x轴、y轴于点M、N,线段MN 上两点A、B(点B在点A的右侧),作AA1∠x轴,BB1∠x轴,且垂足分别为A1,B1,若OA1+OB1>4,则∠OA1A的面积S1与∠OB1B的面积S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.不确定的二、填空题:每小题3分,共30分.11.函数中自变量x的取值范围是.13.不等式3x﹣6<4x﹣2的最小整数解是.14.如图是一次函数的y=kx+b图象,则关于x的不等式kx+b>0的解集为.15.如图,在平面直角坐标系中,点A的坐标为(0,4),∠OAB沿x轴向右平移后得到∠O′A′B′,点A的对应点A′是直线y=x上一点,则点B与其对应点B′间的距离为.16.定义新运算:对于任意实数a,b都有:a∠b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2∠5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3∠x<13的解集为.17.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA 和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省元.18.如图,在∠ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AC=9,则CP的长为.19.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为26,请写出符合条件的所有x的值.20.如图,在直角坐标系中,点A的坐标是(0,2),点B是x轴上的一个动点,始终保持∠ABC 是等边三角形(点A、B、C按逆时针排列),当点B运动到原点O处时,则点C的坐标是.随着点B在x轴上移动,点C也随之移动,则点C移动所得图象的解析式是.三、解答题21.解不等式(组)(1)2x﹣7≤3(x﹣1)(2)并写出它的整数解.22.如图,点B、C、E、F在同一直线上,BC=EF,AC∠BC于点C,DF∠EF于点F,AC=DF.求证:(1)∠ABC∠∠DEF;(2)AB∠DE.23.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,∠ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将∠ABC沿y轴正方向平移3个单位得到∠A1B1C1,画出∠A1B1C1,并写出点B1坐标;(2)画出∠A1B1C1关于y轴对称的∠A2B2C2,并写出点C2的坐标.24.如图,∠ABC中,∠C=90°,边AB的垂直平分线交AB、AC边分别为点D,点E,连结BE.(1)若∠A=40°,求∠CBE的度数.(2)若AB=10,BC=6,求∠BCE的周长.25.某厂每天只生产A、B两种型号的丝巾,共600条,A、B两种型号的丝巾每条的成本和利润如表,设每天生产A型号丝巾x条,该厂每天获利y元.A B成本(元/条)5035利润(元/条)2015(1)请写出y关于x的函数关系式;(2)如果该厂每天至少投入成本26400元,那么每天至少获利多少元.26.已知:如图,∠ABC中的顶点A、C分别在平面直角坐标系的x轴、y轴上,且∠ACB=90°,AC=2,BC=1,当点A从原点出发朝x轴的正方向运动,点C也随之在y轴上运动,当点C运动到原点时点A停止运动,连结OB.(1)点A在原点时,求OB的长;(2)当OA=OC时,求OB的长;(3)在整个运动过程中,OB是否存在最大值?若存在,请你求出这个最大值;若不存在,请说明理由.四、附加题:每小题10分,共20分。
