指数函数简单习题
- 格式:doc
- 大小:58.00 KB
- 文档页数:1
练习题一,选择题1.下列函数是指数函数的是()A.y = -2xB. y = 2x+,C. y = 2_xD. y=l x2.函数y =@—2尸在R上为增函数,则a的取值范围是()A. a>0 且a7^1B. a>3C. a<3D. 2<a<33.函数y=厂2+1@〉0, a^l)的图象必经过点( )A. (0,1)B. (1,1)C. (2,0)D. (2,2)4.f(x)=|jl|x|, xGR,那么班0是()A.奇函数且在(0, + <-)上是增函数B.偶函数且在(0, + 8)上是增函数C.奇函数且在(0, + 8)上是减函数D.偶函数且在(0,5.方程广「命的解为()A. 2B. -2C. -1D. 16.方程4^=令的解为()A. 2B. -2C. -1D. 17.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个)。
经过3个小时,这种细菌由1个nJ繁殖成()A.511 个B.512 个C.1O23 个D1024 个8.在统一平面直角坐标系中,函数/(兀)8. 设a,b,c,d 都是不等于1的正数,y = a\y = h\y = c\y = d x 在同一•处标系中的图像如图所示,则a,b,c,d 的10. y= 0.3戶的值域是( )4. (-oo,0) B.[l,+x) C.(0,l] 0.(- oo,l]11. 当xe[-l,l]时函数/(x) = 3v -2的值域是()A. --,1 B\-1,1] C. 1,- D.[0,l3 3 2 2 1 1 | £ 512. 化简(/沪)(—3决质)十(丄,沪)的结果 ( ) A . 6a B • -a C . -9a D . 9a 2设指数函数/(x) = a x (a > 0卫主1),则下列等式中不正确的是(0,1] B • (04) C • (0,+o>)13. 14. f(nx) = [f(x)]n (n e Q) f(xyy=[f(x)]n {f(y)Y (n G N") 函数 y = (x-5)°4-(x-2p{x \ x 5,x 工 2} B . {x\x > 2}{x\x>5} D . {x\2< x < 5^x > 5}15. 函数/(x) = 2-,A 1的值域是16. 若指数函数y = (a + \)x 在(—oo, + 00)上是减函数,那么(A 、 0 < a < IB 、 -l<a <0C 、D 、 a <-11&函数/(x) = 2V , g(x) = x + 2,便.f(x) = g(x)成立的x 的值的集合() A 、是0 B 、有且只有一个元索C 、有两个元素D 、有无数个元素19.下列关系式中正确的是( )9 ( 1 \3 ( 1 \3 ( \ \3 A.-<2_L5 < 丄 B.- < - 3 \2 J(2 丿 \ 2> (1 < 1 \3 (1、 1 r 1 \i c. 2-1-5 < 1 —< A D.2 15 < - < 1 (2丿a二,填空题1. 两数y=pa"—1的定义域是( — 8, 0],则实数a 的取值范围为 _________2. 函数 f (x )=(*)_l, xe [ — 1, 2]的值域为 _______ ・3. 函数/(兀)=G 沏+1(。
指数函数习题新泰一中闫辉一、选择题1.下列函数中指数函数的个数是 ( ).①②③④A.0个 B.1个 C.2个 D.3个2.若,,则函数的图象一定在()A.第一、二、三象限 B.第一、三、四象限C.第二、三、四象限 D.第一、二、四象限3.已知,当其值域为时,的取值范围是()A. B.C. D.4.若,,下列不等式成立的是()A. B. C. D.5.已知且,,则是()A.奇函数 B.偶函数C.非奇非偶函数 D.奇偶性与有关6.函数()的图象是()7.函数与的图象大致是( ).8.当时,函数与的图象只可能是()9.在下列图象中,二次函数与指数函数的图象只可能是()10.计算机成本不断降低,若每隔3年计算机价格降低 ,现在价格为8100元的计算机,则9年后的价格为( ).A.2400元 B.900元 C.300元 D.3600元二、填空题1.比较大小:(1);(2) ______ 1;(3) ______2.若,则的取值范围为_________.3.求函数的单调减区间为__________.4.的反函数的定义域是__________.5.函数的值域是__________ .6.已知的定义域为 ,则的定义域为__________.7.当时, ,则的取值范围是__________.8.时,的图象过定点________ .9.若 ,则函数的图象一定不在第_____象限.10.已知函数的图象过点 ,又其反函数的图象过点(2,0),则函数的解析式为____________.11.函数的最小值为____________.12.函数的单调递增区间是____________.13.已知关于的方程有两个实数解,则实数的取值范围是_________.14.若函数(且)在区间上的最大值是14,那么等于_________.三、解答题1.按从小到大排列下列各数:,,,,,,,2.设有两个函数与,要使(1);(2),求、的取值范围.3.已知 ,试比较的大小.4.若函数是奇函数,求的值.5.已知,求函数的值域.6.解方程:(1);(2).7.已知函数(且)(1)求的最小值;(2)若,求的取值范围.8.试比较与的大小,并加以证明.9.某工厂从年到年某种产品的成本共下降了19%,若每年下降的百分率相等,求每年下降的百分率10.