示波器的触发源和触发方式
- 格式:doc
- 大小:12.50 KB
- 文档页数:2
示波器的调节与应用原理1. 前言示波器是一种用于观察电压周期的电子仪器,广泛应用于电子实验、电路调试、电子设备维修等领域。
本文将介绍示波器的调节方法和应用原理。
2. 示波器调节方法2.1 通道设置示波器通常具有多个通道,用于同时观测多个信号。
在进行示波器调节时,需要设置合适的通道参数。
1.选择观测通道:根据需要观测的信号,选择合适的通道进行观测。
2.设置耦合方式:示波器通常有直流耦合和交流耦合两种方式,根据信号的特点选择合适的耦合方式。
3.调节增益:根据信号的幅值范围,调节通道的增益,确保信号能够在示波器屏幕上完整显示。
2.2 时间基准设置示波器的时间基准用于调节观测的时间尺度,以便观测信号的频率、周期等特性。
1.设置时间量程:根据需要观测的信号频率,选择合适的时间量程,确保观测到完整的信号周期。
2.调节扫描速度:根据需要观测的信号变化速度,调节示波器的扫描速度,以充分显示信号的变化过程。
2.3 触发设置示波器的触发功能用于控制示波器在信号达到一定条件时进行触发,并显示稳定的波形。
1.设置触发方式:示波器通常有边沿触发、脉宽触发、视频触发等触发方式,根据信号的特点选择合适的触发方式。
2.调节触发电平:根据触发信号的电平,调节触发电平,确保示波器能够稳定触发并显示波形。
3. 示波器的应用原理示波器的工作原理是利用扫描电子束在示波管内的水平和垂直方向上的偏转,绘制出输入信号的波形图。
3.1 垂直系统原理示波器的垂直系统用于放大输入信号,使其能够显示在示波器的屏幕上。
1.输入信号放大:示波器的垂直系统通过放大器将输入信号放大到合适的幅值范围。
2.垂直扫描:放大后的信号经过垂直偏转系统,在示波管内的垂直方向上进行扫描。
3.垂直偏转灵敏度:示波器垂直系统的灵敏度表示输入信号单位变化时,屏幕上显示的垂直单位长度。
3.2 水平系统原理示波器的水平系统用于控制扫描电子束在水平方向上的偏转,以绘制出输入信号的波形图。
示波器的控制面板介绍示波器是一种常用的电子测量仪器,被广泛的应用于多个行业当中。
我们在操作示波器的时候对于示波器面板的操作也是需要熟练掌握的,如果操作错误是很容易造成检测失败的。
今天就来为大家介绍一下示波器的控制面板吧,希望可以帮助到大家。
1.亮度和聚焦旋钮亮度调节旋钮用于调节光迹的亮度(有些示波器称为”辉度”),使用时应使亮度适当,若过亮,容易损坏示波管。
聚焦调节旋钮用于调节光迹的聚焦(粗细) 程度,使用时以图形清晰为佳。
2.信号输入通道常用示波器多为双踪示波器,有两个输入通道,分别为通道1(CH1)和通道2(CH2),可分别接上示波器探头,再将示波器外壳接地,探针插至待测部位进行测量。
3.通道选择键(垂直方式选择)常用示波器有五个通道选择键:(1)CH1:通道1单独显示;(2)CH2:通道2单独显示;(3)ALT:两通道交替显示;(4)CHOP:两通道断续显示,用于扫描速度较慢时双踪显示;(5)ADD:两通道的信号叠加。
维修中以选择通道1或通道2为多。
4.垂直灵敏度调节旋钮调节垂直偏转灵敏度,应根据输入信号的幅度调节旋钮的位置,将该旋钮指示的数值(如0.5V/div,表示垂直方向每格幅度为0.5V)乘以被测信号在屏幕垂直方向所占格数,即得出该被测信号的幅度。
5.垂直移动调节旋钮用于调节被测信号光迹在屏幕垂直方向的位置。
6.水平扫描调节旋钮调节水平速度,应根据输入信号的频率调节旋钮的位置,将该旋钮指示数值(如0.5ms/div,表示水平方向每格时间为0.5ms),乘以被测信号一个周期占有格数,即得出该信号的周期,也可以换算成频率。
7.水平位置调节旋钮用于调节被测信号光迹在屏幕水平方向的位置。
8.触发方式选择示波器通常有四种触发方式:(1)常态(NORM):无信号时,屏幕上无显示;有信号时,与电平控制配合显示稳定波形;(2)自动(AUTO):无信号时,屏幕上显示光迹;有信号时与电平控制配合显示稳定的波形;(3)电视场(TV):用于显示电视场信号;(4)峰值自动(P-P AUTO):无信号时,屏幕上显示光迹;有信号时,无需调节电平即能获得稳定波形显示。
常用的示波器操作方法示波器是电子工程师和技术人员常用的一种测量仪器,用于观察和分析电信号的波形。
以下是一些常用的示波器操作方法:1. 示波器的基本控制:示波器通常有开关、旋钮和按钮等控制元件。
首先打开示波器的电源开关,然后调节亮度和对比度使显示屏清晰可见。
接下来,选择适当的触发方式(如边沿触发、脉冲触发等)和触发电平。
最后,选择合适的时间和电压基准,设置示波器的主控钮(包括水平、垂直和触发控制),使波形在屏幕上合适地显示。
2. 时间和水平缩放:示波器的时间和水平缩放功能使得用户能够放大或缩小波形或测量信号的特定部分。
用户可以通过旋转示波器的水平和时间旋钮来调整水平和时间缩放比例。
例如,当检测到的波形周期很长时,可以通过缩小时间比例使其在屏幕上显示更清晰。
3. 垂直缩放和偏置:示波器的垂直缩放和偏置功能使用户能够调整波形的幅度和对地的偏移量。
用户可以通过旋转示波器的垂直旋钮来调整垂直缩放系数,从而放大或缩小波形的幅度。
另外,通过按下示波器的偏置按钮或旋转示波器的偏置旋钮,用户可以将波形上下移动,从而调整波形相对于基准线的位置。
