(完整版)六足机器人设计毕业设计
- 格式:doc
- 大小:1.08 MB
- 文档页数:52
摘要以六足机器人结构套件为基础,搭建移动测控平台,包括设计总体方案和各个模块实现方案,设计和制作伺服电机(即舵机)主控制板和传感器电路板,设计机器人行走方案并编程实现,实现超声波避障。
采用细化的八步行走算法来实现行走控制,采用轴向舵机序号确定其他舵机运动方式和次序的方法进行行走方向的控制,这样完成了对18个舵机的控制任务,使得机器人能够比较协调、流畅地行走,并且可以控制其任意的行进方向。
主控制板能够基本满足需要,但还需进一步改善其稳定性和可靠性,并增加功能组件如引导程序下载接口以及键盘等交互器件。
进一步研究指南针和超声波模块在移动测控平台上有效利用,并开发图像处理及远程信息传输等技术,使六足野外机器人测控平台有更广阔的应用空间。
可应用于户外环境参数监测、特殊任务执行、家庭助理等领域。
关键词:舵机 msp430单片机行走算法超声波传感器AbstractSix feet robot is based on special robotic configuration including 18 servo-electro motors. My task is driving it to move, for I must first design the PCB, weld the PCB when it comes back, connect wires to the PCB and programme. The robot at last moves smoothly, glidingly, in each direction I want it to, of its six. Before programming, arithmetic of eight-step is used to push the robot to go forward in one fixed direction. To make it generalization, I conclude the very arithmetic by which movements of every servo-electromotor can be computed if the number of the direction servo-electromotor is given. The next task is that the robot can move in the direction which is judged as the best one after checking the environment by ultrasonic. Having a pair of eyes, the robot can see where the block is and where it can march over. The main controlling board is all right but it can be better if more steady and reliable, and if more functional parts is added as keyboards and the interface with Boot Strap Loader. It deserves to do further research at the moving measure-control plat of six feet robot on the use of sensors as ultrasonic, compass modules. It is useful to develop the technologies of image management and remote info-transmission at the plat, too. The measure-control plat of six feet robot is widely used in measuring weather, doing special tasks, and as an assistant in house.Key word: servo-electromotor msp430 stepped arithmetic ultrasonic sensor目录目录绪论 (1)第一章机械结构改装及设计 (3)1.1 原机械基础上的改装................................ 错误!未定义书签。
摘要本文详细介绍了六脚爬虫机器人的机械结构以及控制程序的编写。
机械结构采用了对称式设计,结构简单;其行走功能由六只脚、18个舵机实现,自由度较高,稳定性、灵活性较好。
控制程序的主体是C语言。
包括基本步态的编写,以及传感器的在机器人上的高级应用,这样,机器人在满足基本行走运动的同时,也能感知外界环境,并通过控制器对接收到的外界信号进行处理,并控制机器人运动。
