高一数学反函数
- 格式:pdf
- 大小:1.09 MB
- 文档页数:10
【文库独家】
反函数的定义
设函数y=f(x)的定义域是A,值域是C.我们从式子y=f(x)中解出x得到式子x=φ(y).如果对于y在C中的任何一个值,通过式子x=φ(y),x在A中都有唯一的值和它对应,那么式子x=φ(y)叫函数y=f(x)的反函数,记作x=f-1(y),习惯表示为y=f-1(x).注意:函数y=f(x)的定义域和值域,分别是反函数y=f-1(x)的值域和定义域,
例如:f(x)=的定义域是[-1,+∞],值域是[0,+∞),它的反函数
f-1(x)=x2-1, x≥0,定义域为
[0,+∞),值域是[-1,+∞)。
2.反函数存在的条件
按照函数定义,y=f(x)定义域中的每一个元素x,都唯一地对应着值域中的元素y,如果值域中的每一个元素y也有定义域中的唯一的一个元素x和它相对应,即定义域中的元素x和值域中的元素y,通过对应法则y=f(x)存在着一一对应关系,那么函数y=f(x)存在反函数,否则不存在反函数.例如:函数y=x2,x∈R,定义域中的元素±1,都对应着值域中的同一个元素1,所以,没有反函数.而y=x2, x≥1表示定义域到值域的一一对应,因而存在反函数.
3.函数与反函数图象间的关系
函数y=f(x)和它的反函数y=f-1(x)的图象关于y=x对称.若点(a,b)在y=f(x)的图象上,那么点(b,a)在它的反函数y=f-1(x)的图象上.
4.反函数的几个简单命题
(1)一个奇函数y=f(x)如果存在反函数,那么它的反函数y=f-1(x)一定是奇函数.
(2)一个函数在某一区间是(减)函数,并且存在反函数,那么它的反函数在相应区间也是增(减)函数.。
高一反函数知识点随着数学课程的深入学习,高中一年级的学生将接触到更多的数学概念和知识点。
在这篇文章中,我将为大家介绍高一学生将学习的一个重要内容,那就是反函数(Inverse Function)。
一、反函数的定义及性质反函数指的是由一个函数得到的新函数,其输入和输出之间的关系与原函数相反。
如果一个函数f的定义域与值域分别为A和B,那么对于B中的每一个元素b,存在一个唯一的元素a,使得f(a) = b。
这时候我们将这个新函数称为f的反函数,记作f^-1。
一个函数与其反函数之间存在以下几个性质:1. 函数f与其反函数f^-1互为关联:f(f^-1(x)) = x,f^-1(f(x)) = x。
即使用一个函数后再使用其反函数,或者先使用反函数再使用原函数,最终结果都会回到原来的输入。
2. 函数与其反函数的图像关于直线y = x对称:如果一个点(x, y)在函数f的图像上,那么点(y, x)则会在反函数f^-1的图像上。
3. 函数的定义域和值域互换:如果f的定义域为A,值域为B,那么f^-1的定义域就是B,值域就是A。
二、求反函数的方法在学习反函数时,我们面临的主要问题就是如何求得一个函数的反函数。
下面是几种常见的求反函数的方法:1. 代数法对于一些简单的函数,我们可以使用代数法求取其反函数。
具体的步骤是:- 将函数表示为y = f(x)的形式;- 将原方程中的y替换为x,将x替换为y,并且解出y;- 将得到的y表示为f^-1(x),即可得到反函数。
2. 图像法对于一些能够绘制出函数图像的函数,我们可以使用图像法求取其反函数。
具体的步骤是:- 绘制出函数f的图像;- 将图像关于直线y = x进行对称;- 根据对称后的图像,确定反函数的图像。
3. 复合函数法对于一些较为复杂的函数,我们可以使用复合函数法求取其反函数。
具体的步骤是:- 假设函数f的反函数为f^-1(x),即y = f^-1(x);- 将f(y)替换为x,并解出关于y的方程;- 将得到的y表示为f^-1(x),即可得到反函数。
所谓反函数就是将原函数中自变量与变量调换位置,用原函数的变量表示自变量而形成的函数。
通俗点即原函数:y=3x-1 反函数:。
由此可以得出解决反函数的第一种方法:反表示法。
就是将原函数反表示后,再写成函数形式。
例如:y=3x-1求此反函数。
可以这样做:原函数y=3x-1但是这种反表示法限于一定范围之类,就是只能反表示一示简单的函数,对于比较复杂的如二次函数,就不行了,因此还有另外方法:配方法。
但是为什么此题有两解。
这是引发了定义域的问题。
从定义上我们发现反函数中自变量x即为原函数变量y。
所以,原函数定义域为反函数值域。
所以上题中“”这一答案需要舍去因为它不符合原函数定义域,值域。
因此在今后解题中需要注意,原函数的定义域。
还有一种解决反函数问题的方法:求解法。
就是把函数方程x当未知数来解。
例如“”求反函数原方程:原方程解:所以解决反函数问题时需要三者兼用,方可收到显著效果。
在往常练习中同学们还会遇到某些问题,如“已知”遇此类问题时,不妨这样解。
填空或大题中还有此类题“已知,求实数a。
