实验三:三极管别
- 格式:doc
- 大小:214.50 KB
- 文档页数:10
实验三三极管放大电路设计一、实验目的1.了解三极管的基本工作原理和放大特性。
2.掌握三极管放大电路的设计和调整方法。
二、实验原理三极管放大电路是以三极管为核心元件的放大电路,通过适当的偏置和负反馈,可以实现对输入信号的放大。
三极管放大电路通常由输入端、输出端和三极管组成。
1.BJT三极管BJT三极管的主要结构有NPN型和PNP型两种。
在NPN型三极管中,由两个不掺杂的P型半导体夹着一个高掺杂的N型半导体构成,形成了PN结。
三极管的三个引脚分别为发射极(Emitter),基极(Base)和集电极(Collector)。
在基极与发射极之间加正向偏置电压Ube,使得PN结处于正向偏置状态。
当基极处于正向电压Ube时,使得发射极与集电极间形成一个电流通道。
此时,如果在集电极与发射极间设置一个负电压Uce,集电极的载流子会被集电区的电场吸引,形成集电电流Ic,从而实现了三极管放大器的放大作用。
三极管放大电路分为共发射、共基和共集三种基本结构。
常用的放大电路有共发射放大电路、共射放大电路和共源放大电路。
以下以共发射放大电路为例进行设计。
共发射放大电路的输入端是基极,输出端是集电极。
设计时需要注意以下几个方面:(1)确定输入和输出电阻:输入电阻是指输入端的电压变化引起的输入电流变化的比值,输出电阻是指输出端的电压变化引起的输出电流变化的比值。
一般来说,输入电阻越大越好,输出电阻越小越好。
(2)确定直流工作点:直流工作点是指三极管在放大器工作状态下的工作点。
选择合适的直流工作点,可以使输出信号对输入信号变化进行放大,同时尽量避免饱和和截至现象。
(3)选取合适的偏置电路:偏置电路用于确保三极管正常工作,在选择时需要保证偏置点稳定、温度稳定和电源稳压等。
三、实验步骤1.搭建共发射放大电路,具体电路如下图所示。
其中,三极管型号为2N39042.调节R1、R2和Re使得三极管的基极电压为0.6V左右,可以通过电压表测量。
三极管实验报告三极管实验报告引言:三极管是一种重要的电子元件,广泛应用于电子设备中。
本实验旨在通过实际操作和观察,深入了解三极管的工作原理和特性。
实验一:三极管的基本结构和工作原理三极管是由三个掺杂不同材料的半导体层组成,分别是发射极(Emitter)、基极(Base)和集电极(Collector)。
在正常工作状态下,发射极和基极之间的电流较大,而集电极和基极之间的电流较小。
这种电流放大的特性使得三极管成为电子设备中的重要元件。
实验二:三极管的放大特性本实验使用了一个简单的放大电路,由三极管、电阻和电源组成。
通过改变输入电压和电阻的数值,观察三极管的放大效果。
实验结果显示,当输入电压较小时,输出电压与输入电压基本相等,放大效果较弱。
然而,当输入电压增大到一定程度时,输出电压迅速增大,放大效果显著。
这表明三极管在一定范围内具有放大功能,可以将弱信号放大为强信号。
实验三:三极管的开关特性三极管还具有开关功能。
在实验中,我们将三极管配置为开关电路,通过控制基极电流的大小来控制电路的开关状态。
实验结果表明,当基极电流为零时,三极管处于关闭状态,电路断开。
而当基极电流增大到一定程度时,三极管处于导通状态,电路闭合。
这种开关特性使得三极管在电子设备中的应用非常广泛,例如作为触发器、计时器等。
实验四:三极管的温度特性三极管的工作稳定性与温度密切相关。
我们进行了一系列实验,通过改变环境温度,观察三极管的工作状态和性能变化。
实验结果显示,随着温度的升高,三极管的放大效果减弱,输出电压变小。
这是因为温度升高会导致三极管内部电子的热运动增加,从而影响电子的传输和放大效果。
因此,在实际应用中,需要考虑温度对三极管的影响,采取适当的措施来保持其稳定性。
结论:通过本次实验,我们对三极管的基本结构、工作原理和特性有了更深入的了解。