关键词:对称式结构,舵机控制器,步态,传感器IAbstractThe thesis describes in detail that the mechanic design of Hexcrawler and the compiling of control program.The structure of the robot is in symmetric expression, a simple mechanism; the function of walking is supported by six legs, and eighteen motors, with multiple degrees of freedom. Besides, it is of high stability and flexibility.The program to control the robot is written in C language, including basic gait, the advanced application of sensors. Thereby, the robot can walk in several gaits. At the same time, it can sense the condition around it. Then, it will process the data it received, and control the motion of the robot.Keywords: symmetric expression,PSCU, gait, sensorII目录摘要 (I)Abstract ··························································································································I I 目录·······························································································································I II 1 绪论 ·······················································································································- 1 -1.1课题来源····················································································································· - 1 -1.2本课题的目的及其意义 ····························································································· - 1 -1.3国内外发展现状 ········································································································· - 1 -1.4本课题的研究内容 ·······································································错误!未定义书签。
摘要本文详细介绍了六脚爬虫机器人的机械结构以及控制程序的编写。
机械结构采用了对称式设计,结构简单;其行走功能由六只脚、18个舵机实现,自由度较高,稳定性、灵活性较好。
控制程序的主体是C语言。
包括基本步态的编写,以及传感器的在机器人上的高级应用,这样,机器人在满足基本行走运动的同时,也能感知外界环境,并通过控制器对接收到的外界信号进行处理,并控制机器人运动。
关键词:对称式结构,舵机控制器,步态,传感器IAbstractThe thesis describes in detail that the mechanic design of Hexcrawler and the compiling of control program.The structure of the robot is in symmetric expression, a simple mechanism; the function of walking is supported by six legs, and eighteen motors, with multiple degrees of freedom. Besides, it is of high stability and flexibility.The program to control the robot is written in C language, including basic gait, the advanced application