4. 触发设置:在示波器上观察波形时,用户经常需要设置适当的触发条件以确保所观察到的波形是稳定和可重复的。
示波器的触发功能允许用户选择触发方式、触发电平和触发源等参数。
例如,用户可以选择边沿触发,并设置上升沿或下降沿触发电平。
触发源可以是测量信号本身或外部信号。
5. 自动测量功能:许多现代示波器都配备了自动测量功能,可以快速准确地测量波形的各种参数。
常见的自动测量参数包括频率、周期、峰峰值、最大值、最小值、上升沿时间、下降沿时间等。
用户只需按下示波器上的自动测量按钮,示波器将自动对所选择的波形进行测量并在显示屏上显示结果。
6. 存储和回放波形:示波器通常有存储和回放功能,可以记录和重播测量的波形。
用户可以通过按下示波器上的存储按钮,将当前的波形保存到示波器的内部存储器或外部存储介质(如USB闪存驱动器)。
示波器边沿触发设置方法示波器是一种常用的电子测试仪器,用于观察和分析电信号的波形。
边沿触发是示波器中的一个重要设置,它可以帮助我们精确地捕捉特定信号的波形。
本文将介绍示波器边沿触发的设置方法。
一、什么是边沿触发边沿触发是指示波器在特定的电信号边沿处触发并显示波形的功能。
边沿可以是上升沿(rising edge)或下降沿(falling edge),通过设置示波器可以选择触发的边沿类型。
二、为什么需要边沿触发在某些情况下,我们需要观察特定信号的波形,但信号本身可能是非常快速和复杂的。
如果示波器显示所有的波形,我们将无法准确地分析信号的特性。
因此,边沿触发可以帮助我们只显示我们感兴趣的信号波形,从而更好地进行信号分析。
三、边沿触发的设置方法示波器通常提供了多种设置选项,这里我们将介绍一种常用的边沿触发设置方法。
1. 打开示波器并连接待测信号:首先,将示波器与待测信号源进行连接。
确保信号源的输出符合示波器的输入要求,并确保连接稳定可靠。
2. 选择触发源:示波器通常提供了多个触发源选项,例如外部信号触发、通道触发等。
根据实际情况选择触发源,并将触发源连接到正确的触发输入端口。
3. 设置触发模式:示波器通常提供了多种触发模式,例如自动触发、单次触发、正常触发等。
根据实际需求选择触发模式,并将示波器切换到相应的模式。
4. 设置触发电平:示波器通常提供了触发电平的设置选项。
根据待测信号的特点,选择适当的触发电平。
例如,如果我们关注的是上升沿,可以将触发电平设置为待测信号上升沿的阈值。
5. 设置触发边沿:示波器通常提供了触发边沿的选择选项,包括上升沿触发和下降沿触发。
根据实际需求选择触发边沿,并将示波器设置为相应的边沿类型。
6. 调整触发灵敏度:示波器通常提供了触发灵敏度的调节选项,用于调整触发电平的灵敏度。
根据实际需求,适当调整触发灵敏度,以确保示波器能够准确地捕捉到触发边沿。
7. 进行触发:完成以上设置后,将示波器切换到触发模式,并开始观察波形。
示波器简易使用说明示波器是一种广泛应用于电子设备测试和故障排查的仪器,用于观察和分析电压和电流波形。
下面是示波器的简易使用说明。
1.连接示波器:首先,将被测电路的输出信号与示波器的输入端口连接。
通常,示波器的输入端口有两个,分别是由正负极性标识的BNC接口。
2.打开示波器:在接好电路后,打开示波器的电源开关。
等待示波器启动,并确保示波器显示屏亮起。
3.调整示波器设置:示波器的设置包括时间和幅度的测量。
通过旋转示波器上的旋钮或按下按钮,可以选择不同的测量范围。
-选择水平扫描时间:示波器的水平设置用于确定波形显示的横向时间范围。
可以通过旋转时间/扫描速度控制旋钮来选择合适的时间范围。
一般地,较长的时间设置可以显示较长时间内的波形,而较短的时间设置可以显示较短时间内的波形。
-选择垂直幅度:示波器的垂直设置用于确定显示的波形幅度。
可以通过旋转垂直灵敏度控制旋钮来调整幅度。
它控制着显示上下移动的波形的垂直高度。
- 设置触发方式:示波器的触发设置用于确定显示的波形的起始位置。
触发方式有自由运行(Free Run)和外部触发(External Trigger)两种模式。
如果选择外部触发模式,则需要将外部触发信号连接到示波器的触发输入端口。
-调整触发电平:在示波器设置中,可以调整触发电平,以确保在特定电平下触发波形的显示。
4. 获取波形:一切设置就绪后,按下示波器上的“Start”按钮或相应的启动按钮,示波器将开始采样并显示特定时间范围内的电压波形。
5.分析波形:示波器通常具有一些预置功能,可以帮助我们更好地分析和测量波形。
-自动测量功能:示波器可以自动计算并显示波形的特征参数,如峰值值、平均值、最大值、最小值等。
通过按下自动测量按钮,示波器将自动计算并显示这些参数。
-储存和回放波形:示波器通常具有内置存储器,可以储存和回放特定的波形。
这对于需要长时间观察波形并进行比较分析的应用非常有用。
-示波器触发:示波器触发功能使我们可以选择在特定条件下触发波形的显示。
示波器的触发模式有哪些示波器是电子工程师必备的一种测试仪器,它可以通过测量电信号的波形、频率、幅度等参数来帮助工程师完成电路设计、电信号分析等任务。
而示波器的触发模式是其中非常重要的一部分。
触发模式是用于稳定地显示稳态周期信号的参数。
如果没有正确地设置触发模式,示波器的显示结果将会很难看。
在示波器中,触发模式可分为五类。
自动触发模式自动触发模式是最常用的触发模式之一。
