医疗辅助机器人发展趋势
- 格式:pdf
- 大小:359.01 KB
- 文档页数:6
医疗机器人技术的现状和未来发展趋势医疗机器人是一种智能化的机器人,它可以在医疗领域进行多种任务,包括手术操作、康复治疗、病房监测等等。
医疗机器人技术可以提高医疗效率,减少医疗事故,改善医疗病人体验,因此备受人们关注。
本文将从现状和未来发展趋势两个方面来讨论医疗机器人技术。
一、医疗机器人技术的现状1.手术机器人手术机器人是医疗机器人技术中最成熟的一种。
它是由医生穿戴控制器,通过手柄和脚踏板控制机器人手术操作,可以提高手术的精度和安全性。
目前市场上的手术机器人主要是Intuitive Surgical公司的Da Vinci手术机器人,它已经在全球范围内被广泛使用。
但是,手术机器人的高昂价格和操作技能的要求,一定程度上限制了它的使用范围。
2.康复机器人康复机器人是另外一种医疗机器人技术。
它可以通过电力、气压、机械等方式,帮助病人完成训练和康复治疗。
康复机器人的应用非常广泛,从脑卒中、多发性硬化症到脊髓损伤,它都有很好的效果。
因为它可以根据病人的不同情况制定不同的训练计划和设备参数,所以康复机器人的效率和安全性都非常高。
3.护理机器人护理机器人是可以帮助病人完成基础护理的机器人,如洗澡、擦拭、烧水等。
护理机器人可以减轻护士的工作量,提高护理效率。
目前护理机器人的性能尚未完全发挥,但是它在未来有很大的潜力,可以逐渐替代一些重复性强的护理工作。
二、医疗机器人技术的未来发展趋势1.智能化和自主化未来的医疗机器人技术将越来越智能化和自主化。
智能化可以使机器人更好地理解和执行医生的指令,服从病人的需求。
自主化则可以使机器人更加独立地完成某些任务,如自动巡视病房、自动服药等。
2.多样化和灵活性未来的医疗机器人技术将越来越多样化和灵活性。
不同的病人和不同的医疗任务需要不同的机器人来完成。
医疗机器人制造商需要根据医院的需求,设计出不同种类和型号的机器人,以满足医院的需要。
3.互联网和信息化未来的医疗机器人技术将与互联网和信息化更加结合。
医疗机器人的发展趋势与挑战随着科技的进步和人口老龄化的加剧,医疗机器人在医疗领域的应用变得越来越广泛。
医疗机器人的发展为医疗工作带来了巨大的变革,然而,它们也面临着一些挑战。
本文将探讨医疗机器人的发展趋势和所面临的挑战。
一、医疗机器人的发展趋势1. 机器人在手术中的应用随着机器人技术的不断改进,机器人在手术中的应用正变得越来越普遍。
机器人手术可以减少手术创伤、提高手术精度,并且能够利用机器人的灵活性和精确度完成一些人类难以实现的手术任务。
目前,机器人手术已经成功应用于肺癌手术、心脏手术等领域。
2. 机器人在康复治疗中的应用医疗机器人在康复治疗中的应用也呈现出增长的趋势。
例如,康复机器人可以用于帮助中风患者进行肢体功能的康复训练,提供精确的力度和姿势控制,对康复的效果有很大的帮助。
3. 机器人在护理中的应用随着护理工作的压力增加和人力资源的短缺,机器人在护理中的应用变得尤为重要。
例如,机器人护理员可以协助病人进行如上下床、转移等日常护理工作,减轻了护士的工作负担,并且可以降低因人为原因导致的护理差错。
二、医疗机器人面临的挑战1. 安全性与隐私问题医疗机器人在使用过程中可能会面临一些安全性与隐私问题。
例如,在机器人手术中,由于机器人是由操作人员远程控制的,网络安全可能会成为一个风险因素。
此外,对于机器人采集的患者数据,隐私保护也是一个重要的问题。
2. 技术难题尽管医疗机器人的发展取得了重要的突破,但仍然存在一些技术挑战需要解决。
例如,机器人在手术中的精确度和操作的自动化程度仍然有待提高,同时机器人的智能性也需要进一步发展。
3. 成本与可行性医疗机器人的成本较高,这限制了其在医疗机构中的普及和应用。
并且,对于一些发展中国家来说,由于医疗资源匮乏,设备维护和培训人员的成本也会成为一个挑战。
三、未来展望尽管医疗机器人面临一些挑战,但它们在医疗领域的应用潜力巨大。
随着技术的进一步改进和成本的降低,医疗机器人将在未来得到更广泛的应用。
医疗机器人技术的发展现状与趋势在当今科技飞速发展的时代,医疗领域也迎来了重大的变革,医疗机器人技术作为其中的一项前沿创新,正逐渐改变着医疗行业的面貌。
医疗机器人技术的发展现状可谓是成果丰硕。
首先,手术机器人已经在众多复杂手术中展现出了卓越的性能。
例如,达芬奇手术机器人凭借其高精度和高灵活性,能够协助医生完成微创手术,减少手术创伤和患者的恢复时间。
它通过多个机械臂和高清摄像头,为医生提供清晰的手术视野和精准的操作控制,使得一些过去难以实现的精细手术变得更加可行和安全。
康复机器人也在帮助患者恢复身体功能方面发挥着重要作用。
对于中风、脊髓损伤等患者,康复机器人可以提供有针对性的训练和辅助,帮助他们重新获得运动能力。
这些机器人能够根据患者的具体情况制定个性化的康复方案,并实时监测和调整训练强度,提高康复效果。
此外,医疗物流机器人在医院内部的物资运输和管理中发挥了重要作用。
它们能够按照预设的路线自动运输药品、医疗器械和样本等,不仅提高了工作效率,还减少了人为错误和交叉感染的风险。
同时,医疗机器人在诊断领域也取得了一定的进展。
一些机器人可以通过图像识别和数据分析技术,辅助医生进行疾病的早期诊断,提高诊断的准确性和及时性。
然而,医疗机器人技术在发展过程中也面临着一些挑战。
首先是成本问题。
目前,许多先进的医疗机器人设备价格昂贵,这使得它们在一些医疗机构中的普及受到限制。
高昂的采购成本、维护费用以及培训费用,对于一些资源相对不足的地区和医院来说是一个巨大的负担。
其次,技术的复杂性也给医疗机器人的推广带来了困难。
医生和医护人员需要经过专门的培训才能熟练操作这些机器人,而培训的过程往往需要耗费大量的时间和精力。
再者,医疗机器人的安全性和可靠性至关重要。
任何技术故障或失误都可能对患者的生命健康造成严重影响,因此在技术研发和应用过程中,必须确保机器人的性能稳定和安全可靠。
另外,相关法律法规和伦理问题也需要引起重视。
随着医疗机器人在医疗实践中的应用越来越广泛,如何制定合理的法规来规范其使用,如何解决可能涉及的伦理争议,都是亟待解决的问题。
医疗机器人的现状与未来发展趋势近年来,随着科技的快速发展,医疗机器人在医疗行业中扮演着越来越重要的角色。
医疗机器人拥有独特的优势,能够帮助医生进行手术、进行精准的诊断和治疗,有效提高医疗效率,减少患者的痛苦和风险。
本文将从医疗机器人的现状与应用、技术挑战以及未来发展趋势等方面进行探讨。
医疗机器人的现状与应用医疗机器人的应用范围非常广泛,涉及到手术机器人、辅助机器人、康复机器人等多个领域。
目前,手术机器人已经在世界范围内得到广泛使用。
手术机器人能够通过图像处理和操纵机械手臂实现精确操作,提高手术的成功率和准确性。
辅助机器人可以帮助医生进行诊断和治疗,比如智能导航系统可以为医生提供实时的导航和手术过程的监控,提高手术质量和安全性。
康复机器人则可以帮助患者进行康复训练,提高康复效果。
这些机器人在手术过程中和日常医疗中发挥着重要的作用。
技术挑战尽管医疗机器人的应用已经取得一定的成果,但是仍然存在一些技术挑战。
首先,医疗机器人需要高精度的定位和操作,这对机器人的精确度和感知能力提出了更高的要求。
其次,医疗机器人需要处理复杂的图像和信号,对图像处理和模式识别等技术提出了挑战。
此外,医疗机器人的机械结构和控制系统也需要不断创新和改进,以适应不同的医疗需求和场景。
未来发展趋势随着人工智能和机器学习等技术的不断发展,医疗机器人将有更广阔的应用前景。
首先,机器学习算法的应用将使医疗机器人能够更好地理解患者病情,并根据病情自主调整治疗策略。
其次,虚拟现实和增强现实技术的发展将使医疗机器人的操作更加直观和精确。
患者可以通过戴上虚拟现实设备与机器人进行交互,感受到真实的手术场景,提高手术效果和患者体验。
此外, 3D 打印技术的进步将使医疗机器人更加灵活和多功能,为医生提供更多的解决方案。
综上所述,医疗机器人在医疗行业中的地位和作用越来越重要。
医疗机器人的应用范围广泛,包括手术机器人、辅助机器人、康复机器人等多个领域。
然而,仍然存在很多技术挑战需要克服。
医疗机器人辅助手术技术的发展趋势与挑战分析概述医疗机器人辅助手术技术是一种结合了机器人技术和医疗手术的创新技术。
随着科技的不断进步和医疗需求的增加,人们对于手术的精确性和安全性的要求也越来越高,医疗机器人辅助手术技术正应运而生。