一、选择题1.若关于x 的方程1044m x x x --=--无解,则m 的值是( ) A .2- B .2 C .3- D .32.已知2,1x y xy +==,则y x x y +的值是( ) A .0 B .1 C .-1 D .23.若2x 11x x 1+--的值小于3-,则x 的取值范围为( ) A .x 4>- B .x 4<- C .x 2> D .x 2<4.22()-n b a(n 为正整数)的值是( ) A .222+nn b aB .42n n b aC .212+-n n b aD .42-n n b a 5.下列运算正确..的是( ) A .246x x x ⋅=B .246()x x =C .3362x x x +=D .33(2)6x x -=- 6.下列运算正确是( ) A .b 5÷b 3=b 2B .(b 5)3=b 8C .b 3b 4=b 12D .a (a ﹣2b )=a 2+2ab7.若()()()248(21)2121211A =+++++,则A 的末位数字是( )A .4B .2C .5D .6 8.已知x =7+1,y =7﹣1,则xy 的值为( )A .8B .48C .27D .69.如图,AD 是ABC ∆的中线,E 是AD 上一点,BE 交AC 于F ,若,9,6BE AC BF CF ===,则AF 的长度为( )A .1B .1.5C .2D .2.510.如图,在Rt ABC ∆中, 90,30,ACB A CD ︒︒∠=∠=是斜边AB 上的高,2BD =,那么AD 的长为( )A .2B .4C .6D .8 11.在尺规作图作一个角的平分线时的两个三角形全等的依据是( )A .SASB .AASC .SSSD .HL 12.小红有两根长度分别为4cm 和8cm 的木棒,他想摆一个三角形,现有长度分别为3cm ,4cm ,8cm ,15cm 四根木棒,则他应选择的木棒长度为( ).A .3cmB .4cmC .8cmD .15cm二、填空题13.如果分式126x x --的值为零,那么x =________ . 14.九年级()1班学生周末从学校出发到某实践基地研学旅行,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地,已知快车的速度是慢车速度的1.2倍,如果设慢车的速度为x 千米/时,根据题意列方程为________.15.已知x-3y=-1,那么代数式3-2x+6y 的值是________16.因式分解()2228ac bc abc -+=______.17.如图30AOB ∠=︒,OC 平分AOB ∠,P 为OC 上一点,//PD OA 交OB 于点D ,PE OA ⊥于E ,6cm OD =,则PE =________.18.如图,在四边形ABCD 中,130DAB ∠=︒,90D B ∠=∠=︒,点M ,N 分别是CD ,BC 上两个动点,当AMN 的周长最小时,AMN ANM ∠+∠的度数为_________.19.如图,在ABC 中,C 90∠=,A ∠、B ∠的平分线交于O ,OD AB ⊥于D .若AC 3=,BC 4=,AB 5=,则AD =________.20.如图,已知//,AB CD E 是直线AB 上方一点,G 为直线AB 下方一点,F 为直线CD 上一点,148EAF ︒∠=,3BAF BAG ∠=∠,3DCE DCG ∠=∠,则E ∠和G ∠的数量关系为___________.三、解答题21.(1)解分式方程:23193x x x +=-- (2)先化简代数式+⎛⎫+÷⎪---+⎝⎭2a 11a a 1a 1a 2a 1,然后选取一个使原式有意义的a 值代入求值. 22.先化简,再求值:21122m m m m ⎭-+÷-⎛⎫ ⎪-⎝,其中12m =-. 23.计算(1)20193(1)98|32|--;(2)9(3)(3)x x -+-;(3)2(23)4(3)a b a a b ---.24.已知在ABC 中,CAB ∠的平分线AD 与BC 的垂直平分线DE 交于点D ,DM AB ⊥于M ,DN AC ⊥交AC 的延长线于N .(1)证明:BM CN =;(2)当80BAC ∠=︒时,求DCB ∠的度数.25.如图,在△ABD中,∠ABD=90°,AB=BD,点E在线段BD上,延长AB使BC=BE,连接AE、CE、CD,点M在线段AE上,点N在线段CD上,BM⊥BN,易证△ABE≌△DBC;仔细观察,请逐一找出图中其他的全等三角形,并说明理由.26.