九年级数学:利用二次函数解决距离问题
- 格式:doc
- 大小:384.49 KB
- 文档页数:7
北师大版九年级数学下册:2.4《二次函数的应用》说课稿一. 教材分析北师大版九年级数学下册2.4《二次函数的应用》这一节主要介绍了二次函数在实际生活中的应用,通过学习,学生能够理解二次函数在实际生活中的意义,掌握二次函数解决实际问题的方法。
教材通过实例引导学生利用二次函数解决实际问题,培养学生的数学应用能力。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。
但学生在解决实际问题时,往往不知道如何将实际问题转化为二次函数问题,因此,在教学过程中,教师需要引导学生将实际问题抽象为二次函数模型,并运用二次函数的知识解决实际问题。
三. 说教学目标1.让学生理解二次函数在实际生活中的应用,体会数学与生活的联系。
2.培养学生将实际问题转化为二次函数模型,并运用二次函数解决实际问题的能力。
3.提高学生的数学思维能力,培养学生的数学素养。
四. 说教学重难点1.教学重点:让学生掌握二次函数解决实际问题的方法,培养学生的数学应用能力。
2.教学难点:如何引导学生将实际问题转化为二次函数模型,并运用二次函数的知识解决实际问题。
五.说教学方法与手段1.采用问题驱动的教学方法,引导学生从实际问题中发现数学问题,运用数学知识解决实际问题。
2.利用多媒体教学手段,展示二次函数在实际生活中的应用实例,增强学生的直观感受。
3.采用小组合作学习的方式,让学生在讨论中思考,培养学生的团队合作能力。
六. 说教学过程1.导入:通过展示一些实际问题,如抛物线形的物体运动、最大利润问题等,引导学生发现这些问题都可以用二次函数来解决,激发学生的学习兴趣。
2.新课导入:介绍二次函数在实际生活中的应用,引导学生理解二次函数的实际意义。
3.实例讲解:通过具体实例,讲解如何将实际问题转化为二次函数模型,并运用二次函数解决实际问题。
4.课堂练习:让学生尝试解决一些实际问题,巩固所学知识。
5.总结提升:引导学生总结二次函数解决实际问题的方法,提高学生的数学应用能力。
二次函数实际应用示例1.在排球家中,_队员站在边线发球,发球方向与边线垂直,球开始飞行时距地面1.9米,当球飞行距离为9米时达最大高度5.5米,已知球场长18米,问这样发球是否会直接把球打出边线?思路解析*先建立坐标系,如图,根据已知条件求出抛物线的解析式,再 求抛物线与x轴的交点坐标(横坐标为正),若这点的横坐标大于18,就可判断球出线.解:以发球员站立位置为原点,球运动的水平方向为x轴,建立直角坐标系伽图).由于其图象的顶点为(95执设二^函教关系式为y=a(x-9)、S.5(3丰0),由已知,这个函数的图象过(0,1.9),可以得到1.9=0(0-9)2+552解得a----7,45所以,所求二}欠函数的关系式是y=-M(x-9)2十5.5.45排球落在x轴上,则y=O,因此,-:(x・9)2+5.5=0.解方程,得*=9十半点0.1,X2=9-峪(负值,不合题意,舍去).所以,排球约在20」米远处落下,因为20.1>18,所以,这样发球会直接把球打出边线,2.某工厂大门是一抛物线型水泥建筑物,如图26.3-9所示,大门地面亮AB二4m,解:以队员甲投球站立位置为原点,球运动的水平方向为X轴,建立直角坐标系.由于球在空中的路径为抛物线,其图象的顶点为(4,4),设二}欠函数关系式为y=a(x-4)2-4(g0),由已知,这个函数的图象过(024),可以得到24=3(0-4)2+4.解得a=-0.1.所以所求二次函数的关系式是y=-0.1(x-4)2+4当x二7时,y=-0.1(x-4)2+4=3.1.因为3.1=3+0.1,0.1在篮球偏离球圈中心10cm以内.答:这个球能投中.综合•应用4.(2010安徽模拟)如图26.3-10,在平面直角坐标系中,二}欠函数y=ax2十c(a ")的图象过正方形ABO(:的三个顶点A、B、C,则ac的值是.思路解析:图中,正方形和抛物线都关于y轴对称,欲求ac的值,需求抛物线的解析式,点A、B、C都在抛物线上,它们的坐标跟正方形的边长有关,可设正方形的边长为2m「则A(0r2整m)、B(-皿阳7^所)、C(72w r把A、B的坐标值代入y=a*十c中,得a=四,c=2&,所以Imac=—X =2.2ni5.有一种螃蟹,从海上捕获后不放乔,最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变.现有一经销商,按市场价收购了这种;SB〔000千克放养在塘内,此时市场价为每千克30元.据测算,此后每千克活蟹的市场价每天可上升1元,但放养一天需各种费用400元,且平均每天还有10千克螯死去,假定死蟹均于当天全部售出,售价是每千克20元⑴设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售点颔Q元,写出Q关于x的函数关系式;⑶该经销商将这批蟹放弄多少天后出售,可获得最大利润(利润=销售总额-收购成本-费用)?最大利润是多少?思路解析:⑴市场价每天上升1元,则P=30+X;(2)销售总额为活蟹销售和死蟹销售两部分的和,活蟹数量每天减少10千克,死蟹数量跟放养天数成正比;(3)根据利润计算式表达,可没利润为w元,用函数瞄解决.答案:⑴P=30+x.(2)Q=(30+x)(1000-10x)+20-10x=-10x2+900x+30000.⑶设利润为w元,则w=(-10x2+900x+30000)-30-1000-400x=-10(x-Z5)2-»-6250.」.当x=25时,w有最大值,最大值为6250.答;经销商将这批蟹放养25天后出售,可获得最大?IJ润,6.将一条长为20cm的铁丝雪成两段,并以每一段铁丝的长度为周长做成f正方形.⑴要使这两个正方形的面积之和等于17cm2,那么这段铁丝磐成两段后的长:度分别是多少?(2)两个正方形的面积之和可能等于12cm?吗?若能,求出两段铁丝的长度;若不能,请说明理由.思路解析;用方程或函数考虑.设其中一段长为x cm,列出面积和的表达式,构成方程或函数,用它们的性质解决问题.方法一:⑴解:设剪成两段后其中一段为x cm,则另一段为(20-x)cm.由题意得(三沪+(竺1沪=17.4 4解得冶=16,x2=4.当为=16时,20-x=4;当x2=4时,20-x=16.答:这段铁丝雪成两段后的长度分别是16cm和4cm.(2)不能.理由是:(料牛)5.整理,得x<20x+104=0.•,A=b2-4ac=-16<0,.,此方程无配即不能雪成两段使得面积和为12新.方法二:剪成两段后其中一段为x cm,两个正方形面积的和为yen?.则y=弓尸+=;(x.10)2+12.5(0<x<20)・当y=17时,有上(乂-10)112.5=17.S解方程,得Xi=16,x2=4.当xi=16时,20*4;当X2二4时,20*16.答:这段铁丝剪成两段后的长度分别是16cm和4cm.(2)不能.理由是:函数y=|(x-10)2+1Z5中,a二;>0,当x=10时,函数有最小值,最小值88为12.5.•.・12v125,所以不能勇成两段使得面积和为12cm2.7.我市英山县某茶厂种植,春蕊牌“绿茶,由历任来市场销售行情知道,从每年的3月25日起的180天内,绿茶市场销售单价y(jt)与上市时间t庆)的关系可以近似地用如图①中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z齿)与上市时间t庆)的关系可以近似地用如图②的抛物肆图263-11①图26.3-11-②⑴写出图①中表示的市场销售单价y团)与上市时间t庆)(t>0)的函数关系式;(2)求出图②中表示的种梢成本单价z员)与上市时间t庆)(t>0)的函敬关系式;⑶认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价缺?(说明:市场铠售单价和种植成本单价的单位:元/500克.)思路解析:从图形中得出相关数据,用分段函薮表示市场销售单价,种植成本是一E碰物线,再分别计算各时段的纯收益单价,匕咸得出结论.解:(1)①当0冬X三120时,y=-|x-b160;②当120<xE50时,y=80;2③当150UX式180时,y=±x-+20.5(2)设z=a(x・110)」20,N OC1把X=6O,y=W代入,^=a(60-110)120解得。