某工厂今年1月、2月、3月生产某产品分别为1万件、1.2件、1.3万件,为了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量与月份数的关系,模拟函数可以选用二次函数或函数(其中、、为常数),已知四月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好?请说明理由.11.设,求出的值.12.解方程.参考答案:一、1.B 2.A 3.D 4.B 5.A 6.B 7.D 8.A 9.A 10.A二、1.(1)(2)(3)2. 3. 4.(0,1) 5.6. 7.8.恒过点(1,3) 9.四 10.11. 12. 13. 14.或三、1.解:除以外,将其余的数分为三类:(1)负数:(2)小于1的正数:,,(3)大于1的正数:,,在(2)中,;在(3)中,;综上可知说明:对几个数比较大小的具体方法是:(1)与0比,与1比,将所有数分成三类:,,,(2)在各类中两两比2.解:(1)要使由条件是,解之得(2)要使,必须分两种情况:当时,只要,解之得;当时,只要,解之得或说明:若是与比较大小,通常要分和两种情况考虑.3.4.解:为奇函数,,即,则,5.解:由得,即,解之得,于是,即,故所求函数的值域为6.解:(1)两边同除可得,令,有,解之得或,即或,于是或(2)原方程化为,即,由求根公式可得到,故7.解:(1),当即时,有最小值为(2),解得当时,;当时,.8.当时, > ,当时, > .9.解:设每年下降的百分率为,由题意可得,,,故每年下降的百分率为10%10.解:设模拟的二次函数为,由条件,,,可得,解得又由及条件可得,解得下面比较,与1.37的差,比的误差较小,从而作为模拟函数较好11.解:故12.解:令 ,则原方程化为 解得 或 ,即 或 (舍去),习题二1. 求不等式2741(0x x aa a -->>,1)a ≠且中x 的取值范围.2. . 指数函数xb y a ⎛⎫= ⎪⎝⎭的图象如图所示,求二次函数2y ax bx =+的顶点的横坐标的取值范围.3. 函数()xf x a =(0a >,且1a ≠)对于任意的实数x ,y 都有( ) A.()()()f xy f x f y =B.()()()f xy f x f y =+ C.()()()f x y f x f y +=D.()()()f x y f x f y +=+oyx14. 若11()()23x x <,则x 满足( )A.0x > B.0x < C.0x ≤D.0x ≥5. (1)已知12()3a a -+=,求33a a -+;(2)已知21xa=,求33x xx xa a a a--++; (3)已知31xa -+=,求2362a ax x ---+的值.6. 已知函数()xf x a =(0a >,1a ≠)在[]22-,上函数值总小于2,求实数a 的取值范围. 7 已知函数()xxf x a a -=+(0a >,1a ≠),且(1)3f =,则(0)(1)(2)f f f ++的值是 . 8. 若关于x 的方程22210xx a a +++=g 有实根,试求a 的取值范围.9. 当0a >且1a ≠时,函数2()3x f x a-=-必过定点 .10. 设311x y a +=,22x y a -=其中0a >,且1a ≠.确定x 为何值时,有:(1)12y y =; (2)12y y >.11 当0a ≠时,函数y ax b =+和axy b =的图象是( )12. 函数()y f x =的图象与2xy =的图象关于x 轴对称,则()f x 的表达式为 . 13. 若函数()()()21021x F x f x x ⎛⎫=+≠ ⎪-⎝⎭g 是偶函数,且()f x 不恒等于0,则()f x 为( ) A.奇函数 B.偶函数C.可能是奇函数,也可能是偶函数 D.非奇非偶函数14. 已知函数()()2211xf xg x x =-=-,,构造函数()F x 定义如下:当()()f x g x ≥时,()()F x f x =;当()()f x g x <时,()()F x g x =-,那么()F x ( )A.有最大值1,无最小值 B.有最小值0,无最大值 C.有最小值1-,无最大值D.无最小值,也无最大值15. 当0x >时,函数()()21xf x a =-的值总大于1,则实数a 的取值范围是 .16. 已知函数()f x 满足对任意实数12x x <有()()12f x f x <且()()()1212f x x f x f x +=g 若写出一个满足这些条件的函数则这个函数可以写为 .习题三一、选择题(每小题4分,共计40分) 1.下列各式中成立的一项是( )A .7177)(m n mn = B .3339= C .43433)(y x y x +=+ D .31243)3(-=-2.化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 9-B .a -C .a 6D .29a3.设指数函数)1,0()(≠>=a a a x f x,则下列等式中不正确...的是 ( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)]([+∈=N n y f x f xy f nnn4.函数210)2()5(--+-=x x y( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或 5.