三极管作为一种重要的电子元件,在电子设备中发挥着重要的作用。
我们可以利用其放大和开关特性,设计和制造出各种各样的电子产品,为人们的生活和工作提供方便和便利。
实验三:光敏三极管特性实验一、实验目的:.1、熟悉光敏三极管的结构和作用原理;2、了解光敏三极管的特性,当工作偏压一定时,光敏三极管输出光电流与入射光的照度(或通量)的关系。
二、实验原理:光敏三极管是在光电二极管的基础上发展起来的,它和普通的晶体三极管相似——具有电流放大作用,只是它的集电极电流不只是受基极电路的电流控制,还受光的控制。
所以光敏三极管的外形有光窗。
有三根引线的也有二根引线的,管型分为PNP型和NPN型两种光敏三极管,NPN型称3DU型光敏三极管,PNP 型称3CU型光敏三极管。
现以3DU型为例说明硅光敏三极管的结构和作用原理,如图3-1所示。
以N 型硅片作为衬底,扩散硼而形成P型,再扩散磷而形成重掺杂N+层,并涂以SiO2作为保护层。
在重掺杂的N+侧开窗,引出一个电极并称作“集电极c”,由中间的P型层引出一个基极b,也可以不引出来(由于硅光敏三极管信号是以光注入,所以一般不需要基极引线),而在N型硅片的衬底上引出一个发射e,这就构成一个光敏三极管。
图3-1 3DU型光敏三极管结构原理图及符号硅光敏三极管的工作原理:工作时各电极所加的电压与普通晶体管相同,即需要保证集电极反向偏置,发射极正偏置,由于集电极是反偏置,在结区内有很强的内建电场,对3DU型硅三极管来说,内建电场的方向是由c到b,与硅光电二极管工作原理相同,如果有光照到基极--集电极上,能量大于禁带宽度的光子在结区内激发出光生载流子-电子空穴对,这些载流子在内建电场的作用下,电子流向集电极,空穴流向基极,相当于外界向基极注入一个控制电流I b=I p(发射极是正向偏置和普通晶体管一样有放大作用)。
当基极没有引线,此时集电极电流:I c=β I b=β I p=S E·E·β式中β为晶体管的电流增益系数;E为入射照度;S E为光电灵敏度。
由此可见,光敏三极管的光电转换部分是集-基结区内进行,而集电极、基极、发射极又构成了一个有放大作用的晶体管。
判别三极管的好坏三个必须要掌握的“判别方法”
一、外观检查法
1、检查外观颜色:三极管的外观颜色一般为三种:红色、绿色、黑色,三种颜色分别代表不同的类型,如:红色代表信号管,绿色代表功率管,黑色代表电源管。
2、检查外观龙骨:如果三极管外观的龙骨有拆开、变形、变色、烧焦、损坏等现象,说明三极管已经损坏。
3、检查管壳整体情况:如果三极管管壳有破损、漏电、变形、沾污
等情况,说明三极管可能已经损坏。
二、电性检查
1、管芯横向接触检查:即通过管芯的横向接触点,测量管芯的电性,来判断三极管是否OK。
2、管芯接线端子检查:在检查三极管的有关参数时,要把三极管的
管芯接线端子的电阻及导通电压等参数测量准确,以判断 three legged transistor 的好坏。
3、管芯有关参数检查:通过测量三极管的有关参数,如饱和电压、
开启电压、截止电压、漏电流、集电极放电极关断电压、以及各种电性指标,判断三极管是否OK。
三、功能检查
1、对三极管的功能进行实验测试:使用依据电路图原理和产品功能
设计的测试电路,对三极管的功能进行实验测试,由测试结果来判断三极
管是否OK。
2、测量三极管工作输出参数:测量三极管工作的输出参。
实验一、晶体二极管、三极管的识别和检测一、实训目的1.学会使用指针式万用表测定并判断二极管、三极管的管脚与管子的好坏。
2.学会测定常用二极管、三极管的工作特性。
二、实训电路和工作原理1.二极管好坏的判断指针式万用表的“*”端(黑棒)为电流流出端,在测量电阻时黑棒极性为正,红棒极性为负,(参见图1.1)(万用表内部为多个电阻并联与调零电位器构成的组合电路,此处仅为示意图)。
用万用表测二极管时,通常将电阻档拨到R ×100或R ×1k 档。