平面内,四条线段AB,BC,CD,DA首尾顺次连接,∠ABC=24°,∠ADC=42°.(1)∠BAD和∠BCD的角平分线交于点M(如图1),求∠AMC的大小.(2)点E在BA的延长线上,∠DAE的平分线和∠BCD平分线交于点N(如图2),求∠ANC.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据方程1044m x x x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值.【详解】解:去分母得:m +1−x =0, ∵方程1044m x x x--=--无解, ∴x =4是方程的增根,∴m =3.故选:D .【点睛】 本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根. 2.D解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.3.C解析:C【分析】 根据题意列得2x 131x x 1+<---,求解即可得到答案. 【详解】 ∵2x 131x x 1+<---, ∴2x 131x-<--, ∴()()x 1x 131x+-<--,即x 13--<-, ∴x 2-<-,解得x 2>.又x 1≠,∴x 2>符合题意.故选:C.【点睛】此题考查列式计算,掌握分式的加减法计算法则,整式的因式分解方法,解一元一次不等式是解题的关键.4.B解析:B【分析】根据分式的乘方计算法则解答.【详解】2422()-=nn n b b a a. 故选:B .【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键. 5.A解析:A【分析】根据同底数幂的乘法、幂的乘方、积的乘方以及合并同类项进行判断即可.【详解】A 选项246x x x ⋅=,选项正确,故符合题意;B 选项248()x x =,选项错误,故不符合题意;C 选项3332x x x +=,选项错误,故不符合题意;D 选项33(2)8x x -=-,选项错误,故不符合题意.故选:A .【点睛】本题考查同底数幂的乘法、幂的乘方、积的乘方以及合并同类项,属于基础题,熟练掌握这些计算公式和方法是解决本题的关键. 6.A解析:A【分析】根据幂的乘方,同底数幂乘法和除法,单项式乘多项式运算法则判断即可.【详解】A 、b 5÷b 3=b 2,故这个选项正确;B 、(b 5)3=b 15,故这个选项错误;C 、b 3•b 4=b 7,故这个选项错误;D 、a (a ﹣2b )=a 2﹣2ab ,故这个选项错误;故选:A .【点睛】本题考查了幂的乘方,同底数幂乘法和除法,以及单项式乘多项式,重点是掌握相关的运算法则.7.D解析:D【分析】在原式前面加(2-1),利用平方差公式计算得到结果,根据2的乘方的计算结果的规律得到答案.【详解】()()()248(21)2121211A =+++++=()()()248(21)(21)2121211-+++++=()()()2248(21)2121211-++++=()()448(21)21211-+++ =()88(21)211-++ =162,∵2的末位数字是2,22的末位数字是4,32的末位数字是8,42的末位数字是6,52的末位数字是2,,∴每4次为一个循环,∵1644÷=,∴162的末位数字与42的末位数字相同,即末位数字是6,故选:D .【点睛】此题考查利用平方差公式进行有理数的简便运算,数字类规律的探究,根据2的乘方末位数字的规律得到答案是解题的关键.8.D解析:D【分析】利用平方差公式计算即可.【详解】当x +1,y 1时,xy +11)=(7)2﹣12=7﹣1=6,故选:D.【点睛】此题考查平方差计算公式,已知字母的值求代数式的值,熟记平方差公式是解题的关键. 