它是指示波器能以自动的方式捕捉任何类型的信号,而无需设置触发类型、触发电平和触发源等参数。
在自动触发模式下,示波器会不停地采样电信号,并在屏幕上显示波形。
这种模式适用于测试非周期性信号。
自动触发模式的缺点是它难以稳定地显示周期性信号。
这是因为示波器在该模式下无法掌握时间轴信息,无法精确地设置时间基准线。
Norm触发模式Norm触发模式是一种周期触发模式。
该模式设置的目的是为了稳定显示周期性信号,允许工程师在一段时间内采集相同的波形。
Norm触发模式要求输入信号频率充分稳定、非抖动,并在预设的电平范围内一个安定的水平。
此时示波器会每次从当前时间点开始,在指定的时间范围内寻找适当的电信号边沿。
Auto触发模式Auto触发模式是一种非周期触发模式。
该模式适用于测试非周期性的非重复性信号。
当自动触发模式无法捕捉到信号时,可以尝试Auto触发模式。
auto触发模式只适用于感兴趣的部分信号不重复的情况下,因为示波器在达到要求后,就会立即停止捕捉信号。
而且Auto触发模式会在第一次捕捉到足够的数据后停止。
Single触发模式Single触发模式是一种单次触发模式,适用于测试复杂的、不稳定的信号。
该模式下,示波器只执行一次触发操作,无需重复设置触发类型和触发源等参数。
使用Single触发模式时,工程师须确保输入信号在合适的时间窗口内以合适的电平递增或递减。
这个时间窗口在示波器上通常是一个相对时间,以基础采样率为基础。
Single触发模式可以帮助工程师捕捉复杂的波形,因为它只触发一次,可以在非常短的时间内获取足够的数据。
常见示波器面板功能键、钮的标示及作用,示波器的使用常见示波器面板功能键、钮的标示及作用,示波器的使用常见示波器面板功能键、钮的标示及作用,示波器的使用2010-12-15 09:01 示波器的型号多种多样,其中无使用说明书的示波器占很大比例,这对于初次使用示波器的初学者十分不便。
本文根据实践经验,就如何操作无使用说明书的示波器作简单介绍,希望能给初学者带来帮助。
一、常见示波器面板功能键、钮的标示及作用1.POWER(电源开关):接通或关断整机输入电源。
2.FOCUS(聚焦)和ASTIG(辅助聚焦):常为套轴电位器,用于调整波形的清晰度。
3.ROTATION(扫描轨迹旋转控制):调整此旋钮可以使光迹和座标水平线平行。
4.ILLUM(坐标刻度照明):用于照亮内刻度坐标。
5.A/B INTEN(A/B亮度控制):通常为套轴电位器,作用是调节A和B扫描光迹的亮度。
6.CAL 0.5Vp-p(校正信号输出):提供0.5Vp-p且从0电平开始的正向方波电压,用于校正示波器。
7.VOLTS/div(电压量程选择):通常电压量程和幅度微调为套轴电位器,外调节旋钮是电压量程选择,转动此旋钮以改变电压量程;中间带开关的电位器为电压量程微调,顺时针旋到底为校正位置,逆时针调节,波形幅度,变化范围在电压/格两档之间。
8.CH1和CH2(输入信号插座):为示波器提供输入信号。
9.AC GND DC(输入耦合开关):用于选择输入信号的耦合方式。
10.GRIG SEL(内同步选择):按下此键,以CH1和CH2分别作为内同步信号源。
11.CH POL(信号倒相):按下此键,输入信号倒相180?。
12.VERTICAL MODE(垂直工作方式选择):分别按下CH1、CH2、ALT、COHP、ADD、X-Y键,屏幕显示依次为CH1、CH2、CH1和CH2交替、CH1和CH2断续、CH1和CH2代数和、CH1垂直/CH2水平等方式。
示波器使用方法步骤示波器是一种使用非常广泛,且使用相对复杂的仪器。
示波器种类、型号很多,功能也不同,这些示波器使用方法大同小异。
小编通过整理示波器使用方法,简单的给出示波器使用方法中最基本的操作,希望能给大家带来帮助。
示波器使用方法简介1 荧光屏荧光屏是示波管的显示部分。
屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。
根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。
2 示波管和电源系统1)电源(Power)-示波器主电源开关。
当此开关按下时,电源指示灯亮,表示电源接通。
2)辉度(Intensity)-旋转此旋钮能改变光点和扫描线的亮度。
观察低频信号时可小些,高频信号时大些。
一般不应太亮,以保护荧光屏。
3)聚焦(Focus)-聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。
4)标尺亮度(Illuminance)-此旋钮调节荧光屏后面的照明灯亮度。
正常室内光线下,照明灯暗一些好。
室内光线不足的环境中,可适当调亮照明灯。
3 垂直偏转因数和水平偏转因数1)垂直偏转因数选择(VOLTS/DIV)和微调在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。
灵敏度的倒数称为偏转因数。
垂直灵敏度的单位是为cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。
踪示波器中每个通道各有一个垂直偏转因数选择波段开关。
