历届中考第25题
- 格式:doc
- 大小:202.96 KB
- 文档页数:10
九年试题分析中考数学压轴题是对学生所学知识的灵活运用,及分析问题和解决问题能力的全面考察.它具有很强的导向作用,由于压轴题的知识覆盖面广,综合性强,难度系数大。
即考察基础知识和基本技能,又考察数学思想方法和数学能力,特别是注重发展学生的创造能力.从近几年辽宁中考试卷可以看出,几何压轴题命题趋势呈现多样化,主要体现出创新意识。
下面就鞍山市2019中考试卷25题试卷解析,论述此类中考压轴题的策略与方法.【试题解析】鞍山市2019中考试卷25题中考25题是几何压轴题,一个综合性问题,考察学生的综合能力.它属于相似三角形的综合题,由构造全等,类比转化构造相似,考察了等腰直角三角形的性质;平行四边形的性质;全等三角形的判定与性质;类比转化相似三角形的判定与性质;考察学生对综合知识掌握的能力,同时考察数形结合转化,分类思想方法,同时考察了运算、探索、推理等数学能力.(一)基本图形再现以公共直角顶点的两个等腰直角三角形旋转图形为基本图形.已知:在△ACB中,∠ACB=90°,在△ACB内有一点D,连接CD,以CD为直角边作等腰直角三角形CDF,∠DCF=90°,AC=CB,则BD与AF的关系.【解析】这个基本图形学生容易看出两个三角形△BCD≌△ACF(SAS)得出BD=AF,∠CBD=∠CAF,得出BD⊥AF.【解题策略】从已知条件出发,寻找证全等的条件,利用SAS证明两个三角形全等,用全等三角形的性质证出边、角相等.通过“8”字形,证两线垂直.由基本图形生成结论,两线相等,两线垂直.证明两条线垂直的方法:①已知有90°利用“8”字形证另一角等于90°即得两条线垂直;②利用勾股定理的逆定理证,两线垂直;③利用三角函数或者相似得到两线垂直;④利用等腰三角形三线合一性,得到两线垂直.(二)鞍山市2019年中考25题(1)在Rt△ABC中,∠ACB=90°,D是△ABC内一点,连接AD,BD.在BD左侧作Rt△BDE,使∠BDE=90°,以AD和DE为邻边作▱ADEF,连接CD,DF.(1)若AC=BC,BD=DE.①如图1,当B,D,F三点共线时,CD与DF之间的数量关系为;【解析】由BC=CA,BD=AF,构造全等,缺夹角∠CBD、∠CAF,用“8”字图证明∠CBD=∠CAF.再由等腰直角三角形的性质得出DF=√2CD.此类问题实际上是还原基本图形,添加一个平行四边形条件,构造两个三角形全等.【解题策略】几何题中,研究两条线段数量关系,解题策略:①把两条线段放在两个三角形中,证全等或证相似。
近两年中考后两题评析一、考点分析:中考中第24、25题是综合性比较强的大题,往往也是学生最容易失分的题。
了解这类题的各种类型,掌握第三问得解题方法,各个击破。
二、教学目标:1. 通过与学生的交流,了解学生的做24、25题时的做题习惯、对考点相关知识点的掌握情况以 及薄弱的地 方,以便更好的查漏补缺。
2. 了解中考中较难的第24、25题的各种题型。
3. 掌握正确的解题方法三、教学内容 (一)第24题由最近几年武汉市的中考试题分析第24题的最常见题型一般是纯几何题,次类型的题主要是集锐角三角形,直角三角形,四边形,三角函数,全等,相似等知识的综合运用。
一般第一问比较简单,第二问第三问比较难,如何把握好这三问之间的关系是解的关键。
例题1 已知:线段OA ⊥OB ,点C 为OB 中点,D 为线段OA 上一点。
连结AC ,BD 交于点P .(1) 如图1,当OA=OB ,且D 为OA 中点时,求A P P C的值;(2) 如图2,当OA=OB ,且A D 1A O4=时,求tan ∠BPC 的值.(3) 如图3,当AD ∶AO ∶OB=1∶n ∶2n 时,直接写出tan ∠BPC的值.(图1) (图2) (图3) 解:(1) 延长AC 至点E ,使CE =CA ,连接BE ,∵C 为OB 中点, ∴△BCE ≅△OCA ,∴BE =OA ,∠E =∠OAC ,∴BE //OA , ∴△APD ~△EPB ,∴EP AP =EBAD 。
又∵D 为OA 中点,OA =OB ,∴EPAP =AOAD =21。
∴EPAP =APPC AP +2=21,∴PCAP =2。
(2) 延长AC 至点H ,使CH =CA ,连结BH ,∵C 为OB 中点, ∴△BCH ≅△OCA ,∴∠CBH =∠O =90︒,BH =OA 。
由AOAD =41,DCOPHA BABCD POE设AD =t ,OD =3t ,则BH =OA =OB =4t 。
武汉市中考第25题的解题分析□1.25.(本题12分)已知抛物线y =a (x +1)2+c (a >0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,其顶点为M ,已知直线MC 的函数表达式为y =kx -3,与x 轴的交点为N ,且cos ∠BCO =31010. ⑴求抛物线的解析式;⑵在此抛物线上是否存在异于点C 的点P ,使以N 、P 、C 为顶点的三角形是以NC 为一条直角边的直角三角形若存在,求出点P 的坐标;若不存在,请说明理由.⑶如图2,过点A 作x 轴的垂线,交直线MC 于点Q ,若将抛物线沿其对称轴上下平移,使抛物线与线段NQ 总有公共点,则抛物线向上最多可平移多少单位长度向下最多可平移多少个单位长度解:25.⑴抛物线为y =(x +1)2-4=x 2+2x -3.⑵假设在抛物线线上存在异于点C 的点P ,使以N 、P 、C 为顶点 的三角形是以NC 为一条直角边的直角三角形. ① 当∠PNC=90°时,可知M(-1,-4),② 代入y =kx -3得k=1, ∴直线MC 为y =x -3,图2图1第25题∴N(3,0). ∴OC=ON=3, ∠CNO=45°. 设NP 交y 轴于D , ∵∠PNC=90°,∴∠DNO=∠PNC -∠CNO=45°, OD=ON=3,∴D(0,3).于是可得直线DN :y =-x +3. 由⎩⎨⎧y =-x +3y =x 2+2x -3可得P 1(-3+332,9-332),P 2(-3-332,9+332).②当∠PCN=90°时,同理可得P 3(-3,0),P 4(0,-3)(舍去)综上,抛物线线上存在满足条件的点有3个:P 1(-3+332,9-332),P 2(-3-332,9+332),P 3(-3,0).⑶①若抛物线向上平移,最多可平移14个单位长度.②若抛物线向下平移,最多可平移12个单位长度.□2.25. (本题满分12分)如图1,抛物线y=ax 2+bx+3经过点A(-3,0),B(-1,0)两点, (1)求抛物线的解析式;(2)设抛物线的顶点为M ,直线y=-2x+9与y 轴交于点C ,与直线OM 交于点D ,现将抛物线平移,保持顶点在直线OD 上,若平移的抛物线与射线CD (含端点C )只有一个公共点,求它的顶点横坐标的值或取值范围;(3)如图2,将抛物线平移,当顶点至原点时,过Q (0,3)作不平行于x 轴的直线交抛物线于E 、F 两点,问在y 轴的负半轴上是否存在一点P,使△PEF 的内心在y 轴上,若存在,求出点P 的坐标;若不存在,说明理由。
中考历史历年真题含答案1.公元前213年,丞相李斯提出,要是臣下以古论今,只有陷国家于不利,他更主张凡私人教学一律禁止,以杜绝“诽谤”。
皇帝根据李斯建议采取的措施是A.焚书坑儒B.统一文字C.设立太学D.独尊儒术【答案】A【解析】依据课本所学可知,为加强思想控制,秦始皇接受李斯的建议,发布焚书令,规定除政府外,民间只准留下有关医药、占卜和种植的书,其他书都要烧掉;以后再有谈论儒家诗书的都要判处死刑。
他又把暗中批评他的一批儒生,在咸阳活埋。
这就是历史上的“焚书坑儒”。
A正确;统一文字有利于文化的交流与发展,B排除;汉武帝是推行儒学教育,在长安设立太学,C排除;为实行思想的大一统,汉武帝推行“罢黜百家,独尊儒术”。
D排除;故选A。
2.2020年,“健康码”、“通信大数据行程卡”等作为个人信息共享和出入通行的电子凭证进人我们的生活,让复工复产更加精准、科学、有序。
这种便捷的跨地区互认方式有赖于A.航天技术的运用B.信息技术的发展C.新材料技术的应用D.生物技术的进步【答案】B【解析】“健康码”、“通信大数据行程卡”等作为个人信息共享和出入通行的电子凭证得益于信息技术的进步,故B符合题意;“健康码”、“通信大数据行程卡”与航天技术、新材料技术和生物技术无关,排除ACD。