9.B解析:B【分析】延长AD到G使得DG AD=,连接BG,证明()△△ACD GBD SAS≅,根据全等三角形的性质可得到CAD G∠=∠,AC=BD,等量代换得到BE=BG,再由等腰三角形的性质得到G BEG∠=∠,推出EF=AF,即可解决问题;【详解】如图,延长AD到G使得DG AD=,连接BG,∵AD是△ABC的中线,∴CD=BD,在△ACD与△GBD中,CD BDADC BDGAD DG=⎧⎪∠=∠⎨⎪=⎩,∴()△△ACD GBD SAS≅,∴CAD G∠=∠,AC=BD,∵BE=AC,∴BE=BG,∴G BEG∠=∠,∵BEG AEF∠=∠,∴AEF EAF ∠=∠,∴EF=AF ,∴AF CF BF AF +=-,即69AF AF +=-, ∴32AF =; 故选:B .【点睛】 本题主要考查了全等三角形的判定与性质,结合等腰三角形的性质求解是解题的关键. 10.C解析:C【分析】根据∠ACB=90°,∠A=30°,CD 是斜边AB 上的高,利用互余关系求∠BCD=30°,DB=2,可求BC ,在Rt △ABC 中,再利用含30°的直角三角形的性质求AB ,再用线段的差求AD .【详解】解:Rt △ABC 中,∵∠ACB=90°,∠A=30°,∴∠B=90°-∠A=90°-30°=60°,CD 是斜边AB 上的高,∴∠CDB=90°,∴∠BCD=90°-∠B=30°,∴BC=2BD =4,同理,AB=2BC=8,AD=AB-BD=8-2=6,故选:C .【点睛】本题考查了含30°的直角三角形的性质,准确运用在直角三角形中,30°角所对直角边等于斜边的一半是解题关键.11.C解析:C【分析】根据作图过程可知用到的三角形全等的判定方法是SSS .【详解】解:尺规作图-作一个角的角平分线的作法如下:①以O 为圆心,任意长为半径画弧,交AO 、BO 于点F 、E ,②再分别以F 、E 为圆心,大于12EF 长为半径画弧,两弧交于点M , ③画射线OM ,射线OM 即为所求.由作图过程可得用到的三角形全等的判定方法是SSS .故选:C .【点睛】本题主要考查了基本作图以及全等三角形的判定,关键是掌握作一个角的平分线的基本作图方法.12.C解析:C【分析】设选择的木棒长为x ,根据第三边大于两边之差小于两边之和即可求出范围,再结合选项即可得出答案.【详解】由题意得,设选择的木棒长为x ,则8448x -<<+,即412x <<,∴选择木棒长度为8cm .故选C .【点睛】本题考查了三角形三边关系的应用,熟练掌握三边关系是解题的关键.二、填空题13.1【分析】根据分式的值为零可得解方程即可得【详解】由题意得:解得分式的分母不能为零解得符合题意故答案为:1【点睛】本题考查了分式的值为零正确求出分式的值和掌握分式有意义的条件是解题关键解析:1【分析】根据分式的值为零可得10x -=,解方程即可得.【详解】由题意得:10x -=,解得1x =,分式的分母不能为零,260x ∴-≠,解得3x ≠,1x ∴=符合题意,故答案为:1.【点睛】本题考查了分式的值为零,正确求出分式的值和掌握分式有意义的条件是解题关键.14.【分析】设慢车的速度为x千米/小时则快车的速度为12x千米/小时根据题意可得走过150千米快车比慢车少用小时列方程即可【详解】解:设慢车的速度为则快车的速度为根据题意得:故答案为:【点睛】本题考查了解析:15011502 1.2 x x-=【分析】设慢车的速度为x千米/小时,则快车的速度为1.2x千米/小时,根据题意可得走过150千米,快车比慢车少用12小时,列方程即可.【详解】解:设慢车的速度为xkm/h,则快车的速度为1.2xkm/h,根据题意得:1501150x2 1.2x-=.故答案为:1501150x2 1.2x-=.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,找出合适的等量关系,列方程.15.5【分析】把3-2x+6y化为3-2(x-3y)再代入求值即可【详解】∵x﹣3y=-1∴原式=3-2(x-3y)=3-(-2)=5故答案为:5【点睛】本题考查了代数式求值熟练运用整体思想是解本题的关键解析:5【分析】把3-2x+6y化为3-2(x-3y),再代入求值即可.【详解】∵x﹣3y=-1,∴原式=3-2(x-3y)=3-(-2)=5.故答案为:5.【点睛】本题考查了代数式求值,熟练运用整体思想是解本题的关键.16.