若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于( )A .215+ B .215- C .215± D .251± 6.方程)10(2||<<=a x ax 的解的个数为 ( )A. 0个B. 1个C. 2个D. 0个或1个 7.函数||2)(x x f -=的值域是( )A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( )A .)1,1(-B . ),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.已知2)(xx e e x f --=,则下列正确的是 ( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 10.函数22)21(++-=x x y 得单调递增区间是( )A .]1,(--∞B .),2[+∞C .]2,21[D . ]21,1[-二、填空题(每小题4分,共计28分)11.已知0.622,0.6a b ==,则实数a b 、的大小关系为 .12:不用计算器计算48373271021.097203225.0+-⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛--π=___________. 13.不等式x x 283312--<⎪⎭⎫ ⎝⎛的解集是__________________________.14.已知{}2,1,0,1,2,3n ∈--,若11()()25n n ->-,则=n ___________.15.不等式2221212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛a x axx 恒成立,则a 的取值范围是 .16.定义运算:⎩⎨⎧>≤=⊗)()(b a b b a a b a ,则函数()xx x f -⊗=22的值域为_________________17.如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月)的关系:ty a =,有以下叙述: ① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超过230m ; ③ 浮萍从24m 蔓延到212m 需要经过1.5个月; ④ 浮萍每个月增加的面积都相等;⑤ 若浮萍蔓延到22m 、23m 、26m 所经过的时间 分别为1t 、2t 、3t ,则123t t t +=. 其中正确的是 . 三、解答题:(10+10+12=32分) 18.已知17a a -+=,求下列各式的值: (1)33221122a a a a----; (2)1122a a-+; (3)22(1)a a a -->.19.已知函数)1(122>-+=a a a y x x在区间[-1,1]上的最大值是14,求a 的值.t/月20.(1)已知m x f x+-=132)(是奇函数,求常数m 的值; (2)画出函数|13|-=xy 的图象,并利用图象回答:k 为何值时,方程|31|x k -=无解?有一解?有两解?参考答案题号 1 2 3 4 5 6 7 8 9 10 答案BADDCCADAC二、填空题(4*7=28分)11.b a >; 12.100; 13.}24|{-<>x x x 或; 14.-1或2 15.(-2, 2) ; 16.]1,0( 17.①②⑤ 三、解答题:(10+10+12=32分) 18.解: (1)原式=11113312222111112222()()()(1)1718a a a a a a a a a aa a--------++==++=+=--。
指数函数与幂函数练习题1. 指数函数练习题(1) 求解方程:2^x = 8(2) 计算:3^(1/2) × 3^(3/2)(3) 简化表达式:4^(x+2) × 2^(3-x) ÷ 8^2x(4) 求函数 y = 2^x 的定义域和值域2. 幂函数练习题(1) 求解方程:x^2 = 16(2) 计算:(2^3)^x - 2^(2x + 2)(3) 简化表达式:(5^3)^(x+2) ÷ (5^4)^x(4) 求函数 y = 3^x 的定义域和值域3. 综合练习题(1) 求解方程:2^x = x^2(2) 计算:(3^2)^(x+1) × 3^(2x-1) - (9^x) ÷ (3^2x)(3) 简化表达式:(4^x)^(1/3) × (8^x)^(1/2)(4) 求函数 y = 5^x - 2 的定义域和值域解答:1. 指数函数练习题(1) 2^x = 8由指数函数与对数函数的互反关系可知,等式两边取对数,得到 x = log2(8) = 3。
(2) 3^(1/2) × 3^(3/2)由指数函数的乘法法则可知,指数相加,底数不变。
因此,3^(1/2) × 3^(3/2) = 3^(1/2 + 3/2) = 3^2 = 9。
(3) 4^(x+2) × 2^(3-x) ÷ 8^2x首先简化指数部分:4^(x+2) × 2^(3-x) ÷ 8^2x = 2^2(x+2) × 2^(3-x) ÷ (2^3)^2x = 2^(2x+4) × 2^(3-x) ÷ 2^(6x) = 2^(2x+4+3-x-6x) = 2^(2-3x)。
简化后的表达式为 2^(2-3x)。
(4) 函数 y = 2^x 的定义域和值域指数函数的定义域为实数集,即 x ∈ℝ。
指数函数练习题
1. 指数函数基础概念
指数函数是数学中常见的一种函数形式,通常表示为f(x)=a x,其中a是一个常数且a>0,a eq1。