本文将通过分析发展趋势和面临的挑战,探讨医疗机器人辅助手术技术的未来发展前景。
一、发展趋势1. 机器人进一步智能化随着人工智能技术的快速发展,医疗机器人辅助手术技术也将朝着智能化的方向发展。
智能机器人可以通过学习和分析大量的手术数据,提高手术的精确性和效率,减少术后并发症的发生率。
未来,机器人辅助手术技术将能够根据患者的病情自动调整手术方案,帮助医生更好地进行手术操作。
2. 机器人辅助手术技术在范围和专业领域上的扩大目前,机器人辅助手术技术主要应用于泌尿外科、心脏外科和神经外科等领域。
随着技术的进步和经验的积累,医疗机器人辅助手术技术将逐渐在更多的手术领域得到应用,如胸外科、肝脏外科和骨科等。
同时,也将在术中治疗、术后康复和术后护理等方面发挥更大的作用,为患者提供全方位的医疗服务。
3. 可穿戴式设备与机器人技术的结合随着可穿戴技术的不断发展,将可穿戴设备与机器人技术结合,将成为医疗机器人辅助手术技术的重要发展方向。
通过将传感器和控制系统集成到可穿戴设备中,医疗人员可以实时监测患者的生理参数,并远程控制机器人进行手术操作。
这种技术可以降低手术过程中的风险,并提供更好的患者体验。
二、面临的挑战1. 技术挑战医疗机器人辅助手术技术的发展面临着技术挑战。
首先,机器人的稳定性和精确性需要进一步提高,以确保手术操作的准确性和安全性。
其次,对于机器人的智能化程度要求更高,需要更加先进的人工智能算法和大数据分析。
另外,机器人辅助手术技术需要与其他医疗设备和信息系统实现无缝连接和协同工作,这也对技术的整合能力提出了更高的要求。
2. 法律和伦理问题医疗机器人辅助手术技术的发展也带来了一些法律和伦理问题。
机器人在医疗领域的应用与未来发展趋势近年来,随着科技的迅猛发展,机器人逐渐成为医疗行业的新亮点。
机器人不仅可以提高手术效率和精确度,还可以担当护理助手和医疗咨询师的角色。
本文将探讨机器人在医疗领域的应用现状以及未来的发展趋势。
一、机器人在手术领域的应用传统手术依赖于医生的技术和经验,然而,即使是最优秀的医生也无法控制手术期间的微小震动或疲劳等因素,这可能对手术过程和患者的康复造成一定影响。
而机器人辅助手术系统的出现改变了这一局面。
目前,机器人手术系统通常由一个主机、一个操作台和几只可操纵的机器臂组成。
医生可以通过操作台上的控制器远程操纵机器臂进行手术。
这种系统具有高精度和可重复性的优势,有助于减小手术风险,并减少患者的痛苦。
除了手术过程中的辅助操作外,机器人还可以借助人工智能的技术帮助医生进行病情分析、判断治疗方案等。
例如,利用机器学习算法,机器人可以从大量的医学文献中提取和总结有用的信息,为医生提供参考和决策支持。
二、机器人在护理领域的应用除了手术辅助外,机器人还能够在护理工作中发挥重要作用。
例如,某些机器人可以被编程为协助康复训练,帮助患者进行日常活动补偿训练。
机器人的机械臂可以帮助患者进行物理治疗,例如,进行关节运动或肌肉强化运动。
此外,还有一些机器人被设计成为陪护机器人,可以陪伴老年人或患病者。
这些机器人可以进行简单的对话,并提供一些日常生活方面的帮助,比如提醒用药时间、帮助购物等。
虽然这些机器人不能完全替代人陪护的作用,但可以减轻护理人员的工作负担。
未来的发展趋势随着科技的不断进步,机器人在医疗领域的应用将进一步扩展。
以下是未来机器人发展的几个可能趋势:1. 极小型机器人:随着微纳技术的进步,机器人越来越小,未来可能出现更小型的机器人,可以在人体内进行微创手术或药物传送。
2. 自主机器人:目前的机器人需要由医生操作,但是未来的机器人可能拥有更高级的自主能力,能够根据环境和任务自行决策和执行。
机器人技术在医疗领域的发展现状与未来趋势分析引言:近年来,机器人技术在医疗领域的应用越来越广泛,为医疗行业带来了一系列革命性的变化。
机器人在手术、护理、康复以及疾病预防等方面发挥着重要作用,极大提高了医疗效率、减少了医疗事故发生的几率。
本文将对机器人技术在医疗领域的发展现状进行分析,并展望未来机器人技术在医疗领域的发展趋势。
一、机器人技术在医疗领域的现状:1. 机器人辅助手术:机器人在手术过程中的应用已经取得了显著的进展。
通过机器手臂的精确控制,医生可以进行更为精细的手术操作,减少了手术创伤和出血量,提高了手术的成功率。
此外,机器人辅助手术还可以减少医生的劳动强度,降低了操作误差。
2. 机器人护理:机器人在护理领域的应用主要体现在日常生活的辅助功能上。
例如,机器人可以帮助病患完成床边搬运、给药、监测生命体征等工作,减轻了护士的负担,提高了护理的效率。
此外,机器人还可以通过语音、视频等方式与病患进行沟通交流,为病患提供情感支持。
3. 机器人康复:机器人在康复领域的应用对于患有运动障碍的患者来说具有重要意义。
机器人可以模拟人体肌肉和关节的运动,帮助患者进行康复训练。
通过不断重复的训练,机器人可以帮助患者恢复肌肉的功能,提高运动能力,加速康复过程。
4. 机器人辅助疾病预防:机器人在疾病预防方面的应用主要包括智能医疗设备和远程监测系统。
智能医疗设备可以通过传感器和算法分析患者的健康数据,提前预测疾病的发生,并及时作出干预。
远程监测系统可以实时监测患者的健康状况,减少患者到医院就诊的频率,减轻了医疗资源的压力。
二、机器人技术在医疗领域的未来趋势:1. 机器人智能化:未来的机器人将会具备更高的智能化水平,能够更好地理解和适应医疗环境。
机器人将具备自主学习和决策的能力,能够根据医生和患者的需求进行智能化的操作和辅助。
2. 机器人个性化:未来的机器人将会更注重个性化服务,能够根据患者的特殊需求,提供定制化的医疗护理。
医疗机器人技术的现状与发展趋势随着人口老龄化和医疗技术的不断发展,全球对医疗机器人技术的需求不断增加。
受到COVID-19疫情的影响,自动化和远程医疗也日益成为医疗行业的发展趋势。
本文将从医疗机器人技术的应用领域、市场规模、发展瓶颈及未来发展趋势等方面进行深入探讨。
一、应用领域医疗机器人技术的应用领域广泛,主要分为手术机器人、辅助机器人、康复机器人和药物输送机器人。
手术机器人已经成为一种常见的手术工具,其中著名的代表是美国Intuitive Surgical公司的“达芬奇”机器人。
它结合了3D成像、微型操作装置、一体化手术台和人机交互接口等先进技术,使得手术医生可以实现更精确的手术操作,缩短术后康复时间。
辅助机器人则主要是为医生提供辅助诊断和治疗的工具。
比如,智能超声机器人可以扫描患者身体内的器官并对其进行3D建模,从而更好地预测疾病并减轻医生的工作负担。
康复机器人主要用于帮助瘫痪或残疾患者恢复肌肉和骨骼的功能。
这些机器人能够通过动力学分析和机器人学的算法控制肌肉、骨骼和关节的运动,从而帮助患者进行康复锻炼。
药物输送机器人则是一种自动化的药物管理系统,能够自动调配、配制和分配药物。
这种机器人可以显著减少医护人员的工作量,同时减少药物链中出错的风险。
二、市场规模根据市场研究公司的数据,医疗机器人市场规模正以惊人的速度增长。
2020年,医疗机器人市场规模预计达到144亿美元,并有望年复合增长13%以上,到2025年将达到247亿美元。
其中,手术机器人是最大市场,占据了40%的市场份额,而药物输送机器人则是增长最快的领域。
此外,随着自动化和智能化技术的不断发展,辅助机器人市场也将逐渐占据更大的份额。
三、发展瓶颈尽管医疗机器人技术的发展势头迅猛,但是仍存在一些发展瓶颈。
其中,成本是医疗机器人技术最大的挑战之一。
目前,大多数医疗机器人的售价都在数百万美元以上,这使得许多医院难以承受。
另外,医疗机器人技术的安全性和可靠性也需要进一步加强。
机器人技术在医疗领域中的应用和发展趋势近年来,随着人工智能和机器人技术的持续发展,机器人技术在医疗领域中的应用越来越受到关注。
机器人技术可以应用于医疗诊断、手术、护理等方面,为患者提供更加精准、高效、安全的医疗服务。
一、机器人技术在医疗领域中的应用1、医疗诊断机器人技术可以应用于医疗诊断中,可以通过人工智能和模式识别技术,对医学图像、病历数据等进行分析和解读,辅助医生进行疾病的诊断和判断。
例如,美国的“IBM沃森医疗”系统可以解析文字、影像、实验数据和人类智慧数据,为医生提供更加精准的医疗诊断方案。
2、手术机器人技术可以应用于外科手术中,可以通过机器人手臂实现高精度、大范围的手术操作。
机器人手术可以减小手术创伤、缩短手术时间、降低手术风险和并发症发生率。