重难点二次函数中的线段、周长与面积的最值问题及定值问题目录题型01利用二次函数解决单线段的最值问题题型02利用二次函数解决两条线段之和的最值问题题型03利用二次函数解决两条线段之差的最值问题题型04利用二次函数解决三条线段之和的最值问题题型05利用二次函数解决三角形周长的最值问题题型06利用二次函数解决四边形周长的最值问题题型07利用二次函数解决图形面积的最值问题类型一利用割补、拼接法解决面积最值问题类型二利用用铅垂定理巧求斜三角形面积最值问题类型三构建平行线,利用同底等高解决面积最值问题题型08利用二次函数解决定值问题题型01利用二次函数解决单线段的最值问题【解题思路】抛物线中的线段最值问题有三种形式:1.平行于坐标轴的线段的最值问题:常通过线段两端点的坐标差表示线段长的函数关系式,运用二次函数性质求解.求最值时应注意:①当线段平行于y轴时,用上端点的纵坐标减去下端点的纵坐标;②当线段平行于x轴时,用右端点的横坐标减去左端点的横坐标.在确定最值时,函数自变量的取值范围应确定正确.1(2022·辽宁朝阳·统考中考真题)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴分别交于点A(1,0)和点B,与y轴交于点C(0,-3),连接BC.(1)求抛物线的解析式及点B 的坐标.(2)如图,点P 为线段BC 上的一个动点(点P 不与点B ,C 重合),过点P 作y 轴的平行线交抛物线于点Q ,求线段PQ 长度的最大值.(3)动点P 以每秒2个单位长度的速度在线段BC 上由点C 向点B 运动,同时动点M 以每秒1个单位长度的速度在线段BO 上由点B 向点O 运动,在平面内是否存在点N ,使得以点P ,M ,B ,N 为顶点的四边形是菱形?若存在,请直接写出符合条件的点N 的坐标;若不存在,请说明理由.【答案】(1)y =x 2+2x -3,(-3,0)(2)94(3)-3,-32或(-2,1)或0,3-32【分析】(1)将A ,C 两点坐标代入抛物线的解析式求得a ,c 的值,进而得出解析式,当y =0时,求出方程的解,进而求得B 点坐标;(2)由B ,C 两点求出BC 的解析式,进而设出点P 和点Q 坐标,表示出PQ 的长,进一步得出结果;(3)要使以点P ,M ,B ,N 为顶点的四边形是菱形,只需△PMB 是等腰三角形,所以分为PM =BM ,PM =PB 和BP =BM ,结合图象,进一步得出结果.【详解】(1)解:把点A (1,0),C (0,-3)代入y =ax 2+2x +c 得:c =-3a +2×1+c =0 ,解得:c =-3a =1 ,∴抛物线解析式为y =x 2+2x -3;令y =0,则x 2+2x -3=0,解得:x 1=1,x 2=-3,∴点B 的坐标为(-3,0);(2)解:设直线BC 的解析式为y =kx +b k ≠0 ,把点B (-3,0),C (0,-3)代入得:b =-3-3k +b =0 ,解得:k =-1b =-3 ,∴直线BC 的解析式为y =-x -3,设点P m ,-m +3 ,则Q m ,m 2+2m -3 ,∴PQ =-m -3 -m 2+2m -3 =-m 2-3m =-m +322+94,∴当m =-32时,PQ 最大,最大值为94;(3)解:存在,根据题意得:PC =2t ,BM =t ,则PB =32-2t ,如图,当BM =PM 时,∵B (-3,0),C (0,-3),∴OB =OC =3,∴∠OCB =∠OBC =45°,延长NP 交y 轴于点D ,∵点P ,M ,B ,N 为顶点的四边形是菱形,∴PN ∥x 轴,BN ∥PM ,即DN ⊥y 轴,∴△CDP 为等腰直角三角形,∴CD =PD =PC ⋅sin ∠OCB =2t ×22=t ,∵BM =PM ,∴∠MPB =∠OBC =45°,∴∠PMO =∠PDO =∠MOD =90°,∴四边形OMPD 是矩形,∴OM =PD =t ,MP ⊥x 轴,∴BN ⊥x 轴,∵BM +OM =OB ,∴t +t =3,解得t =32,∴P -32,-32,∴N -3,-32;如图,当PM =PB 时,作PD ⊥y 轴于D ,连接PN ,∵点P ,M ,B ,N 为顶点的四边形是菱形,∴PN ⊥BM ,NE =PE ,∴BM =2BE ,∴∠OEP =∠DOE =∠ODP =90°,∴四边形PDOE 是矩形,∴OE =PD =t ,∴BE =3-t ,∴t =2(3-t ),解得:t =2,∴P (-2,-1),∴N (-2,1);如图,当PB =MB 时,32-2t =t ,解得:t =6-32,∴PN =BP =BM =6-32,过点P 作PE ⊥x 轴于点E ,∴PE ⊥PM ,∴∠EON =∠OEP =∠EPN =90°,∴四边形OEPN 为矩形,∴PN =OE ,PN ⊥y 轴,∵∠OBC =45°,∴BE =PE =PB ⋅sin ∠OBC =6-32 ×22=32-3,∴OE =OB -BE =3-32-3 =6-32,∴点N 在y 轴上,∴N 0,3-32 ,综上所述,点N 的坐标为-3,-32或(-2,1)或0,3-32 .【点睛】本题考查了二次函数及其图象的性质,用待定系数法求一次函数的解析式,等腰三角形的分类和等腰三角形的性质,菱形的性质等知识,解决问题的关键是正确分类,画出符合条件的图形.2(2021·西藏·统考中考真题)在平面直角坐标系中,抛物线y =-x 2+bx +c 与x 轴交于A ,B 两点.与y 轴交于点C .且点A 的坐标为(-1,0),点C 的坐标为(0,5).(1)求该抛物线的解析式;(2)如图(甲).若点P 是第一象限内抛物线上的一动点.当点P 到直线BC 的距离最大时,求点P 的坐标;(3)图(乙)中,若点M 是抛物线上一点,点N 是抛物线对称轴上一点,是否存在点M 使得以B ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)y =-x 2+4x +5;(2)P 52,354;(3)存在,M 的坐标为:(3,8)或(-3,-16)或(7,-16).【分析】(1)将A 的坐标(-1,0),点C 的坐(0,5)代入y =-x 2+bx +c ,即可得抛物线的解析式为y =-x 2+4x +5;(2)过P 作PD ⊥x 轴于D ,交BC 于Q ,过P 作PH ⊥BC 于H ,由y =-x 2+4x +5可得B (5,0),故OB =OC ,△BOC 是等腰直角三角形,可证明△PHQ 是等腰直角三角形,即知PH =PQ2,当PQ 最大时,PH 最大,设直线BC 解析式为y =kx +5,将B (5,0)代入得直线BC 解析式为y =-x +5,设P (m ,-m 2+4m +5),(0<m <5),则Q (m ,-m +5),PQ =-m -52 2+254,故当m =52时,PH 最大,即点P 到直线BC的距离最大,此时P 52,354 ;(3)抛物线y =-x 2+4x +5对称轴为直线x =2,设M (s ,-s 2+4s +5),N (2,t ),而B (5,0),C (0,5),①以MN 、BC 为对角线,则MN 、BC 的中点重合,可列方程组s +22=5+02-s 2+4s +5+t 2=0+52,即可解得M (3,8),②以MB 、NC 为对角线,则MB 、NC 的中点重合,同理可得s +52=2+02-s 2+4s +4+02=t +52,解得M (-3,-16),③以MC 、NB 为对角线,则MC 、NB 中点重合,则s +02=2+52-s 2+4s +5+52=t +02,解得M (7,-16).