of sensors. Thereby, the robot can walk in several gaits. At the same time, it can sense the condition around it. Then, it will process the data it received, and control the motion of the robot.Keywords: symmetric expression,PSCU, gait, sensorII目录摘要 (I)Abstract ··························································································································I I 目录·······························································································································I II 1 绪论 ·······················································································································- 1 -1.1课题来源····················································································································· - 1 -1.2本课题的目的及其意义 ····························································································· - 1 -1.3国内外发展现状 ········································································································· - 1 -1.4本课题的研究内容 ·······································································错误!未定义书签。
六自由度机器人结构设计、运动学分析及仿真学科:机电一体化姓名:袁杰指导老师:鹿毅答辩日期: 2012.6摘要近二十年来,机器人技术发展非常迅速,各种用途的机器人在各个领域广泛获得应用。
我国在机器人的研究和应用方面与工业化国家相比还有一定的差距,因此研究和设计各种用途的机器人特别是工业机器人、推广机器人的应用是有现实意义的。
典型的工业机器人例如焊接机器人、喷漆机器人、装配机器人等大多是固定在生产线或加工设备旁边作业的,本论文作者在参考大量文献资料的基础上,结合项目的要求,设计了一种小型的、固定在AGV 上以实现移动的六自由度串联机器人。
首先,作者针对机器人的设计要求提出了多个方案,对其进行分析比较,选择其中最优的方案进行了结构设计;同时进行了运动学分析,用D-H 方法建立了坐标变换矩阵,推算了运动方程的正、逆解;用矢量积法推导了速度雅可比矩阵,并计算了包括腕点在内的一些点的位移和速度;然后借助坐标变换矩阵进行工作空间分析,作出了实际工作空间的轴剖面。
这些工作为移动式机器人的结构设计、动力学分析和运动控制提供了依据。
最后用ADAMS 软件进行了机器人手臂的运动学仿真,并对其结果进行了分析,对在机械设计中使用虚拟样机技术做了尝试,积累了经验。
第1 章绪论1.1 我国机器人研究现状机器人是一种能够进行编程,并在自动控制下执行某种操作或移动作业任务的机械装置。
机器人技术综合了机械工程、电子工程、计算机技术、自动控制及人工智能等多种科学的最新研究成果,是机电一体化技术的典型代表,是当代科技发展最活跃的领域。
机器人的研究、制造和应用正受到越来越多的国家的重视。
近十几年来,机器人技术发展非常迅速,各种用途的机器人在各个领域广泛获得应用。
我国是从 20 世纪80 年代开始涉足机器人领域的研究和应用的。
1986年,我国开展了“七五”机器人攻关计划。
1987 年,我国的“863”计划将机器人方面的研究列入其中。
目前,我国从事机器人的应用开发的主要是高校和有关科研院所。
