6.加速度
a lim v dv v d2r r
t 0 t dt
dt2
加速度一定指向轨道的凹侧.
§1.2 速度、加速度的分量表示式
1. 直角坐标系
vr
r x&i
r y&j
r z&k
rrr
vxi vy j vzk
ar
r v&x i
v&y
r j
r v&z k
rr r
&x&i &y&j &z&k
切向加速度
法向加速度
a
set
s2
en
内禀方程
在自然坐标描述中, 需要已知质点运动的轨道, 而对
轨道的数学描述又需要一个坐标系, 所以必须掌握自
然的在坐不联标同系描的.a建述描立中述这方的个法物联理中系量有的不与基其同本他的依表坐据标达是系形: 中式速的,度但物它和理们加量的速之v大度间
小和方向是惟一确定的.
质点的位置由坐标量 和r确定, 要明确极角 的正
方向 (即 的增加方向)!
vd drtd drterrddetr
de rlie m r(t t)e r(t)
dt t 0
t
lt i0 m e tr lt i0 m te e
径向速度
横向速度
v r e rr e
a d dv td dt(r e rr e )
(2)牛顿第二定律
质点所获得的加速度的大小, 与它所受作用力的大
小成正比, 与它的质量成反比; 加速度的方向与所受作
用力的方向相同.
m rF mv F
d
(mv)
F