【详解】解:(1)将A 的坐标(-1,0),点C 的坐(0,5)代入y =-x 2+bx +c 得:0=-1-b +c 5=c ,解得b =4c =5 ,∴抛物线的解析式为y =-x 2+4x +5;(2)过P 作PD ⊥x 轴于D ,交BC 于Q ,过P 作PH ⊥BC 于H ,如图:在y =-x 2+4x +5中,令y =0得-x 2+4x +5=0,解得x =5或x =-1,∴B (5,0),∴OB =OC ,△BOC 是等腰直角三角形,∴∠CBO =45°,∵PD ⊥x 轴,∴∠BQD =45°=∠PQH ,∴△PHQ 是等腰直角三角形,∴PH =PQ2,∴当PQ 最大时,PH 最大,设直线BC 解析式为y =kx +5,将B (5,0)代入得0=5k +5,∴k =-1,∴直线BC 解析式为y =-x +5,设P (m ,-m 2+4m +5),(0<m <5),则Q (m ,-m +5),∴PQ =(-m 2+4m +5)-(-m +5)=-m 2+5m =-m -52 2+254,∵a =-1<0,∴当m =52时,PQ 最大为254,∴m =52时,PH 最大,即点P 到直线BC 的距离最大,此时P 52,354;(3)存在,理由如下:抛物线y =-x 2+4x +5对称轴为直线x =2,设M (s ,-s 2+4s +5),N (2,t ),而B (5,0),C (0,5),①以MN 、BC 为对角线,则MN 、BC 的中点重合,如图:∴s +22=5+02-s 2+4s +5+t2=0+52,解得s =3t =-3 ,∴M (3,8),②以MB 、NC 为对角线,则MB 、NC 的中点重合,如图:∴s +52=2+02-s 2+4s +4+02=t +52,解得s=-3t =-21 ,∴M (-3,-16),③以MC 、NB 为对角线,则MC 、NB 中点重合,如图:s +02=2+52-s 2+4s +5+52=t +02,解得s =7t =-11 ,∴M (7,-16);综上所述,M 的坐标为:(3,8)或(-3,-16)或(7,-16).【点睛】本题考查二次函数综合应用,涉及待定系数法、函数图象上点坐标的特征、等腰直角三角形、平行四边形等知识,解题的关键是用含字母的代数式表示相关点的坐标和相关线段的长度.3(2021·山东泰安·统考中考真题)二次函数y =ax 2+bx +4(a ≠0)的图象经过点A (-4,0),B (1,0),与y 轴交于点C ,点P 为第二象限内抛物线上一点,连接BP 、AC ,交于点Q ,过点P 作PD ⊥x 轴于点D .(1)求二次函数的表达式;(2)连接BC ,当∠DPB =2∠BCO 时,求直线BP 的表达式;(3)请判断:PQQB是否有最大值,如有请求出有最大值时点P 的坐标,如没有请说明理由.【答案】(1)y =-x 2-3x +4;(2)y =-158x +158;(3)PQ QB有最大值为45,P 点坐标为(-2,6)【分析】(1)将A (-4,0),B (1,0)代入y =ax 2+bx +4(a ≠0)中,列出关于a 、b 的二元一次方程组,求出a 、b 的值即可;(2)设BP 与y 轴交于点E ,根据PD ⎳y 轴可知,∠DPB =∠OEB ,当∠DPB =2∠BCO ,即∠OEB =2∠BCO ,由此推断△OEB 为等腰三角形,设OE =a ,则CE =4-a ,所以BE =4-a ,由勾股定理得BE 2=OE 2+OB 2,解出点E 的坐标,用待定系数法确定出BP 的函数解析式即可;(3)设PD 与AC 交于点N ,过B 作y 轴的平行线与AC 相交于点M .由A 、C 两点坐标可得AC 所在直线表达式,求得M 点坐标,则BM =5,由BM ⎳PN ,可得△PNQ ∽△BMQ ,PQ QB=PN BM =PN5,设P (a 0,-a 20-3a 0+4)(-4<a 0<0),则N (a 0,a 0+4)PQ QB =-a 20-3a 0+4-(a 0+4)5=-a 20-4a 05=-(a 0+2)2+45,根据二次函数性质求解即可.【详解】解:(1)由题意可得:a ⋅(-4)2+b ⋅(-4)+4=0a +b +4=0解得:a =-1b =-3 ,∴二次函数的表达式为y =-x 2-3x +4;(2)设BP 与y 轴交于点E ,∵PD ⎳y 轴,∴∠DPB =∠OEB ,∵∠DPB =2∠BCO ,∴∠OEB =2∠BCO ,∴∠ECB =∠EBC ,∴BE =CE ,设OE =a ,则CE =4-a ,∴BE =4-a ,在Rt △BOE 中,由勾股定理得BE 2=OE 2+OB 2,∴(4-a )2=a 2+12解得a =158,∴E 0,158,设BE 所在直线表达式为y =kx +e (k ≠0)∴k ⋅0+e =158,k ⋅1+e =0.解得k =-158,e =158. ∴直线BP 的表达式为y =-158x +158.(3)设PD 与AC 交于点N .过B 作y 轴的平行线与AC 相交于点M .由A 、C 两点坐标分别为(-4,0),(0,4)可得AC 所在直线表达式为y =x +4∴M 点坐标为(1,5),BM =5由BM ⎳PN ,可得△PNQ ∽△BMQ ,∴PQ QB=PN BM =PN 5设P (a 0,-a 20-3a 0+4)(-4<a 0<0),则N (a 0,a 0+4)∴PQ QB=-a 20-3a 0+4-(a 0+4)5=-a 20-4a 05=-(a 0+2)2+45,∴当a 0=-2时,PQQB 有最大值0.8,此时P 点坐标为(-2,6).【点睛】本题主要考查二次函数以及一次函数解析式的确定,函数图像的性质,相似三角形,勾股定理等知识点,熟练运用待定系数法求函数解析式是解题关键,本题综合性强,涉及知识面广,难度较大,属于中考压轴题.4(2020·辽宁阜新·中考真题)如图,二次函数y =x 2+bx +c 的图象交x 轴于点A -3,0 ,B 1,0 ,交y 轴于点C .点P m ,0 是x 轴上的一动点,PM ⊥x 轴,交直线AC 于点M ,交抛物线于点N .(1)求这个二次函数的表达式;(2)①若点P 仅在线段AO 上运动,如图1.求线段MN 的最大值;②若点P 在x 轴上运动,则在y 轴上是否存在点Q ,使以M ,N ,C ,Q 为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.【答案】(1)y =x 2+2x -3;(2)①94,②存在,Q 1(0,-32-1),Q 2(0,32-1)【分析】(1)把A (-3,0),B (1,0)代入y =x 2+bx +c 中求出b ,c 的值即可;(2)①由点P m ,0 得M (m ,-m -3),N m ,m 2+2m -3 ,从而得MN =(-m -3)-m 2+2m -3 ,整理,化为顶点式即可得到结论;②分MN =MC 和MC =2MN 两种情况,根据菱形的性质得到关于m 的方程,求解即可.【详解】解:(1)把A (-3,0),B (1,0)代入y =x 2+bx +c 中,得0=9-3b +c ,0=1+x +c .解得b =2,c =-3. ∴y =x 2+2x -3.(2)设直线AC 的表达式为y =kx +b ,把A (-3,0),C (0,-3)代入y =kx +b .得,0=-3k +b ,-3=b . 解这个方程组,得k =-1,b =-3. ∴y =-x -3.∵点P m ,0 是x 轴上的一动点,且PM ⊥x 轴.∴M (m ,-m -3),N m ,m 2+2m -3 . ∴MN =(-m -3)-m 2+2m -3 =-m 2-3m=-m +32 2+94.∵a =-1<0,∴此函数有最大值.又∵点P 在线段OA 上运动,且-3<-32<0∴当m =-32时,MN 有最大值94. ②∵点P m ,0 是x 轴上的一动点,且PM ⊥x 轴.∴M (m ,-m -3),N m ,m 2+2m -3 . ∴MN =(-m -3)-m 2+2m -3 =-m 2-3m(i )当以M ,N ,C ,Q 为顶点的四边形为菱形,则有MN =MC ,如图,∵C (0,-3)∴MC =(m -0)2+(-m -3+3)2=2m 2∴-m 2-3m =2m 2整理得,m 4+6m 3+7m 2=0∵m 2≠0,∴m 2+6m +7=0,解得,m 1=-3+2,m 2=-3-2∴当m =-3+2时,CQ =MN =32-2,∴OQ =-3-(32-2)=-32-1∴Q (0,-32-1);当m =-3-2时,CQ =MN =-32-2,∴OQ =-3-(-32-2)=32-1∴Q (0,32-1);(ii )若MC =2MN ,如图,则有-m 2-3m =22×2m 2整理得,m 2+4m =0解得,m 1=-4,m 2=0(均不符合实际,舍去)综上所述,点Q 的坐标为Q 1(0,-32-1),Q 2(0,32-1)【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用线段的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用菱形的性质得出关于m 的方程,要分类讨论,以防遗漏.5(2020·天津·中考真题)已知点A (1,0)是抛物线y =ax 2+bx +m (a ,b ,m 为常数,a ≠0,m <0)与x 轴的一个交点.