《实际问题与二次函数(面积问题)》
- 格式:ppt
- 大小:1.57 MB
- 文档页数:14
D
C B A
25m
实际问题与二次函数(1)
探究1:面积问题
例题:用总长为60m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化.当l 是多少米时,场地的面积S 最大?针对训练(一)
用一段长为30m 的篱笆围成一个一边靠墙的矩形菜园,墙长为18m ,这个矩形的长,宽各为多少时?菜园的面积最大,面积是多少?针对训练(二)
为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如下图).设绿化带的BC 边长为x m ,绿化带的面积为y m 2.
(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围.
(2)当x 为何值时,满足条件的绿化带的面积最大?
探究(二)利润问题
例题:已知某商品的进价为每件40元。
现在的售价是每件60元,每星期可卖出300件。
市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;如何定价才能使利润最大?
针对训练(一)
商场销售一批衬衫,每天可售出20件,每件盈利40元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价1元,每天可多售出2件。
每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元?
针对训练(二)
某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?。
《实际问题与二次函数——利用二次函数求几何面积的最值问
题》的教学反思
《实际问题与二次函数——利用二次函数求几何面积的最值问题》是九年制义务教育新课程标准九年级第二十二章第三节第一课时的内容。
首先以一般式为例复习二次函数的图象与性质,然后以现实中很多抛掷球类问题可以用二次函数来表示引入新课。
探究一中,学生通过建立平面直角坐标系、求解析式、确定图象与x轴的交点坐标得出小球运动时间和特定时刻的高度。
随之,教师引导学生及时归纳总结最值问题及表达形式。
探究二中,学生通过列实际问题的二次函数解析式,逐步探究熟悉的围篱笆问题,重点研究自变量的取值范围和最值问题。
同时也夯实了学生们心中的疑惑,因为之前学生掌握的一条规律,但又不知道为什么。
在周长一定的情况下,围成什么形状时,面积更大。
《实际问题与二次函数—面积问题》教学反思今天解决《实际问题与二次函数(第1课)》,这节课重点解决实际问题中的面积问题,我的目的是通过这节课我能解决三个问题 1.建立二次函数关系式;2.用配方法或公式法求最值;3.自变量的最值范围与最值的关系。
在课前我一直认为第一点不用建立坐标系不会太难,并且矩形面积对初三学生来说不会有什么问题,所以有在上课时对图形的认识这一点的分析上是欠缺的,当发现矩形的一边为x另一边很多学生表示成60-2x 时,我发现学生在建函数关系式时分析图形能力比较差,所以在变式练习1、2、3我就先放手让学生写关系式,同时加强巡查及对学生的指导,然后分析学生错误给出正确遥解答。
通过变式之后,学生基本能解决全闭合矩形与半闭合矩形和多边矩形的面积与过的关系,从而正确列出函数关系式。
后面我附加了一个自变量的取值不在取值范围内,如何求函数最大值问题,学生演板,效果还不错。
在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=x m.(1)若花园的面积为192 m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15 m和6 m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.通过本节课的教学,启示我们在教学中要紧密结合实际,让学生学有所用,在教学中应注意以下几个问题:(一)把实际问题数学化。
首先要深入了解实际问题的背景,了解影响问题变化的主要因素,然后在舍弃问题中的非本质因素的基础上,应用有关知识把实际问题抽象成为数学问题,并进而解决它。
(二)函数的教学应注意自变量与函数之间的变化对应。
函数问题是一个研究动态变化的问题,让学生理解动态变化中自变量与函数之间的变化对应,可能更有助于学生对函数的学习。
(三)二次函数的教学应注意数形结合。
要把函数关系式与其图像结合起来学习,让学生感受到数和形结合分析解决问题的优势。
二次函数与图形面积
1.(六盘水中考)如图,假设篱笆(虚线部分)的长度为16 m ,则所围成矩形ABCD 的最大面积是( )
A .60 m 2
B .63 m 2
C .64 m 2
D .66 m 2
2.(咸宁中考)用一根长为40 cm 的绳子围成一个面积为a cm 2的长方形,那么a 的值不可能为( )
A .20
B .40
C .100
D .120
3.用长8 m 的铝合金条制成使窗户的透光面积最大的矩形窗框(如图),那么这个窗户的最大透光面积是( )
A.6425 m 2
B.43 m 2
C.83 m 2 D .4 m 2
4.如图,利用一面墙(墙的长度不超过45 m),
用80 m 长的篱笆围一个矩形场地.
当AD =________时,矩形场地的面积最大,最大
值为________.
6.将一根长为20 cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是________ cm 2.
7.(淮安中考)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.
(1)求y关于x的函数关系式;
(2)当x为何值时,围成的养鸡场面积为60平方米?
(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.。
§26.3.1实际问题与二次函数(面积问题)教学任务分析教学流程安排教学过程设计例21.一块三角形废料如图所示,∠A=30°,∠C=90°,AB=12。
用这块废料剪出一个长方形CDEF,其中,点D、E、F分别在AC,AB,BC上,要使剪出的长方形CDEF面积最大,点E应选在何处?2.计算机把数据存储在磁盘上,磁盘是带有磁性物质的圆盘,磁盘上有一些同心圆轨道,叫做磁道。
如图,现有一张半径为45mm的磁盘(1)磁盘最内的磁道半径为rmm,其上每0.015的弧长为1个存储单元,这条磁道有多少个存储单元?(2)磁盘上各磁道之间的宽度必须不小于0.3mm,磁盘的外周不是磁道,这张磁盘最多有多少条磁道?(3)如果各磁道的存储单元数目与最内磁道相同,最内磁道的半径r是多少时,磁盘的存储量最大?1小题融入了运动的观点,培养学生用运动的观点看待事物与实际相联系增强学生解决实际问题的能力[活动3] 总结反思检测反馈1.抓住图形的特点进行建模2.注意实际问题的自变量的取值范围检测:用一段长30m的篱笆,围城一个一边靠墙的矩形菜园,墙长为18m。
这个矩形的长、宽为多少时,菜园的面积最大,最大面积为多少?通过小结和检测回顾本节内容,反馈课堂学习效果[活动4] 布置作业拓展升华作业:目标P96 1、2、P97 4思考题:1.如图,正方形ABCD的边长为4,E是AB上一点,F是AD的延长线上一点,BE=DF。
四边形ADGF是矩形,则矩形ADGF的面积随BE的长x的变化而变化,y与x之间的关系可以用怎样的函数关系来表示?2.已知矩形的周长为36cm,矩形绕它的一条边旋转成一个圆柱,矩形的长、宽各为多少时,旋转形成的圆柱的侧面积最大?3.如图,点E、F、G、H分别位于正方形ABCD的四边上。
四边形EFGH也是正方形。
当点E位于何处时,正方形EFGH的面积最小?4.如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从A开始沿边AB向B以2的速度移动,动点Q从B开始沿边BC以4的速度移动,如果P、Q分别从A、B同时出发,那么△PBQ的面积随S出发时间如何变化?写出函数关系式及t的取值范围通过作业在一次内化知识,构建知识系统。