”有些同学初拿此题不知从何处下手。
其实只需写出,一切都可解开。
解:反函数与原函数最大连联还不在于解析式,而在于图象关于y=x对称。
所以有些题可利用图象即数形结合求解。
如“奇函数y=f(x)(x∈R)有反函数y=f-1(x),则必有在y=f-1(x)的图象上点是:A. (-f(a),a)B. (-f(a),-a)C. (-a,-f-1(a))D. (-a,-f-1(a))此题被老师打上星号,因为它将众知识联合起来。
解:f(x)为奇函数∴f(-a)=-f(a)f(x)必有(a,f(a)),也必有(-a,-f(a))f(x)与-f(x)关于y=x 对称,∴f-1(x)上必有(-f(a),-a).“设函数的反函数为φ(x),又函数φ(x)与φ(x+1)图象关于直线y=x对称,求g (2)。
”此题关键在于反函数φ(x)。
多次反函数,可求解。
1.反函数定义:若函数y =f (x )(x ∈A )的值域为C ,由这个函数中x 、y 的关系,用y 把x 表示出来,得到x =ϕ(y ).如果对于y 在C 中的任何一个值,通过x =ϕ(y ),x 在A 中都有唯一的值和它对应,那么,x =ϕ(y )就表示y 是自变量,x 是自变量y 的函数.这样的函数x =ϕ(y )(y ∈C )叫做函数y =f (x )(x ∈A )的反函数,记作x =f -1(y ). 在函数x =f -1(y )中,y 表示自变量,x 表示函数.习惯上,我们一般用x 表示自变量,y表示函数,因此我们常常对调函数x =f -1(y )中的字母x 、y ,把它改写成y =f -1(x ).2.互为反函数的两个函数y =f (x )与y =f -1(x )在同一直角坐标系中的图象关于直线y =x 对称.3.求反函数的步骤:(1)解关于x 的方程y =f (x ),得到x =f -1(y ).(2)把第一步得到的式子中的x 、y 对换位置,得到y =f -1(x ). (3)求出并说明反函数的定义域〔即函数y =f (x )的值域〕.1.函数y =-11+x (x ≠-1)的反函数是 A.y =-x1-1(x ≠0) B.y =-x1+1(x ≠0) C.y =-x +1(x ∈R )D.y =-x -1(x ∈R )解析:y =-11+x (x ≠-1)⇒x +1=-y 1⇒x =-1-y 1.x 、y 交换位置,得y =-1-x1.答案:A2.函数y =log 2(x +1)+1(x >0)的反函数为A.y =2x -1-1(x >1)B.y =2x -1+1(x >1) C.y =2x +1-1(x >0) D.y =2x +1+1(x >0)解析:函数y =log 2(x +1)+1(x >0)的值域为{y |y >1},由y =log 2(x +1)+1,解得x =2y -1-1.∴函数y =log 2(x +1)+1(x >0)的反函数为y =2x -1-1(x >1). 答案:A3.函数f (x )=-12+x (x ≥-21)的反函数 A.在[-21,+∞)上为增函数B.在[-21,+∞)上为减函数 C.在(-∞,0]上为增函数D.在(-∞,0]上为减函数 解析:函数f (x )=-12+x (x ≥-21)的值域为{y |y ≤0},而原函数在[-21,+∞)上是减函数,所以它的反函数在(-∞,0]上也是减函数.答案:D4.(2005年春季上海,4)函数f (x )=-x 2(x ∈(-∞,-2])的反函数f -1(x )=______________.解析:y =-x 2(x ≤-2),y ≤-4.∴x =-y -.x 、y 互换, ∴f -1(x )=-x -(x ≤-4).答案:-x -(x ≤-4) 5.若函数f (x )=2+x x ,则f -1(31)=___________.解法一:由f (x )=2+x x ,得f -1(x )=x x -12.∴f -1(31)=311312-⋅=1. 解法二:由2+x x=31,解得x =1. ∴f -1(31)=1. 答案:1评述:显然解法二更简便.【例】 求函数f (x )=⎩⎨⎧->+-≤+)1(1),1(12x x x x 的反函数.解:当x ≤-1时,y =x 2+1≥2,且有x =-1-y ,此时反函数为y =-1-x (x ≥2). 当x >-1时,y =-x +1<2,且有x =-y +1,此时反函数为y =-x +1(x <2).∴f (x )的反函数f -1(x )=⎪⎩⎪⎨⎧<+-≥--).2(1),2(1x x x x评述:分段函数应在各自的条件下分别求反函数式及反函数的定义域,分段函数的反函数也是分段函数.1.函数y =1-x +1(x ≥1)的反函数是A.y =x 2-2x +2(x <1)B.y =x 2-2x +2(x ≥1)C.y =x 2-2x (x <1)D.y =x 2-2x (x ≥1)2.