故选B。
3.在1905年的日俄战争中,日本海军侦查发现敌人后,仅用三四个小时就完成了整个舰队的集合、出航,这是以往依靠桅杆上悬挂的信号旗传递信息无法实现的。
这--变化主要得益于使用了()A.移动电话B.无线电报C.电子计算机D.互联网【答案】B【解析】本题考查第二次工业革命。
1905年是解答本题的关键。
1905年处于第二次科技革命时期,第二次工业革命中发明的无线电报,实现了信息远距离传输,B符合题意。
ACD属于第三次科技革命成就,时间与题干不符。
故选:B。
4.毛泽东的《七律·长征》中写道:“红军不怕远征难,万水千山只等闲……”这首诗概括了长征的艰难,赞扬了红军无所畏惧的英雄气概。
专题三 第25题综合与实践类型一 面积平分问题(2017、2013、2010.25)试题演练1. (1)如图①,已知△ABC ,在BC 上找一点D ,连接AD ,使得AD 平分BC ;(2)如图②,已知直线l 1∥l 2,点A 和点B 分别为直线l 2上两定点,在直线l 1上任取两点M 、N ,连接AM 、AN 、BM 、BN ,AN 与BM 交于点P ,则S △AMP ________S △BNP (用“>”、“<”或“=”表示);(3)如图③,已知一块Rt △ABC 花园中,∠BAC =90°,AC =40米,BC =50米,AD 为花园内平分花园面积的一条小路(小路宽度忽略不计),现在要从AB 边上的水源E 点处向BC 边上拉一条笔直的水管,且要使得水管两边的花地面积相等,已知E 点距离A 点为10米,现有与AB 等长的水管,问该水管是否够用?第1题图2. (2019西安交大附中模拟)问题探究(1)如图①,在平面直角坐标系内,M 是边长为4的正方形ABCO 边上一点,请过点M (0,3)作一条直线,使它将正方形的面积平分,求这条直线的解析式;(2)如图②,在平面直角坐标系中有A (1,4),B (4,0)两点,请过点C (3,43)作一条直线将△ABO 的面积平分,求这条直线的解析式;问题解决(3)农民张伯伯有一块四边形空地如图③,在四边形ABCD 中,AB =2km ,BC =4km.∠BAD =90°,∠BCD =90°,∠ABC =120°,张伯伯想过点C 修一条路将四边形ABCD 的面积分为相等的两部分,这样的路是否存在?若存在,求出路的长度;若不存在,请说明理由.第2题图3. 问题探究(1)请在图①中作两条直线,使它将半圆O的面积三等分;(2)如图②,在矩形ABCD中,AB=3,BC=4,请在图②中过点A作两条直线,使它们将矩形ABCD 的面积三等分,并说明理由;问题解决(3)如图③,李师傅有一块平行四边形ABCD的菜地,其中AB=AC=100米,BC=120米,菜地A处有一用来灌溉的水源.李师傅现准备修两条笔直的小路将菜地面积三等分后给自己的三个儿子,要求三个儿子能在灌溉时共用A处水源,那么李师傅能否实现自己的想法?若能,请通过计算、画图说明;若不能,请说明理由.第3题图4. (2019陕西黑马卷)问题提出(1)如图①,已知直线a∥b,点A、B是直线a上不同的两点,分别过点A、B作AC⊥b,BD⊥b,垂足记为点C、D,则线段AC和线段BD的数量关系为AC____BD;(填“>”,“<”或“=”) 问题探究(2)如图②,在△ABC中,点M、N分别是AB、AC的中点,过点A作直线a∥BC,点P是直线a上的任意一点,连接PM、P N、MN,若四边形BCNM的面积为3,则△PMN的面积为________;问题解决(3)如图③,有一块四边形空地ABCD, AD∥BC,∠B=60°,AB=10米,AD=30米,BC=8米,点E 是BC上一点,且BE=2米.市政为了美化城市,计划将这块空地改造成一片牡丹园,为了方便行人行走,计划在牡丹园中间过点E修一条笔直的小路(路的宽度不计),使得小路的另一出口在AD上的点F处,且EF恰好将四边形ABCD的面积平分.请你帮助市政设计出小路EF的位置(在图中画出EF),并求EF的长(结果保留根号).第4题图类型二面积最值问题(2012、2011.25)试题演练1. (2012陕西25题12分)如图,正三角形ABC的边长为3+ 3.(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上.在正三角形ABC及其内部,以A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值及最小值,并说明理由.第1题图2.在正方形ABCD中,AB=100,点E、F分别在边AB、BC上,且∠EDF=45°.问题探究(1)如图①,请直接写出线段AE,EF,CF之间的数量关系:________;(2)如图②,若AE=25,求四边形DEBF的面积;问题解决(3)如图③,AB=100 m,公园设计部门为了给儿童提供更舒适、更安全的活动场地,准备将正方形空地中的DEBF部分作为儿童活动区,并用围栏围起来,只留三个出入口,即点D、E、F,将儿童活动区(即四边形DEBF)划分为△DEF和△BEF两种不同的游戏场地,儿童活动区之外的部分种植花草,则是否存在一种设计方案,使得儿童活动区面积最大?若存在,求出儿童活动区面积的最大值;若不存在,请说明理由.第2题图3. (2019陕师大附中模拟)发现问题(1)如图①,直线a∥b,点B、C在直线b上,点D为AC的中点,过点D的直线与a,b分别相交于M、N 两点,与BA 的延长线交于点P ,若△ABC 的面积为1,则四边形AMNB 的面积为________;探究问题(2)如图②,在Rt △ABC 中,∠BAC =90°,∠DAC =13∠BAC ,DA =2,求△ABC 面积的最小值; 拓展应用(3)如图③,矩形花园ABCD 的长AD 为400米,宽CD 为300米,供水点E 在小路AC 上,且AE =2CE ,现想沿BC 上一点M 和CD 上一点N 修一条小路MN ,使得MN 经过E ,并在四边形AMCN 围城的区域内种植花卉,剩余区域铺设草坪,根据项目的要求种植花卉的区域要尽量小.请根据相关数据求出四边形AMCN 面积的最小值,及面积取最小时点M 、N 的位置.(小路的宽忽略不计)第3题图类型三 线段最值问题(2018、2016、2015.25)1. 问题探究(1)如图①,点E 是正△ABC 高AD 上的一定点,请在AB 上找一点F ,使EF =12AE ,并说明理由; (2)如图②,点M 是边长为2的正△ABC 高AD 上的一动点,连接CM ,求12AM +MC 的最小值; 问题解决(3)如图③,A 、B 两地相距600 km ,AC 是沿东西方向向两边延伸的一条笔直的铁路.点B 到AC 的最短距离为360 km.今计划在铁路线AC 上修建一个中转站M ,再在BM 间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由A 到M 再通过公路由M 到B 的总运费最少,请确定中转站M 的位置,并求出AM 的长.(结果保留根号)第1题图2. 问题探究(1)如图①,试在线段BC 上画出点E 使得AE +DE 的值最小;(2)如图②,∠B =30°,点D 在射线BC 上,且BD =10,E 、F 分别为射线BA 、BC 上的两个动点,试求DE +EF 的最小值;问题解决:(3)如图③,C 、A 、B 三个城市由三条主道路AC 、AB 、BC 连接,已知AC =62,∠A =45°,AB =10,为缓解因汽车数量“井喷式”增长而导致的交通拥堵,增加人们出行的幸福指数,省规划厅计划分别在线段BC 、AB 、AC 上选取D 、E 、F 处开口修建便捷通道.请说明如何选取D 、E 、F 使得DE +EF +FD 最小,并请求出该最小值.第2题图3. 问题提出(1)如图①,点M 、N 是直线l 外两点,在直线l 上找一点K ,使得MK +NK 最小;问题探究(2)如图②,在等边三角形ABC内有一点P,且P A=3,PB=4,PC=5,求∠APB的大小;问题解决(3)如图③,矩形ABCD是某公园的平面图,AB=303米,BC=60米,现需要在对角线BD上修一凉亭E,使得到公园出口A、B、C的距离之和最小.是否存在这样的点E?若存在,请画出点E的位置,并求出EA+EB+EC的最小值;若不存在,请说明理由.