一般二极管的正向(如图中(a ))电阻为几百欧,反向(如图中(b ))电阻为几百千欧。
若二极管正向电阻很小,表明二极管内部已短路。
若正反向电阻都很大,则表明二极管内部已断路。
2.三极管好坏的判断1)检测PNP 型三有极管:用指针式万用表的R*1K 档,分别测量三极管的集电结的反向电阻跟正向电阻和发射结的反向电阻跟正向电阻。
将集电结跟发射结的正反向电阻比较,如果集电结,发射结的反向电阻小于正向电阻,且集电结跟发射结的正向电阻相等,则该PNP 型三极管正常。
2)检测NPN 型三极管:用指针式万用表的R*1K 档,分别测量三极管的集电结的反向电阻跟正向电阻和发射结的反向电阻跟正向电阻。
将集电结跟发射结的正反向电阻比较,如果集电结,发射结的反向电阻大于正向电阻,且集电结跟发射结的正向电阻相等,则该NPN 型三极管正常。
3.二极管性能的测定图1.2为二极管性能测试电路。
图中R 为限流电阻,R=200Ω。
图1.1 应用指针式万用表测试二极管xR4.三极管输出特性的测试1)三极管的输出特性是指在基极电流B i 一定的条件下,()C CE i f u =的关系。
其测试电路如图1.3所示。
2)NPN 三极管9013主要参数: 集电极最大功率 /CM P mW 400 集电极最大电流 /CM I mA 500mAi/V/图1.3 二极管伏安特性曲线集电极-发射极击穿电压 ()/CEO BR U V 25 集电极-发射极穿透电流 /C E O I m A 0.5 集电极-发射极饱和电压 ()/CE sat U V 0.6 截止频率 /T f M H z 150 电流放大倍数 β 64~144 三、实训设备1.电源与仪器:直流可调稳压电源、直流电源、电压表、毫安表、微安表(或万用表的A u 档)、万用表。
实验三三极管输入输出特性测试(二)一、实验目的通过对三极管输入回路和输出回路电压和电流的测量,得到三极管的输入特性和输出特性数据。
了解三极管的放大功能,认识三极管放大信号的特征(比较基极电流Ib和集电极电流Ic)。
二、实验原理三极管外部各极电压和电流的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。
它不仅能反映三极管的质量与特性,还能用来定量地估算出三极管的某些参数,是分析和设计三极管电路的重要依据。
对于三极管的不同连接方式,有着不同的特性曲线。
应用最广泛的是共发射极电路,可以采用传统的逐点法测量,其基本测试连线电路如图-1所示。
图-1 三极管输入、输出特性曲线测量连线图输入特性曲线在三极管共射极连接的情况下,当集电极与发射极之间的电压维持固定值时,和之间的一簇关系曲线,称为共射极输入特性曲线,如图-2所示。
图-2 三极管的输入特性曲线三极管输出特性曲线是指以三极管的基极电流b I 维持固定值时,测量集电极、发射极之间电压与三极ce U 管集电极电流的关系曲c I 线。
曲线如图-3所示。
图-3 三极管的输出特性曲线三、实验内容实验目的:通过对三极管输出回路电压和电流的测量,认识三极管的输出特性。
弄清三极管放大信号的特征是电流放大(对比基极电流Ib 和集电极电流I c )。
实验内容与规划:要组建一个三极管输出回路便于测量回路中的电压与电流的变化数据。
(注意点:测量三极管输出回路时,三极管的输入回路电流Ib 要固定,否则影响输出回路的测量)大家先准备好实验方案,上课用15分钟来讨论定案。
实验结束后关注基极电流Ib 和集电极电流I c 的关系。