记函数y =1+3-x 的反函数为y =g (x ),则g (10)等于A.2B.-2C.3 D .-1 3.函数y =e 2x (x ∈R )的反函数为A.y =2ln x (x >0)B.y =ln (2x )(x >0)C.y =21ln x (x >0) D.y =21ln (2x )(x >0) 4.已知函数f (x )=2(21-11+x a )(a >0,且a ≠1).(1)求函数y =f (x )的反函数y =f -1(x );(2)判定f -1(x )的奇偶性;(3)解不等式f -1(x )>1.解:(1)化简,得f (x )=11+-x x a a .设y =11+-x x a a ,则a x =y y -+11.∴x =log a yy-+11.∴所求反函数为y =f -1(x )=log axx-+11(-1<x <1). (2)∵f -1(-x )=log a x x +-11=log a (x x -+11)-1=-log a xx -+11=-f -1(x ),∴f -1(x )是奇函数.(3)log axx-+11>1. 当a >1时,原不等式⇒x x-+11>a ⇒11)1(--++x a x a <0.∴11+-a a <x <1. 当0<a <1时,原不等式⎪⎪⎩⎪⎪⎨⎧>-+<-+,011,11xx a xx解得⎪⎩⎪⎨⎧<<->+-<.11,111x x aa x 或 ∴-1<x <aa +-11. 综上,当a >1时,所求不等式的解集为(11+-a a ,1); 当0<a <1时,所求不等式的解集为(-1,11+-a a )5.已知函数f (x )=(11+-x x )2(x >1).(1)求f (x )的反函数f -1(x );(2)判定f -1(x )在其定义域内的单调性;解:(1)由y =(11+-x x )2,得x =yy -+11. 又y =(1-12+x )2,且x >1,∴0<y <1. ∴f -1(x )=xx -+11(0<x <1).(2)设0<x 1<x 2<1,则1x -2x <0,1-1x >0,1-2x >0.∴f -1(x 1)-f -1(x 2)=)1)(1()(22121x x x x ---<0,即f -1(x 1)<f -1(x 2).∴f -1(x )在(0,1)上是增函数.小结:(1)函数的反函数,本身也是一个函数,由反函数的定义,原来函数也是反函数的反函数.(2)反函数的定义域、值域分别是原来函数的值域与定义域.(3)由反函数定义知:①b =f (a )⇔a =f -1(b ),这两个式子是a 、b 之间关系的两种不同表示形式.②f [f -1(x )]=x (x ∈C ). ③f -1[f (x )]=x (x ∈A ).1.求下列函数的反函数:(1)y (x )(2)y x 2x 3x (0]2=≠-.=-+,∈-∞,.352112x x -+(3)y (x 0)(4)y x +1(1x 0) (0x 1)=≤.=-≤≤-<≤112x x +⎧⎨⎪⎩⎪4 反函数·基础练习(一)选择题1.函数y =-x 2(x ≤0)的反函数是[ ]A y (x 0)B y (x 0)C y (x 0)D y |x|.=-≥.=≤.=-≤.=-x x x --2.函数y =-x(2+x)(x ≥0)的反函数的定义域是[ ]A .[0,+∞)B .[-∞,1]C .(0,1]D .(-∞,0]3y 1(x 2).函数=+≥的反函数是x -2[ ]A .y =2-(x -1)2(x ≥2)B .y =2+(x -1)2(x ≥2)C .y =2-(x -1)2(x ≥1)D .y =2+(x -1)2(x ≥1) 4.下列各组函数中互为反函数的是[ ]A y y xB y y 2.=和=.=和=x x x11C y y (x 1)D y x (x 1)y (x 0)2.=和=≠.=≥和=≥3131311x x x x x +-+- 5.如果y =f(x)的反函数是y =f -1(x),则下列命题中一定正确的是[ ]A .若y =f(x)在[1,2]上是增函数,则y =f -1(x)在[1,2]上也是增函数B .若y =f(x)是奇函数,则y =f -1(x)也是奇函数C .若y =f(x)是偶函数,则y =f -1(x)也是偶函数D .若f(x)的图像与y 轴有交点,则f -1(x)的图像与y 轴也有交点 6.如果两个函数的图像关于直线y =x 对称,而其中一个函数是y =-,那么另一个函数是x -1[ ]A .y =x 2+1(x ≤0)B .y =x 2+1(x ≥1)C .y =x 2-1(x ≤0)D .y =x 2-1(x ≥1)7.设点(a ,b)在函数y =f(x)的图像上,那么y =f -1(x)的图像上一定有点[ ]A .(a ,f -1(a))B .(f -1(b),b)C .(f -1(a),a)D .(b ,f -1(b))8.