(1)当a =1,m =-3时,求该抛物线的顶点坐标;(2)若抛物线与x 轴的另一个交点为M (m ,0),与y 轴的交点为C ,过点C 作直线l 平行于x 轴,E 是直线l 上的动点,F 是y 轴上的动点,EF =22.①当点E 落在抛物线上(不与点C 重合),且AE =EF 时,求点F 的坐标;②取EF 的中点N ,当m 为何值时,MN 的最小值是22?【答案】(1)抛物线的顶点坐标为(-1,-4);(2)①点F 的坐标为(0,-2-7)或(0,-2+7);②当m 的值为-32或-12时,MN 的最小值是22.【分析】(1)根据a =1,m =-3,则抛物线的解析式为y =x 2+bx -3,再将点A (1,0)代入y =x 2+bx -3,求出b 的值,从而得到抛物线的解析式,进一步可求出抛物线的顶点坐标;(2)①首先用含有m 的代数式表示出抛物线的解析式,求出C (0,m ),点E (m +1,m ).过点A 作AH ⊥l 于点H ,在Rt △EAH 中,利用勾股定理求出AE 的值,再根据AE =EF ,EF =22,可求出m 的值,进一步求出F 的坐标;②首先用含m 的代数式表示出MC 的长,然后分情况讨论MN 什么时候有最值.【详解】解:(1)当a =1,m =-3时,抛物线的解析式为y =x 2+bx -3.∵抛物线经过点A (1,0),∴0=1+b-3.解得b=2.∴抛物线的解析式为y=x2+2x-3.∵y=x2+2x-3=(x+1)2-4,∴抛物线的顶点坐标为(-1,-4).(2)①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0,∴0=a+b+m,0=am2+bm+m,即am+b+1=0.∴a=1,b=-m-1.∴抛物线的解析式为y=x2-(m+1)x+m.根据题意,得点C(0,m),点E(m+1,m).过点A作AH⊥l于点H.由点A(1,0),得点H(1,m).在Rt△EAH中,EH=1-(m+1)=-m,HA=0-m=-m,∴AE=EH2+HA2=-2m.∵AE=EF=22,∴-2m=22.解得m=-2.此时,点E(-1,-2),点C(0,-2),有EC=1.∵点F在y轴上,∴在Rt△EFC中,CF=EF2-EC2=7.∴点F的坐标为(0,-2-7)或(0,-2+7).②由N是EF的中点,得CN=12EF=2.根据题意,点N在以点C为圆心、2为半径的圆上.由点M(m,0),点C(0,m),得MO=-m,CO=-m.∴在Rt△MCO中,MC=MO2+CO2=-2m.当MC≥2,即m≤-1时,满足条件的点N落在线段MC上,MN的最小值为MC-NC=-2m-2=22,解得m=-3 2;当MC<2,-1<m<0时,满足条件的点N落在线段CM的延长线上,MN的最小值为NC-MC=2-(-2m)=22,解得m=-1 2.∴当m的值为-32或-12时,MN的最小值是22.【点睛】本题考查了待定系数法求解析式,抛物线上的点的坐标满足抛物线方程等,解题的关键是学会利用参数解决问题,学会用转化的思想思考问题,属于中考常考题型..6(2023·重庆·统考中考真题)如图,在平面直角坐标系中,抛物线y=14x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B3,0,C0,-3.(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD ⊥AC 于点D ,求PD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,Q 为平移后的抛物线的对称轴上任意一点.写出所有使得以QF 为腰的△QEF 是等腰三角形的点Q 的坐标,并把求其中一个点Q 的坐标的过程写出来.【答案】(1)y =14x 2+14x -3(2)PD 取得最大值为45,P -2,-52 (3)Q 点的坐标为92,-1 或92,5 或92,74.【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线AC 的解析式为y =-34x -3,过点P 作PE ⊥x 轴于点E ,交AC 于点Q ,设P t ,14t 2+14t -3 ,则Q t ,-34t -3 ,则PD =45PQ ,进而根据二次函数的性质即可求解;(3)根据平移的性质得出y =14x -92 2-4916,对称轴为直线x =92,点P -2,-52 向右平移5个单位得到E 3,-52 ,F 0,2 ,勾股定理分别表示出EF 2,QE 2,QF 2,进而分类讨论即可求解.【详解】(1)解:将点B 3,0 ,C 0,-3 .代入y =14x 2+bx +c 得,14×32+3b +c =0c =-3解得:b =14c =-3 ,∴抛物线解析式为:y =14x 2+14x -3,(2)∵y =14x 2+14x -3与x 轴交于点A ,B ,当y =0时,14x 2+14x -3=0解得:x 1=-4,x 2=3,∴A -4,0 ,∵C 0,-3 .设直线AC 的解析式为y =kx -3,∴-4k -3=0解得:k =-34∴直线AC 的解析式为y =-34x -3,如图所示,过点P 作PE ⊥x 轴于点E ,交AC 于点Q ,设P t ,14t 2+14t -3 ,则Q t ,-34t -3 ,∴PQ =-34t -3-14t 2+14t -3 =-14t 2-t ,∵∠AQE =∠PQD ,∠AEQ =∠QDP =90°,∴∠OAC =∠QPD ,∵OA =4,OC =3,∴AC =5,∴cos ∠QPD =PD PQ =cos ∠OAC =AO AC=45,∴PD =45PQ =45-14t 2-t =-15t 2-45t =-15t +2 2+45,∴当t =-2时,PD 取得最大值为45,14t 2+14t -3=14×-2 2+14×-2 -3=-52,∴P -2,-52 ;(3)∵抛物线y =14x 2+14x -3=14x +12 2-4916将该抛物线向右平移5个单位,得到y =14x -92 2-4916,对称轴为直线x =92,点P -2,-52 向右平移5个单位得到E 3,-52 ∵平移后的抛物线与y 轴交于点F ,令x =0,则y =14×92 2-4916=2,∴F 0,2 ,∴EF 2=32+2+52 2=1174∵Q 为平移后的抛物线的对称轴上任意一点.则Q 点的横坐标为92,设Q 92,m ,∴QE 2=92-3 2+m +52 2,QF 2=92 2+m -2 2,当QF =EF 时,92 2+m -2 2=1174,解得:m =-1或m =5,当QE =QF 时,92-3 2+m +522=92 2+m -2 2,解得:m =74综上所述,Q 点的坐标为92,-1 或92,5 或92,74.【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,二次函数的平移,线段周长问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.题型02利用二次函数解决两条线段之和的最值问题【解题思路】抛物线中的线段最值问题有三种形式:2. 两条线段和的最值问题:解决这类问题最基本的定理就是“两点之间线段最短”,解决这类问题的方法是:作其中一个定点关于已知直线的对称点,连接对称点与另一个定点,它们与已知直线的交点即为所求的点. 其变形问题有三角形周长最小或四边形周长最小等.【常见模型一】(两点在河的异侧):在直线L上找一点M,使PA+PB的值最小.方法:如右图,连接AB,与直线L交于点M,在M处渡河距离最短,最短距离为线段AB的长。