【分析】先利用完全平方公式把原式写成再根据完全平方公式得出结果【详解】解:原式故答案是:【点睛】本题考查因式分解解题的关键是掌握利用乘法公式进行因式分解的方法解析:()22ac bc +【分析】先利用完全平方公式把原式写成2222244a c abc b c ++,再根据完全平方公式得出结果.【详解】解:原式222222448a c abc b c abc =-++ 2222244a c abc b c =++()22ac bc =+.故答案是:()22ac bc +.【点睛】本题考查因式分解,解题的关键是掌握利用乘法公式进行因式分解的方法. 17.3cm 【分析】过点P 作PF ⊥OB 于F 根据角平分线上的点到角的两边距离相等可得PF =PE 根据角平分线的定义可得∠AOC =∠BOC 根据两直线平行内错角相等可得∠AOC =∠OPD 两直线平行同位角相等可得∠解析:3cm【分析】过点P 作PF ⊥OB 于F ,根据角平分线上的点到角的两边距离相等可得PF =PE ,根据角平分线的定义可得∠AOC =∠BOC ,根据两直线平行,内错角相等可得∠AOC =∠OPD ,两直线平行,同位角相等可得∠PDF =∠AOB ,再求出∠BOC =∠OPD ,根据等角对等边可得PD =OD ,然后根据直角三角形30°角所对的直角边等于斜边的一半可得PF =12PD ,进而即可求解.【详解】如图,过点P 作PF ⊥OB 于F ,∵OC 平分∠AOB ,PE ⊥OA ,∴PE =PF ,∵OC 平分∠AOB ,∴∠AOC =∠BOC ,∵PD ∥OA ,∴∠AOC =∠OPD ,∠PDF =∠AOB =30°,∴∠BOC =∠OPD ,∴PD =OD =6cm ,∴PF=12PD=12×6=3cm,∴PE=PF=3cm.故答案为:3cm.【点睛】本题考查了角平分线的性质,平行线的性质,等腰三角形的性质,直角三角形30°角所对的直角边等于斜边的一半,熟记各性质并作辅助线是解题的关键.18.100°【分析】作点A关于BC的对称点A′关于CD的对称点A″根据轴对称确定最短路线问题连接A′A″与BCCD的交点即为所求的点MN利用三角形的内角和定理列式求出∠A′+∠A″再根据轴对称的性质和三解析:100°【分析】作点A关于BC的对称点A′,关于CD的对称点A″,根据轴对称确定最短路线问题,连接A′A″与BC、CD的交点即为所求的点M、N,利用三角形的内角和定理列式求出∠A′+∠A″,再根据轴对称的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠AMN+∠ANM=2(∠A′+∠A″),然后计算即可得解.【详解】解:如图,作点A关于BC的对称点A′,关于CD的对称点A″,连接A′A″与BC、CD的交点即为所求的点M、N,∵∠BAD=130°,∠B=∠D=90°,∴∠A′+∠A″=180°-∠130°=50°,由轴对称的性质得:A′N= AN,A″M=AM∴∠A′=∠A′AN,∠A″=∠A″AM,∴∠AMN+∠ANM=2(∠A′+∠A″)=2×50°=100°.故答案为:100°【点睛】本题考查了轴对称确定最短路线问题,轴对称的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,确定出点M、N的位置是解题的关键,要注意整体思想的利用.19.【分析】根据三角形角平分线的交点到边的距离相等再利用三角形面积公式解答即可【详解】解:过作于于∵的平分线交于于∴∵∴四边形是正方形∴∵的面积即解得:∴∴在与中∴∴故答案为:【点睛】本题考查了角平分线 解析:2【分析】根据三角形角平分线的交点到边的距离相等,再利用三角形面积公式解答即可.【详解】解:过O 作OE AC ⊥于E ,OF BC ⊥于F ,∵A ∠、B ∠的平分线交于O ,OD AB ⊥于D ,∴OD OE OF ==.∵C 90∠=,∴四边形ECFO 是正方形,∴OE OF CE CF ===.∵ABC 的面积1111AC BC AB OD AC OE BC OF 2222=⋅=⋅+⋅+⋅, 即()1134OE 34522⨯⨯=⨯++, 解得:1OE =,∴CE OE 1==,∴AE AC CE 2=-=.