硕士学位论文六足机器人运动控制系统设计与实现DESIGN AND IMPLEMENTATION OF MOTION CONTROL SYSTEM OFHEXAPOD ROBOT刘德高哈尔滨工业大学2013年7月国内图书分类号:TP302.8 学校代码:10213 国际图书分类号:681.5 密级:公开工学硕士学位论文六足机器人运动控制系统设计与实现硕士研究生:刘德高导师:吴翔虎教授申请学位:工学硕士学科:计算机科学与技术所在单位:计算机科学与技术学院答辩日期:2013年7月授予学位单位:哈尔滨工业大学Classified Index: TP302.8U.D.C: 681.5Dissertation for the Master Degree in EngineeringDESIGN AND IMPLEMENTATION OFMOTION CONTROL SYSTEM OFHEXAPOD ROBOTCandidate:Liu DegaoSupervisor:Prof.Wu XianghuAcademic Degree Applied for:Master of Engineering Speciality:Computer Science and Technology Affiliation:School of Computer Science andTechnologyDate of Defence:July, 2013Degree-Conferring-Institution:Harbin Institute of Technology哈尔滨工业大学工学硕士学位论文摘要针对国内用于大负载物资运输的六足机器人运动控制系统缺乏的问题,设计并实现了一款具有很高实时性和可靠性的六足机器人运动控制系统。
系统采用主从应答模式对三维力系统和单足控制系统进行控制,包含模式控制机制、步态规划控制机制和安全控制机制,采用高速率、高可靠性的CAN总线通信,使系统能完成六足机器人正常步态行走的控制任务和各步态间自由切换的控制任务,而且具有很强的安全性、可靠性和实时性。
仿生六足机器人的结构设计及运动分析一、结构设计1.机体结构:仿生六足机器人的机体结构通常采用轻型材料如碳纤维和铝合金制作,以保证机器人整体重量轻,同时具备足够的强度和刚度。
机体一般采用箱型结构,保证机器人整体稳定。
2.足部结构:仿生六足机器人的足部结构是其中最重要的部分,直接关系到机器人的运动能力和适应性。
足部结构通常由刚性材料制成,具有良好的强度和刚度。
每个足部通常由三个关节驱动,分别是髋关节、膝关节和脚踝关节。
这些关节的设计对机器人的运动能力和足部适应性有着重要影响。
3.关节驱动方式:仿生六足机器人的关节驱动方式通常采用电机驱动和传动装置。
电机驱动可以提供足部的力和扭矩,使机器人能够进行各种运动,传动装置则用来将电机的运动传递到足部关节。
可以采用齿轮传动、连杆传动、带传动等方式,根据实际需求进行合理选择。
二、运动分析1.步态规划:步态规划是确定六足机器人各个足部的步态序列,以实现机器人的稳定行走。
常用的步态有三角步态、扭摆步态和螳臂步态等。
步态规划需要考虑机器人的稳定性和适应性,结合地面情况和环境要求进行合理选择。
2.动力学模拟:动力学模拟是对仿生六足机器人的运动进行分析和仿真,以优化机器人的运动能力和稳定性。
通过建立六足机器人的运动学和动力学模型,可以预测机器人的运动轨迹、步态设计和稳定性评估等。
动力学模拟可以帮助改善机器人的设计和控制策略。
3.控制策略:仿生六足机器人的控制策略采用了分布式控制和自适应控制的方法。
分布式控制通过将机器人的控制任务分配给多个子控制器,使得机器人具备较好的容错性和适应性。
自适应控制方法则通过对机器人的运动进行实时监测和反馈调整,使机器人能够自主学习和适应不同环境和任务。
综上所述,仿生六足机器人的结构设计和运动分析是实现机器人稳定行走和适应环境的重要环节。
正确的结构设计和合理的运动分析可以有效提高机器人的运动能力和稳定性,从而使机器人在实际应用中具备良好的适应性和操作性能。
1 引言在加速科技进步中,机械制造业的发展起着关键的作用,其任务是在工业生产中迅速将工艺装备的独立单元变为自动化综合体(自动化工段,生产线和自动化车间),将来甚至实现自动化工厂。
这种自动化生产最重要的特点是具有柔性,它能预料到,在节省劳力(或无人)情况下,根据工艺条件调整装配,以适应多种产品生产。
当代柔性自动化生产的建立和广泛应用,取决于作为科技进步的催化剂的机床制造、机器人技术、计算机技术、微电子技术、仪器制造等技术的加速发展。
工业机器人是多品种的经常更换产品的生产过程自动化的通用手段。
在机械制造中,工业机器人既有效地用于柔性生产系统组成工艺装备的基本工序中,也有效地用于辅助操作中。
工业机器人与传统自动化手段不同之处,首先在于它在各种生产功能上的通用性和重新调整的柔性。
在柔性生产系统中,工业机器人广泛应用于数控机床、锻压机床、铸造机械和仓储设备上,以完成传送装备和其它操作。
工业机器人和基本工艺装备、辅助手段以及控制装置一起形成各种不同形式的机器人技术综合体—柔性生产系统基本结构模块。
随着工业技术和经济的惊人发展,标志着多品种中、小批量生产最新水平的FMS (柔性制造系统),FA(工厂自动化)技术更加引人注目;作为FMS、FA技术重要组成之一的工业机器人技术也将得到迅速发展。
应用工业机器人是提高生产过程自动化,改善劳动环境条件,提高产品质量和生产效率手段之一。
本次设计是根据对工业六自由度机器人的总体结构及传动系统的分析和探讨,进行三自由度工业机器人的结构设计。
关键在于三轴(臂)的传动系统的设计以及整体的结构设计,避免运动的干涉。
在本次设计中主要负责第一臂与底座的结构设计。