实验电路图:V11VR1100RRV1100Q12N3392R2100RV21V+88.8Volts+88.8Amps数据记录:Ib=20uA Uce1 0.361 0.489 0.98 2.01 2.97 3.44 4.05 5.01 Ic1 3.168 3.321 3.342 3.541 3.548 3.55 3.561 3.574 Ib=40uA Uce2 0.18 0.531 0.914 2.045 3.025 4.32 4.65 5.125 Ic2 5.686 6.572 6.648 6.687 6.786 6.927 7.032 7.168 Ib=60uA Uce3 0.328 0.522 0.885 1.942 2.98 4.121 4.776 5.064 Ic3 8.756 10.085 10.269 10.604 11.062 11.189 11.201 11.229曲线图:数据处理:①:ΔIc/ΔIb=161.88②:ΔIc/ΔIb=193.06四、心得体会1、一开始就忘记测0的时候的数据,之后只有默认为0,下次一定要注意。
实验三光敏三极管特性测试一:实验原理:光敏三极管是具有NPN或PNP结构的半导体管,结构与普通三极管类似。
但它的引出电极通常只有两个,入射光主要被面积做得较大的基区所吸收。
光敏三极管的结构与工作电路如图(11)所示。
集电极接正电压,发射极接负电压。
二:实验所需部件:光敏三极管、稳压电源、各类光源、电压表(自备4 1/2位表)、微安表、负载电阻三:实验步骤:1、判断光敏三极管C、E极性,方法是用万用表欧姆20M测试档,测得管阻小的时候红表棒端触脚为C极,黑表棒为E极。
2、暗电流测试:按图(11)接线,稳压电源用±12V,调整负载电阻RL阻值,使光敏器件模板被遮光罩盖住时微安表显示有电流,这即是光敏三极管的暗电流,或是测得负载电阻RL上的压降V暗,暗电流LCEO=V暗/RL。
(如是硅光敏三极管,则暗电流可能要小于10-9A,一般不易测出。
3、光电流测试:取走遮光罩,即可测得光电流I光,通过实验比较可以看出,光敏三极管与光敏二极管相比能把光电流放大(1+HFE)倍,具有更高的灵敏度。
1、伏安特征测试:光敏三极管在给定的光照强度与工作电压下,将所测得的工作电压Vce与工作电流记录,工作电压可从+4V~+12V变换,并作出一组V/I曲线。
2、光谱特性测试:对于一定材料和工艺制成的光敏管,必须对应一定波长的入射光才有响应。
按图(11)接好光敏三极管测试电路,参照光敏二极管的光谱特性测试方法,分别用各种光照射光敏三极管,测得光电流,并做出定性的结论。
3、光电特性测试:图(12)光敏三极管的温度特性图(13)光敏三极管的光电特性曲线在外加工作电压恒定的情况下,照射光通量与光电流的关系见图(13),用各种光源照射光敏三极管,记录光电流的变化。
4、温度特性测试:光敏三极管的温度特性曲线如图(12)所示,试在图(11)的电路中,加热光敏三极管,观察光电流随温度升高的变化情况。
思考题:光敏三极管工作的原理与半导体三极管相似,为什么光敏三极管有两根引出电极就可以正常工作?光敏三极管对不同光谱及光强的响应一:实验原理:在光照度一定时,光敏三极管输出的光电流随波长的改变而变化,一般说来,对于发射与接收的光敏器件,必须由同一种材料制成才能有此较好的波长响应,这就是光学工程中使用光电对管的原因。
三极管工作原理(详解)三极管,也叫晶体三极管,简称晶体管,是一种能够放大电路中微小信号的电子元器件。
它的原理是通过控制一个区域的电子流,来改变另一个区域的电流。
晶体管最早由贝尔实验室的威廉·肖克利发明,是现代电子技术的基础之一。
本文将详细讲解三极管的工作原理。
一、晶体管的结构晶体管由三个掺杂不同材料的半导体层构成,分别为发射极(EB)、基极(CB)和集电极(CE)。
发射极(E):它是一个P型半导体,它的厚度很少,通常在0.01毫米以上,但是面积很大,通常在平方数分米。
基极(B):它是一个N型半导体,尽管它的尺寸比发射极大,但它的浓度很低,它是晶体管的控制电极。
集电极(C):它是一个N型半导体,通常比基极大几倍,是晶体管的输出电极。
为了保护晶体管的内部结构,晶体管需要封装成小型的金属或塑料外壳。