利用二次函数解决实际问题二次函数是数学中重要的一类函数,它具有许多应用于实际问题的能力。
通过解决二次函数相关的实际问题,我们可以更好地理解和应用这一数学工具。
本文将通过几个实际问题的案例,详细介绍如何利用二次函数解决这些问题。
案例一:抛物线的高度与水平距离的关系假设一个小球以一定的初速度从地面上抛出,并以二次函数描述它的高度与水平距离的关系。
首先,我们可以建立抛物线方程:h = ax² + bx + c其中,h为小球的高度,x为水平距离,a、b、c为常数。
当小球达到最高点时,它的速度为零,根据这一条件,可以求得抛物线的顶点坐标为(-b/2a,c-b²/4a)。
通过这一顶点坐标和给定的初速度,可以解得a、b、c的具体值。
有了这些参数,我们就能方便地计算小球在任意水平距离上的高度。
案例二:曲线拟合与数据预测在实际问题中,我们常常需要通过一些已知数据点来拟合出一个曲线,并利用这个曲线对未知数据进行预测。
二次函数是一种常用的曲线模型,因为它能很好地适应一些非线性的数据分布。
具体做法是,通过最小二乘法来求得二次函数的参数,使得拟合曲线与已知数据点之间的误差最小化。
然后,利用这个拟合曲线,我们就可以对未知数据进行预测。
这一方法在经济预测、气象预报等领域有着广泛的应用。
案例三:最优化问题二次函数也可以应用于最优化问题的求解。
以抛物线形式的二次函数为例,假设我们需要在一条直线上选择一个点,使得它到抛物线的距离最小。
这可以被看作是一个最优化问题,即求解抛物线与直线的最短距离。
我们可以通过求解二次函数和直线的交点来解决这个问题。
具体的求解过程利用了二次函数的性质和一些微积分的知识。
总结:通过上述几个案例,可以看出二次函数在实际问题中的广泛应用。
它可以用于描述抛物线的运动、拟合非线性数据以及求解最优化问题等。
通过解决这些实际问题,我们不仅巩固了对二次函数的理解,也提升了数学在实际应用中的能力。
因此,在学习和应用二次函数时,我们应该注重理论知识和实际问题的结合,这样才能更好地掌握和利用二次函数。
人教版九年级数学二次函数实际问题(含答案)一、单选题1.在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则当t=4时,该物体所经过的路程为[ ] A.28米B.48米C. 68米D.88米2.由于被墨水污染,一道数学题仅能见到如下文字:y=ax2 +bx+c的图象过点(1,0)……求证这个二次函数的图象关于直线x=2对称.,题中的二次函数确定具有的性质是[ ] A.过点(3,0)B.顶点是(2,-1)C.在x轴上截得的线段的长是3D.与y轴的交点是(0,3)3.某幢建筑物,从10 m高的窗口A用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直),如图,如果抛物线的最高点M离墙1m,离地面m,则水流落地点B离墙的距离OB是A.2mB.3mC .4 mD.5 m4.如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是,则该运动员此次掷铅球的成绩是[ ] A.6 mB.8mC. 10 mD.12 m5.某人乘雪橇沿坡度为1:的斜坡笔直滑下,滑下的距离S(m)与时间t(s)间的关系为S=l0t+2t2,若滑到坡底的时间为4s,则此人下降的高度为[ ] A.72 mB.36 mC.36 mD.18 m6.童装专卖店销售一种童装,若这种童装每天获利y(元)与销售单价x(元)满足关系y=-x2 +50x-500,则要想获得最大利润,销售单价为[ ] A.25元B.20元C.30元D.40元7.中国足球队在某次训练中,一队员在距离球门12米处的挑射,正好从2.4米高(球门距横梁底侧高)入网.若足球运行的路线是抛物线y=ax2 +bx+c所示,则下列结论正确的是①a<;② <a<0;③ a-b+c>0;④ 0<b<-12a[ ]A.①③B.①④C.②③D.②④8.关于x的二次函数y=2mx2 +(8m+1)x+8m的图象与x轴有交点,则m的取值围是[ ] A.m<≥且m≠0C.m=D.m m≠09.某种产品的年产量不超过1 000吨,该产品的年产量(吨)与费用(万元)之间函数的图象是顶点在原点的抛物线的一部分,如图①所示;该产品的年销售量(吨)与销售单价(万元/吨)之间的函数图象是线段,如图②所示,若生产出的产品都能在当年销售完,则年产量是( )吨时,所获毛利润最大.(毛利润=销售额-费用)①②[ ] A.1 000B.750C. 725D.50010.某大学的校门是一抛物线形水泥建筑物,如图所示,大门的地面宽度为8m,两侧距地面4m高处各有一个挂校名匾用的铁环,两铁环的水平距离为6m,则校门的高为(精确到0.1m,水泥建筑物的厚度忽略不计)[ ] A.5.1 mC.9.1 mD.9.2 m11.图(1)是一个横断面为抛物线形状的拱桥,当水面在如图(1)时,拱顶(拱桥洞的最高点)离水面2m,水面宽4 m.如图(2)建立平面直角坐标系,则抛物线的关系式是[ ]A. y= - 2x2B.y=2x2C. y=-2 x2D.y= x212.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的?[ ] A.第8秒B.第10秒C. 第12秒D.第15秒二、填空题13.把一根长为100 cm的铁丝剪成两段,分别弯成两个正方形,设其中一段长为xcm,两个正方形的面积的和为S cm2,则S与x的函数关系式是( ),自变量x的取值围是( ).14.如图所示,是某公园一圆形喷水池,水流在各方向沿形状相同的抛物线落下,建立如图所示的坐标系,如果喷头所在处A(0,1.25),水流路线最高处B(1,2.25),则该抛物线的表达式为( ).如果不考虑其他因素,那么水池的半径至少要( ),才能使喷出的水流不致落到池外.15.如图,一桥拱呈抛物线状,桥的最大高度是16 m,跨度是40 m,在线段AB上离中心M处5m的地方,桥的高度是( )m .16.在距离地面2m高的某处把一物体以初速度v o(m/s)竖直向上抛出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g是常数,通常取10m/s),若v0=10 m/s,则该物体在运动过程中最高点距离地面( )m三、计算题17.求下列函数的最大值或最小值.(l);(2)y=3(x+l) (x-2).四、解答题18.如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6 m.(1)求抛物线的解析式;(2)如果该隧道设双行道,现有一辆货运卡车高为4.2 m,宽为2.4 m,这辆货运卡车能否通过该隧道?通过计算说明.19.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与每件的销售价x (元)满足一次函数:m=162-3x.(1)写出商场卖这种商品每天的销售利润y与每件的销售价x之间的函数关系式.(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?能力提升20.如图所示,一边靠学校院墙,其他三边用40 m长的篱笆围成一个矩形花圃,设矩形ABCD的边AB =x m,面积为Sm2(1)写出S与x之间的函数关系式,并求当S=200 m2时,x的值;(2)设矩形的边BC=y m,如果x,y满足关系式x:y=y:(x+y),即矩形成黄金矩形,求此黄金矩形的长和宽.21.某产品每件成本是120元,为了解市场规律,试销售阶段按两种方案进行销售,结果如下:方案甲:保留每件150元的售价不变,此时日销售量为50件;方案乙:不断地调整售价,此时发现日销量y(件)是售价x(元)的一次函数,且前三天的销售情况如下表:(1)如果方案乙中的第四天,第五天售价均为180元,那么前五天中,哪种方案的销售总利润大?(2)分析两种方案,为了获得最大日销售利润,每件产品的售价应定为多少元?此时,最大日销售利润S是多少?