第3题图4. (1)如图①,AD是△ABC的中线,则线段AB+AC________2AD(填“>”、“<”或“=”);(2)如图②,在矩形ABCD中,CD=3,BC=4,点E为BC的中点,若点F为CD上任意一点,试确定CF为何值时,△AEF的周长最小;(3)如图③,在矩形ABCD中,点O为对角线AC的中点,点P为AB上任意一点,Q为AC上任意一点,连接PO、BQ、P Q.若AC=2,BC=1,则当点Q在线段AC上何处时,OP+PQ+QB取得最小值.第4题图类型四辅助圆问题(2014~2019.25)1.问题提出(1)如图①,在△ABC 中,AB =AC =10,BC =12,点O 是△ABC 的外接圆的圆心,则OB 的长为________; 问题探究(2)如图②,已知矩形ABCD ,AB =4,AD =6,点E 为AD 的中点,以BC 为直径作半圆O ,点P 为半圆O 上一动点,求E 、P 之间的最大距离;问题解决(3)某地有一块如图③所示的果园,果园是由四边形ABCD 和弦CB 所对的劣弧组成的,果园主人现要从入口D 到弧BC ︵上的一点P 修建一条笔直的小路DP .已知AD ∥BC ,∠ADB =45°,BD =1202米,BC =160米,过弦BC 的中点E 作EF ⊥BC 交弧BC ︵于点F ,又测得EF =40米.修建小路平均每米需要40元(小路宽度不计),不考虑其他因素,请你根据以上信息,帮助果园主人计算修建这条小路最多要花费多少元?第1题图2. 定义:两组邻边分别相等的四边形叫做“筝形”;(1)如图①,已知筝形ABCD 的两条对角线长分别为a 、b ,则该筝形的面积为________;(2)如图②,已知△ABC ,BC =2,∠BAC =45°,求BC 边上的高线AD 的最大值;(3)如图③,现有一边长为6 cm 的正方形木料ABCD ,要利用其直角做一个四边形工件,在其相邻的两条边AB 、BC 上,取它们的三等分点E 、F ,要在木料内找一点G ,使得∠EGF =30°,且四边形BFGE 的面积最大.问正方形木料ABCD 内,是否存在符合要求的点G ?若存在,请求出四边形BFGE 面积的最大值;若不存在,请说明理由.第2题图3. 在四边形ABCD 中,AB =BC ,∠B =60°;(1)如图①,已知∠D =30°,则∠A +∠C =________.(2)已知AD =3,CD =4,在(1)的条件下,利用图①,连接BD ,并求出BD 的长度;(3)如图②,已知∠ADC =75°,∠ABC =60°,AB =BC ,BD =6,现需要截取某种四边形的材料板,这个材料板的形状恰巧符合如图②所示的四边形,为了尽可能节约,你能求出这种四边形面积的最小值吗?如果能,请求出此时四边形ABCD面积的最小值;如果不能,请说明理由.第3题图4.问题提出(1)如图①,请在正方形ABCD内画出一个以点C为顶点、BC为腰的等腰三角形CBP;(用尺规作图,保留作图痕迹,不写作法)(2)如图②,在平面直角坐标系中,已知A(2,0),B(8,0),点P是y轴正半轴上一个动点,当∠APB 最大时,求点P的坐标;问题解决(3)某游乐场的平面如图③所示,经测量可知:∠DOC=60°,OA=400 m,AB=200 3 m,场所保卫人员想在线段OD上的一点M处安装监控装置,用来监控OC上的AB段,为了让监控效果达到最佳,必须要求∠AMB最大,请问在线段OD上是否存在这样的一点M?若存在,请求出此时OM的长和∠AMB的度数;若不存在,请说明理由.第4题图5. (2019陕西副题25题12分)问题提出(1)如图①,已知直线l及l外一点A,试在直线l上确定B、C两点,使∠BAC=90°,并画出这个Rt△ABC;问题探究(2)如图②,O是边长为28的正方形ABCD的对称中心,M是BC边上的中点,连接OM. 试在正方形ABCD的边上确定点N,使线段ON和OM将正方形ABCD分割成面积之比为1∶6的两部分.求点N到点M的距离;问题解决(3)如图③,有一个矩形花园ABCD,AB=30 m,BC=40 m. 根据设计要求,点E、F在对角线BD上,且∠EAF=60°,并在四边形区域AECF内种植一种红色花卉,在矩形内其他区域均种植一种黄色花卉.已知种植这种红色花卉每平方米需210元,种植这种黄色花卉每平方米需180元.试求按设计要求,完成这两种花卉的种植至少需费用多少元?(结果保留整数.参考数据:2≈1.4,3≈1.7)第5题图6. (2018西安高新一中模拟)实践探索:(1)如图①,已知线段AB,以AB为弦,在图①中作出一个⊙O;(2)如图②,在矩形ABCD中,AD=4,点P在边DC上且∠APB=60°,试判断矩形ABCD的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由;(3)如图③,有一块矩形ABCD的板材,AB=62+12,BC=62+6,现截去了一块等腰直角三角形ADE,工人想将剩下的板材合理利用,截出一个四边形AMFN,且满足点F在边BC上,CF∶BF=1∶2,点M在AE上,点N在AB上,∠MFN=90°,这个四边形AMFN的面积是否存在最大值?若存在,试求出面积的最大值;若不存在,请说明理由.第6题图参考答案类型一面积平分问题1. 解:(1)如解图①,D 为BC 的中点,连接AD ,则AD 平分△ABC 的面积;第1题解图①(2)=;【解法提示】∵△ABM 和△ABN 的底边相等,高均为l 1与l 2之间的距离, ∴S △ABM =S △ABN ,∵S △AMP =S △ABM -S △ABP ,S △BNP =S △ABN -S △ABP ,∴S △AMP =S △BNP .(3)∵AD 平分△ABC 的面积,即S △ABD =S △ACD ,∴AD 为斜边BC 上的中线,∴D 为BC 的中点,如解图②,连接DE ,过点A 作AF ∥DE 交BC 于点F ,连接EF 交AD 于点G ,第1题解图②∵AF ∥DE ,由(2)得S △AEG =S △DFG ,∵S △BEF =S △ABD -S △AEG +S △DFG ,S 四边形AEFC =S △ACD -S △DFG +S △AEG ,∴S △BEF =S 四边形AEFC ,∴EF 平分S △ABC ,过点E 作EH ⊥BC 于点H ,∵△ABC 是直角三角形,AC =40米,BC =50米,∴AB =BC 2-AC 2=30米,∵AE =10米,∴BE =20米,∵sin B =EH BE =AC BC =45, ∴EH =16米,在Rt △BEH 中,∵BE 2=EH 2+BH 2,∴BH =12米,∵S △ABC =12AB ·AC =600(平方米),EF 平分S △ABC ,∴S △BEF =12S △ABC =300(平方米),又∵S △BEF =12BF ·EH ,且EH =16米,∴BF =752米,∴HF =BF -BH =512米,在Rt △EHF 中,HF =512米,EH =16米,∴EF =HF 2+EH 2=51452>51442=5×122=30米=AB ,∴该水管不够用.2. 解:(1)如解图①,∵四边形ABCO 是正方形,点M 在AO 上,根据中心对称图形面积平分模型,直线必过正方形ABCD 的对称中心,即对角线的交点H ,易知H (2,2).第2题解图①设直线MH 的解析式为y =kx +3. ∵直线MH 过点H (2,2), ∴直线MH :y =-12x +3;(2)设直线AB 的解析式为y =k 1x +b 1. ∵直线过点A (1,4),点B (4,0), ∴⎩⎪⎨⎪⎧4=k 1+b 10=4k 1+b 1,解得⎩⎨⎧k 1=-43b 1=163,∴直线AB :y =-43x +163,∴C (3,43)在直线AB 上,如解图②.第2题解图②设直线CD 将△AOB 的面积二等分,则S △ADC =12S △AOB =12×12×4×4=4.易知直线OA 的解析式为y =4x ,如解图②,过点C 作CE ∥x 轴交AD 于点E , ∴点E 的坐标为(13,43).∴CE =3-13=83,∴S △ADC =CE ·(y A -y D )2=4,∴y D =1,∴点D 的坐标为(14,1).设直线CD 的解析式为y =k 2x +b 2(k 2≠0). 将点C (3,43),D (14,1)代入得,⎩⎨⎧3k 2+b 2=4314k 2+b 2=1,解得⎩⎨⎧k 2=433b 2=3233,∴这条直线的解析式为y =433x +3233;(3)存在.