设函数y =f(x)的反函数是y =g(x),则函数y =f(-x)的反函数是[ ]A .y =g(-x)B .y =-g(x)C .y =-g(-x)D .y =-g -1(x)(二)填空题1y 32y (x 0)y f(x)y x .函数=+的反函数是..函数=>与函数=的图像关于直线=对称,x x ++2121解f(x)=________.3.如果一次函数y =ax +3与y =4x -b 的图像关于直线y =x 对称,那a =________, b =________.4y (1x 0).函数=-<<的反函数是,反函数的定92-x 义域是________.5.已知函数y =f(x)存在反函数,a 是它的定义域内的任意一个值,则f -1(f(a))=________.6y 7y (x 1)(x 1)8f(x)(x 1)f ()1.函数=的反函数的值域是..函数=≥-<的反函数是:..函数=<-,则-=.121121232x x x x---⎧⎨⎪⎩⎪--参考答案(一)选择题1.(C).解:函数y=-x 2(x ≤0)的值域是y ≤0,由y=-x 2得x=--,∴反函数--≤.y x f (x)=(x 0)1-2.(D).解:∵y=-x 2-2x=-(x +1)2,x ≥0,∴函数值域y ≤0,即其反函数的定义域为x ≤0.3(D)y =x 21x 2y 1y =x 2..解:∵-+,≥,∴函数值域≥,由-+1,得反函数f -1(x)=(x -1)2+1,(x ≥1).4.(B).解:(A)错.∵y=x 2没有反函数.(B)中如两个函数互为反函数.中函数+-≠的反函数是+-≠而不是+-.中函数≥的值域为≥.应是其反函数的定义域≥.但中的定义域≥,故中两函数不是互为反函数.(C)y =3x 1x (x 1)y =x 1x 3(x 3)y =3x 13x 1(D)y =x (x 1)y 1x 1y =x x 0(D)21 5.(B).解:(A)中.∵y=f(x)在[1,2]上是增函数.∴其反函数y=f -1(x)在[f(1),f(2)]上是增函数,∴(A)错.(B)对.(C)中如y=f(x)=x 2是偶函数但没有反函数.∴(C)错.(D)中如函数f(x)=x 2+1(x ≥0)的图像与y 轴有交点,但其反函数-≥的图像与轴没有交点.∴错.f -(x)=x 1(x 1)y (D)1 6(A)y =y 0f (x)=x 12..解:∵函数--的值域≤;其反函数+x 1-+1(x ≤0).选(A).7.(D).解:∵点(a ,b)在函数y=f(x)的图像上,∴点(b ,a)必在其反函数y=f -1(x)的图像上,而a=f -1(b),故点(b ,f -1(b))在y=f -1(x)的图像上.选(D).8.(B).解:∵y=f(x)的反函数是y=f -1(x)即g(x)=f -1(x),而y=f(-x)的反函数是y=-f -1(x)=-g(x),∴选(B).(二)填空题1y =3y 3y =x 6x 2.解:∵函数++的值域≥,其反函数-+x 27(x ≥3)2y =12x 1(x 0)y 1f(x)=1x2x(x 1).解:+>的值域<,其反函数-<.3y =4x b y =14x x =ax .解:函数-的反函数是+,则++,b b41443比较两边对应项系数得,.a =14b =124y =9x (1x 0)y (223)2.解:函数--<<的值域∈,,反函数f -1 (x)=(223)--.反函数的定义为,.92x5.a6.[0,2)∪(2,+∞)7f (x)=x 1(x 1)1x(x 0)122.+≥-<-⎧⎨⎪⎩⎪8.-2作业一、 选择题1、 已知函数)1(156≠∈-+=x R x x x y 且,那么它的反函数为( ) A 、()1156≠∈-+=x R x x x y 且 B 、()665≠∈-+=x R x x x y 且 C 、⎪⎭⎫ ⎝⎛-≠∈+-=65561x R x x x y 且 D 、()556-≠∈+-=x R x x x y 且 2、函数⎪⎩⎪⎨⎧≥-=)0(21)0(2x x x x y 的反函数是( ) A 、()⎩⎨⎧≤-=0)0(2 x x x x y B 、()⎩⎨⎧-≤-=0)0(2 x x x x yC 、()()⎪⎩⎪⎨⎧≤-=0021 x x x x yD 、()()⎪⎩⎪⎨⎧-≤-=0021 x x x x y 3.若函数)1(1)(2-≤-=x x x f ,则)4(1-f 的值为( ) A 、5 B 、5- C 、15 D 、3。
五.指数函数与对数函数的关系-----反函数
1.反函数的概念及互为反函数两函数间的关系
(1).反函数概念:当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的自变量,
而把这个函数的自变量作为新的函数的因变量,我们称这两个函数互为反函数.