每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。
将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。
逆时针旋转此旋钮,能够微调垂直偏转因数。
垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。
许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。
示波器操作规程一、引言示波器是一种用于观察和测量电信号的仪器,广泛应用于电子、通信、自动化等领域。
为了确保示波器的正确操作和使用,本文将详细介绍示波器的操作规程。
二、示波器的基本原理示波器通过将电信号转换为可见的波形图形,使用户能够直观地观察和分析信号的特征。
示波器主要由垂直放大系统、水平扫描系统、触发系统和显示系统等组成。
三、示波器的准备工作1. 确保示波器与电源连接良好,并接地保护。
2. 检查示波器的通道选择、触发源、触发方式等设置是否正确。
3. 确保示波器的探头与被测电路连接正确,且探头补偿调节正常。
四、示波器的操作步骤1. 打开示波器电源,并等待示波器启动。
2. 调整示波器的时间基准,选择合适的时间量程,使波形图形在屏幕上稳定显示。
3. 调整示波器的垂直放大系数,选择合适的电压量程,使波形图形在屏幕上适当放大。
4. 设置示波器的触发源和触发方式,确保波形图形能够稳定触发并显示在屏幕上。
5. 根据需要,选择示波器的触发电平、触发边沿等参数,以获取所需的波形图形。
6. 使用示波器的光标功能进行测量,如峰峰值、频率、占空比等。
7. 如需捕捉和保存波形图形,可以使用示波器的存储功能,将波形保存到存储器中或者通过接口传输到计算机。
五、示波器的注意事项1. 在操作示波器之前,应先了解被测电路的特性和信号波形的大致范围,以便正确设置示波器的量程和触发参数。
2. 在调节示波器的参数时,应逐步调整,观察波形变化,避免过度放大或者失真。
3. 使用示波器时应注意安全,避免触电和短路等危(wei)险情况的发生。
4. 示例器是精密仪器,使用时应轻拿轻放,避免碰撞和摔落。
5. 定期对示波器进行校准和维护,确保其性能和准确度。
六、示波器的常见故障及排除方法1. 示波器无显示:检查电源是否正常,检查连接是否松动或者断开。
2. 波形不稳定:调整时间基准和垂直放大系数,检查触发设置是否正确。
3. 波形失真:调整垂直放大系数,检查探头补偿是否正常。
示波器的调整和使用实验报告示波器的调整和使用实验报告引言:示波器是一种常用的电子测量仪器,广泛应用于电子工程、通信工程、医疗设备等领域。
它可以用来观察和测量电信号的波形、幅度、频率等参数,对于电路故障排除和信号分析有着重要的作用。
本实验旨在通过调整示波器的各项参数,并进行实际测量,掌握示波器的正确使用方法。
一、示波器的基本调整1. 亮度和聚焦调整示波器的亮度和聚焦调整对于显示清晰的波形至关重要。
首先,将亮度调节旋钮逆时针旋转至最低,然后逐渐调节至合适的亮度。
接下来,通过旋转聚焦调节旋钮,使波形显示清晰锐利。
2. 触发调整触发是示波器稳定显示波形的关键。
在进行触发调整前,需选择适当的触发源和触发方式。
通常情况下,选择外部触发源,并将触发方式设置为边沿触发。
然后,通过调节触发电平和触发斜率,使波形能够稳定地显示在屏幕上。
3. 垂直和水平调整垂直调整主要是调节信号的幅度和位置。
首先,将示波器的垂直灵敏度调节旋钮设置为合适的量程,使波形能够占满屏幕。
然后,通过调节垂直位移旋钮,使波形在屏幕上的位置合适。
水平调整主要是调节波形的时间基准和位置。
首先,选择合适的时间基准,例如1ms/div或0.1ms/div,以便观察波形的细节。
然后,通过调节水平位移旋钮,使波形在屏幕上的位置合适。
二、示波器的使用方法1. 测量直流电压示波器可以用来测量直流电压。
首先,将示波器的输入通道连接到待测电路的输出端。
然后,选择合适的量程和耦合方式,例如直流耦合。
最后,通过调整垂直灵敏度和水平基准,观察并记录电压波形。
2. 测量交流电压示波器也可以用来测量交流电压。
与测量直流电压类似,首先将示波器的输入通道连接到待测电路的输出端。
然后,选择合适的量程和耦合方式,例如交流耦合。
最后,通过调整垂直灵敏度和水平基准,观察并记录电压波形。
3. 测量频率和周期示波器可以用来测量信号的频率和周期。
首先,将示波器的输入通道连接到待测信号源。
然后,选择合适的触发源和触发方式。
CRT示波器的使用方法在家电维修的过程中使用示波器已十分普遍。
通过示波器可以直观地观察被测电路的波形,包括形状、幅度、频率(周期)、相位,还可以对两个波形进行比较,从而迅速、准确地找到故障原因。
正确、熟练地使用示波器,是初学维修人员的一项基本功。
虽然示波器的牌号、型号、品种繁多,但其基本组成和功能却大同小异,本文介绍通用示波器的使用方法。
一、面板介绍1.亮度和聚焦旋钮亮度调节旋钮用于调节光迹的亮度(有些示波器称为"辉度"),使用时应使亮度适当,若过亮,容易损坏示波管。
聚焦调节旋钮用于调节光迹的聚焦(粗细)程度,使用时以图形清晰为佳。
2.信号输入通道常用示波器多为双踪示波器,有两个输入通道,分别为通道1(CH1)和通道2(CH2),可分别接上示波器探头,再将示波器外壳接地,探针插至待测部位进行测量。