如解图③,建立平面直角坐标系,使AD 在x 轴上,AB 在y 轴上,过点C 作CG ⊥y 轴,CF ⊥x 轴,过点B 作直线BE ∥AC 交x 轴于点E ,连接CE .由题意,得S 四边形ABCD =S △CED ,取DE 的中点H ,连接CH ,直线CH 即为所求直线.第2题解图③在Rt △CGB 中,∠CBG =180°-∠ABC =60°,BC =4, ∴GB =2,CG =OF =23, ∴C (23,4), ∴OG =CF =4.在Rt △CFD 中,∠CDF =180°-∠ABC =60°,CF =4,∴FD =433,∴OD =1033,设直线AC 的解析式为y =k 3x , ∵直线过点C (23,4), ∴直线AC :y =233x .又∵BE ∥AC ,∴直线BE :y =233x +2.当y =0时,x =-3, ∴E (-3,0).∴DE =OE +OF +FD =1333,易得HF =536.在Rt △CHF 中,由勾股定理得CH =(536)2+42=6516(km ).∴存在这样的路,且路的长度为6516km . 3. 解:(1)作直线如解图①所示;第3题解图①(2)如解图②所示,直线AP 、AQ 即为所求. 理由如下:如解图②,在矩形ABCD 中,AB =3,BC =4, ∴矩形ABCD 的面积为12.设过点A 的直线分别交BC 、CD 于点P 、Q ,使直线AP 、AQ 把矩形ABCD 的面积三等分, 则S △ABP =S △ADQ =4, 即12×3BP =12×4DQ =4, ∴BP =83,DQ =2,∴当BP =83,DQ =2时,直线AP 、AQ 把矩形ABCD 的面积三等分;第3题解图②(3)李师傅能实现自己的想法.如解图③,过点A 作AE ⊥BC ,垂足为点E . ∵AB =AC =100米,BC =120米, ∴BE =12BC =60米,∴在Rt △ABE 中, AE =AB 2-BE 2=80米,∴S ▱ABCD =BC ·AE =120×80=9600(平方米), 过点A 作AF ⊥CD ,垂足为点F , ∵CD =AB =100米,CD ·AF =BC ·AE , ∴AF =BC ·AE CD =120×80100=96(米).设过点A 的直线分别交BC 、CD 于点P 、Q ,使直线AP 、AQ 把平行四边形ABCD 的面积三等分,则S △ABP=S △ADQ =13×9600=3200(平方米),即12BP ·AE =12DQ ·AF =3200, ∴BP =80米,DQ =2003米,∴当BP =80米,DQ =2003米时,直线AP 、AQ 把平行四边形ABCD 的面积三等分.第3题解图③4. 解:(1)=; (2)1;【解法提示】∵在△ABC 中,M 、N 分别是AB 、AC 的中点,∴MN ∥BC ,MN =12BC ,∴S △AMN =14S △ABC ,∴S 四边形BCNM =3S △AMN ,∵S 四边形BCNM =3,∴S △AMN =1.又∵直线a ∥BC ,MN ∥BC ,∴直线a ∥MN ,∴S △PMN =S △AMN =1.(3)如解图,在CD 上取点G ,使得CG =DG ,过点G 作HK ∥AB ,交AD 于点H ,交BC 的延长线于点K ,连接BH 、AK ,相交于点O ,连接EO 并延长交AD 于点F ,此时EF 即为所求.第4题解图过点A 作AQ ⊥BC 于点Q ,在Rt △ABQ 中,AB =10米,∠ABQ =60°, ∴BQ =5米,AQ =53米. ∵BE =2米,∴EQ =3米.过点E 作EP ⊥DA 交DA 的延长线于点P ,则四边形EQAP 是矩形, ∴EP =53米,AP =EQ =3米. ∵G 是CD 的中点,CK ∥HD ,∴∠KCG =∠HDG ,∠CKG =∠DHG ,CG =DG . ∴△CKG ≌△DHG (AAS ).∴CK =DH ,又由作图及题知HK ∥AB ,AD ∥BC . ∴四边形ABKH 是平行四边形, ∴AH =BK .∴AH =BC +CK =BC +HD =AD -HD . ∴HD =12(AD -BC )=12×(30-8)=11米.∴AH =AD -HD =30-11=19米. ∵FH =BE =2米, ∴AF =AH -FH =17米. ∴PF =P A +AF =3+17=20米.在Rt △EPF 中,由勾股定理得EF =EP 2+PF 2=(53)2+202=519米.类型二 面积最值问题1. 解:(1)如解图①,正方形E ′F ′P ′N ′即为所求;(2分)第1题解图①(2)设正方形E ′F ′P ′N ′的边长为x , ∵△ABC 为正三角形, ∴AE ′=BF ′=33x , ∴x +233x =3+3,∴x =9+3323+3,即x =33-3.∴(1)中作出的正方形E ′F ′P ′N ′的边长是33-3;(3)如解图②,连接NE 、EP 、PN ,则∠NEP =∠NEM +∠PEH =90°.第1题解图②设正方形DEMN 、正方形EFPH 的边长分别为m 、n (m ≥n ),它们的面积和为S , 则NE =2m ,PE =2n . ∴PN 2=NE 2+PE 2 =2m 2+2n 2 =2(m 2+n 2). ∴S =m 2+n 2=12PN 2.延长PH 交ND 于点G ,则PG ⊥ND .在Rt △PGN 中,PN 2=PG 2+GN 2=(m +n )2+(m -n )2. ∵AB =AD +DE +EF +BF =33m +m +n +33n =3+3, 即m +n =3,∴①当(m -n )2=0时,即m =n 时,S 最小. ∴S 最小=(32)2×2=92.②当(m -n )2最大时,S 最大.即当m 最大且n 最小时,S 最大. ∵m +n =3,由(2)知,m 最大=33-3. ∴n 最小=3-m 最大 =3-(33-3) =6-3 3.∴S 最大=(33-3)2+(6-33)2=27+9-183+36+27-36 3=99-54 3.2. 解:(1)EF =AE +CF ;【解法提示】如解图①,将△DAE 绕点D 逆时针旋转90°得到△DCE ′, ∴ED =E ′D ,∠ADE =∠CDE ′, 又∵∠EDF =45°, ∴∠ADE +∠FDC =45°,即∠CDE ′+∠FDC =∠E ′DF =45°, ∴∠EDF =∠E ′DF . 在△DEF 和△DE ′F 中, ⎩⎪⎨⎪⎧ED =E ′D ∠EDF =∠E ′DF DF =DF, ∴△DEF ≌△DE ′F (SAS ), ∴EF =E ′F =E ′C +CF =AE +CF .(2)如解图②,将△DAE 绕点D 逆时针旋转90°至△DCN ′处, 设EF =N ′F =a (a >0),∵正方形ABCD 的边长为100,∠EDF =45°,AE =25, ∴BE =100-25=75, ∴BF =a 2-752, ∴a =100+25-a 2-752, 解得a =85,∴S 四边形DEBF =S 正方形ABCD -S △DFN ′=1002-12×85×100=5750;(3)存在.如解图③,连接AC ,将△DAE 绕点D 逆时针旋转90°至△DCE ″处, 由(2)得S 四边形DEBF =S 正方形ABCD -S △DFE ″=10000-50EF , ∴当EF 最小时,S 四边形DEBF 最大, ∵EF 2=BE 2+BF 2, ∴当BE =BF 时,EF 最小, 此时EF ∥AC , ∴BE BA =EF AC ,即BE 100=EF1002, ∴BE EF =22, ∴∠EFB =45°, ∴BE =BF ,∴AE =FC =BC -BF =100-BE ,∴EF =E ″F =FC +CE ″=200-2BE =2BE , 解得BE =100(2-2), ∴EF =2BE =2002-200,∴S 四边形DEBF =10000-50×(2002-200)=20000-10000 2.∴当BE =BF =100(2-2)m 时,儿童活动区的面积最大,最大面积为(20000-100002)m 2.第2题解图3. 解:(1)1;【解法提示】∵a ∥b ,∴∠MAD =∠NCD ,∵AD =DC ,∠ADM =∠CDN ,∴△ADM ≌△CDN (ASA ),∴S △ADM =S △CDN ,∴S 四边形AMNB =S △ABC =1.(2)如解图①,延长AD 至点F ,使得DF =DA ,过点F 作FG ⊥AB 于点G ,交BC 于点H ,FE ⊥AC 交AC 的延长线于点E ,连接EG .