在Rt AEO 与Rt ADO 中,AO AO OE OD =⎧⎨=⎩, ∴Rt AEO Rt ADO ≅,∴AD AE 2==.故答案为:2.【点睛】本题考查了角平分线的性质,全等三角形的判定和性质,正确作出辅助线是解题的关键. 20.【分析】延长线段BA 交CE 于点M 过点G 作AB 的平行线GN 交CE 于点N 根据平行的性质得由得再根据三角形的外角的性质得即可求出和的数量关系【详解】解:如图延长线段BA 交CE 于点M 过点G 作AB 的平行线GN 解析:1483E G ∠=︒-∠【分析】延长线段BA 交CE 于点M ,过点G 作AB 的平行线GN 交CE 于点N ,根据平行的性质得G BAG GCD ∠=∠+∠,由3BAF BAG ∠=∠,3DCE DCG ∠=∠,得333G BAG DCG ∠=∠+∠,再根据三角形的外角的性质得E EMA EAF BAF ∠+∠=∠-∠,即可求出E ∠和G ∠的数量关系.【详解】解:如图,延长线段BA 交CE 于点M ,过点G 作AB 的平行线GN 交CE 于点N ,∵//AB CD ,∴////BH GN CD ,∴BAG AGN ∠=∠,NGC GCD ∠=∠,EMA ECD ∠=∠,∵G AGN NGC ∠=∠+∠,∴G BAG GCD ∠=∠+∠,∵3BAF BAG ∠=∠,3DCE DCG ∠=∠,∴333G BAG DCG ∠=∠+∠,∵EAB E EMA ∠=∠+∠,EAB EAF BAF ∠=∠-∠,∴E EMA EAF BAF ∠+∠=∠-∠,∴E ECD EAF BAF ∠+∠=∠-∠,∴31483E DCG BAG ∠+∠=︒-∠,∴()14833E BAG DCG ∠=︒-∠+∠,∴1483E G ∠=︒-∠.故答案是:1483E G ∠=︒-∠.【点睛】本题考查平行线的性质和三角形外角的性质,解题的关键是通过平行线的性质和三角形外角的性质找到角与角之间的数量关系.三、解答题21.(1)x=-4(2)化简为:1a a -,当a=2时,原式=2 【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2)先算括号内的加减,把除法变成乘法,再根据分式的乘法法则求出答案即可.【详解】解:(1)两边都乘最简公分母(x 2-9)得:3+x (x+3)=x 2-9,解这个整式方程得:x=-4,经检验x=-4时,x 2-9≠0,所以,x=-4是分式方程的解.(2)原式=()()()()22a 1a 11a a 1a 1a 1⎛⎫+- ⎪+÷ ⎪---⎝⎭ ()()=222a 11a a 1a 1a 1⎛⎫- ⎪+÷ ⎪---⎝⎭()=22a a 1aa 1-⋅- =a a 1- 当a=2时,原式=2.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.22.11m m -+,3-. 【分析】 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将m 的值代入计算即可求出值.【详解】 解:21122m m m m ⎭-+÷-⎛⎫ ⎪-⎝ ()()2212211m m m m m m -+-=⋅-+- ()()()212211m m m m m --=⋅-+- 11m m -=+;当12 m=-时,原式1123112--==--+.【点睛】考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.23.(1)23+;(2)221839x b-;()【分析】(1)根据乘方、立方根、算术平方根、绝对值的意义计算出各项值再去括号进行加减即可;(2)先根据平方差公式计算后两项的积,然后去括号合并同类项即可;(3)根据完全平方公式或单项式乘多项式法则计算出前面两个乘法结果后合并同类项即可.【详解】解:(1)原式=-1+3+2-()23-=4-2323+=+;(2)原式=()222999918x x x--=-+=-;(3)原式=222241294129a ab b a ab b-+-+=.【点睛】本题考查实数和整式的混合运算,熟练掌握有关运算法则和乘法公式的应用是解题关键.24.