3.通道选择键(垂直方式选择)常用示波器有五个通道选择键:(1)CH1:通道1单独显示;(2)CH2:通道2单独显示;(3)A L T:两通道交替显示;(4)CHOP:两通道断续显示,用于扫描速度较慢时双踪显示;(5)A DD:两通道的信号叠加。
维修中以选择通道1或通道2为多。
4.垂直灵敏度调节旋钮调节垂直偏转灵敏度,应根据输入信号的幅度调节旋钮的位置,将该旋钮指示的数值(如0.5V/ div,表示垂直方向每格幅度为0.5V)乘以被测信号在屏幕垂直方向所占格数,即得出该被测信号的幅度。
5.垂直移动调节旋钮用于调节被测信号光迹在屏幕垂直方向的位置。
6.水平扫描调节旋钮调节水平速度,应根据输入信号的频率调节旋钮的位置,将该旋钮指示数值(如0.5ms/div,表示水平方向每格时间为0.5ms),乘以被测信号一个周期占有格数,即得出该信号的周期,也可以换算成频率。
7.水平位置调节旋钮用于调节被测信号光迹在屏幕水平方向的位置。
8.触发方式选择示波器通常有四种触发方式:(1)常态(NORM):无信号时,屏幕上无显示;有信号时,与电平控制配合显示稳定波形;(2)自动(A UTO):无信号时,屏幕上显示光迹;有信号时与电平控制配合显示稳定的波形;(3)电视场(TV):用于显示电视场信号;(4)峰值自动(P-P AUTO):无信号时,屏幕上显示光迹;有信号时,无需调节电平即能获得稳定波形显示。
专业:应用物理题目:示波器的使用[实验目的](1)了解示波器的结构和工作原理。
(2)熟练掌握示波器的基本操作。
(3)学会用示波器测量电压、频率和相位差的方法。
(4)学会周期信号的频谱分析。
(5)观察李萨如图形、拍现象,加深对振动合成的理解。
[实验仪器]TBS1102B-EDU 型数字存储示波器,TFG6920A 型函数/任意波形发生器。
[实验原理]1.数字示波器(1)触发控制(触发器)1)边沿触发:在达到触发电平(阈值)时,输入信号的上升边沿或下降边沿触发示波器,也是示波器默认触发方式。
2)预/后触发:事件发生在显示屏中心触发位置前/后。
3)视频触发:一般由视频信号的场或线触发示波器.4)脉冲宽度触发:一般由异常脉冲触发示波器。
5)触发频率:示波器计算可触发事件发生的速率以确定触发频率并在屏幕的右下角显示该频率。
(2)垂直控制(增益和位置):将波形进行缩放和上下移动。
(3)采集数据(模式和时基):通过在不连续点处采集输入信号的值来数字化波形。
1)采样模式:等间隔采集2500点,以水平刻度设置进行显示。
2)峰值检测模式:采集间隔1250,每个间隔取最大值和最小值点,以水平刻度设置进行显示。
多用于检测窄至10ns的毛刺并减少假波现象的概率。
取样速率够快时无需采用峰值检测。
3)平均值模式:将大量波形进行平均,减少信号中的随机噪声。
4)扫描模式:连续监视变换缓慢的信号。
(4)时域假波现象:如果示波器对信号进行采样时不够快,采样率小于1/2信号带宽,违反奈奎斯特抽样定律,从而无法建立精确的波形记录时,就会有假波现象。
判断方法:1.旋转“水平标度”旋钮更改水平刻度,波形剧烈变化。
2.使用“峰值检测”检测速度更快的信号,波形剧烈变化。
3.触发频率大于信息显示速度4.正观察的信号也是触发源时,使用刻度或光标来估计所显示波形的频率与显示屏右下角的“触发频率”读数相比相差很大(5)带宽对波形影响:频率超过带宽,检测精度会下降2.交变信号参数测量交变信号:正弦波:交变信号最简单形式参数:周期T、有效值VRMS 、零-峰值VOP、峰-峰值VPP 、平均值VAVG 方波:只有高低两电平参数:脉冲上升/下降时间、脉冲宽度、电压、占空比(在一个频率周期内高电平所占的时间百分数)三角波:电压逐渐增大突然降到零(1)刻度法:显示屏上相关距离x相关标度(2)光标法;读取光标读数(3)自动测量法:Measure菜单自动完成测量。
示波器的触发源和触发方式被测信号从示波器的Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。
由此可知,正确的触发方式直接影响到示波器的有效操作。
为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。
1.触发源(Source)选择要使屏幕上显示稳定的波形,则需将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。
触发源选择确定触发信号由何处供给。
通常有三种触发源:内触发(INT)、电源触发(LINE)、外触发EXT)。
内触发使用被测信号作为触发信号, 如通道1、通道2。
外触发使用外加信号作为触发信号,外触发信号与被测信号间应具有周期性的关系,何时开始扫描与被测信号无关。
电源触发使用交流电源频率信号作为触发信号。
这种方法在测量与交流电源频率有关的信号时是有效的。
特别在测量音频电路、闸流管的低电平交流噪音时更为有效。
正确选择触发信号对波形显示的稳定、清晰有很大关系。
例如在数字电路的测量中,对一个简单的周期信号而言,选择内触发可能好一些,而对于一个具有复杂周期的信号,且存在一个与它有周期关系的信号时,选用外触发可能更好。
2.触发耦合(Coupling)方式选择触发信号到触发电路的耦合方式有多种,目的是为了触发信号的稳定、可靠。