指数函数具有一些特殊的性质,例如在x=0时函数值为1,函数图像以指数速率增加或减小等。
2. 指数函数的性质
•当a>1时,指数函数呈增长趋势,函数图像在x轴的右侧无上界。
•当0<a<1时,指数函数呈下降趋势,函数图像在x轴的右侧趋近于0。
•指数函数在x=0处必过点(0,1)。
•指数函数在不同的底数a下,增长或减小的速率有所差异。
3. 指数函数练习题
1.计算23的值。
2.求解方程3x=9。
3.指数函数f(x)=2x的图像经过点(0,1)和(1,2),试求f(2)的值。
4.若指数函数g(x)=4x,求g(−1)的值。
4. 解答
1.$2^3 = 2 \\times 2 \\times 2 = 8$,所以23的值为8。
2.化简方程3x=9可得x=2,因为32=9。
3.由已知条件可知,f(1)=2,f(0)=1,根据指数函数的性质f(2)=
22=4。
4.$g(-1) = 4^{-1} = \\frac{1}{4}$。
5. 总结
通过以上练习题,我们对指数函数的基本概念和性质有了更深入的理解。
在计算指数函数值时,可以利用指数函数的性质和常用计算方法来简化计算过程。
熟练掌握指数函数的求值方法有助于提高数学解题的效率,加深对指数函数的认识。
以上是关于指数函数练习题的相关内容,希望对读者有所帮助。
2.1 指数函数一、选择题1、若指数函数在上是减函数,那么()A、B、C、D、2、已知,则这样的()A、存在且只有一个B、存在且不只一个C、存在且D、根本不存在3、函数在区间上的单调性是()A、增函数B、减函数C、常数D、有时是增函数有时是减函数4、下列函数图象中,函数,与函数的图象只能是()5、函数,使成立的的值的集合是()A、B、C、D、6、函数使成立的的值的集合()A、是B、有且只有一个元素C、有两个元素D、有无数个元素7、若函数(1)x y a b =+-(0a >且1a ≠)的图象不经过第二象限,则有 ( )A 、1a >且1b <B 、01a <<且1b ≤C 、01a <<且0b >D 、1a >且0b ≤8、F(x)=(1+)0)(()122≠⋅-x x f x 是偶函数,且f(x)不恒等于零,则f(x)( ) A 、是奇函数 B 、可能是奇函数,也可能是偶函数C 、是偶函数D 、不是奇函数,也不是偶函数二、填空题9、 函数的定义域是_________。
10、 指数函数的图象经过点,则底数的值是_________。
11、 将函数的图象向_________平移________个单位,就可以得到函数的图象。
12、 函数,使是增函数的的区间是_________三、解答题13、已知函数是任意实数且, 证明:14、已知函数 222xx y -+= 求函数的定义域、值域15、已知函数(1)求的定义域和值域; (2)讨论的奇偶性; (3)讨论的单调性。
参考答案一、选择题B;2、A;3、B;4、C;5、C;6、C;7、D;8、A 二、填空题9、10、11、右、212、三、解答题13、证明:即14、 解:由222xx y -+=得 012222=+⋅-x x y ∵x ∈R, ∴△≥0, 即 0442≥-y , ∴12≥y , 又∵0>y ,∴1≥y 15、 解:(1)的定义域是R ,令,解得的值域为(2)是奇函数。
指数函数习题及答案一.选择题1.若函数f (x )=()xa 1-在R 上是减函数,那么实数a 的取值范围是( )A .a >1 且1≠aB .1<a <2C .a >1且2≠aD .a >02.已知0>a ,41=--a a ,则22-+a a 的值是( )A .14B .16C .18D .203.一套邮票现价值a 元,每过一年都将增值00b ,则10年后其价值为( ) A .()00110b a + B .()00101b a +C .()[]10001b a + D .()1001ba +4.设f (x )=x)21(,x ∈R ,那么f (x )是( ) A .偶函数且在(0,+∞)上是减函数B .偶函数且在(0,+∞)上是增函数C .奇函数且在(0,+∞)上是减函数D .奇函数且在(0,+∞)上是增函数 5.函数y =-2-x的图象一定过哪些象限( )A .一、二象限B .二、三象限C .三、四象限D .一、四象限 6.函数y =a x 在[0,1]上的最大值与最小值和为3,则函数y =123-⋅x a 在[0,1]上的最大值是( )A .3B .1C .6D .23 7.下列函数中值域为(0,+∞)的是( ) A .y =x15B .y =x )31( C .y =12+-xD .y =12-x8.若-1<x <0,则不等式中成立的是( )A .5-x <5x <0.5x B .0.5x <5-x <5x C .5x <5-x <0.5xD .5x <0.5x <5-x9.当a ≠0时,函数y a x b=+和y b ax=的图象只可能是( )10.设指数函数)1,0()(≠>=a a a x f x,则下列等式中不正确的是( )A .)()()(y f x f y x f ⋅=+B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈= D .)()]([·)]([)(+∈=N n y f x f xy f nnn二.填空题11.已知函数f (x )=21)31(x -,其定义域是________________.12.函数f (x )=a x -1+3的图象一定过定点P ,则P 点的坐标是____________.13.函数121+⎪⎭⎫⎝⎛=x y ,[]1,2-∈x 的值域是_____________.14.