如美国的“达芬奇”机器人手术系统,可以通过高清3D图像和机器人手臂进行微创手术操作,此技术已广泛应用于泌尿外科、妇科、胃肠外科等医疗领域。
3、护理机器人技术可以应用于康复护理中,能够通过智能机器人的辅助下,提高患者自理能力,降低康复时间和费用,增加康复效果。
如日本研发的“可爱的机器人小狗Aibo”,可以在康复护理中作为患者的“陪伴者”,提高患者的心情和康复效果。
二、机器人技术在医疗领域的发展趋势1、个性化定制医疗服务随着人们对医疗精细化、个性化诊疗需求的不断增加,机器人技术在医疗领域中的应用将更趋向于个性化定制化。
未来医疗机器人将能够通过人工智能和物联网技术,为患者提供更加精准的健康数据分析和医疗干预方案。
2、全景化医疗服务机器人技术可以应用于远程医疗服务中,能够为医疗系统提供更加高效、便捷的医疗服务。
未来的全景化远程医疗服务将通过机器人辅助实现患者远程诊疗、病历远程管理、健康指导等多样化服务。
3、移动化医疗解决方案随着人们生活方式的不断改变,移动化医疗服务将成为医疗机构和患者之间沟通的主要方式。
未来的移动化医疗解决方案将包括机器人语音识别、远程手术、患者健康管理等方面,全面提升医疗服务效率和质量。
Feature articleRobots in healthcareRobert BogueOkehampton,UKAbstractPurpose–This paper aims to review of the use of robots in two healthcare applications:surgery and prosthetics.Design/methodology/approach–Following a brief introduction,this paperfirst considers robotic surgery and discusses a selection of commercial products,applications and recent technological advances.It then considers recent developments in robotic prosthetics.Findings–It is shown that surgical robots are being employed in an ever-growing range of clinical procedures.Systems employing tactile feedback are under development.Improved robotic prosthetics are the topic of a major research effort and recent developments include hands and grippers,walking aids and novel control techniques,including thought-activated systems which exploit advances in brain-computer interface technology. Originality/value–This paper provides details of recent developments and applications of robotic surgery and prosthetics.Keywords Robotics,Health care,Surgery,Prosthetic devices,User interfacesPaper type Technical paperIntroductionHealthcare is a robotic application which is growing due to demographic changes(an ever-growing elderly population), anticipated shortages of healthcare personnel,expectations for improving the quality of life for the elderly,the injured and the disabled and the need for even higher quality care,such as precision surgery and advanced prosthetics.These factors are stimulating the development and application of healthcare robotics and this article reviews two specific applications: surgery and prosthetics.Surgical robotsRobot-assisted surgery was originally developed to overcome certain limitations of minimally invasive procedures.Instead of directly moving the instruments,the surgeon uses a computer console to manipulate instruments attached to multiple robotic arms.The computer translates the surgeon’s movements into actions which are performed on the patient by the robot. Major advantages of robotic surgery are precision,smaller incisions,decreased blood loss,less pain and quicker recovery time.The world’sfirst surgical robot was the“Arthrobot”, which was developed and used for thefirst time in Vancouver, Canada in1983.Since then,numerous products have been developed and the best known today is the da Vinci Surgical System produced by Intuitive Surgical,Inc.(for example see Bloss,R.,Y our next surgeon could be a robot,38(1)).This comprises three components:a surgeon’s console,a patient-side robotic cart with four arms manipulated by the surgeon (one to control the camera and three to manipulate instruments),and a high definition3-D vision system. Articulated surgical instruments are mounted on the robotic arms which are introduced into the body through cannulas. This system has been used in all manner of clinical procedures and in1998it was employerd to perform thefirst robotic heart by-pass at the Leipzig Heart Centre in Germany.Robot-assisted hysterectomies and cancer staging are now being performed with the da Vinci