∵∠FEA =∠FGA =∠GAE =90°, ∴四边形AEFG 是矩形,∵∠DAC =13∠BAC =30°,AD =DF =2,∴AF =4,EF =12AF =2,AE =3EF =23,∴S 矩形AEFG =43,∵矩形AEFG 是中心对称图形,D 是对称中心, ∴过点D 的任意直线平分矩形AEFG 的面积, ∴S 四边形ACHG =12S 矩形ABCD =23,∵S △ABC ≥S 四边形ACHG , ∴S △ABC ≥23,∴当BC 与GE 重合时,△ABC 的面积最小,最小值为23;图① 图②第3题解图(3)如解图②,取AE 的中点G ,作GH ⊥CD 于点H ,GF ⊥BC 于F ,连接FH ,则四边形GHCF 是矩形. ∵AE =2EC ,AG =EG , ∴EC =EG , ∴点E 在FH 上, ∵AC =3EC ,∴S △ACM =3S △ECM ,S △ACN =3S △ECN , ∴S 四边形AMCN =3S △CMN ,∴当△CMN 的面积最小时,四边形AMCN 的面积最小, ∵矩形CFGH 是中心对称图形,由(2)可知:当MN 与FH 重合时,△MCN 的面积最小, ∵AC =3002+4002=500(米), ∴CG =23×500=10003(米),∵GH ∥AD ,∴CG CA =GH AD =CH CD ,即10003500=GH 400=CH300, ∴GH =8003米,CH =200米,∴△MCN 的面积的最小值为12×200×8003=800003(平方米),∴四边形AMCN 的面积的最小值为80000平方米, 此时CM =CF =GH =8003米,CN =CH =200米.类型三 线段最值问题1. 解:(1)如解图①,作EF ⊥AB ,垂足为点F ,点F 即为所求.第1题解图①理由如下:∵点E 是正△ABC 的高AD 上的一点,∴∠BAD =30°. ∵EF ⊥AB , ∴EF =12AE ;(2)如解图②,作MN ⊥AB ,垂足为点N ,第1题解图②∵△ABC 是正三角形,AD 为高, ∴∠BAD =12∠BAC =30°,∵MN ⊥AB ,∴在Rt △AMN 中,MN =12AM ,当C 、M 、N 三点共线时,12AM +MC =MN +MC =CN .此时12AM +MC 的值最小,最小值即为CN 的长.∵△ABC 是边长为2的正三角形, ∴CN =BC ·sin60°=2×32=3, 即12AM +MC 的最小值为3; (3)如解图③,作BD ⊥AC ,垂足为点D ,在AC 异于点B 的一侧作∠CAN =30°. 过点B 作BF ⊥AN ,垂足为点F ,交AC 于点M ,点M 即为所求.第1题解图③在Rt △ABD 中,AD =AB 2-BD 2=6002-3602=480 km , 在Rt △MBD 中,∠MBD =∠MAF =30°, 则MD =BD ·tan30°=120 3 km , ∴AM =(480-1203)km .2. 解:(1)如解图①,过点A 作BC 的对称点A ′,连接A ′D 交BC 于点E .则点E 即为使得AE +DE 的值最小的点;第2题解图①(2)如解图②,作点D 关于AB 的对称点D ′,过点D ′作D ′F ⊥BC 于点F ,交AB 于点E ,则DE +EF =D ′E +EF ≥D ′F ,连接BD ′.∵点D 和点D ′关于AB 对称,∴∠D ′BE =∠ABC =30°,BD ′=BD =10, ∴∠D ′BF =2∠ABC =60°, ∴D ′F =BD ′·sin ∠D ′BF =10×32=53,即DE +EF 的最小值为53;第2题解图②(3)如解图③,分别作点D 关于AB 、AC 的对称点D 1、D 2,连接D 1D 2、AD 1、AD 2、ED 1、FD 2,第2题解图③根据对称性,有DE =D 1E ,DF =D 2F , 则DE +EF +DF =D 1E +EF +FD 2≥D 1D 2,由轴对称可得:AD =AD 1=AD 2,∠DAC =∠D 2AC ,∠DAB =∠D 1AB ,∴D 1D 2是顶角为90°的等腰三角形的底边,要想底边长D 1D 2最小,只要腰长最小,根据垂线段最短,当AD ⊥BC 时,腰长最小,过点C 作CH ⊥AB ,垂足为点H ,在Rt △ACH ,∵AC =62,∴AH =CH =6,∴BH =AB -AH =4,在Rt △BHC 中,由勾股定理得BC =213,根据等面积法AB ·CH =BC ·AD ,∴AD =301313,∴D 1D 2=302613,即DE +EF +DF 最小值为302613.3. 解:(1)如解图①,连接MN ,与直线l 交于点K ,点K 即为所求;第3题解图①(2)如解图②,把△APB 绕点A 逆时针旋转60°得到△ACP ′, 由旋转的性质,P ′A =P A =3,P ′C =PB =4,∠P AP ′=60°, ∴△APP ′是等边三角形, ∴PP ′=P A =3,∠AP ′P =60°,∵PP ′2+P ′C 2=32+42=25,PC 2=52=25, ∴PP ′2+P ′C 2=PC 2, ∴∠PP ′C =90°,∴∠AP ′C =∠AP ′P +∠PP ′C =60°+90°=150°, ∴∠APB =∠AP ′C =150°;第3题解图②(3)如解图③,把△ABE 绕点B 逆时针旋转60°得到△A ′BE ′,由旋转的性质,A ′B =AB =303,BE ′=BE ,A ′E ′=AE ,∠E ′BE =60°,∠A ′BA =60°, ∴△E ′BE 是等边三角形, ∴BE =EE ′,∴EA +EB +EC =A ′E ′+EE ′+EC ≥A ′C . 即EA +EB +EC 的最小值为A ′C 的长度.过点A ′作A ′G ⊥BC 交CB 的延长线于点G ,则∠A ′BG =90°-∠A ′BA =90°-60°=30°. ∴A ′G =12A ′B =12AB =12×303=153米,GB =3A ′G =3×153=45米,∴GC =GB +BC =45+60=105米,在Rt △A ′GC 中,A ′C =A ′G 2+GC 2=3013米, ∴EA +EB +EC 的最小值为3013米.第3题解图③4. 解:(1)>;(2)如解图①,作点E 关于CD 的对称点E ′,连接AE ′交DC 于点F ,连接EF 、AE . 若在边CD 上任取与点F 不重合的一点F ′,连接AF ′、EF ′、E ′F ′,由EF ′+AF ′=E ′F ′+AF ′>AE ′=E ′F +AF =EF +AF 可知,当点F 为AE ′与DC 的交点时,△AEF 的周长最小.∵在矩形ABCD 中,CD =3,BC =4,点E 为BC 的中点, ∴AB =3,E ′C =EC =2,BE ′=6, ∵CF ∥AB ,∴Rt △E ′CF ∽Rt △E ′BA , ∴CF BA =E ′C E ′B, ∴CF =E ′C E ′B ·AB =26×3=1,∴当CF 为1时,△AEF 的周长最小;第4题解图①(3)如解图②,作点B 关于AC 的对称点B ′,作点O 关于AB 的对称点O ′,连接AB ′,QB ′,PO ′,B ′O ′,B ′P ,BB ′,AO ′,OO ′,则QB =QB ′,OP =O ′P .∴OP +PQ +QB =O ′P +PQ +QB ′,当点Q 在AC 的中点(与点O 重合),点P 在AB 的中点时,B ′O ′≤B ′P +O ′P ≤PQ +QB ′+O ′P , ∴OP +PQ +QB 的最小值为B ′O ′.∵在矩形ABCD 中,∠ABC =90°,AC =2,BC =1, ∴∠BAC =30°,AB =3,∵点B 、B ′关于AC 对称,点O 、O ′关于AB 对称,∴∠B ′AC =30°,AB ′=AB =3,∠O ′AB =30°,AO ′=AO =1, ∴∠B ′AO ′=90°,∴B ′O ′=AB ′2+AO ′2=(3)2+12=2, ∴OP +PQ +QB 的最小值为2. 设B ′O ′交AC 于点Q ′,∵在Rt △AO ′B ′中,AO ′=1,B ′O ′=2, ∴∠AB ′O ′=30°,则∠AO ′B ′=60°,∵在△AO ′Q ′中,∠Q ′AO ′=∠Q ′AB +∠BAO ′=60°, ∴△AO ′Q ′是等边三角形, ∴AQ ′=AO ′=1=AO , ∴点Q ′在AC 的中点处,∴当点Q 为AC 的中点时,OP +PQ +QB 取得最小值.