AC耦合又称电容耦合。
它只允许用触发信号的交流分量触发,触发信号的直流分量被隔断。
通常在不考虑DC分量时使用这种耦合方式,以形成稳定触发。
但是如果触发信号的频率小于10Hz,会造成触发困难。
直流耦合(DC)不隔断触发信号的直流分量。
当触发信号的频率较低或者触发信号的占空比很大时,使用直流耦合较好。
低频抑制(LFR)触发时触发信号经过高通滤波器加到触发电路,触发信号的低频成分被抑制;高频抑制(HFR)触发时,触发信号通过低通滤波器加到触发电路,触发信号的高频成分被抑制。
XJ4318型双踪示波器的主要功能开关XJ4318型双踪示波器的主要开关有触发方式开关、触发源开关、内触发选择开关、垂直方式开关、电平调节器、扫描时间因数开关、偏转因数开关、输入耦合开关和“辉度”调节器等。
(1)触发方式开关共4档,用于选择扫描工作方式。
其中:AUTO——扫描电路处于自激状态;NORM——扫描电路处于触发状态;TV-V——电路处于电视场同步;TV-H——电路处于电视行同步。
(2)触发源开关有3档,用以选择扫描触发信号的来源。
其中:INT——内触发,触发信号来自Y放大器;EXT——外触发,触发信号来自外触发输入端输入的信号;LINE——电源触发,触发信号来自电源波形,用于垂直输入信号和电源频率成倍数关系的情况。
(3)内触发选择开关共3档,用以选择扫描内触发信号源。
其中:CH1——加到CH1输入连接器的信号是触发信号源;CH2——加到CH2输入连接器的信号是触发信号源;VERT——垂直方式内触发源取自垂直方式开关所选择的信号。
(4)垂直方式开关共5档,用来选择垂直放大系统的工作方式。
其中:CH1——显示CH1通道的输入信号;CH2——显示CH2通道的输入信号;ALT——交替显示CH1、CH2通道的输入信号,交替过程出现于扫描结束后回扫的一段时间里,该方式在0.2~0.5 ms/div的扫描速度范围内同时观察两个输入信号;CHOP——断续显示,扫描过程中的显示过程在CH1和CH2之间转换,该方式在0.2~1 ms/div 的扫描速度范围内同时观察两个输入信号;ADD——使CH1信号与CH2信号相加或相减。
(5)电平调节器用于调节和确定扫描触发点在触发信号上的位置,将其沿顺时针方向旋足并接通开关后,可听到“啪”的一声,此即为锁定位置。
此时,触发点将自动处于被测波形的中心电平附近。
当调试出的波形不稳定时,微调电平调节器可使波形稳定。
(6)扫描时间因数开关“t/div”须根据被测信号的频率来选择相应的档数,使这一信号在荧光屏上显示时有合适的水平X轴方向。
简述示波器的工作原理和使用方法示波器是一种常见的电子测试仪器,用于检测和显示电信号的波形。
它在电子工程、通信、医学等领域中发挥着重要作用。
本文将简要介绍示波器的工作原理和使用方法。
一、工作原理示波器通过接收和处理电信号,并将其转换为可视化的波形图形。
它主要由以下几个部分组成:1. 输入电路:示波器的输入电路用于接收被测信号,常见的输入方式有电压探头、电流探头等。
输入电路通常具有不同的带宽范围和灵敏度,可以适应不同频率和振幅的信号。
2. 触发电路:触发电路确定了示波器何时开始采集和显示波形。
触发通常基于信号的特定条件,如信号达到或超过某个阈值等。
触发电路的设置对于正确显示信号的波形非常重要。
3. 垂直放大器:垂直放大器用于放大输入信号的电压。
示波器通常具有多个垂直放大器,允许对不同幅度的信号进行测量和显示。
垂直放大器通常具有可调的放大倍数和直流耦合/交流耦合模式。
4. 水平放大器和扫描发生器:水平放大器和扫描发生器控制示波器屏幕上波形的时间轴。
水平放大器决定了横向显示的时间范围,而扫描发生器则控制屏幕上波形的扫描速率。
5. 显示屏:示波器的显示屏用于显示波形。
现代示波器通常采用液晶显示屏,具有高分辨率和清晰度。
二、使用方法使用示波器需要以下几个步骤:1. 连接信号:使用正确的电压探头或电流探头将被测信号连接到示波器的输入端口。
确保连接正确,并选择合适的探头放大倍数。
2. 设置触发条件:根据被测信号的特点,设置合适的触发条件。
可以选择边沿触发或脉冲触发,设置触发电平等。
3. 调整垂直和水平放大器:根据被测信号的振幅和频率调整垂直和水平放大器。
确保波形在显示屏上具有适当的大小和清晰度。
4. 调整扫描速率:根据被测信号的周期和需要显示的波形数量,调整扫描速率。
较高的扫描速率可以显示更多的细节,但可能导致波形在屏幕上移动得很快,不易观察。
5. 观察和分析波形:开始采集和显示波形后,观察并分析波形特征。
可以测量波形的振幅、频率、周期等参数,并进行进一步的信号分析。
示波器测试题及答案一、选择题1. 示波器的基本功能是什么?A. 测量电压B. 测量频率C. 测量时间D. 显示电压波形2. 以下哪个不是示波器的探头类型?A. 无源探头B. 有源探头C. 差分探头D. 电流探头3. 示波器的触发方式有哪些?A. 边沿触发B. 脉冲触发C. 视频触发D. 所有以上二、填空题4. 示波器的______功能可以帮助用户测量波形的时间参数。
5. 示波器的垂直灵敏度设置影响______的显示大小。
三、简答题6. 简述示波器的基本组成部件。
7. 描述示波器的垂直和水平扫描方式的区别。