函数y =x-3的图象与函数________________的图象关于y 轴对称. 三.解答题(共6小题,共80分) 15.(本小题12分)(1)计算:3122726141-⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛- (2)化简:2433221---÷⎪⎪⎭⎫ ⎝⎛⋅a b b a16.(12分)(1) 解不等式145-+<x x a a(a>0且a ≠1)(2)函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,求满足1)(>x f 的x 的取值范围17.(14分) 求函数2233x x y -++=的单调区间和最值(单调区间请加以证明).18.(1)已知m x f x +-=132)(是奇函数,求常数m 的值; (2)画出函数|13|-=xy 的图象,并利用图象回答:k 为何值时,方程k x=-|13|无解?有一解?有两解?19.(14分)已知函数4()42xx f x =+ (1)试求()(1)f a f a +-的值.(2)求1232007()()()()2008200820082008f f f f +++⋅⋅⋅+的值. 20.(14分)已知函数11)(+-=x x a a x f (a >1).(1)判断函数f (x )的奇偶性; (2)求f (x )的值域;(3)证明f (x )在(-∞,+∞)上是增函数.<指数函数>参考答案1—10 BCDAC CBDAD9.[-1,1] 10.(1,4) 11.27 12.[41,2] 13.x y 3= 14.1415.1>a 时,x>2;10<<a 时,x<2. 16.1-a17.解:单调增区间:(,1]-∞;单调减区间:[1,)+∞;值域:(,81]-∞。
指数函数的运算法则练习题1. 求解以下指数函数的运算结果:a) 如果f(x) = 2^x 和 g(x) = 2^(2x+1),求f(x) × g(x)的结果。
解析:根据指数函数的运算法则,当底数相同时,指数相加表示两个函数相乘。
所以f(x) × g(x)可以简化为 2^x × 2^(2x+1)。
利用指数函数的运算法则,我们可以将这个乘法式简化为一个式子,即2^(x + (2x+1))。
进一步化简,可以得出f(x) × g(x) = 2^(3x+1)。
b) 如果h(x) = 3^x 和 k(x) = (3^x)^2,求h(x) ÷ k(x)的结果。
解析:根据指数函数的运算法则,当一个指数函数的指数再次取指数时,等效于指数相乘。
所以k(x)可以简化为 3^(x × 2)。
利用指数函数的运算法则,我们可以将这个除法式简化为一个式子,即3^x ÷ 3^(2x)。
根据指数函数的运算法则,当两个指数相减时,等效于两个函数相除。
所以h(x) ÷ k(x)可以简化为 3^x ÷ (3^x × 3^(2x))。
进一步化简,可以得出h(x) ÷ k(x) = 3^x ÷ 3^(3x)。
2. 计算以下指数函数的值:a) 如果f(x) = 5^2x,求f(3)的值。
解析:将x替换为3,可以得出f(3) = 5^(2×3) = 5^6。
通过计算,可以得出f(3)的值为15625。
b) 如果g(x) = (1/4)^x,求g(-2)的值。
解析:将x替换为-2,可以得出g(-2) = (1/4)^(-2) = 4^2。
通过计算,可以得出g(-2)的值为16。
3. 给定一个指数函数f(x) = (1/2)^(x+2),求解方程f(x) = 1。
解析:将f(x)替换为1,可以得出(1/2)^(x+2) = 1。
2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且A .f (b x )≤f (c x) B .f (b x )≥f (c x) lg(a x -2x-5 ≥5 [9,(9,1,,1[1,[1,,1)上的最大值比最小值大,则234x x ---+11.(2011·银川模拟)若函数y =a 2x +2a x-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x的定义域为[0,1]. (1)求a 的值;的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.的取值范围.指数函数答案指数函数答案1.1.解析:由解析:由a ⊗b =îïíïìa a ≤bba >b得f (x )=1⊗2x=îïíïì2xx,1x答案:答案:A A 2. 2. 解析:∵解析:∵f (1(1++x )=f (1(1--x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)(0)==3,∴c =3.3.∴∴f (x )在(-∞,-∞,1)1)1)上递减,在上递减,在上递减,在(1(1(1,+∞)上递增.,+∞)上递增.,+∞)上递增.若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x).若x <0<0,则,则3x<2x<1<1,∴,∴f (3x)>f (2x). ∴f (3x )≥f (2x ). 答案:答案:A A3.3.解析:由于函数解析:由于函数y =|2x-1|1|在在(-∞,-∞,0)0)0)内单调递减,在内单调递减,在内单调递减,在(0(0(0,+∞)内单调递增,而函数在,+∞)内单调递增,而函数在区间区间((k -1,k +1)1)内不单调,所以有内不单调,所以有k -1<0<k +1,解得-,解得-1<1<k <1. 