在设计中许瑛老师给予了很大的指导和帮助,在此谨致谢意。
限于水平,本设计难免有缺点、错误,恳请各位老师批评指正。
1.1选题的依据及意义:在现代工业中,生产过程的机械化、自动化已成为突出的主题。
化工等连续性生产过程的自动化已基本得到解决。
燕山大学本科毕业设计(论文)开题报告课题名称:六足步行机器人学院(系):机械工程学院年级专业:05级机电1班学生姓名:指导教师:完成日期:2009年3月3日一、综述本课题国内外研究动态,说明选题的依据和意义多足步行机器人是一种具有冗余驱动、多支链、时变拓扑运动机构, 是模仿多足动物运动形式的特种机器人, 是一种足式移动机构。
所谓多足一般指四足及四足其以上, 常见的多足步行机器人包括四足步行机器人、六足步行机器人、八足步行机器人等。
[4]步行机器人历经百年的发展, 取得了长足的进步, 归纳起来主要经历以下几个阶段:第一阶段, 以机械和液压控制实现运动的机器人。
第二阶段, 以电子计算机技术控制的机器人。
第三阶段, 多功能性和自主性的要求使得机器人技术进入新的发展阶段。
[5]雷静桃等在文献[1]中对美国、日本等机器人研究大国及我国的多足步行机器人研究发展进行了综述,对多足步行机器人急需解决的问题进行了论述,并对未来可能的研究发展方向进行了展望。
刘静等在文献[10]中分析了国内外腿式机器人的研究现状,讨论了腿式机器人在机械结构、稳定性和控制算法方面的现有研究方法,给出了腿式机器人研究存在的问题,展望了腿式机器人的发展方向.安丽桥等在文献[9]中介绍了一种应用两个电机驱动的六脚足式步行机器人,并对该机器人的运动机理与步态进行了分析,经样机实验,所设计的机器人可实现前进、后退、遇障转弯等功能,具有结构简单,控制便捷,行走稳定的特点。
曾桂英等在文献[2]中提出了一种采用液压驱动的缩放式腿机构的结构设计, 并针对六足行走方式, 完成了液压驱动原理设计及PLC控制设计。
马东兴等在文献[11]中研究了一种背部带关节的新型四足机器人,通过三维建模软件Pro /E和机械系统动力学仿真分析软件ADAMS建立了四足机器人虚拟样机,规划了四足机器人的步态,并且利用ADAMS仿真软件对该四足机器人进行了步态仿真,同时利用单个AT89C52单片机成功实现对四足机器人5个舵机的独立控制以及舵机的速度控制。
仿生六足机构的设计设计说明书论文仿生六足机构的设计设计说明书论文1.引言本文档旨在介绍和详细说明仿生六足机构的设计。
该旨在模拟昆虫的运动和行为,并具有良好的运动稳定性和适应性。
本文将涵盖的整体设计、机械结构设计、传感器布局、动力系统、控制系统以及的性能评估等方面。
2.的整体设计在本节中,将详细描述的整体设计。
包括的尺寸和重量限制、机械结构布局、传感器布置和控制系统要求等。
2.1 尺寸和重量限制的尺寸和重量限制是设计过程中的重要考虑因素。
根据应用需求,确定的总体尺寸和重量范围。
2.2 机械结构布局的机械结构布局是实现结构稳定和运动灵活性的关键。
本节将介绍的骨架设计、六足机构设计和连接机构设计。
2.2.1 骨架设计骨架设计是整体结构的基础。
根据的尺寸和重量限制,确定骨架材料和结构形式,保证的稳定性和强度。
2.2.2 六足机构设计六足机构是行走和运动的主要部件。
在本节中,将介绍六足机构的设计原理、关节设计和运动学分析。
2.2.3 连接机构设计连接机构设计是各个部件之间连接和传递力的重要环节。
根据的布局和运动需求,设计合适的连接机构,保证各部件的稳定性和运动性能。
2.3 传感器布置传感器布置是感知外部环境和自身状态的关键。
本节将介绍传感器的种类、布置位置和工作原理,保证的感知性能。
2.4 控制系统要求控制系统是实现自主运动和行为的核心。
在本节中,将详细说明的控制系统要求,包括控制算法、实时性要求和通信方式等。
3.机械结构设计机械结构设计是实现运动和行为的基础。
本节将详细介绍的机械结构设计,包括骨架设计、关节设计和运动学分析等。
3.1 骨架设计根据前文中的骨架设计要求,进行骨架结构的具体设计。
确定骨架材料、尺寸和连接方式等。
3.2 关节设计关节设计是六足行走和运动的关键。
在本节中,将介绍关节设计的原则和方法,并确定关节的结构和参数。
3.3 运动学分析运动学分析是运动和姿态控制的重要环节。
本节将对的运动学进行详细分析,包括正运动学和逆运动学,并计算的运动空间和姿态范围。
机械创新设计课程设计题目:六足式机器人的行走机构设计小组成员:班级:指导教师:成绩:1六足是机器人的行走机构设计目录摘要 (4)第一章绪论 (1)1.1. 六足仿生机器人的概念: (1)1.2.课题来源 (2)1.3.设计目的 (2)1.4.技术要求 (2)1.5.设计意义 (2)1.6.设计范围 (3)1.7.国内外的发展状况和存在的问题 (3)1.7.1.国外发展状况 (3)1.7.2.国内发展状况 (4)1.7.3.存在的问题 (5)1.8.具体设计 (5)1.8.1.设计指导思想 (5)1.8.2.应解决的主要问题 (5)1.8.3.本设计采用的研究计算方法 (6)1.8.4.