函数y=f(x)的反函数通常用x=f -1(y)表示。
要点诠释:
a. 对于任意一个函数y=f(x),不一定总有反函数,只有当确定一个函数的映射是一一映射时,
这个函数才存在反函数;
b.反函数也是函数,因为它符合函数的定义.
(2).互为反函数的图象关系:
关于直线y=x对称;
(3).互为反函数的定义域和值域关系:
反函数的定义域与值域是原函数的值域和定义域.
(4).求反函数的方法步骤:
(1)由原函数求出它的值域;(2)由原函数y=f(x)反解出x=f -1(y);
(3)交换x, y改写成y=f -1(x);(4)用f(x)的值域确定f -1(x)的定义域.
2.指数函数与对数函数的关系
指数函数与对数函数互为反函数.
x x x x。
高一同步 数学反函数讲义编号:1.反函数定义:函数y=f(x)(x ∈A ) 中,设它的值域为 C .我们根据这个函数中x,y 的关系,用 y 把 x 表示出来,得到 x = ϕ (y) .如果对于y 在C 中的任何一个值,通过x = ϕ (y),x 在A 中都有唯一的值和它对应,那么, x = ϕ (y)就表示y 是自变量,x 是自变量 y 的函数.这样的函数 x = ϕ (y)(y ∈C )叫做函数y=f(x)(x ∈A )的反函数.记作: )(1y f x -=.考虑到“用 x 表示自变量, y 表示函数”的习惯,将)(1y fx -=中的x 与y 对调写成)(1x f y -=.2.引导分析: 1)反函数也是函数; 2)对应法则为互逆运算;3)定义中的“如果”意味着对于一个任意的函数y=f(x)来说不一定有反函数;4)函数y=f(x)的定义域、值域分别是函数x=f 1-(y)的值域、定义域; 5)函数y=f(x)与x=f 1-(y)互为反函数; 6)要理解好符号f 1-; 7)交换变量x 、y 的原因. 3.两次转换x 、y 的对应关系(原函数中的自变量x 与反函数中的函数值y 是等价的,原函数中的函数值y 与反函数中的自变量x 是等价的.) 4.函数与其反函数的关系例1.(★☆☆☆☆)求下列函数的反函数:③ )(13R x x y ∈-=; ②)(13R x x y ∈+=;③)0(1≥+=x x y ; ④)1,(132≠∈-+=x R x x x y 且.反函数定义一般地,设函数))((A x x f y ∈=的值域是C ,根据这个函数中x,y 的关系,用y 把x 表示出,得到x=ϕ(y). 若对于y 在C 中的任何一个值,通过x=ϕ(y),x 在A 中都有唯一的值和它对应,那么,x=ϕ(y)就表示y 是自变量,x 是自变量y 的函数,这样的函数x=ϕ(y) (y ∈C)叫做函数))((A x x f y ∈=的反函数,记作)(1y fx -=,习惯上改写成)(1x f y -=注1:不是所有函数都有反函数反函数也是函数,因为它符合函数的定义,从反函数的定义可知,对于任意一个函数)(x f y =来说,不一定有反函数,如2x y =,只有“一一映射”确定的函数才有反函数,2x y =,),0[+∞∈x 有反函数是x y =注2:互为反函数定义域、值域的关系从映射的定义可知,函数)(x f y =是定义域A 到值域C 的映射,而它的反函数)(1x f y -=是集合C 到集合A 的映射,因此,函数)(x f y =的定义域正好是它的反函数)(1x f y -=的值域;函数)(x f y =的值域正好是它的反函数)(1x f y -=的定义域x f f y 1-==x x f f x x ff ==--)]([,)]([11(如下表):注3:)(1x f y -=的反函数若函数)(x f y =有反函数)(1x f y -=,那么函数)(1x f y -=的反函数就是)(x f y =,这就是说,函数)(x f y =与)(1x fy -=互为反函数1. 结合知识点一和方法例2.(★☆☆☆☆)求函数23-=x y (R x ∈)的反函数,并画出原来的函数和它的反函数的图像例3:(★★☆☆☆)求函数 211x y --=(-1<x<0)的反函数例4:(★★☆☆☆) 已知)(x f = 2x -2x(x ≥2),求)(1x f-.例5.(★★☆☆☆)求函数)0(2<=x xy 的反函数,并利用对称关系作出其反函数的图象.例6.(★★★☆☆)求函数2385-+=x x y 的值域.例7. (★★★☆☆)已知)(x f =211x-(x<-1),求)31(1--f ;1. (★☆☆☆☆)判断下列函数在各自给的区间内是否有反函数。