system.Robotic neurosurgery is now a reality;history was made on12 May2008when the neuroArm robotic system(Figures1and2) operated on a human patient at the Faculty of Medicine, University of Calgary,Canada.This was thefirst time a robot had been used to perform image-guided neurosurgery and removed a brain tumour,an egg-shaped olfactory groove meningioma,from a21-year-old patient.NeuroArm operates in conjunction with real-time magnetic resonance imaging (MRI),providing surgeons with unprecedented levels of detail and control,enabling them to manipulate tools at a microscopic scale.The system comprises two robotic arms,each with six degrees of freedom,and a third arm equipped with two cameras providing3-D stereoscopic views.It allows updated MRI to be obtained during all phases of an operation(pre-,post-and intra-operative)without moving the patient.Working with a specialised set of tools,the robot is designed to perform soft tissue manipulation,needle insertion,suturing,tissue grasping,cauterising and cutting,manipulation of a retractor, suction and irrigation.The neuroArm was the brainchild of Dr Garnette Sutherland from the University of Calgary and was developed in collaboration with MDA,a Canadian robotics specialist.An improved version of the original robot,“neuroArm II”,is presently under development. Neurosurgical procedures are also the main application for the“neuromate”robot produced by Renishaw plc.This is a standard multi-axis robot which is used for electrode implantation procedures for deep brain stimulation,stereo electroencephalography(EEG)and motor cortex stimulation. Other uses include the implantation of catheters for cell grafts, drug delivery and radiotherapy.The current issue and full text archive of this journal is available at /0143-991X.htmIndustrial Robot:An International Journal38/3(2011)218–223q Emerald Group Publishing Limited[ISSN0143-991X][DOI10.1108/01439911111122699]218Surgeons feel the forceA major limitation of existing surgical robots is the lack of tactile feedback which can result in,for example,excessively tight or loose sutures.However,in 2010researchers from EindhovenUniversity of T echnology unveiled Sofie,the “Surgeon’s Operating Force-feedback Interface Eindhoven”robot which features force feedback applied to the operator’s joysticks (Figures 3and 4).The greater the applied presure,the greater Figure 1Dr Garnette Sutherland with the neuroArm roboticsystemSource: Courtesy of the University of CalgaryFigure 2Close-up of theneuroArmSource: Phil Crozier, courtesy of the University of CalgaryFigure 3The prototype Sofie medical robot is the first to feature tactilefeedbackSource: Eindhoven University of TechnologyFigure 4Linda van den Bedem beside the SofierobotSource: Eindhoven University of Technology219the resistance felt on the joysticks.This was developed as part of a PhD project by Linda van den Bedem and is thefirst surgical robot to incorporate this type of feedback,which has been patented.Sofie is also more compact than most surgical robots and is mounted on the operating table instead of thefloor, meaning that when the table is tilted or moved,the robot will move with it,so no readjustments are necessary.At present, van den Bedem and colleagues are exploring Sofie’s commercial potential but while surgeons are very enthusiastic about the prototype,the price must be considerably less than that of existing robots such as the da Vinci,which costs about $1.5million.The researcher expects that it will take aroundfive years before the Sofie can be taken to market.Achieving