第4题解图②类型四 辅助圆问题1. 解:(1)254;【解法提示】如解图①,记AO 交BC 于点K ,∵点O 是△ABC 的外接圆的圆心,AB =AC ,∴AK ⊥BC ,BK =12BC =6,∴AK =AB 2-BK 2=8,在Rt △BOK 中,OB 2=BK 2+OK 2,设OB =x ,∴x 2=62+(8-x )2,解得x =254, ∴OB =254.第1题解图①(2)如解图②,连接EO 并延长,交半圆于点P ,此时E 、P 之间的距离最大,在BC ︵上任取异于点P 的一点P ′,连接OP ′,P ′E ,∴EP =EO +OP =EO +OP ′>EP ′,即EP >EP ′. ∵AB =4,AD =6,∴EO =4,OP =OC =12BC =3.∴EP =OE +OP =7.∴E 、P 之间的最大距离为7;第1题解图②(3)如解图③,延长FE 交BD 于点M , ∵EF ⊥BC ,BE =CE ,BC ︵是劣弧, ∴BC ︵所在圆的圆心在射线FE 上, 设圆心为O ,半径为R ,连接OC ,则OC =R ,OE =R -40,BE =CE =12BC =80,在Rt △OEC 中,R 2=802+(R -40)2, 解得:R =100, ∴OE =OF -EF =60.过点D 作DG ⊥BC ,垂足为点G , ∵AD ∥BC ,∠ADB =45°, ∴∠DBC =45°.在Rt △BDG 中,DG =BG =BD2=120, 在Rt △BEM 中,ME =BE =80, ∵ME >OE .∴点O 在△BDC 内部.∴连接DO 并延长交BC ︵于点P ,则DP 为入口D 到BC ︵上一点P 的最大距离. 在BC 上任取一点异于点P 的点P ′,连接OP ′,P ′D . ∴DP =OD +OP =OD +OP ′>DP ′,即DP >DP ′.过点O 作OH ⊥DG ,垂足为点H ,则OH =EG =BG -BE =40,DH =DG -HG =DG -OE =60, ∴OD =OH 2+DH 2=2013. ∴DP =OD +OP =2013+100,∴修建这条小路最多要花费40×(2013+100)=(80013+4000)元.第1题解图③2. 解:(1)12ab ;【解法提示】∵四边形ABCD 是筝形,∴AB =AD ,CB =CD .∵AC =AC ,∴△ABC ≌△ADC .∴∠DAC =∠BAC .∴AC 垂直平分BD .∴S △ABC =S △ADC =12·12b ·a .∴S 四边形ABCD =S △ABC +S △ADC =12ab .(2)∵BC =2,∠BAC =45°,∴点A 在以BC 为弦,且弦BC 所对的圆心角为90°的BAC ︵上. 设△ABC 的外接圆圆心为O , ∴∠BOC =90°.如解图①,连接OB 、OC , ∴OB =OC =22BC =1. 要使得BC 边上的高线最长,则点A 在BC 的垂直平分线上, 过点O 作OD ⊥BC 于点D ,延长DO ,交⊙O 于点A . ∵△BOC 是等腰直角三角形,OD ⊥BC , ∴OD =22. ∴BC 边上的高线AD 的最大值为AO +OD =1+22;第2题解图①(3)存在.∵四边形ABCD 是正方形,E 、F 分别为AB 、BC 的三等分点, ∴AB ⊥BC ,BE =BF =13AB =2 cm .∴△BEF 为等腰直角三角形,且S △BEF 为定值,EF =2 2 cm . ∴要使得四边形BFGE 面积最大,只需使得△EFG 面积最大即可. ∵∠EGF =30°,EF 为定长,∴点G 在以EF 为弦,所对圆心角为60°的EGF ︵上(不含E 、F 两点). 设△EFG 的外接圆圆心为O ,在△EFG 中,EF 为定长,要使得△EFG 面积最大,即底边EF 上的高取得最大值即可; 如解图②,连接BD ,连接BO 并延长,交⊙O 于点G ,交EF 于点M ,第2题解图②∴BO 垂直平分EF ,即MG 垂直平分EF ,此时△EFG 的面积最大,连接OE 、OF ,则∠EOF =60°. ∵OE =OF ,∴△EOF 为等边三角形.∴OE =OF =EF =2 2 cm ,OM = 6 cm . ∵OM ⊥EF , ∴M 为EF 的中点. ∴BM =12EF = 2 cm .∴BG =BM +OM +OG =(32+6)cm . ∵△BEF 为等腰直角三角形, ∴BM 为∠EBF 的平分线.∴BG 在正方形ABCD 的对角线所在的直线上,且BD =6 2 cm . ∵32+6<62,∴点G 在线段BD 上,即点G 在正方形ABCD 内部.∴存在符合要求的点G ,且四边形BFGE 面积的最大值为12EF ·BG =12×22×(32+6)=(6+23) cm 2.3. 解:(1)270°;【解法提示】∵∠A +∠B +∠C +∠D =360°,且∠B =60°,∠D =30°, ∴∠A +∠C =270°.(2)如解图①,将△BCD 绕点B 逆时针旋转60°得到△BAQ ,连接DQ , 则∠CBD =∠ABQ ,∠C =∠BAQ ,CD =AQ =4,BD =BQ ,∠DBQ =60°, ∴△BDQ 是等边三角形. ∴BD =DQ .∵∠C +∠BAD =270°, ∴∠BAQ +∠BAD =270°. ∴∠DAQ =90°.则BD =DQ =AD 2+AQ 2=5;第3题解图①(3)能.如解图②,将△BCD 绕点B 逆时针旋转60°得到△BAH ,连接DH ,作△AHD 的外接圆⊙O ,连接AO ,与DH 交于点K .第3题解图②由(2)知△BDH 是等边三角形,∴S 四边形ABCD =S △BAH +S △ABD =S △DBH -S △ADH .∴当△ADH 面积最大时,四边形ABCD 的面积最小. ∵∠ABC =60°,∠ADC =75°,∴∠BAD +∠BAH =∠BAD +∠BCD =360°-75°-60°=225°. ∴∠DAH =135°. ∵DH =DB =6,∴点A 在定圆⊙O 上运动,当O 、A 、B 共线时,△ADH 的面积最大,此时OB ⊥DH .则HK =KD =3. ∵AH =AD ,∴∠AHD =∠ADH =22.5°.在HK 上取一点F ,使得FH =F A ,则△AKF 是等腰直角三角形, 设AK =FK =x ,则FH =AF =2x , ∴3=x +2x ,解得x =32-3.∴△ADH 的面积最大值为12×6×(32-3)=92-9.∴四边形ABCD 的面积的最小值为34×62-(92-9)=93-92+9. 4. 解:(1)如解图①,等腰三角形CBP 即为所求(点P 为正方形ABCD 内的弧BD ︵上的任意一点);第4题解图①(2)以AB 为弦的圆,圆心Q 必过AB 的垂直平分线,如解图②,取AB 的中点D ,则D (5,0), ∴圆心Q 的横坐标为5,⊙Q 与y 轴交于点P ,即以AB 为弦的圆,圆半径PQ 最小为5, ∵sin ∠AQD =12AB AQ =3AQ ,∴当AQ =BQ 取得最小值时,sin ∠AQD 最大,∠AQD 最大,即∠AQB 最大,此时其所对圆周角∠APB 最大, 连接PQ .当PQ =5时,AQ =BQ =5,此时PQ ⊥y 轴且点P 为⊙O 与y 轴的切点, 则Q 点的纵坐标为±52-(8-22)2=±4,∵点P 在y 轴正半轴上, ∴点P 的坐标为(0,4);第4题解图②(3)存在.如解图③,过点A 、B 作⊙N 且与OD 相切于点M ,连接MN 并延长,交OC 于点E ,连接MA 、MB 、NA 、NB ,过点N 作NF ⊥AB 于点F,第4题解图③∵∠MOA =∠BOM ,OM 为⊙N 的切线, ∴∠OMA =∠OBM . ∴△OMA ∽△OBM . 即OM OB =OAOM, ∴OM 2=OA ·OB =400×(400+2003). ∴OM =(200+2003)m . 易得FB =12AB =1003m ,∵∠O =60°,∠OME =90°, ∴∠MEO =30°. ∵OM =(200+2003)m . ∴OE =2OM =(400+4003)m , ∴BE =OE -OB =2003m . ∴FE =FB +BE =3003m . ∴在Rt △NFE 中, NF =FE ·tan ∠MEO =300 m .