高一数学 2.4反函数(备课资料) 大纲人教版必修一、反函数的学习因反函数是函数知识中重要的一部分内容,我们若能从函数的角度去理解反函数的概念,则一定能从中发现反函数的本质,并能顺利地应用函数与其反函数间的关系去解决相关问题.1.明确“函数与反函数”的关系(1)一个函数具有反函数的充要条件是确定这个函数的映射是从定义域到值域上的一一映射.(2)对于任一函数f (x )不一定有反函数,如果有反函数,那么原函数f (x )与它的反函数是互为反函数.(3)原函数的定义域是反函数的值域,原函数的值域是反函数的定义域.(4)一般的偶函数不存在反函数,奇函数不一定存在反函数.(5)原函数与其反函数在对应区间上的单调性是一致的.2.深入学习对“反函数”的求法[例]求下列函数的反函数(1)y =bax b ax +- (2)y =⎩⎨⎧<+-≥+)0(2)0(222x x x x x x (1)分析:由于a 、B 不定,故须分类讨论:当a =0,b ≠0时,y =-1,此时不存在反函数当a ≠0,b =0时,y =1(x ≠0),此时不存在反函数.当a ≠0,b ≠0时,函数y =bax b ax +-的值域是y ∈{y ∈R |y ≠1} 由y =bax b ax +-解得:x =ay a by b -+ (a ≠0,y ≠1) ∴当a ≠0,b ≠0时,函数y =bax b ax +-的反函数是: y =aya byb -+(x ≠1) 评述:熟练掌握求反函数的基本步骤是准确求出函数的反函数的必要条件.(2)分析:求分段函数的反函数时,先在各段求出相应的反函数,再将其合并.解:当x ≥0时,y =x 2+2x =(x +1)2-1∴x =-1+y +1∵x ≥0 ∴y =x 2+2x ≥0∴当x ≥0时,此段函数的反函数是 y =-1+1+x (x ≥0)当x <0时,y =-x 2+2x =-(x -1)2+1∴x =1-y -1∵x <0,∴y =-x 2+2x <0∴当x <0时,此段函数的反函数是 y =1-x -1(x <0)综上所述:所给函数的反函数为y =⎪⎩⎪⎨⎧<--≥++-0110 11x x x x 评述:(1)在求分段函数的每一段相应的反函数时,仍严格按照求反函数的基本步骤进行.(2)分段函数的反函数被求的过程,能让我们体会到“先分后合”的思想在数学中的渗透作用.3.灵活应用“反函数”于解题中[例1]求函数y =521+-x x 的值域 分析:此题除用前面介绍的“分离系数”法求得其值域外,也可通过求其反函数的定义域得到原函数的值域这一途径.解:由y =521+-x x 得x ≠-25 ∴有:y (2x +5)=1-x∴x =1251+-y y ∴反函数为y =1251+-x x (x ∈R 且x ≠-21); 因而此函数y =521+-x x 的值域为y ∈{y ∈R |y ≠-21} 评述:求函数的值域可以转化为求其反函数的定义域,这种方法往往可以使问题有“出奇制胜”的效果,它的优越性将随着我们对知识的继续深入学习体现得越发明显.[例2]已知函数f (x )=112-+x x 求f -1[[f (x )],f [f -1(x )]. 解:由y =112-+x x (x ≠1)可得 y (x -1)=2x +1,∴x =21-+y y ∴反函数f -1(x )=21-+x x (x ≠2) ∴f -1[f (x )]=f -1(112-+x x )=21121112--++-+x x x x =xf [f -1(x )]=f (21-+x x )=1211)21(2--++-+x x x x =x 评述:由上题我们发现,互为反函数的两个函数f (x )与f -1(x )之间符号互逆性,即f -1[f (x )]=x ,f [f -1(x )]=x请读者利用以上结论试探索:若函数y =f (x )的反函数是y =g(x ),且f (m )=n (mn ≠0)则g(n )等于多少?[例3]已知函数y =f (x )在定义域(-∞,0]内存在反函数,且f (x -1)=x 2-2x ,求f -1(-31). 分析:此题一般思路是:先求出f (x ),进而求出f -1(x ),将-31代入f -1(x )中求得f -1(-31). 解:∵f (x -1)=x 2-2x =(x -1)2-1∴f (x )=x 2-1(x ≤0)∵当x ≤0时,f (x )=x 2-1≥-1∴函数f (x )的值域为[-1,+∞)∵f (x )=x 2-1(x ≤0)得:x =-1+y (y =f (x )) ∴得函数f (x )的反函数是:y =-1+x (x ≥-1)∴f -1(-31)=-36131-=+- 评述:以上解题思路简单但运算麻烦,若不仔细认真,将会导致结果错误.