force feedback is attracting growing interest and recent research led by a team from the Rensselaer Polytechnic Institute involves the development of a touch-sensitive virtual reality simulator that will realistically replicate how performing a gastric band operation feels,making it ideal for developing and teaching fundamental surgical skills and also for assessing physicians wishing to be certified as a laparoscopic surgeon.The system will feature laparoscopic tools that will be connected to equipment similar to that used in actual surgical situations. The monitor will display computer-generated models on the simulation screen and the user will interact with the simulation by vision and touch.The haptics technology will help the user to experience how cutting and stitching real tissue feels. Radiosurgery and robotic guidanceRobotic systems are now being used for radiosurgery. An example is the CyberKnife(Figure5),produced by Accuray,Inc.the world’sfirst and only robotic radiosurgery system designed to treat tumours non-invasively throughout the body.It is a frameless robotic system and was invented by John R.Adler,a Stanford University Professor of neurosurgery and radiation oncology and Peter and Russell Schonberg of Schonberg Research Corporation.The two main elements of the system are the radiation source and a KUKA robotic arm which allows the source’s energy to be directed at any part of the body,from any direction.The source is a compact, 6-mV X-band linac(linear particle accelerator)which is capable of delivering high doses of radiation with sub-mm accuracy.The robotic mobility of the CyberKnife system enables the delivery of a large number of non-isocentric,non-coplanar beams,individually directed at unique points within the intended target.This facilitates frameless treatment and eliminates the need to reposition the patient for each beam. Managing respiratory motion is one of the most significant challenges in radiation treatment delivery.While most other systems employ motion-compensation techniques such as gating or breath-holding,the company’s latest product,the CyberKnife VSI System,intelligently tracks respiratory motion in real-time and automatically adapts to changes in the patient’s breathing pattern.The company’s“Iris”variable aperture collimator,based on two offset banks of six prismatic tungsten segments,allows the rapid manipulation of the beam geometry to deliver up to12beam sizes from each linac position with characteristics virtually identical to that offixed circular collimators.The delivery of multiple non-coplanar beams enhances dose conformality and creates very steep dose gradients,reducing the dose to surrounding structures.A miniature,high-precision hexapod robot with six degrees of freedom is being used to assist guidance in spinal surgery. The bone-mounted system,SpineAssist(Figures6and7),can accurately guide the surgeon to achieve maximum precision when placing implants to stabilise spinal(vertebrae)fusions in both open and minimally invasive surgery.Apart from the miniature hexapod,the system also consists of preoperative planning software with automaticfluoroscopic and CT image processing and a set of rigid bonefixing clamps and platforms.Figure5The CyberKnifesystem Source: Accuray, Inc.Figure6The SpineAssistsystemSource: Mazor Robotics LtdFigure7Close-up of theSpineAssistSource: Mazor Robotics Ltd220The hexapod measures50mm in diameter and80mm in height and weighs250g.The overall system accuracy and repeatability is less than100m m and10m m,respectively,and the motion control