答案:答案:C C4. 4. 解析:由题意得:解析:由题意得:A =(1,2)(1,2),,a x -2x >1且a >2>2,由,由A ⊆B 知a x -2x>1在(1,2)(1,2)上恒成立,即上恒成立,即a x -2x -1>0在(1,2)(1,2)上恒成立,令上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0ln2>0,所以函数,所以函数u (x )在(1,2)(1,2)上单调递增,则上单调递增,则u (x )>u (1)(1)==a -3,即a ≥3.≥3. 答案:答案:B B5. 5. 解析:数列解析:数列解析:数列{{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,为增函数,注意a 8-6>(3>(3--a )×7-)×7-33,所以îïíïìa >13-a >0a8-6-a -3,解得2<a <3.答案:答案:C C6. 6. 解析:解析:f (x )<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,的图象,当a >1时,必有a -1≥12,即1<a ≤2,≤2,当0<a <1时,必有a ≥12,即12≤a <1<1,,综上,12≤a <1或1<a ≤2.≤2.答案:答案:C C7. 7. 解析:当解析:当a >1时,y =a x 在[1,2][1,2]上单调递增,故上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =ax 在[1,2][1,2]上单调递减,故上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 8. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线曲线||y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果的图象如图所示,由图象可得:如果||y |=2x+1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]1,1].. 答案:答案:[[-1,1]9. 9. 解析:如图满足条件的区间解析:如图满足条件的区间解析:如图满足条件的区间[[a ,b ],当a =-=-11,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-=-11,b =1时区间长度最大,最大值为2,故其差为1. 答案:答案:1 110. 10. 解:要使函数有意义,则只需-解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1.≤1. ∴函数的定义域为∴函数的定义域为{{x |-4≤x ≤1}.≤1}. 令t =-x 2-3x +4,则t =-x 2-3x +4=-=-((x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-=-44或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52.∴函数y =2341()2x x ---+的值域为的值域为[[28,1]1]..+)+(≤-时,≤234()2x x ---+在,-32]-32,-32,,-32][1a,,1a ]=1a,即(1a+=13或-15(或13.。
指数函数每日一练习题一、选择题1. 已知函数f(x) = 2^x,那么f(3)的值为()A. 6B. 8C. 9D. 122. 下列函数中,哪一个不是指数函数?()A. y = 3^xB. y = x^2C. y = 4^(x+1)D. y = (1/2)^xA. 当a > 1时,函数单调递增B. 当a < 1时,函数单调递增C. 当a > 1时,函数单调递减D. 当a < 1时,函数单调递减二、填空题1. 函数f(x) = 3^(2x1)的底数是______,指数是______。
2. 若a^x = b(a > 0且a ≠ 1),则x = ______。
3. 已知函数f(x) = 2^x,那么f(x+1) = ______。
三、解答题1. 已知函数f(x) = 5^x,求f(2)的值。
2. 设函数g(x) = (1/3)^x,求g(1)的值。
3. 已知函数h(x) = 2^(x1),求h(3)的值。
4. 比较大小:2^3 和 3^2。
5. 已知函数f(x) = 4^x,求f(x+2)的值。
6. 设函数g(x) = 10^x,求g(0)的值。
7. 已知函数h(x) = (1/2)^(x+1),求h(2)的值。
8. 比较大小:(1/2)^4 和 (1/4)^2。
9. 已知函数f(x) = 3^x,求f(x1)的值。
10. 设函数g(x) = 2^(x+3),求g(1)的值。
四、应用题1. 如果一个细菌每20分钟分裂成两个,那么经过4小时后,细菌的数量是多少倍?2. 一种放射性物质每经过5年,其剩余质量减少到原来的一半。
求经过20年后,这种物质剩余质量是原来的多少倍。
3. 一个电子产品的价格每年下降20%,三年后该产品的价格是原价的多少?4. 在一个生态系统中,某种动物的数量每三年增长1.5倍。
如果目前有100只这种动物,那么十年后这个种群的数量大约是多少?五、综合题1. 已知函数f(x) = 2^x和g(x) = 3^x,比较f(2)和g(1)的大小。