如下解法将会体现一种技能技巧,使解题过程大大简化:解:∵f (x -1)=x 2-2x =(x -1)2-1∴f (x )=x 2-1(x ≤0)当x 2-1=-31(x ≤0)时 有:x =-36 ∴f -1(-31)=-36 评述:比较以上两种解法,请读者自行归纳总结它们解题过程繁简差别的原因,并试用简捷明快的思路解决以下问题:问题:已知函数f (x )=c bx a x ++的反函数是f -1(x )=325++-x x ,求常数a ,b ,c 值是多少?提示:选取由f -1(x )去求f (x )这一优秀途径解决此问题.二、参考练习题1.求下列函数的反函数(1)y =1-1-x (x ≥1)答案:y =x 2-2x +2(x ∈(-∞,1])(2)y =|x -1| (x ≤1)答案:y =1-x (x ∈[0,+∞)(3)y =x 2-2x +3 (x ∈(1,+∞))答案:y =1-2-x (x ∈(2,+∞))(4)y =x |x |+2x 答案:y =⎪⎩⎪⎨⎧<+--≥-+)0(11)0(11x x x x (5)f (x )=⎩⎨⎧>+≤+-)0(22)0(12x x x x答案:f -1(x )=⎪⎩⎪⎨⎧>-≤--)2(121)1(1x x x x2.解答题(1)已知f (x )=f -1(x )=xm x ++12(x ≠-m ),求实数m ? 答案:m =-2提示:利用相同函数的定义域、值域完全相同这一性质,巧妙地结合互为反函数的性质去解.(2)已知f -1[f -1(x )]=25x +30,则一次函数的解析式是什么?答案:f (x )=5x -1或f (x )=-51x -23 (3)已知f (x )=10x -2-2,求f -1(8)的值答案:f -1(8)=3(4)已知函数f (x )的图象过点(0,1),则f (4-x )的反函数的图象一定过哪个点? 答案:(1,4)(5)已知函数f (x )=341++x mx ,它的反函数是f -1(x )=2431--x x ,求m 的值? 答案:m =2(6)已知函数f (x )=x 2+2x +1(x ≥-1)的图象为C 1,它的反函数图象为C 2,请画出C 1,C 2并观察它们之间的位置关系有何特点?若又有一个函数的图象C 3与C 2关于y 轴对称,求这个函数的解析式?参考答案:(图略),C 1,C 2关于直线y =x 对称,所求函数的解析式为y =1--x (x ≤0)说明:本题旨在让学生提前思考练习,为下节课“互为反函数的函数图象间的关系”做准备.●备课资料“互为反函数的函数图象间的关系”的应用互为反函数的两个函数的图象间的关系是在反函数定义上进行的,而“将图象的对称转化为图象上任意一点的对称”的这种方法在我们解决有关函数的问题中大大显示了它的简捷性与技巧性.[例1]已知函数f (x )=b ax +(x ≥-ab )的图象过点(1,2),它的反函数图象也过此点,求函数f (x )的解析式. 解法一:由y =b ax +得x =ab y -2 ∴当x ≥-ab 时,y ≥0 ∴函数f (x )=b ax +(x ≥-ab )的反函数是f -1(x )=a b x -2(x ≥0) 又∵点(1,2)既在函数f (x )上,也在函数f -1(x )上 ∴有⎪⎩⎪⎨⎧-=+=a b b a 122 解得:a =-3,b =7∴函数f (x )=73+-x (x ≥-37) 解法二:由互为反函数的两个函数图象间的关系以及点(1,2)关于直线y =x 的对点为(2,1),可以得到函数f (x )的图象还过点(2,1) ∴得到⎩⎨⎧+=+=ba b a 212解得:a =-3 b =7∴函数f (x )=73+-x (x ≥-37) 评述:比较上述两种不同解法的区别:我们发现解法一思路自然,但过程较繁,解法二思路敏捷避免了求反函数这一步,从而减少了运算量,但它的掌握需要我们特别熟悉互为反函数的两个函数间的关系.[例2]已知函数f (x )=132-+x x ,函数y =g(x )的图象与函数y =f -1(x +1)的图象关于直线y =x 对称,求g(5)的值.分析:此题需要找到g(x )才能求出g(5)的值.解:∵y =f (x )=132-+x x ∴x =1+25-y 又∵y ≠2∴f -1(x )=1+25-x (x ≠0) ∴f -1(x +1)=1+15-x 又∵y =f -1(x +1)=1+15-x ∴x =1+15-y ∴y ≠1 ∴f -1(x +1)的反函数g(x )=1+15-x (x ≠1) ∴g(5)=1+45=49 评述:(1)以上解法是一种通用方法,思路简单自然,不失为一种能体现我们扎实的基本功和脚踏实地的学习精神的好方法,故应引起足够重视.(2)对于以上例2,也可以有如下巧解:∵g(x )是f -1(x +1)的反函数∴g(5)其实等于f -1(x +1)=5时的x 值,∵f [f -1(x +1)]=f (5)∴x =f (5)-1=413-1=49 显然,这种解法给我们以一种恰到好处的感觉.。