accuracy is10m m.Thesefigures are achieved through the use of high precision brushless DC motors,miniature lead screws and seven LVDT position sensors.SpineAssist positions its arm in the trajectory planned by the surgeon,pinpointing the exact location of the implant and the surgeon then drills and places the implant with2.5 times more accuracy than by freehand positioning and with51 times less radiation exposure from the CT scans.The SpineAssist system and the associated surgical procedures were developed by Mazor Surgical T echnologies,now Mazor Robotics Ltd,which was established in2001as a spin-off from the Israel Institute of T echnology.Robotic prostheticsProsthetic limbs have been the topic of a major research effort for many years,reflecting the desire to impart greater mobility to the disabled and the aged and also to assist in the rehabilitation of injured military personnel.Several robotic prosthetic limbs such as hands,arms and feet have been discussed in previous issues of this journal and the majority are complex electromechanical systems featuring a multitude of sensors,mechanical joints and actuators.Now,however,some groups are investigating less complex approaches and an example is research at Y ale and Harvard Universities.A group at Y ale’s Grasping and Manipulation,Rehabilitation Robotics and Biomechanics(GRAB)Lab has built a novel,four-fingered robotic hand which uses only a single actuator for the eight joints yet is able to adapt their weight passively to large variations in object geometry(Figure8).The hand is constructed using polymer-based shape deposition manufacturing(SDM),with joints formed by elastomericflexures and actuators and sensors embedded in tough,rigid polymers.SDM is an emerging manufacturing technique whereby the rigid links and compliant joints of the gripper are created simultaneously.This eliminates metal bearings,seams and fasteners that are often the source of mechanical failure.Experimental work with the prototype hand showed that even with only three positioning degrees of freedom and open-loop control,objects with a large range ofsizes,shapes and mass could be reliably grasped.This work has begun to change the way researchers approach the problem of robot grasping and may ultimately yield prosthetics which are lighter and more reliable than existing devices.Another novel approach to the gripping problem was reported by a group from the universities of Chicago and Cornell,together with iRobot Corp.,an MIT spin-off,in2010.They have created a “universal gripper”that uses the jamming of particulate material inside an elastic bag to hold objects.The gripper uses the same phenomenon that makes a vacuum-packed bag of ground coffee sofirm;in fact,ground coffee worked very well in the device.The researchers placed the elastic bag against a surface and then removed the air from it,solidifying the ground coffee inside which formed a tight grip.When air is returned to the bag,the grip relaxes.Three separate mechanisms contribute to the gripping force:friction,suction and interlocking.This gripping effect requires no sensory feedback and it was found that volume changes of less than0.5per cent are sufficient to grip objects reliably and hold them with forces exceeding their weight by many times.Some companies are now developing robotic systems that aim to overcome the mobility limitations of wheelchairs,by restoring the user’s ability to walk.For example,the Rex(robotic exoskeleton),launched in2010by Rex Bionics of New Zealand,is a pair of robotic legs that enables the