(1)证明见解析;(2)∠DCB=40°.【分析】(1)根据角平分线的性质和线段垂直平分线的性质可得到DM=DN,DB=DC,根据HL证明Rt△DMB≌Rt△DNC,即可得出BM=CN;(2)根据角平分线的性质得到DM=DN,根据全等三角形的性质得到∠ADM=∠ADN,线段垂直平分线的性质和等腰三角形的性质得到∠EDC=50°于是得到结论.【详解】(1)证明:连接BD,DC,如图所示:∵AD是∠CAB的平分线,DM⊥AB,DN⊥AC,∴DM=DN,∵DE垂直平分BC,∴DB=DC ,在Rt △DMB 和Rt △DNC 中,DB DC DM DN =⎧⎨=⎩, ∴Rt △DMB ≌Rt △DNC (HL ),∴BM=CN ;(2)解:由(1)得:∠BDM=∠CDN ,∵AD 是∠CAB 的平分线,DM ⊥AB ,DN ⊥AC ,∴DM=DN ,在Rt △DMA 和Rt △DNA 中,DA DA DM DN =⎧⎨=⎩∴Rt △DMA ≌Rt △DNA (HL ),∴∠ADM=∠ADN ,∵∠BAC=80°,∴∠MDN=100°,∠ADM=∠ADN=50°,∵∠BDM=∠CDN ,∴∠BDC=∠MDN=100°,∵DE 是BC 的垂直平分线,∴DB=DC ,∴∠EDC=12∠BDC=50°, ∴∠DCB=90°-∠EDC=40°,∴∠DCB=40°.【点睛】本题主要考查了全等三角形的判定与性质、角平分线的性质、线段垂直平分线的性质,熟悉角平分线的性质和线段垂直平分线的性质,证明三角形全等是解决问题的关键. 25.△ABM ≌△DBN ,△BME ≌△BNC ,理由见解析.【分析】观察图形,可找出△ABM ≌△DBN ,△BME ≌△BNC .①由△ABE ≌△DBC 可得到∠BAE=∠BDC ,根据BM ⊥BN 可得到∠AMB+∠MBE =∠DBN+∠MBE ,继而得到∠AMB=∠DBN ,AB=BD ,可得△ABM ≌△DBN ;②由△ABM ≌△DBN 可得BM=BN ,根据∠NBE+∠MBE =∠NBE+∠NBC ,可得∠MBE =∠NBC ,继而可证得△BME ≌△BNC .【详解】解:全等三角形:△ABM ≌△DBN ,△BME ≌△BNC ,理由如下:由题意知△ABE ≌△DBC ,∴∠BAE=∠BDC ,∵BM ⊥BN ,∴∠MNB=90︒,∴∠ABM+∠MBE =∠DBN+∠MBE ,∴∠ABM=∠DBN ,AB=BD ,∴△ABM ≌△DBN ,∴BM=BN,∵∠NBE+∠MBE =∠NBE+∠NBC ,∴∠MBE =∠NBC ,∵BE=BC ,∴△BME ≌△BNC .【点睛】本题考察全等三角形的判定与性质,熟知全等三角形的判定与性质是解题关键. 26.(1)33°;(2)123°【分析】(1)AM 与BC 交于E ,AD 与MC 交于F ,利用角平分线性质和三角形外角性质可得,BEM ∠是ABE △和MCE 的外角,MFD ∠是MAF △和FCD 的外角,列出关于AMC ∠的方程组,计算得出AMC ∠的度数.(2)AN 与BC 交于点G ,AD 与BC 交于点F ,根据角平分线性质和三角形外角性质可得,BFD ∠是ABF 和FCD 的外角,AGC ∠是NGC 和ABG 的外角,列出关于ANC ∠的方程组,计算得出ANC ∠的度数.【详解】解:(1)AM 与BC 相交于E ,AD 与MC 相较于F ,如图:∵MA 和MC 是∠BAD 和∠BCD 的角平分线,∴设∠BAM=∠MAD=a ,∠BCM=∠MCD=b ,∵∠BEM 是△ABE 和△MCE 的外角,∴∠M+∠BCM=∠B+∠BAM ,即:∠M+b=24°+a①,又∵∠MFD 是△MAF 和△CDF 的外角,可得∠M+a=42°+b②,①式+②式得2∠M=24°+42°,解得:∠M=33°,∴=33AMC ∠︒.(2)AN 与BC 相交于G ,AD 与BC 相较于F ,如图:∵NA 和NC 是∠EAD 和∠BCD 的角平分线,∴设∠EAN=∠NAD=m ,∠BCN=∠NCD=n ,∵∠BFD 是△ABF 和△FCD 的外角,∴∠B+∠BAD=∠D+∠BCD ,即:24°+(180°-2m )=42°+2n ,可得m+n=81°①,又∵∠AGC 是△NGC 和△ABG 的外角,可得∠N+n=24°+(180°-m ),得∠N=204°-(m+n )②,①式代入②式,得∠N=204°-81°=123°,∴123ANC ∠=︒.【点睛】本题考查了角平分线的性质和三角形外角性质,用设未知数列方程组的方法计算角度是解题关键.。