封装的芯片会被裸露出来,然后通过银色的金属脚连接电路板。
二、晶体管的工作原理晶体管是一种由硅和其他半导体材料构成的小型电子元件。
它的最重要的特性是可以放大信号。
晶体管的三个引脚在应用中被分别用作发射极、基极和集电极。
晶体管通过控制基极的电压,就能够放大电路中的微小信号。
晶体管具有三个工作区,它们分别是截止区、放大区和饱和区。
1. 截止区当基极电压低于截止电压时,晶体管处于截止状态,整个晶体管的结构中没有电流流动。
2. 放大区当基极电压高于截止电压时,晶体管处于放大状态。
此时,基极电压对晶体管的集电极电流产生控制作用。
如果基极电压升高,晶体管中的电流流向集电极方向就会升高,从而放大晶体管输入的电信号。
3. 饱和区当基极电压继续升高,晶体管中的电流达到最大值时,晶体管就会进入饱和状态。
在饱和区,晶体管可以用作开关,输出高电平或低电平。
三、晶体管的偏置要正确使用晶体管,需要对其进行偏置操作。
晶体管的偏置,是指将晶体管连接到电路中,并用一个外部电源提供所需要的电力。
基极电压在适当的电压下,即可使晶体管处于放大状态。
实验三:识别三极管一.实验目的1)了解三极管的分类方法;2)知道三极管的命名方法;3)掌握三极管的管脚检测;4)知道三极管电流分配关系的测量;5)知道三极管输入输出特性曲线的测量。
二.实验设备1)交流信号源、直流稳压电源、双踪示波器、数字万用表;2)三极管(9013,9012,3DG6,3DG6,8050,8055),电阻若干等。
三.实验要求1)查阅有关技术资料、网络资料及电子学科工具书,查集成运放的性能参数;2)识读与测试电路中相关的元器件的引脚和判断器件的好坏;3)使用仿真电路软件PROTEUS进行电路的仿真,验证其原理;4)焊接设计的电路,并调试成功,对电路所出现故障进行原因分析及排除;5)撰写实验报告。
6)小组合作。
各小组学习情况记录:专业班别成员姓名学号负责的工作自评分组内评分组长组员1组员2组员3组员4四.实验项目第一部分 三极管的识别及工作原理一、三极管的外形、结构及工作原理1. 通过资料阅读、网络搜索等手段,了解三极管的外形和结构,以及它们在现代工业和科学研究等领域的重要作用,填入自制的表格。
2.学习三极管的结构与符号,写出结构图中序号的名称,根据结构图说明三极管的工艺特点(内部条件),并画出NPN 和PNP 三极管的符号。
(1) ;(2) ;(3) ;(4) ; (5) ;(6) ;(7) ;(8) ; 三极管的工艺特点(内部条件):三极管的符号:3. 电路中常用的三极管种类很多,具体的分类情况如下图,查阅资料,填写下图。
晶体三极管分类按材料 极性分按工艺分按功率分 按工作频率分按功能用途分N P N (1)(2)(4) (7)(5) (8) (6)(3)P N P(1)(4) (7) (5)(8) (6)(3)(2)图1 NPN 三极管结构简图图2 PNP 三极管结构简图4. 不同的国家和地区,对三极管的命名方法是不一样的,查阅资料,填写下面表格,补充归纳三极管命名方法。
表一:国产半导体分立器件型号命名法(场效应管、半导体特殊器件、复合管、PIN型管、激光器件的型号命名只有第三、四、五部分)第一部分第二部分第三部分第四部分第五部分符号意义符号意义符号意义意义2 二极管A N型锗材料P 普通管用数字表示序号用汉语拼音字母表示规格号B P型锗材料V 微波管C N型硅材料W 稳压管D P型硅材料 C 参量管3 三极管A PNP型锗材料Z 整流管B NPN型锗材料L 整流堆C PNP型硅材料S 隧道管D NPN型硅材料N 阻尼管示例:3 D G 6 CU 光电器件K 开关管T半导体晶闸管(可控整流器)X 低频小功率管G 高频小功率管D 低频大功率管A 高频大功率管Y 体效应器件B 雪崩管J 阶跃恢复管CS 场效应管BT 半导体特殊器件FH 复合管PIN PIN型管JG 激光器件注:场效应器件、半导体特殊器件、复合管、PIN型管、激光器件的型号命名只有第三、四、五部分。