四、计算题8. 假设示波器的屏幕水平刻度设置为1ms/div,屏幕显示的波形周期为2格,求该波形的频率。
五、分析题9. 给定一个信号,如何使用示波器测量其峰-峰值?六、实验题10. 描述如何使用示波器测量正弦波的幅度和频率。
答案:一、选择题1. D2. D3. D二、填空题4. 测量5. 波形三、简答题6. 示波器的基本组成部件包括:显示屏幕、垂直放大器、水平扫描器、触发电路、探头和输入通道。
7. 垂直扫描方式决定了波形在屏幕上的垂直位置,而水平扫描方式决定了波形在屏幕上的水平位置和时间基线。
四、计算题8. 波形周期为2格,每格代表1ms,因此波形周期为2ms。
频率计算公式为:频率 = 1/周期,所以频率 = 1/0.002秒 = 500Hz。
五、分析题9. 要测量信号的峰-峰值,首先确保示波器的探头连接到信号源,然后调整垂直灵敏度和位置,使波形在屏幕上完整显示。
接着使用示波器的光标或测量工具,从波形的最低点到最高点进行测量,得到峰-峰值。
六、实验题10. 使用示波器测量正弦波的幅度和频率,首先将正弦波信号连接到示波器的输入通道。
调整垂直和水平灵敏度,使波形清晰显示。
使用示波器的自动测量功能或手动使用光标测量波形的峰值来确定幅度。
测量周期,然后使用公式频率 = 1/周期来计算频率。
示波器的工作原理和使用方法示波器是一种用于观察电信号波形的仪器,它可以将电信号转换成可视化的波形图形,以便工程师和技术人员对电路的性能进行分析和调试。
本文将介绍示波器的工作原理和使用方法。
一、示波器的工作原理示波器的工作原理基于电信号的振荡和放大。
当电信号进入示波器时,它会被放大并转换成可视化的波形图形。
示波器的核心部件是电子枪和荧光屏。
电子枪会发射一束电子束,这束电子束会被加速并聚焦成一束细线,然后通过一个偏转系统,将电子束偏转成水平和垂直方向。
当电子束击中荧光屏时,它会激发荧光屏上的荧光物质,从而形成一个波形图形。
二、示波器的使用方法1. 连接电路:首先需要将示波器与待测电路连接起来。
通常情况下,示波器会有两个探头,一个用于连接待测电路的信号源,另一个用于连接地线。
2. 调整示波器:在连接电路之后,需要对示波器进行调整。
首先需要调整示波器的触发模式,以便触发电路的波形。
然后需要调整示波器的时间基准,以便调整波形的时间轴。
最后需要调整示波器的垂直增益,以便调整波形的幅度。
3. 观察波形:在调整示波器之后,可以开始观察波形了。
通常情况下,示波器会显示出电信号的波形图形,包括波形的幅度、频率、周期等信息。
通过观察波形,可以分析电路的性能,找出电路中的问题。
4. 调试电路:如果发现电路中存在问题,可以通过示波器来进行调试。
例如,可以通过调整电路的参数,来改变波形的形状和幅度。
通过不断地调试,可以找出电路中的问题,并进行修复。
示波器是一种非常重要的电子测试仪器,它可以帮助工程师和技术人员对电路进行分析和调试。
通过了解示波器的工作原理和使用方法,可以更好地使用示波器,提高工作效率。
在数字电路实验中,需要使用若干仪器、仪表观察实验现象和结果。
常用的电子测量仪器有万用表、逻辑笔、普通示波器、存储示波器、逻辑分析仪等。
万用表和逻辑笔使用方法比较简单,而逻辑分析仪和存储示波器目前在数字电路教学实验中应用还不十分普遍。
示波器是一种使用非常广泛,且使用相对复杂的仪器。
本章从使用的角度介绍一下示波器的原理和使用方法。
1、示波器工作原理示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。
它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。
示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。
1.1 示波管阴极射线管(CRT)简称示波管,是示波器的核心。
它将电信号转换为光信号。
正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。
1.荧光屏现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。
在荧光膜上常又增加一层蒸发铝膜。
高速电子穿过铝膜,撞击荧光粉而发光形成亮点。
铝膜具有内反射作用,有利于提高亮点的辉度。
铝膜还有散热等其他作用。
当电子停止轰击后,亮点不能立即消失而要保留一段时间。
亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。
余辉时间短于10μs为极短余辉,10μs—1ms为短余辉,1ms—0.1s为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。
一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。
由于所用磷光材料不同,荧光屏上能发出不同颜色的光。
一般示波器多采用发绿光的示波管,以保护人的眼睛。
2.电子枪及聚焦电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、**阳极(A1)和第二阳极(A2)组成。
它的作用是发射电子并形成很细的高速电子束。
灯丝通电加热阴极,阴极受热发射电子。