高一数学反函数【本讲主要内容】反函数反函数的定义;反函数的求法;反函数间的图像性质【知识掌握】【知识点精析】1. 反函数的定义:若函数)(x f y =(A x ∈)的值域为C ,由这个函数中x 、y 的关系,用y 把x 表示出来,得到)(y x ϕ=。
如果对于y 在C 中的任何一个值,通过)(y x ϕ=,x 在A 中都有唯一的值和它对应,那么,)(y x ϕ=就表示y 是自变量,x 是自变量y 的函数。
这样的函数)(y x ϕ=(C y ⊂)叫做函数))((A x x f y ⊂=的反函数,记作)(1y fx -=。
在函数)(1y fx -=中,y 表示自变量,x 表示函数。
习惯上,我们一般用x 表示自变量,y 表示函数,因此我们常常对调函数)(1y f x -=中的字母x 、y ,把它改写成)(1x fy -=。
2. 求反函数的步骤:(1)解关于x 的方程)(x f y =,得到)(1y fx -=。
(2)把第一步得到的式子中的x 、y 对换位置,得到)(1x f y -=。
(3)求出并说明反函数的定义域(即函数)(x f y =的值域)。
3. 关于反函数常用性质:(1))(x f y =和)(1x f y -=的图象关于直线y=x 对称。
(2))(x f y =和)(1x f y -=具有相同的单调性。
(3))(x f y =和)(1y f x -=互为反函数,但在同一坐标系下,它们的图象相同。
(4)已知f(x)求)(1a f-,可利用a x f =)(,从中求出x ,即是)(1a f -。
特别提醒:因为反函数与原函数互为反函数,所以在学习反函数的过程中要注意原函数与反函数的定义域、值域、对应法则的互反性,同时在研究反函数的性质时要注意利用原函数和反函数之间的关系转化为研究原函数的性质,如研究函数2xx e e y -+=的反函数的单调性、奇偶性就可以直接研究2xx e e y -+=,而不必求出其反函数。
高一数学 反函数与函数性质知识点1:反函数1.12-=x y 的反函数为 ;12+=x x y 的反函数为 ; x y =的反函数为 ;x y 2=的反函数为 ; x y 3log =的反函数为 。
2.二次函数x x x f 4)(2-=是否存在反函数? ;要使x x x f 4)(2-=存在反函数,则定义域为 (写出任意一个即可);x x x f 4)(2-=,(]2,∞-∈x 的反函数为 。
3.原函数与反函数关于 对称,若原函数经过点(b a ,),则反函数必经过点 ,若)(x f y =的反函数经过点(2,4),则)4(f = 。
知识点二:定义域、值域4.x y )21(=,(]2,∞-∈x 的值域 ;x y 31log =,(]9,0∈x 的值域 。
5.x y 24-=定义域 ,值域 。
)4(log )2(log 33x x y -++=定义域 ,值域 。
)23(log 5.0-=x y 定义域 。
6.4391-+=+x x y 的值域 ,4log log 32122--=x x y 的值域 。
知识点三:函数奇偶性7.c bx ax x f ++=2)(为奇函数,则c b a ,,满足 ;若为偶函数,则c b a ,,满足 。
8.x x x f a -+=11log )(,若3)(=b f ,则)(b f -= ,x a x f 211)(--=为奇函数,则a 的值为 。
9.,3)2(,5sin )(=++=f x b x ax x f 则)2(-f = ;)(x f 为奇函数,5)()(+=x af x g 在()4,1上有最小值7,则)(x g 在)1,4(--的最 值为 。
10.)(x f 为奇函数,)(x g 为偶函数,11)()(-=+x x g x f ,则=)(x f ,)(x g = 。
11.定义域在R 上的奇函数)(x f ,已知()+∞∈,0x 时,32)(2+-=x x x f ,求)(x f 的解析式。