注:PIN是指在P和N半导体材料之间加入一薄层低掺杂的本征(Intrinsic)半导体层,由P-I-N构成的二极管就是PIN 二极管。
它主要用在RF领域,用作RF Switch和RF保护电路,也有用做Photo-Diode表二:美国电子工业协会半导体分立器件命名方法第一部分第二部分第三部分第四部分第五部分符号意义符号意义符号意义符号意义符号意义JAN 军级 1 二极管N 该器件已在美国电子工业协会(EIA)注册登记多位数字该器件在美国电子工业协会登记的顺序号A、B、C、D、….同一型号器件的不同档别JANTX 特军级 2 三极管JANTXV 超特军级3三个pn结器件JANS 宇航级n n个pn 结器件无非军用品例如:JAN2N3251A表示PNP硅高频小功率开关三极管JAN 2 N 3251 A表三:日本半导体分立器件型号命名方法第一部分 第二部分第三部分第四部分第五部分符号 意义 符号 意义 符号 意义 符号 意义 符号 意义 0 SA 两位以上的整数,从“11”开始,数字越大,越是近期产品A B C D E F1 B2 C 3D F G H J K M例如:2SC1815Y 、2SC9013H 、2SC80502 S C 1815 Y表四:国际电子联合会半导体器件型号命名方法德国、法国、意大利、比利时等欧洲以及匈牙利、罗马尼亚、南斯拉夫、波兰等东欧国家,大都采用国际电子联合会半导体分立器件命名方法。
第一部分 第二部分第三部分第四部分符号 意义 符号 意义 符号 意义 符号 意义A A 三位数字A 、B 、C 、D 、E ……B BC CD D EE F G 一个字母加二位数字H K L M P QRSTUXYZ例如:BDX515.通过网络搜索,查找型号为3DG6、9012、9013、2N2222、8550、2N5551三极管的主要参数,填入表格五,并根据表格,归纳三极管的主要参数有哪些?表五:三极管的主要参数型号3DG6 9012 9013 2N2222 2N5551 8550 8050极性电流放大倍数极间反向电流I CBO I CEO极限参数电流I CM 反向击穿电压V EBOV CBOV CEO 功率P CM 特征频率饱和压降V CE(sat)6.三极管的种类用途繁多,用户在使用三极管前都需要进行管脚的的判别和硅管锗管的判别,通过网络搜集,查找中小功率三极管的性能及学习如何使用指针式万用表和数字万用表对中小功率三极管进行检测。
7.三极管有三个电极,任意取其中一个电极作为公共端,一端为输入端,余下的一端为输出端,共有六种连接方式,但只有三种连接方式是具有放大作用的,试画出具有放大作用的三种连接方式,并归纳连接方式的要点。
8.三极管的制造工艺提供了内部条件,但是还必须具备一定的外部条件才能实现放大功能。
具体地说,就是需要加上一定的工作电压给三极管,如果电源极性接错,或提供的电压不正常,尽管这时三极管本身是B D X51好的,也照样不能工作,甚至还可能损坏三极管。
要使三极管能够起放大作用,其工作电源的接法的原则是什么?并画出电路图。
9.生产厂家必须严格按内部条件生产的三极管,才具备放大能力,但这并不是说三极管就一定能放大,要使三极管具有放大,用户必须为三极管提供外部条件。
填写表六。
表六:三极管工作条件 三极管内 部条件发射区掺杂浓度大于基区掺杂浓度;集电区比发射区大;基区做得很薄,杂质掺得少。
外部工作条件 特点截止区发射结反偏对NPN 三极管, UBE <0放大区发射结正偏,集电极反偏三极管起到电流放大作用,流进集电极电流Ic 是基极电流Ib 的放大饱和区两个PN 结均正偏集电极与发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态10.给定某一具体型号的三极管(如9013,3DG6),如何获取三极管的电流放大倍数β ?方法有四种:(a )查阅相关资料;(b )三极管上的标记:色标法或英文字母法;(c )数字万用表测量法;(d )实验法。