(注:销售利润=销售额-成本额,销售额=售价×销售量).22.某医药研究所进行某一抗病毒新药的开发,经过大量的服用试验后可知:成年人按规定的剂量服用后,每毫升血液中含药量y微克(1微克=10-3毫克)随时间xh的变化规律与某一个二次函数y=ax2 +bx+c(a ≠0)相吻合.并测得服用时(即时间为0)每毫升血液中含药量为0微克;服用后2h,每毫升血液中含药量为6微克;服用后3h,每毫升血液中含药量为7.5微克.(l)试求出含药量y微克与服用时间xh的函数关系式;并画出0≤x≤8的函数图象的示意图;(2)求服药后几小时,才能使每毫升血液中含药量最大?并求出血液中的最大含药量.(3)结合图象说明一次服药后的有效时间有多少小时?(有效时间为血液中含药量不为0 的总时间.)23.某农户计划利用现有的一面墙再修四面墙,建造如图所示的长方体水池,培育不同品种的鱼苗,他已备足可以修高为1.5 m,长18m的墙的材料准备施工,设图中与现有一面墙垂直的三面墙的长度都为xm,即AD=EF=BC=x m.(不考虑墙的厚度)(1)若想水池的总容积为36 m3,x应等于多少?(2)求水池的容积V与x的函数关系式,并直接写出x的取值围;(3)若想使水浊的总容积V最大,x应为多少?最大容积是多少?实践探究24.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20 m,如果水位上升3m时,水面CD的宽是10 m.(1)建立如图所示的平面直角坐标系,求此抛物线的解析式;(2)现有一辆载有一批物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以40 km/h的速度开往乙地,当行驶1 h时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0. 25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由,若不能,要使货车安全通过此桥,速度应超过每小时多少千米?25.全线共有隧道37座,共计长达742421.2米.如图所示是庙垭隧道的截面,截面是由一抛物线和一矩形构成,其行车道CD总宽度为8米,隧道为单行线2车道.(1)建立恰当的平面直角坐标系,并求出隧道拱抛物线EHF的解析式;(2)在隧道拱的两侧距地面3米高处各安装一盏路灯,在(1)的平面直角坐标系中用坐标表示其中一盏路灯的位置;(3)为了保证行车安全,要求行驶车辆顶部(设为平顶)与隧道拱在竖直方向上高度之差至少有0.5米.现有一辆汽车,装载货物后,其宽度为4米,车载货物的顶部与路面的距离为2.5米,该车能否通过这个隧道?请说明理由.26.我市有一种可食用的野生菌,上市时,外商经理按市场价格30元/千克收购了这种野生菌1 000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3千克的野生菌损坏不能出售.(1)设x天后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式.(2)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P 与x之间的函数关系式.(3)经理将这批野生菌存放多少天后出售可获得最大利润W元?(利润=销售总额-收购成本-各种费用)27.在如图所示的抛物线型拱桥上,相邻两支柱间的距离为10 m,为了减轻桥身重量,还为了桥形的美观,更好地防洪,在大抛物线拱上设计两个小抛物线拱,三条抛物线的顶点C、B、D离桥面的距离分别为4m、10 m、2 m.你能求出各支柱的长度及各抛物线的表达式吗?28.某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示,如图甲,一件商品的成本Q(元)与时间t(月)的关系可用一条抛物线上的点来表示,其中6月份成本最高,如图乙.根据图象提供的信息解答下面问题(1)一件商品在3月份出售时的利润是多少元?(利润=售价一成本)(2)求出图(乙)中表示的一件商品的成本Q(元)与时间t(月)之间的函数关系式;(3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月售出此种商品30000件,请你计算该公司在一个月最少获利多少元?29.某工厂生产A产品x吨所需费用为P元,而卖出x吨这种产品的售价为每吨Q元,已知(1)该厂生产并售出x吨,写出这种产品所获利润W(元)关于x(吨)的函数关系式;(2)当生产多少吨这种产品,并全部售出时,获利最多?这时获利多少元?这时每吨的价格又是多少元? 30.某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台)与销售单价x(元)满足w=-2x+80,设销售这种台灯每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时.每天的利润最大?最大利润是多少?(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润.应将销售单价定为多少元?word参考答案1、D2、A3、B4、C5、C6、A7、B8、B9、B10、C11、C12、B13、0<x<10014、y=-(x-1)2+2. 25 2.515、1516、717、解:(l),y有最大值,当x=-l时,y有最大值.(2)y= 3(x+l) (x-2)=3(x2-x-2)a=3>0,y有最小值,当x=时,y有最小值.18、解:设抛物线的解析式为y=ax2+6,又因为抛物线过点(4,2),则16a+6=2,,抛物线的解析式为y =+6.(2)当x=2.4时,y=+6 =-1. 44+6=4. 56>4.2,故这辆货运卡车能通过该隧道.19、解:(l)y=(x-30) (162-3x)= - 3 x2 +252x-4860 (2)y= -3 (x-42) 2 +432 当定价为42元时,最大销售利润为432元20、解:(l)S=x(40- 2x)=-2 x2+40x, 当S=200时,.(2)当BC=y,则y=40-2x①又y2 =x(x+y) ②由①、②解得x=20±,其中20+不合题意,舍去,x=20-,y=当矩形成黄金矩形时,宽为20-m,长为m.21、解:(1)方案乙中的一次函数为y= -x+200.第四天、第五天的销售量均为20件.方案乙前五天的总利润为:130×70+150×50+160 ×40+180 ×20+180 ×20-120 ×(70+50+40+20+20)=6 200元.方案甲前五天的总利润为(150-120)×50×5=7 500元,显然6200<7 500,前五天中方案甲的总利润大.(2)若按甲方案中定价为150元/件,则日利润为(150-120)×50=1500元,对乙方案:S =xy-120y=x(-x+200) -120(-x+200)= -x2 +320x- 24000= - (x-160) 2 +1600,即将售价定在160元/件,日销售利润最大,最大利润为1600元.22、解:(1)图象略.(2) 当x=4时,函数y有最大值8.所以服药后4h,才能使血液中的含药量最大,这时的最大含药量是每毫升血液中含有药8微克.(3)图象与x轴两交点的横坐标的差即为有效时间.故一次服药后的有效时间为8h23、解:(l)因为AD= EF=BC=x m,所以AB=18-3x.所以水池的总容积为1. 5x(18-3x)=36,即x2- 6x+8=0,解得x1=2,x2=4,所以x应为2或4.2 +27x,且x的取值围是:0<x<6.(3)V=4.5 x2 +27.所以当x=3时,V有最大值,即若使水池总容积最大,x应为3,最大容积为40.5 m3.24、解:(1)设抛物线的解析式为y= ax2,1 / 10word桥拱最高点0到水面CD的高为h米,则D(5,-h).B(10,-h-3).所以即抛物线的解析式为y=-. (2)货车按原来速度行驶不能安全通过此桥.要使货车安全通过此桥,货车的速度应超过60千米/时.25、解:(1)以EF所在直线为x 轴,经过H且垂直于EF的直线为y轴,建立平面直角坐标系,显然E(-5,0),F(5,0),H(0,3).