技术路线 (6)第二章六足仿生机器人的步态规划 (7)2.1步态分类 (7)2.1.1 三角步态 (7)2.1.2跟导步态 (7)2.1.3交替步态 (7)2.2步态规划概述 (8)2.3六足仿生机器人的坐标含义 (9)2.4 三角步态的稳定性分析 (12)2.4.1 稳定性分析 (12)2.4.2稳定裕量的计算 (12)2.5三角步态行走步态设计 (13)2.5.1直线行走步态规划 (13)2.5.2转弯步态分析 (15)2.6六足机器人的步长设计 (15)2国际机械设计制造及其自动化专业课程设计(论文)2.7六足机器人着地点的优化 (16)第三章六足机器人的机构分析 (18)3.1四连杆机构的设计 (18)3.1.1理论根据与机构选择 (18)3.2设计参数 (21)3.3步行腿机构系统 (21)3.4 舵机驱动原理 (22)3.4.1驱动原理 (22)3.4.2 舵机控制方法 (22)3.5 六足机器人主体设计 (24)3.5.1 机身 (24)3.5.2腿部的设计 (25)3.5.3足 (25)3.5.4小腿 (26)3.5.5大腿 (27)第四章总结 (28)4.1.设计小结 (28)4.2设计感受 (28)4.3课程设计见解 (28)参考文献 (29)谢辞 (30)3六足是机器人的行走机构设计摘要人类社会的发展,各种各样的机器人正渐渐的走进我们的视野,有很多的地方都用到了机器人,在机器人的领域里越来越多的人开始爱好上了机器人。
湖南科技大学毕业设计(论文)题目六自由度工业机器人结构设计作者学院机电工程学院专业机械设计制造及其自动化学号指导教师二〇一五年五月三十日湖南科技大学毕业设计(论文)任务书机电工程学院院机械设计制造及其自动化系(教研室)系(教研室)主任:(签名)年月日学生姓名: 学号: 专业: 机械设计制造及其自动化1 设计(论文)题目及专题:六自由度工业机器人结构设计2 学生设计(论文)时间:自 2015 年3 月 1 日开始至 2015 年 5 月 29 日止3 设计(论文)所用资源和参考资料:《工业机器人》、《机器人学》、《机器人运动学基础》、《Solidworks2013从入门到精通》4 设计(论文)应完成的主要内容:(1)介绍工业机器人的发展现状及前景;(2)工业机器人工作空间计算和简单的运动学分析;(3)工业机器人结构设计及关键零部件计算;(4)对关键零部件进行强度校核。
5 提交设计(论文)形式(设计说明与图纸或论文等)及要求:(1)相关的计算、设计框图及仿真图;(2)论文不少于35页;(3)说明书中必须有与设计(论文)内容或专业相关的不少于1500字的外文资料翻译。
6 发题时间: 2015 年 3 月 1 日指导教师:学生:湖南科技大学毕业设计(论文)指导人评语[主要对学生毕业设计(论文)的工作态度,研究内容与方法,工作量,文献应用,创新性,实用性,科学性,文本(图纸)规范程度,存在的不足等进行综合评价]全套图纸,加153893706指导人:(签名)年月日指导人评定成绩:湖南科技大学毕业设计(论文)评阅人评语[主要对学生毕业设计(论文)的文本格式、图纸规范程度,工作量,研究内容与方法,实用性与科学性,结论和存在的不足等进行综合评价]评阅人:(签名)年月日评阅人评定成绩:湖南科技大学毕业设计(论文)答辩记录日期:学生:学号:班级:题目:提交毕业设计(论文)答辩委员会下列材料:1 设计(论文)说明书共页2 设计(论文)图纸共页3 指导人、评阅人评语共页毕业设计(论文)答辩委员会评语:[主要对学生毕业设计(论文)的研究思路,设计(论文)质量,文本图纸规范程度和对设计(论文)的介绍,回答问题情况等进行综合评价]答辩委员会主任:(签名)委员:(签名)(签名)(签名)(签名)答辩成绩:总评成绩:摘要六自由度工业机器人是一种高精度的自动化机械,具有高度的灵活性以及平稳性。
六自由度焊接机器人毕业设计摘要本文介绍了一种针对焊接领域的六自由度机器人的设计与实现。
该机器人采用了六个旋转自由度的设计结构,可以实现焊接工作的复杂动作控制,提高了生产效率和焊接质量。
文章主要介绍了机器人的硬件设计、运动控制系统设计和软件程序设计。
通过仿真和实验验证了机器人的控制算法和工作性能。
最终,该机器人成功实现了对金属焊接工作的控制,对于提高焊接工作的自动化水平具有重要的意义和实际应用价值。
关键词:六自由度机器人,焊接,控制算法,仿真与实验AbstractKeywords: six-degree-of-freedom robot, welding, control algorithm, simulation and experiment1.引言第1章介绍了六自由度焊接机器人的研究背景, 研究意义,以及发展现状。
第2章介绍了机器人的整体硬件设计,主要包括机械结构设计和电气连接设计。
第3章详细描述了机器人控制系统的设计和实现,包括运动控制和通信控制两个方面。
第4章介绍了机器人的软件程序设计,主要是控制算法的实现和仿真验证。
第5章为仿真和实验结果分析。
第6章是对研究工作的总结与展望。
2.机器人硬件设计2.1机械结构设计机械结构是焊接机器人的主体,直接决定了其运动范围和精度。
本文设计的焊接机器人采用了一个立柱底座、一个运动底盘、一个垂直关节、三个旋转关节和一个手臂结构。
机械结构的总设计图如图1所示。