一、选择题(每小题3分,共30分)
1.(3分)下列长度的三条线段,能组成三角形的是()
A.1,2,3B.4,5,10C.7,8,9D.9,10,20
2.(3分)在平面直角坐标系中,点(﹣2,3)所在的象限是()
A.第一象限B.第二象限C.第三象限D.第四象限
3.(3分)函数y=中,自变量x的取值范围是()
A.x>﹣2B.x≠0C.x>﹣2且x≠0D.x≠﹣2
4.(3分)直角三角形两锐角的平分线相交所夹的钝角为()
A.125°B.135°C.145°D.150°
5.(3分)下列说法中,正确的是()
A.斜边对应相等的两个直角三角形全等
B.底边对应相等的两个等腰三角形全等
C.面积相等的两个等边三角形全等
D.面积相等的两个长方形全等
6.(3分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形ABCD,正方形CEFG,正方形KHIJ,正方形JLMN的边长分别是3,5,2,3,则最大正方形ROPQ的面积是()
A.13B.26C.47D.94
7.(3分)如果不等式组的解集是x>7,则n的取值范围是()
A.n≤7B.n≥7C.n=7D.n<7
8.(3分)在平面直角坐标系中,已知A(﹣1,﹣1)、B(2,3),若要在x轴上找一点P,使AP+BP 最短,则点P的坐标为()
A.(0,0)B.(﹣,0)C.(﹣1,0)D.(﹣,0)
9.(3分)如图,平面直角坐标系中,△ABC的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线与△ABC有交点时,b的取值范围是()
点
交
的坐标是(0,)
m2.
12.(3分)在直角坐标系中,若点A(m+1,2)与点B(3,n)关于y轴对称,则m+n=.13.(3分)已知△ABC是等腰三角形,若∠A=50°,则∠B=.
14.(3分)命题“直角三角形斜边上的中线是斜边的一半”的逆命题是命题(填“真”或“假”).
15.(3分)如图,在△ABD中,AD=13,BD=12,若在△ABD内有一点C,其中AC=3,BC=4,∠C=90°,则阴影部分的面积为.
16.(3分)如图,函数y=﹣2x和y=kx+4的图象相交于点A(m,3),则关于的x不等式kx+4+2x
作,
三、解答题(第19题6分,第20、21、22题8分,第23题12分,第24题各10分,第25题14分,共66分)
19.(6分)解不等式2(x﹣1)≥4﹣3(x﹣3),并把解在数轴上表示出来.
20.(8分)在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.
21.(8分)在平面直角坐标系中,已知一条直线经过点A(1,1),B(﹣2,7)和C(a,﹣3),求a 的值.
22.(8分)如图,Rt△ABC中,∠C=90°,AC=6,BC=8.
(1)用直尺和圆规在边BC上找一点D,使D到AB的距离等于CD.
(2)计算(1)中线段CD的长.
23.(12分)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.
(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?
(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.
25.(14分)如图,△OAB是等边三角形,过点A的直线l:y=﹣x+m与x轴交于点E(4,0)
(1)求m的值及△OAB的边长;
(2)在线段AE上是否存在点P,使得△PAB的面积是△OAB面积的一半?若存在,试求出点P的坐标,若不存在,请说明理由;
(3)在直线AE上是否存在点M,使得MA=MB?若存在,请求出点M的坐标;若不存在,请说明理由.。