设抛物线的解析式为+bx+c 依题意有:所以y= +3.(2)y=1,路灯的位置为(,1)或(一,1).(只要写一个即可)(3)当x=4时,,点到地面的距离为1.08+2=3.08,因为3.08-0.5=2.58>2.5,所以能通过.26、解:(1)y=x+30(1≤x≤160,且x为整数)(2)P=(x+30)(1000-3x)=-3+910x+30000 (3)由题意得W=(-3+910x+30000)-30×1000-310x=-3(x-100)2+30000 当x=100时,W最大=30000.100天<160天,存放100天后出售这批野生菌可获得最大利润30000元.27、解:抛物线OBA过B(50, 40) ,A(100,0),抛物线OBA的解析式为.当x=20, 30, 40时,y的值分别为:MC=4( m),EN= (m),FQ=50-= ( m),GT= ( m),BR= 10 (m). G1T1 =GT- (m),PQ1-FQ= (m).又抛物线CE过顶点C(10,46),E(20,),解析式为y=-(x-10)2 +46.而抛物线PD过顶点D(85,48),P(70,).解析式为y=-(x-85)2+48.x= 80求得y=.KK1=50--,KK1-LL1 = (m).综上:三条抛物线的解析式分别为:从左往右各支柱的长度分别是:4m,m,m,m,10m,m,10m,m,m,m,m28、解:(1)一件商品在3月份出售时利润为:6-1=5(元).(2)由图象可知,一件商品的成本Q(元)是时间t(月)的二次函效,由图象可知,抛物线的顶点为(6,4),由题知t=3, 4,5,6,7.(3)由图象可知,M(元)是t(月)的一次函数,其中t=3,4,5,6,7∴当t=5时,W∴所以该公司一月份最少获利元29、解:(1)当x=150吨时,利润最多,最大利润2 000元.当x=150吨时,Q=+45=40(元).30、解:(1)y=(x-20)(-2x+80)=-2+120x-1600 (2) y=-2+120x-1 600=-2(x-30)2+200 当x=30时,最大利润为y=200元.(3)由题意,y=150,即-2(x-30)2+200=150解得x l=25,x2=3 5.又销售量w=-2x+80随单价增大而减小,故当x=25时,既能保证销售量大,又可以每天获得1 50元的利润.2 / 10。
《1.4.2二次函数的应用》教学设计一、教学目标(1)情感态度与价值观目标发展应用数学解决问题的能力,体会数学与生活的密切联系和数学的应用价值. (2)能力目标会综合运用二次函数和其他数学知识解决如有关距离、利润等的函数最值问题. (3)知识目标继续经历利用二次函数解决实际最值问题的过程. 二、教学重点利用二次函数的知识对现实问题进行数学地分析,即用数学的方式表示问题以及用数学的方法解决问题. 三、教学难点将现实问题的数学化,情景比较复杂. 四、教学方法自主探究、合作交流,采用多媒体问题引领 五、教学过程设计 问题引入,回顾旧知问题1:利用函数解决实际问题的基本思想方法?【设计意图】借助一次函数的实际应用,回忆函数解决实际问题的基本思想方法.问题2:求函数的最值问题,应注意什么? 图中所示的二次函数图象的解析式为:13822++=x x y⑴若-3≤ x ≤3,该函数的最大值、最小值分别为( )、( ). ⑵又若0≤ x ≤3,该函数的最大值、最小值分别为( )、( ). 预设:归纳出二次函数取最值时应考虑自变量的范围.【设计意图】通过辨析两个例子,归纳出二次函数取最值时应考虑自变量的范围. 问题2:如何求下列函数的最小值?y x x 2=2+4+5预设:体会问题的本质是求二次函数的最小值. 【设计意图】本问题是二次函数的优化模型的深入研究和发展,使学生进一步感受二次函数是探索自然现象、社会现象的重要工具.例1如图,B船位于A船正东26km处,现在A、B两船同时出发,A船以12 km/h的速度朝正北方向行驶,B船以5km/h的速度朝正西方向行驶,何时两船相距最近?最近距离是多少?预设:【设计意图】由实际问题先提炼几何图形,并类比问题3采用化归方法求二次函数最小值.例2 某超市销售一种饮料,每瓶进价为9元,经市场调查表明,当售价在10元到14元之间(含10元,14元)浮动时,每瓶售价每增加0.5元,日销售量减少40瓶;当售价为每瓶12元时,日均销售量为400瓶,问销售价格定为每瓶多少元时,所得日均毛利润(每瓶毛利润=每瓶售价-每瓶进价)最大?最大日均毛利润为多少元?预设:等量关系单件利润=售价-进价;总利润=单件利润×销售数量列表分析如下:单价单利数量降价前123400降价后X x-91360-80xy=(x-9)(1360-80x)=-80x²+2080x-12240-ba2=13,在x10≤≤14的范围内.所以当x=13时,maxy=1280元.【设计意图】感受列表格的优势,并经历二次函数求最值应先确定自变量的取值范围.练1某大棚内种植西红柿,其单位面积的产量与这个单位面积种植的株树构成一种函数关系,每平方米种植4株时,平均单株产量为2kg ,以同样的栽培条件,每平方米种植的株树每增加1株,单株产量减少 kg ,问:每平方米种植多少株时,能获得最大的产量?最大产量为多少?预设:列表分析如下:x x x y x x x 2-4⎛⎫⎛⎫=2-=3-=-+3 ⎪ ⎪444⎝⎭⎝⎭ ()x 21=--6+94(x >0,且x 为正整数) ∴ 当x =6时,获得最大产量,最大产量为9kg .练2 上午8点,某台风中心在A 城正南方向的200km 处,以25km /h 的速度向A 城移动,此时有一辆卡车从A 城以100km /h 的速度向正西方向行驶,问何时这辆卡车与台风中心的距离最近?当距离最近时台风中心与这辆卡车分别位于何处? 题目分析:设经过的时间为t (h ) ,卡车与台风中心的 距离CB 为s (km ) .则AC =100t ,AB =200-25t.s ==(t >0)∴当t 8=17时,s 有最小值,即在8:28,台风中心与卡车分别离A 城约188km 和47km . 小结新课,梳理新知。
1.喜子的商铺距离学校的直线距离为80米,喜子用原来的速度开车去学校需要12秒,如果她想在10秒钟内到达学校,需要提高速度到多少米/秒?答案:首先计算出原来的速度。
由题意可知,刹车距离s为二次函数,设刹车距离函数为s(t)=at^2+bt+c,其中t为时间,s为刹车距离。
已知:s(12)=80代入t=12:a(12^2)+b(12)+c=80144a+12b+c=80又已知:刹车距离与时间的关系为s(t)=t^2代入s(10)=80:a(10^2)+b(10)+c=100100a+10b+c=100再代入刹车距离与时间的关系为s(t)=t^2,可得a+b+c=0可以得到三个方程:144a+12b+c=80100a+10b+c=100a+b+c=0解这个方程组可得:a=-0.8,b=8,c=-7.2那么喜子在10秒钟内到达学校时,需要的速度v为:v=10^2=100m/s2.喜子的商铺距离学校的直线距离为80米,喜子以vm/s的速度开车去学校,她用时间t到达学校,刹车距离为s(t)。
如果刹车距离等于直线距离80米,求v和t的关系。
答案:刹车距离s(t)为二次函数,设刹车距离函数为s(t) = at^2 + bt + c,其中t为时间,s为刹车距离。
已知:刹车距离为直线距离80米,即s(t)=80,代入得80 = at^2 + bt + c根据题意可知,喜子的商铺距离学校的直线距离为80米,喜子以vm/s的速度开车去学校,她用时间t到达学校,即t=80/v。
代入得80=a(80/v)^2+b(80/v)+c再代入刹车距离与时间的关系为s(t)=t^2,可得80=a(t)^2+b(t)+c可以得到这个方程:a(t)^2+b(t)+c=80解这个方程可得刹车距离与速度的关系,即v和t的关系。
注意:题中没有给出刹车距离与速度的具体关系,所以无法直接求解v和t的关系。
可以通过给定速度或时间的值,求出另一个变量。
九年级数学:利用二次函数解决距离问题
知|识|目|标
通过对抛物线形实际问题的探究分析,会用二次函数知识解决有关距离问
题.