示波器的触发设置详谈“触发”绝对称得上数字示波器灵魂级的概念,如果没有合适的触发条件,波形观测也无从谈起。
虽然很多工程师熟悉触发功能,但只知其表不知其里。
如何深入理解触发呢?这篇ZDS示波器研发笔记在这里分享给大家。
示波器在使用时首先要得到稳定触发的波形,这样才能保证后续的测量、解码等高级功能的可靠性。
现在数字示波器的触发功能越来越强大,从常规触发,到协议触发,再到模板触发,越来越强大。
但在基本的触发设置中,有些小细节的作用不可忽视,灵活掌握后,对使用示波器亦大有裨益。
下文就对触发功能、设置中的触发滤波、触发灵敏度、释抑时间进行分析交流。
一、示波器触发的原理示波器的触发系统与采样系统,是示波器的重要组成部分。
采样系统负责将模拟信号数字化,但信号是源源不断过来的,该取哪部分显示在示波器的界面上呢?如果示波器没有触发系统,采用每隔一段时间或随机某个时间将采样的波形进行叠加,由于采样位置的不确定性和无规律,就会出现图1中非常混乱的波形显示,在屏幕上看起来就像来回滚动的波形。
图1没有触发系统的波形采样这个混乱的现象,和示波器上触发不稳定的现象一致。
如下动态图所示:(此处为动态图1,请在页面中插入)这就要靠触发系统来实现。
触发的原理是一直监控信号流,若发现信号满足设定的触发条件,触发器记录满足条件的信号,启动采样;待数据采集完毕后,由控制器对信号进行处理和显示。
具体如图2所示。
图2 触发过程示波器的触发条件的一个很关键的因素是触发电平,触发电平大多数情况下是用一根直流电平作为基准,当信号的电压超过该直流电平的时刻作为采样波形的起始点。
由于起始采样的位置是有规律的,因此多次采样的波形进行叠加后看上去还是一个稳定的波形。
如图3所示:图3 稳定触发的波形采样示波器的触发功能,一方面可以使波形稳定,波形不再左右摇晃;一方面可以缩短用户调试的时间,只有满足触发条件的信号才会被捕获、显示。
动态调节示波器的触发电平,可以观察波形稳定触发的位置的动态变化,如下动态图所示。
示波器的触发源和触发方式
Q:示波器有哪几种触发方式?如何设置示波器的触发源和方式?
被测信号从示波器的Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。
由此可知,正确的触发方式直接影响到示波器的有效操作。
为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。
1.触发源(Source)选择
要使屏幕上显示稳定的波形,则需将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。
触发源选择确定触发信号由何处供给。
通常有三种触发源:内触发(INT)、电源触发(LINE)、外触发EXT)。
内触发使用被测信号作为触发信号,是经常使用的一种触发方式。
由于触发信号本身是被测信号的一部分,在屏幕上可以显示出非常稳定的波形。
双踪示波器中通道1或者通道2都可以选作触发信号。
电源触发使用交流电源频率信号作为触发信号。
这种方法在测量与交流电源频率有关的信号时是有效的。
特别在测量音频电路、闸流管的低电平交流噪音时更为有效。
外触发使用外加信号作为触发信号,外加信号从外触发输入端输入。
外触发信号与被测信号间应具有周期性的关系。
由于被测信号没有用作触发信号,所以何时开始扫描与被测信号无关。
正确选择触发信号对波形显示的稳定、清晰有很大关系。
例如在数字电路的测量中,对一个简单的周期信号而言,选择内触发可能好一些,而对于一个具有复杂周期的信号,且存在一个与它有周期关系的信号时,选用外触发可能更好。
2.触发耦合(Coupling)方式选择
触发信号到触发电路的耦合方式有多种,目的是为了触发信号的稳定、可靠。
这里介绍常用的几种。
AC耦合又称电容耦合。
它只允许用触发信号的交流分量触发,触发信号的直流分量被隔断。
通常在不考虑DC分量时使用这种耦合方式,以形成稳定触发。
但是如果触发信号的频率小于10Hz,会造成触发困难。
直流耦合(DC)不隔断触发信号的直流分量。
当触发信号的频率较低或者触发信号的占空比很大时,使用直流耦合较好。
低频抑制(LFR)触发时触发信号经过高通滤波器加到触发电路,触发信号的低频成分被抑制;高频抑制(HFR)触发时,触发信号通过低通滤波器加到触发电路,触发信号的高频成分被抑制。
此外还有用于电视维修的电视同步(TV)触发。
这些触发耦合方式各有自己的适用范围,需在使用中去体会。
3.触发电平(Level)和触发极性(Slope)
触发电平调节又叫同步调节,它使得扫描与被测信号同步。
电平调节旋钮调节触发信号的触发电平。
一旦触发信号超过由旋钮设定的触发电平时,扫描即被触发。
顺时针旋转旋钮,触发电平上升;逆时针旋转旋钮,触发电平下降。
当电平旋钮调到电平锁定位置时,触发电平自动保持在触发信号的幅度之内,不需要电平调节就能产生一个稳定的触发。
当信号波形复杂,用电平旋钮不能稳定触发时,用释抑(Hold Off)旋钮调节波形的释抑时间(扫描暂停时间),能使扫描与波形稳定同步。
极性开关用来选择触发信号的极性。
拨在“+”位置上时,在信号增加的方向上,当触发信号超过触发电平时就产生触发。
拨在“-”位置上时,在信号减少的方向上,当触发信号超过触发电平时就产生触发。
触发极性和触发电平共同决定触发信号的触发点。