其中色标法是在晶体管顶部点上不同颜色的色点表示β的大小,如图3所示,国产小功率管色点与β值的关系见表七。
英文字母法即在管子型号后边用A 、B 、C ……K 中的一个字母来代表β的大小,如图4所示,表八列出了一部分晶体管用字母表示β的情况。
网络搜索,完成表七和表八。
表七:色点与h FE 对应关系色标棕红橙黄绿蓝紫灰白黑 黑橙图3 β色点标记法图4 β字母标记法3DG201 绿点3DG 201 蓝点HHE 9013I S9014 C338h FE0——15 15——2525——4040——5555——8080——120120——780180——270270——400400——600600——表八:字母与h FE对应关系型号 A B C D E F G H I M L K9011,9018 29-44 39-60 54-80 72-108 97-145132-1989012,9013 64-91 78-112 95-135118-216144-202180-3509014,9015 60-150 100-300200-600400-10008050,8550 85-10 120-200 160-3 005551,5401 82-160 150-240200-39511.通过网络搜索,查找三极管替换时应该根据什么原则替换?12.三极管的特性曲线和参数都是描述三极管性能的方式。
温度对三极管的特性和参数是否有影响?如果有影响,是怎样的影响?13. 采用PROTEUS软件仿真,可以更好地理解和学习电子线路的工作原理。
一般在怎样的情况下采用直接输入“NPN”或“PNP”的方法来拾取三极管?PROTEUS仿真软件中没有3DG6、9013H三极管,应如何仿真?用PROTEUS仿真软件绘制2N2222A三极管的特性曲线,并从特性曲线求电流放大倍数β。
14.问题。
1)在结构上,三极管时由两个背靠背的PN结组成的,那么,三极管与两只对接的二极管有什么区别?可否用两个二极管相连构成一只BJT,试说明其理由。
2)三极管发射极和集电极是否很颠倒使用?说明理由。
3)BJT 是电流控制器件,还是电压控制器件?4)用万用表直流电压档测得某电路中三极管各电极的电位如表九所示,试判断它们的极性、材料、类型和工作状态。
表九管型 T13AD6A T2 3BX1A T3 3DK3A T4 3CG21 T5 3DGBC V C /V V B /V V E /V 极性 材料 类型 工作状态5)现在市场上经常见到9011~9018一类的晶体三极管,它们的极性、参数有何区别,填写下表。
表十:90××特性型号 9011 9012 9013 9014 9015 9016 9018 极性 功率(mW ) f T (MHz ) 用途6)高频管的截止频率大于3MHz ,而低频管的截止频率则小于3MHz ,一般情况下,二者是不能互换使用的。
由于高、低频管的型号不同,所以当它们的标志清楚时,可以查有关手册较容易地直接加以区分。
当它们的标志型号不清时,如何用万用表区分是高频管还是低频管?7)选用三极管应该根据什么原则选取?8)集成电路中经常将三极管接成二极管使用,接法有以下三种,哪一种接法好?+发射极-集电极短接+基极-集电极短接+发射极-基极短接第二部分 三极管特性探究1.判断3DG6、9012、9013、2N2222、8550、8050、2N5551三极管的管脚和极性,并用数字万用表测量电流放大倍数β,填入自制的表格。
2.图5可以验证三极管的放大原理和其中的电流分配关系,思考图中R p 的作用,三极管用9013,R p 、R b 、R c 、V cc 、V bb 值自定,如何操作可以得到电流分配关系?自制表格,并填入数据。