user to stand up and walk with their arms free,move sideways,turn around and go up and down steps.It is suitable for wheelchair users who are capable of self-transfer and the use of a joystick.The unit is stabilised by a gyroscopic system,powered by a rechargeable battery which gives around2h of active use and weighs approximately38kg(Figure9).Eight spinal cord injury patients and one with muscular dystrophy have used the Rex experimentally.A somewhat similar system is the ReWalk (Figure10),produced by the Israeli company Argo Medical T echnologies Ltd This is also at the clinical trial stage and again uses battery power but at,15kg it is far lighter than the Rex.Fabricated from composite materials,it consists of a backpack, an upper body harness and leg supports that arefitted with motorised knees and hips.The wearer,who must have the use of their upper body,controls the movement of the leg supports Figure8The Yale/Harvard robotic hand(a)(b)Notes: (a) The complete arm and hand; (b) the gripper in actionSource: Dollar and Howe (2010)221with crutches,while motion sensors connected to a backpack computer let the device know when a step should be taken.The ReWalk is expected to go on the market in 2011.Control by thoughtThese two devices are more correctly termed exoskeletons rather than prosthetics and both use quite rudimentary control mechanisms (a joystick and upper body motion)but in the case of true prosthetics,which replace rather than augment a limb,improved mechanisms are required.This is one of the key objectives of research funded by DARPA,the US Defence Advanced Research Projects Agency,which has been working on control technologies for several years as part of its Revolutionising Prosthetics Programme.The ultimate aim is to achieve control by thought and a team at Johns Hopkins University,who were responsible for much of DARPA’s earlier prosthetic progress,received a $34.5million contract from the agency in 2010to manage the next stages of the project.The researchers will test the Modular Prosthetic Limb,which is an upper and lower arm and hand,on a human.The test subject’s thoughts will control the arm,which offers 22degrees of motion,including independent movement of each finger,and provides feedback that essentially restores a sense of touch.It weighs around nine pounds and will rely on micro-arrays implanted into the subject’s brain that record signals and transmit them to the device.The project partners include the University of Pittsburgh and the California Institute of T echnology,for their experience in brain-computer interface(BCI)technology;the University of Chicago,for its expertise in sensory perception;the University of Utah,for its capabilities in developing implantable devices suitable for interfacing with the human brain;and HDT Engineered T echnologies,for its skill in building prosthetic limbs.Within a year,the JHU-led team will begin testing the system with spinal cord injury patients.However,all existing methods to extract human neural information are inadequate for high performance prostheses,because either the level of extracted information is too low (,500events/s)or the functional lifetime is too short (,2years).Recent technological advances present new opportunities to solve both of these limitations.It is now feasible to develop tissue-response-mitigating implanted cortical microelectrodes which can extend interface lifetime well beyond two years and toward the lifetime of the patient.Other recent advances that are expected to solve these issues include high resolution peripheral