∴在Rt △BNF 中,tan ∠BNF =FB NF =1003300=33.∴∠BNF =30°. ∵AB ︵=AB ︵,∴∠AMB =12∠ANB =∠BNF =30°.5.解:(1)如解图①所示,Rt △ABC 即为所求.(只要画出一个符合要求的Rt △ABC 即可)第5题解图①(2)如解图②,连接OB .∵O 是正方形ABCD 的对称中心,且BM =CM , ∴S △BOM =18×282<17×282.∴点N 不可能在BM 上,由对称性, 可知点N 也不可能在MC 上.显然,点N 不在AD 边上. ∴设点N 在AB 边上,连接ON .由题意,得12(BN +14)×14=17×282,解得BN =2.由对称性知,当点N 在CD 边上时,可得CN =2.∴MN =142+22=102;第5题解图②(3)如解图③,过点A 作AH ⊥BD 于点H ,第5题解图③在Rt △ABD 中,AB =30,AD =40,∴BD =50,AH =24.易得S △AEF =S △CEF .∴S 四边形AECF =2S △AEF =2×12×EF ·AH =24EF . 由题意可知,只有S 四边形AECF 最小时,按设计要求在矩形ABCD 内种植红、黄两种花卉的费用最低. 要使S 四边形AECF 最小,就需EF 最短.∵AH ⊥EF ,tan ∠HAD =tan ∠ABD =43<3,tan ∠BAH =tan ∠ADB =34<3, ∴∠HAD <60°,∠BAH <60°.又∵∠EAF =60°,∴E 、F 两点分布在AH 异侧.∴△AEF 为锐角三角形.作其中任一锐角△AEF 的外接圆⊙O ,过O 作OG ⊥EF 于点G ,连接OA 、OF ,则EF =2GF ,∠GOF =∠EAF =60°.在Rt △OGF 中,OF =2OG ,GF =3OG ,∴EF =23OG ,又∵OA +OG ≥AH ,OA =OF =2OG ,∴2OG +OG ≥24,得OG ≥8.∴EF =23OG ≥16 3.∴当圆心O 在AH 上,即AE =AF 时,EF =16 3.∴EH =83<18=BH ,FH =83<32=HD .∴当AE =AF 时,点E 、F 在BD 上.∴S 四边形AECF 的最小值为24×163=384 3.∴3843×210+(30×40-3843)×180=216000+115203≈235584(元).∴按设计要求,完成这两种花卉的种植至少需费用约为235584元.6. 解:(1)如解图①,⊙O 即为所求;第6题解图①【作法提示】①分别以点A 和点B 为圆心,大于12AB 长为半径画弧,交AB 两侧于E 、F 两点;②连接EF ,交AB 于点O ;③以点O 为圆心,OA 长为半径作圆,⊙O 即为所求.(2)存在.当△APB 是等边三角形时,矩形ABCD 的面积最小.如解图②,过点P 作PQ ⊥AB 于点Q ,则PQ =4,∠P AQ =60°,∴AQ =PQ tan ∠P AQ =4tan60°=433, 则AB =2AQ =833,即矩形ABCD 面积的最小值为4×833=3233;第6题解图②(3)存在.∵AB =62+12,BC =62+6,△ADE 是等腰直角三角形,∴DE =AD =BC =62+6.∴EC =DC -DE =AB -DE =6.又∵CF BF =12, ∴CF =BC 2+1=6,BF =2BC 2+1=6 2. 如解图③,连接EF ,则EF =CE 2+CF 2=62=BF ,即△ECF 是等腰直角三角形,绕点F 顺时针旋转△FEM ,使得EF 与BF 重合,得到△FBM ′,则∠NFM ′=∠NFB +∠BFM ′=∠NFB +∠EFM =180°-∠MFN -∠EFC =45°为定角,BF =62为定长,第6题解图③∴当NB =BM ′时,NM ′最小,则AM +AN 最大,即四边形AMFN 面积最大.作△FNM 的外接圆⊙Q ,连接NQ 、QM ′,则∠NQM ′=2∠NFM =90°,由圆的对称性知,∠NQB =12∠NQM ′=45°.由BM ′+QM ′=BM ′+QF =BM ′+2BM ′=BF =62,可得BM ′=12-62,即NM ′=2BM ′=24-122,则AM +AN =AB +AE -(NB +ME )=AB +AE -(NB +BM ′)=AB +AE - NM ′=242,则S 四边形AMFN 最大=12EF ·(AM +AN )=12×62×242=144.。
上海中考第25题分析(中)——由三角形、四边形产生的相似及存在问题前言:近年来,为了“秉承活学活用、切实减轻学生过重的学业负担”,上海市中考数学难度有逐年走低之嫌,甚至连压轴题的区分度也岌岌可危。
逐渐表现为:“综合性若,题型太熟悉,缺乏创新”2016年更是被师生一致冠以上海中考史上最简单的一张中考数学试卷,数学满分的人数达到前所未有的多,也更因为缺少区分度而遭到诟病。
殊不知,中考数学一刀平,数学英寸何处?但不管我如何吐槽,如何发言,中考该咋滴依然还咋滴,三个字概况:“然并卵”。
故,我们今天继续来学习中考数学第25题压轴题的分析吧!一、由三角形、四边形产生的相似及存在问题的解题思想(1)分类思想与讨论方法所谓“分类讨论”就是在研究数学问题时,根据某一标准把研究对象进行分类,然后按类进行讨论。
分类思想是自然科学乃至社会科学中的基本逻辑方法,初中数学中分类思想的教学是培养学生逐步建立逻辑思维能力较为有效的载体。
初中四年,是学生由形象的接受知识到抽象的感知知识的阶段。
学生通过对分类思想的建立和研究,培养了学生思维的条理性和缜密性,提高了学生全面周密地分析问题和解决问题的能力。
分类是讨论的前提,讨论是分类的延续,在建立了合理的分类后,只有找到正确的讨论方法,才能认为是完整的解决了问题。
分类思想是根据数学对象的本质与属性的相同点和差异点,将数学对象区分为不同种类的数学思想方法。
数学分类思想须满足两点要求:(1)对称性,即保证分类的对象既不重复又不遗漏。
(2)同一性,即每次分类必须保持同一的分类标准。
初中数学分类思想的研究主要体现在以下三个基本的层面:1. 数学知识点定义下的分类。
具体的体现在等腰三角形的底角和顶角的分类;等腰三角形的腰和底边的分类;不确定的相似三角形中对应顶点的分类等等。
此类问题的主要特点是由于数学知识点在定义时自身产生了分类,而问题的提问方式没有对该定义的分类内容进行解释,题意本身要求学生在解题的时候,根据定义的分类要求进行合理的分类讨论。
九年级中考数学解答题练习试题一、解答题。
(第25题反比例函数)(x>0)的图象经过点A(2√3,1),射1、(2014年济南中考)如图1,反比例函数y=kx线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC 相交于点N,连接CM,求△CMN面积的最大值.2、(2015年济南中考)如图1,点A(8,1)、B(n,8)都在反比例函数y=m(x>0)x的图象上,过点A作AC⊥x轴,于点C,过点B作BD⊥y轴于点D。
(1)求m的值和直线AB的函数关系式;(2)动点P从O点出发,以每秒2个单位长度的速度沿折线OD﹣DB向B点运动,同时动点Q从O点出发,以每秒1个单位长度的速度沿折线OC向C点运动,当动点P运动到D 时,点Q也停止运动,设运动的时间为t秒.①设△OPQ的面积为S,写出S与t的函数关系式;②如图2,当的P在线段OD上运动时,如果作△OPQ关于直线PQ的对称图形△O’PQ,是否存在某时刻t,使得点Q’恰好落在反比例函数的图象上?若存在,求Q’的坐标和t的值;若不存在,请说明理由.3、(2016年济南中考)如图1,▱OABC的边OC在x轴的正半轴上,OC=5,反比例函数y=m(x>0)的图象经过点A(1,4).x(1)求反比例函数的关系式和点B的坐标;(2)如图2,过BC的中点D作DP∥x轴交反比例函数图象于点P,连接AP、OP.①求△AOP的面积;②在▱OABC的边上是否存在点M,使得△POM是以PO为斜边的直角三角形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.4、(2017年济南中考)如图1,平行四边形OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=k(x>0)的图象经过点B.x(1)求点B的坐标和反比例函数的关系式;(2)如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B关于直线MN成轴对称,求线段ON的长;(3)如图3,将线段OA延长交y=k(x>0)于点D,过B,D的直线分别交x轴,y轴于xE,F两点,请探究线段ED与BF的数量关系,并说明理由.5、(2018年济南中考)如图,直线y=ax+2与x轴交于点A(1,0),与y轴交于点B(0,b).