指数函数习题新泰一中闫辉一、选择题1.以下函数中指数函数的个数是( ).①②③④A.0 个B.1 个C.2 个D.3 个2.假设,,那么函数的图象必然在〔〕A.第一、二、三象限 B .第一、三、四象限C.第二、三、四象限D.第一、二、四象限3.,当其值域为时,的取值范围是〔〕A. B .C.D.4.假设,,以下不等式成立的是〔〕A. B . C . D .5.且,,那么是〔〕A.奇函数 B .偶函数C.非奇非偶函数 D .奇偶性与有关6.函数〔〕的图象是〔〕7.函数与的图象大体是().8.当时,函数与的图象只可能是〔〕9.在以以下图象中,二次函数与指数函数的图象只可能是〔〕10.计算机本钱不断降低 , 假设每隔 3 年计算机价格降低 , 现在价格为 8100 元的计算机 , 那么 9 年后的价格为 ( ).A.2400 元 B.900 元C.300 元D.3600 元二、填空题1.比较大小:〔1〕;〔2〕______ 1 ;〔3〕______2.假设,那么的取值范围为 _________.3.求函数的单调减区间为__________.4.的反函数的定义域是__________.5.函数的值域是__________.6.的定义域为, 那么的定义域为 __________.7.当时,, 那么的取值范围是 __________. 8.时,的图象过定点 ________ .9.假设, 那么函数的图象必然不在第 _____象限 .10.函数的图象过点, 又其反函数的图象过点 (2,0),那么函数的剖析式为 ____________.11.函数的最小值为 ____________.12.函数的单调递加区间是 ____________.13.关于的方程有两个实数解 , 那么实数的取值范围是 _________.14.假设函数〔且〕在区间上的最大值是14,那么等于_________.三、解答题1.按从小到大排列以下各数:,,,,,,,2.设有两个函数与,要使〔 1〕;〔 2〕,求、的取值范围.3., 试比较的大小.4.假设函数是奇函数,求的值.5.,求函数的值域.6.解方程:〔1〕;〔2〕.7.函数〔且〕〔1〕求的最小值;〔2〕假设,求的取值范围.8.试比较与的大小,并加以证明.9.某工厂从年到年某种产品的本钱共下降了19%,假设每年下降的百分率相等,求每年下降的百分率10.某工厂今年 1 月、 2 月、 3 月生产某产品分别为 1 万件、 1.2 件、 1.3 万件,为了估测今后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量与月份数的关系,模拟函数可以采纳二次函数或函数〔其中、、为常数〕,四月份该产品的产量为 1.37 万件,请问用以上哪个函数作为模拟函数较好?请说明原由.11.设,求出的值.12.解方程.参照答案:一、1.B 2.A 3.D4.B5.A 6.B 7.D8.A 9.A 10.A二、 1.〔 1〕〔2〕〔3〕2.3.4.〔0,1〕5.6.7 .8.恒过点〔 1,3〕 9 .四 10 .11.12.13.14.或三、 1.解:除以外,将其余的数分为三类:〔1〕负数:〔2〕小于 1 的正数:,,〔3〕大于 1 的正数:,,在〔 2〕中,;在〔 3〕中,;综上可知说明:对几个数比较大小的详尽方法是:〔1〕与 0 比,与 1 比,将所有数分成三类:,,,〔2〕在各样中两两比2.解:〔 1〕要使由条件是,解之得〔2〕要使,必定分两种情况:当时,只要,解之得;当时,只要,解之得或说明:假设是与比较大小,平时要分和两种情况考虑.3.4.解:为奇函数,,即,那么,5.解:由得,即,解之得,于是,即,故所求函数的值域为6.解:〔 1〕两边同除可得,令,有,解之得或,即或,于是或〔2〕原方程化为,即,由求根公式可获取,故7.解:〔 1〕,当即时,有最小值为〔2〕,解得当时,;当时,.8.当时,>,当时,>.9.解:设每年下降的百分率为,由题意可得,,,故每年下降的百分率为 10%10.解:设模拟的二次函数为,由条件,,,可得,解得又由及条件可得,解得下面比较,与的差,比的误差较小,从而作为模拟函数较好11.解:故12.解:令,那么原方程化为解得或,即或〔舍去〕,习题二1.求不等式 a2 x 7a4x1( a 0 ,且 a1) 中 x 的取值范围.x2.. 指数函数y b的图象以以下图,求二次函数 y ax2bx 的极点的横坐标的取值范围.ay1o x3. 函数f ( x)a x〔a0 ,且 a 1〕关于任意的实数x ,y都有〔〕A. f (xy) f ( x) f ( y)B. f (xy ) f ( x) f ( y)C. f ( x y) f (x) f ( y)D. f (x y) f (x) f ( y)4. 假设(1)x(1) x,那么 x 满足〔〕23A. x 0B. x0 C. x≤ 0D. x ≥ 0 5. (1) (a a 1) 23,求 a3 a 3;(2) a2 x 2 1,求 a3x aa x a 3xx;(3) x31 a ,求 a22ax 3x 6的值.6.函数 f (x) a x〔a0 ,a1〕在2,2 上函数值总小于 2,求实数 a 的取值范围.7 函数 f ( x)a x a x〔 a0, a1〕,且 f (1)3,那么 f(0) f (1) f (2)的值是.8. 假设关于x的方程22x2x ga a10 有实根,试求 a 的取值范围.9.当 a0 且 a 1 时,函数 f ( x)a x2 3 必过定点.10.设 y1a3x1, y2a2x其中 a0 ,且 a 1 .