neuromuscular interfaces,high-density electrocorticography arrays and tissue-engineered biotic/abiotic interfaces.These technologies are being investigated by a new DARPA programme “Histology for interface stability over time”.Some clues to the possible future direction this technology may take can be gained from the broader field of BCI technology.Reflecting the problems associated with brain implants,several BCI groups are investigating non-invasive means of thought detection,most notably EEG.Some companies have already commercialised rudimentary EEG-based BCI systems which translate thoughts into simple computer commands and the control of roboticFigure 9The Rex lower limbexoskeleton Source: Colleen Tunnicliff/Rex Bionics LtdFigure 10TheReWalkSource: Argo Medical Technologies Ltd222prosthetics is frequently cited as a major,future application of BCI technology.In2009,Honda demonstrated that its humanoid ASIMO robot could be controlled to a limited degree by the operator’s thoughts.The experimental system combines EEG with near-infrared(NIR)spectroscopy and the operator wears a helmet featuring NIR and EEG sensors which monitor and decode electrical brainwaves and cerebral bloodflow.An alternative approach to achieving improved control may result from research into“neurophotonics”.In2010the Southern Methodist University’s Neurophotonics Research Centre announced that it is leading a DARPA-funded project to develop an optical link,compatible with living tissue,that will connect powerful computer technologies to the human nervous system through hundreds or perhaps thousands of sensors embedded in a single opticalfibre.Unlike metal nerve interfaces,opticalfibres would not be rejected or destroyed by the body’s immune system.The brain will be able to both send and receive signals from a prothetic limb,thus giving amputees the ability to function normally.The Centre brings together researchers from Vanderbilt University,Case Western Reserve University,the University of T exas at Dallas and the University of North T exas.The Center’s industrial partners include Lockheed Martin,Plexon,Texas Instruments, National Instruments and MRRA.The research builds on partner Universities’recent advances in light stimulation of individual nerve cells and new,extraordinarily sensitive optical sensors being developed at SMU.Professor Volkan Otugen, SMU Director for the Center has pioneered research intosensors which utilise“whispering gallery mode”(WGM) resonators.The dielectric resonators are high optical quality polymeric spheres and the measurement principle is based on the detection of extremely small sphere deformations by monitoring the corresponding optical WGM shifts.ConclusionsBoth of the applications considered here illustrate well the contribution that robotics is making to improve healthcare.It is inevitable that robotic systems will play a growing role in the future as the fruits of research,which is progressing on a number of fronts,reaches the market.Robot-assisted surgery will expand as new capabilities and procedures are developed and it is likely that,within the forseeable future,ever more capable prosthetics,including thought-controlled devices,will become a reality.ReferenceDollar,A.M.and Howe,R.D.(2010),“The highly adaptiveSDM hand:design and performance evaluation”,International Journal of Robotics Research,Vol.29No.5,pp.585-97.Corresponding authorRobert Bogue can be contacted at:robbogue@223T o purchase reprints of this article please e-mail:reprints@ Or visit our web site for further details:/reprints。