目标会用二次函数知识解决有关距离问题
(1)喷水池中的数学问题
例1 如图5-5-4所示,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA,点O恰在圆形水面中心,OA=1.25米,由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线路线落下.为使水流形状较为漂亮,负责人要求设计成水流在离OA水平距离为1米处达到距水面最大的高度2.25米.求水流落地点到柱子的距离.
图5-5-4
【归纳总结】 (1)在已知抛物线的顶点坐标时,一般设抛物线的函数表达式为y=a(x+h)2+k(a≠0);
(2)要根据实际问题构建适当的平面直角坐标系,便于求出函数表达式,使问题简单化.
(2)体育运动中的数学问题
例 2 教材补充例题在体育测试时,九年级的一名高个子男生推铅球,已知铅球所经过的路线是某二次函数图像的一部分(如图5-5-5),若这个男生的出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为B(6,5).
(1)求这个二次函数的表达式;
(2)该男生把铅球推出去多远?(结果精确到0.01米)
图5-5-5
【归纳总结】由抛物线读出最远距离或最大高度的方法
(1)抛物线顶点的纵坐标是最大高度;
(2)抛物线与x轴交点的横坐标是最远距离.
知识点一二次函数在喷水中的应用
喷水是将水喷射向空中,水滴的运动轨迹呈抛物线状,水流也呈抛物线状.在指定的平面直角坐标系内研究平面内一条抛物线问题,用二次函数的知识确定函数表达式,根据函数表达式求解相关问题,如喷水高度、喷水落地的最大距离、确定水池的半径等,体会用数学知识解决生活中实际问题的思想.
知识点二二次函数在体育运动项目中的应用
在部分体育运动项目中,如跳远、跳高、跳水运动,人体重心运动的路径是抛物线;投抛项目中,铅球、铁饼、标枪等实物重心运动的路径也是抛物线,解决此类问题的方法是在指定的平面直角坐标系内确定抛物线相应的函数表达式,再由二次函数求解具有实际意义的量.
如图5-5-6,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单
位:m)之间的表达式为y=-
1
12
x2+
2
3
x+
5
3
.则他将铅球推出的距离是________m.
图5-5-6
某同学的解答如下:
当y=0时,-
1
12
x2+
2
3
x+
5
3
=0,
解得x1=10,x2=-2,
所以他将铅球推出的距离是12 m.
你认为他的解法正确吗?若不正确,请说明理由,并写出正确答案.
详解详析
【目标突破】
例1[解析] 这是一道运用抛物线的有关知识解决实际问题的应用题.首先必须将水流抛物线放在直角坐标系中,我们可以求出抛物线对应的函数表达式,再利用二次函数的性质解决问题.
解:以点O为原点,OA所在的直线为纵轴,过原点的水平线为横轴,建立如图所示的直角坐标系.设抛物线的顶点为B,与x轴的交点为C.
由题意,得A(0,1.25),B(1,2.25),
因此,设抛物线所对应的函数表达式为y=a(x-1)2+2.25.
将点A的坐标代入上式,
得1.25=(0-1)2a+2.25,解得a=-1,
所以抛物线所对应的函数表达式为y=-(x-1)2+2.25.
当y=0时,即-(x-1)2+2.25=0,
解得 x
1=-0.5(不合题意,舍去),x
2
=2.5.
所以水流落地点到柱子的距离为2.5米.
例2解:(1)设二次函数的表达式为y=a(x+h)2+k. ∵二次函数图像的顶点坐标为(6,5),
∴y=a(x-6)2+5.
又∵点A(0,2)在二次函数图像上,
∴2=62·a+5,解得a=-
1 1
2 ,
∴二次函数的表达式为y=-
1
12
(x-6)2+5,
整理,得y=-
1
12
x2+x+2.
(2)当y=0时,即-
1
12
x2+x+2=0,
解得x
1=6+215,x
2
=6-215(不合题意,舍去),
∴x=6+215≈13.75.
答:该男生把铅球推出去约13.75米.
[备选例题] 某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上.在乒乓球运行时,设乒乓球与端点A的水平距离为x(米),与桌面的高度为y(米),运行时间为t(秒),经多次测试后,得到如下部分数据:
(1)当t为何值时,乒乓球达到最大高度?
(2)乒乓球落在桌面上时,与端点A的水平距离是多少?
(3)乒乓球落在桌面上弹起后,y与x满足y=a(x-3)2+k.
①用含a的代数式表示k;
②球网高度为0.14米,球桌长(1.4×2)米.若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求a的值.
[解析] (1)利用表格中数据直接得出乒乓球达到最大高度时的时间;
(2)首先求出函数表达式,进而求出乒乓球落在桌面时,与端点A的水平距离;
(3)①由(2)得乒乓球落在桌面上时,得出对应点坐标,再利用待定系数法求出函数表达式即可;
②由题意可得,扣杀路线在直线y=
1
10
x上,由①得,y=a(x-3)2-
1
4
a,利用根
的判别式求出a的值,进而求出x的值.
解:以点A为原点,以桌面中线为x轴,乒乓球水平运动方向为正方向,建立平面直角坐标系.
(1)由表格中数据,可得t=0.4秒时乒乓球达到最大高度.
(2)由表格中数据,可得y是x的二次函数,可设y=m(x-1)2+0.45,
将(0,0.25)代入,解得m=-1 5 ,
则y=-1
5
(x-1)2+0.45,
当y=0时,0=-1
5
(x-1)2+0.45,
解得x
1=
5
2
,x
2
=-
1
2
(舍去),
即乒乓球与端点A的水平距离是5
2 m.
(3)①由(2)得乒乓球落在桌面上时,对应的点为(5
2
,0),代入y=a(x-3)2+k,
得(5
2
-3)2a+k=0,
化简,得k=-
1
4
a.
②由①得y=a(x-3)2-
1
4
a.
由题意可知,扣杀路线应过网,即(1.4,0.14),设扣杀路线为y=k′x,将
(1.4,0.14)代入上式,可得k′=
1
10
,则扣杀路线为y=
1
10
x.
令a(x-3)2-1
4
a=
1
10
x,
整理,得20ax2-(120a+2)x+175a=0,
当(120a+2)2-4×20a×175a=0时符合题意,解方程得a
1=
-6+35
10
,a
2
=
-6-35
10,当a
1
=
-6+35
10
时,解得x=-
35
2
,不符合题意,舍去;当a
2
=
-6-35
10时,解得x=
35
2
,符合题意.
故a=-6-35
10
.
【总结反思】
[反思] 不正确,错误原因是对“铅球推出的距离”理解不清,铅球推出的距离实际上是当铅球行进的高度为0时相应的点的横坐标(正数),而不是方程两根的差的绝对值,所以将铅球推出的距离应是10 m.。