将线段AB先向右平移1个单位长度、再向上平移t(t>0)个单位长度,得到对应线段CD,反比例函数y=k(x>0)的图象恰好经过C、D两点,连接AC、BD.x(1)求a和b的值;(2)求反比例函数的表达式及四边形ABDC的面积;(3)点N在x轴正半轴上,点M是反比例函数y=k(x>0)的图象上的一个点,若△xCMN是以CM为直角边的等腰直角三角形时,求所有满足条件的点M的坐标.6、(2019年济南中考)如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=k(x>0)的图象经过点B.x(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.的值;①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求DEEF②在线段AB运动过程中,连接BC,若△BCD是以BC为腰的等腰三形,求所有满足条件的m的值.图1 图27、(2020年济南中考)如图,矩形OABC的顶点A、C分别落在x轴、y轴正半轴上,顶点为(2,2√3),反比例函数y=k x (x >0)的图象与BC 、AB 分别交于D 、E ,BD=12. (1)求反比例函数表达式和点E 的坐标; (2)写出DE 、AC 的位置关系,并说明理由;(3)点F 在直线AC 上,点G 是坐标系内一点,当四边形BCFG 是菱形,求出点G 的坐标并判断点G 是否在反比例图象上;8、(2021年济南中考)如图,直线y=32x 与双曲线y=kx 交于A 、B 两点,点A 坐标为(m ,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD。
历届中考第25题
25.(07年)(本题12分)如图①,在平面直角坐标系中,Rt △AOB ≌Rt △CDA ,且A(-1,
0)、B(0,2),抛物线y =ax 2+ax -2经过点C 。
(1)求抛物线的解析式;
(2)在抛物线(对称轴的右侧)上是否存在两点P 、Q ,使四边形ABPQ 是正方形?若存在,求点P 、Q 的坐标,若不存在,请说明理由;
(3)如图②,E 为BC 延长线上一动点,过A 、B 、E 三点作⊙O ’,连结AE ,在⊙O ’上另有一点F ,且AF =AE ,AF 交BC 于点G ,连结BF 。
下列结论:①BE +BF 的值不
变;②
AG
BG
AF BF
,其中有且只有一个成立,请你判断哪一个结论成立,并证明成立的结论。
O
(第25题图①)
A
B C D
x
y
O
x
y B
F
A
E
C O ’
G
(第25题图②)
25.(08年)(本题12分)如图1,抛物线23y ax ax b =-+经过A (-1,0),C (3,2)两点,与y 轴交于点D ,与x 轴交于另一点B 。
⑴求此抛物线的解析式;
⑵若直线1(0)y kx k =-≠将四边形ABCD 面积二等分,求k 的值;
⑶如图2,过点E (1,-1)作EF ⊥x 轴于点F ,将△AEF 绕平面内某点旋转180°后得△MNQ (点M ,N ,Q 分别与点A ,E ,F 对应),使点M ,N 在抛物线上,求点M ,N 的坐标.
O x y E B D A F 图2 A C O x y B D 图1
25.(09年)(本题满分12分)如图,抛物线24y ax bx a =+-经过(10)A -,、(04)C ,两点,与x 轴交于另一点B . (1)求抛物线的解析式;
(2)已知点(1)D m m +,在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标; (3)在(2)的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=°,求点P 的坐标.
y x
O A B
C
25. (10年)(本题满分12分) 如图,拋物线y 1=ax 2-2ax +b 经过A (-1,0), C (2,2
3)两点,与x 轴交于另一点B ;
(1) 求此拋物线的解析式;
(2) 若拋物线的顶点为M ,点P 为线段OB 上一动点(不与点 B 重合),点Q 在线段MB 上移动,且∠MPQ =45︒,设线 段OP =x ,MQ =
2
2
y 2,求y 2与x 的函数关系式,并直接写出自变量x 的取值范围;
(3) 在同一平面直角坐标系中,两条直线x =m ,x =n 分别与拋物线交于点E ,
G ,与(2)中的
函数图像交于点F ,H 。
问四边形EFHG 能否为平行四边形?若能,求m ,
n 之间的数量
关系;若不能,请说明理由。
P
M
Q
A
B O
y x
图1D M C B A O x y E F Q
O x y 25. (11年)(本题满分12分)如图1,抛物线y=ax 2
+bx+3经过点A(-3,0),B(-1,0)两点, (1)求抛物线的解析式;(2)设抛物线的顶点为M ,直线y=-2x+9与y 轴交于点C ,与直线OM 交于点D ,现将抛物线平移,保持顶点在直线OD 上,若平移的抛物线与射线CD (含端点C )只有一个公共点,求它的顶点横坐标的值或取值范围;(3)如图2,将抛物线平移,当顶点至原点时,过Q (0,3)作不平行于x 轴的直线交抛物线于E 、F 两点,问在y 轴的负半轴上是否存在一点P,使△PEF 的内心在y 轴上,若存在,求出点P 的坐标;若不存在,说明理由。
25.(2012武汉)如图1,点A为抛物线C1:y=x2﹣2的顶点,点B的坐标为(1,0)直
线AB交抛物线C1于另一点C
(1)求点C的坐标;
(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB于F,交抛物线C1于G,若FG:DE=4:3,求a的值;
(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x轴于点M,交射线BC于点N.NQ⊥x轴于点Q,当NP平分∠MNQ时,求m 的值.
25.(13年)(本小题满分12分)如图,点P 是直线l:22--=x y 上的点,过点P 的另一条直线m 交抛物线:2x y =于A 、B 两点 (1) 若直线m 的解析式为2
3
21+-
=x y ,求A 、B 两点的坐标;
(2) ①若点P 坐标为(-2,t ),当PA =AB 时,请直接写出点A 的坐标;
②试证明:对于直线l 上任意给定一点P ,在抛物线上都能找到点A ,使得PA =AB 成立;
(3)设直线l交y轴于点C,若△AOB的外心在边AB上,且∠BPC=∠OCP,求点P的坐标。
25、(13年四月调考)(本小题满分12分)
在平面直角坐标系xOy 中,抛物线c bx x y ++=2
1412与y 轴交于点B ,其顶点A 在直线
x y 4
3
=
上运动。
(1)当4-=b 时,求点B 的坐标; (2)当△AOB 为直角三角形时,求b 、c 的值;
(3)已知△CDE 的三个顶点的坐标分别为C (-5,2),D (-3,2),E (-5,6),当抛物线
c
bx x y ++=
2
1
412对称轴左侧的部分与△CDE 的三边一共有两个公共点时,求b 的取值范围。
A
B
x
y O
A
B
x
y
O
25.(11年四月调考)(本题满分12分)将抛物线G
1:y=
2
1
(x+2)2-2关于x轴作轴对称
变换,再将变换后的抛物线沿),轴的正方向平移0.5个单位,沿x轴的正方向平移m个单
位,得到抛物线C
1、抛物线C
1
、C
2
的顶点分别为B、D.
(1)直接写出当m =0和m=4时抛物线C
2
的解析式;
(2)分别求出符合下列条件的m的值:①线段BD经过原点;②点D刚好落抛物线C
1
上;
(3)抛物线C
2
与x轴交于A、G两点(A点在G点的左侧),是否存在m的值,使四边形ABCD 为梯形,若存在,求出符合条件的n的值;若不存在,请说明理由,。