确定x为何值时,有:〔1〕 y1y2;〔2〕 y1y2.11 当a0时,函数 y ax b 和 y b ax的图象是〔〕y y11x xO OABy y11O xOxCD12.函数 y f x的图象与 y2x的图象关于 x 轴对称,那么f x 的表达式为.13.假设函数 Fx12gf x x0是偶函数,且f x 不恒等于 0,那么f x 为〔〕2x1A.奇函数B.偶函数C.可能是奇函数,也可能是偶函数D.非奇非偶函数14. 函数 f x 2x1,g x 1 x2,构造函数 F x 定义以下:当 f x ≥ g x 时, F x f x ;当f xg x 时, F xg x ,那么 F x 〔〕A.有最大值 1,无最小值 B.有最小值 0,无最大值C.有最小值 1,无最大值D.无最小值,也无最大值15. 当 x 0 时,函数 f xa 2x1,那么实数 a 的取值范围是1 的值总大于 .16. 函数f x 满足对任意实数x 1x 2 有 f x 1f x 2 且 f x 1 x 2f x 1 gf x 2 假设写出一个满足这些条件的函数那么这个函数可以写为.习题三一、选择题〔每题4 分,共计 40 分〕1.以下各式中成立的一项为哪一项〔〕A . ( n) 713n 7 m 7 B .3933 C .4 x 3 y 3( x y) 4 D .12( 3)4 33m211 11 52.化简 (a 3 b 2 )( 3a 2 b 3) (1a 6b 6 ) 的结果3A . 9aB .aC . 6aD . 9a 2 3.设指数函数f ( x) a x ( a 0, a1) ,那么以低等式中不正确 的是...A . f ( x +y )= f(x ) · f ( y )B . f 〔 xy 〕 f ( x)f ( y)C . f ( nx)[ f ( x)] n (nQ )D . [ f (xy)] n[ f ( x)] n ·[f ( y)] n5)01 4.函数 y(x( x 2)2〔〕〔〕( n N )〔〕A . { x | x 5, x 2}B . { x | x 2}C . { x | x 5}D . { x | 2 x 5或 x 5}5.假设指数函数ya x 在 [ -1,1] 上的最大值与最小值的差是 1,那么底数 a 等于〔〕A .5 1 B .5 1 C .5 1 D .1522226.方程 a |x| x 2 (0a 1) 的解的个数为〔〕A. 0 个个C. 2个D. 0个或 1个7.函数 f (x) 2|x|的值域是〔〕A . (0,1]B . (0,1)C . (0, )D . R2 x1, x 08.函数 f (x)1,满足 f ( x)1的 x 的取值范围〔〕x 2 , x 0A . ( 1,1)B . ( 1, )C . { x | x 0或 x 2}D. { x | x 1或 x1}9. f (x)e x e x〔〕,那么以下正确的选项是2A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数 D.偶函数,在 R 上为减函数10.函数 y( 1) x 2 x 2得单调递加区间是〔 〕2C .[ 1,2]D . [ 1,1]A .( , 1]B .[2,)22二、填空题〔每题 4 分,共计 28 分〕11. a2 ,b 2 ,那么实数 a 、b 的大小关系为 .12:不用计算器计算272 100.12927233 037=___________.481x 2813.不等式3 2 x 的解集是 __________________________ .314. n2, 1,0,1,2,3 ,假设 ( 1)n( 1)n,那么 n ___________ .251 x 2ax2 x a 215.不等式1恒成立,那么 a 的取值范围是.2216.定义运算:aa (a b)2 x的值域为 _________________b(a,那么函数 f x 2xb b)17. 以以下图的是某池塘中的浮萍延长的面积( m 2 ) 与时间 t ( 月 ) 的关系 : y a t , 有以下表达 :① 这个指数函数的底数是 2;y/m 2 ② 第 5 个月时 , 浮萍的面积就会高出30m 2 ;8③ 浮萍从 4m 2 延长到 12m 2需要经过1.5 个月;④ 浮萍每个月增加的面积都相等;⑤ 假设浮萍延长到2m 2、 3m 2 、 6m 24所经过的时间分别为 t 1 、 t 2 、 t 3 ,那么t 1t 2t 3 .21其中正确的选项是.0 1 2 3t/ 月三、解答题:〔 10+10+12=32 分〕18. aa 17 ,求以下各式的值:3 31122〔 1〕a1 a1 ; 〔 2〕 a 2a 2 ; 〔 3〕 a 2 a 2 ( a 1) .a2a 219. 函数y a 2 x2a x1(a1)在区间[-1,1]上的最大值是14,求a的值.20. 〔 1〕 f ( x)2m 是奇函数,求常数 m 的值;3x1〔 2〕画出函数 y | 3x 1 | 的图象,并利用图象答复:k 为何值时,方程 | 3x 1| k 无解?有一解?有两解?参照答案一、选择题〔 4*10=40 分〕题号 1 2 3 4 5 6 7 8 9 10答案BADDCCADAC二、填空题〔 4*7=28 分〕11. a b ;; 13. { x | x 4或 x2} ; 14.-1或 215.(-2, 2); 16.(0,1]17.①②⑤三、解答题:〔 10+10+12=32 分〕111118.解 : 〔1〕原式 (a2)3(a 2 )3( a2a 2 )(a a 11)a a18 。