2.2电气连接设计机器人的电气连接包括电源接口、电机和传感器接口及控制信号传输等两个部分。
在实际设计中,需要根据机器人的具体运动特性和控制需求进行设计。
本文设计的焊接机器人电气连接包括电源接口、电机和传感器接口及控制信号传输等两个部分。
3.机器人控制系统设计3.1 运动控制设计机器人运动控制是实现对机械手臂的动作精度、速度等控制的关键。
本文设计的运动控制方法为PID控制。
通信控制是指机器人与上位机进行信息交换的控制系统。
山东理工大学六足机器人设计方案
多足机器人的机构类型一般来说,腿的构造形式可分为昆虫类和哺乳动物类两种不同形式。
昆虫类生物其腿的数目较多,一般在四足以上;其腿分布于身体的两侧,身体重心低,稳定性好,且运动灵活,但过低的重心不利于昆虫的越障能力。
喃乳动物的行走腿则通常为两足或四足,且腿多分布于身体下方,重心高,便于快速奔跑和越障,但在转向等需要灵活性的场合不如昆虫类有优势。
无论是昆虫类亦或哺乳动物类的腿的构造方式,在机器人机构中的具体实现形式上,一般有以下几种方式:
单连杆式出于简易灵活、价格低廉的角度考虑,一些功能单一、以娱乐性为主机器人的六条腿采用单连杆机构设计,并以较少的自由度实现了基本的步行功能,减少了执行电机,简化了设计。
目前市面上有很多诸如此类的爬虫玩具,所示为常见的单杆式腿结构的机器人。
但是,过于简单的腿部结构以及较少的自由度导致此类机器人难以完成复杂的动作,实用性较差。
这类机器人也可以通过简单的控制完成倒退、转弯等功能,只是无法实现精确定位。
四连杆式埃万斯机构该机构有各种衍化形式,是可用连杆曲线轨迹作为足端轨迹的一种步行机构,以四杆机构为腿部机构的设计原则和目的都是为了尽可能保证足端运动轨迹的平整性,达到使机器人平稳运动的目的。
其优点在于结构简单、轻便、可
通过改变杆长实现不同轨迹的行走。
机电系统设计与制造说明书设计题目六足机器人设计班级姓名学号指导老师目录第一章.课程设计的目的与要求1.1现状分析 (4)1.2六足机器人的意义 (4)1.3课程设计的目的 (4)1.4课程设计的基本要求 (5)第二章.系统总体设计方案2.1机构简化 (6)2.2方案设计 (7)第三章.运动学计算3.1杆长分析……………………………………………………83.2杆长验证 (9)3.3位置分析……………………………………………………113.4速度分析……………………………………………………19第四章.动力学计算4.1电机转矩计算………………………………………………174.2杆件受力分析………………………………………………184.2电机选择………………………………………………19第五章.非标准件的尺寸确定及校核5.1轴的尺寸与校核……………………………………………205.2主动杆的尺寸与校核………………………………………235.3其他杆件的尺寸与校核……………………………………245.4其他零件尺寸确定……………………………………25第六章.标准件选择6.1轴承的选择与校核…………………………………………276.2联轴器的选择与校核………………………………………276.3螺栓的选择与部分承重螺栓的校核………………………276.4键的选择与校核…………………………………………29第七章.设计总结7.1课程设计过程………………………………………………317.2设计体会…………………………………………………32第八章.参考文献……………………………………………33第九章附录…………………………………………………341.1 现状分析所谓多足机器人,简而言之,就是步行机。
在崎岖路面上,步行车辆优于轮式或履带式车辆。
腿式系统有很大的优越性:较好的机动性,崎岖路面上乘坐的舒适性,对地形的适应能力强。
所以,这类机器人在军事运输、海底探测、矿山开采、星球探测、残疾人的轮椅、教育及娱乐等众多行业,有非常广阔的应用前景,多足步行机器人技术一直是国内外机器人领域的研究热点之一。
因此对于多足机器人的研究与设计是非常有意义的一项工作。
1.2 六足机器人的意义六足机器人作为多足机器人里面的代表。
它具有多自由度,能进行多方向,多角度的移动,可以适应复杂的路况,并联机器人通过多个支链联接动平台和定平台, 从而增加了运动学的复杂性,因此其研究具有非常重要的意义。
此次课程设计是围绕具有空间三自由度的六足机器人展开的,它由上平台、下平台、3根主动杆、3根平行四边形从动支链、3个电动机、连接板等组成。
主动杆与平台通过转动副相连接,从动杆通过2个自由度的转动副与主动杆相连,3个这样的平行四边形从动支链保证了平台智能有三个方向的自由度。
1.3 课程设计的目的机电系统设计与制造中的机械设计部分,是机械类专业重要的综合性与实践性教学环节。
其基本目的是:1. 通过机械设计,综合运用机械设计课程和其他选修课程的理论,结合生产实际知识,培养分析和解决一般工程实际问题的能力,并使所学知识得到进一步巩固、深化和拓展。
2. 学习机械设计的一般方法,掌握通用机械零件部件、机械传动装置简单机械的设计原理和过程。
3. 进行机械设计基本技能的训练,如计算、绘图,熟悉和运用设计资料(手册、图册、标准和规范等)以及使用经验数据、进行经验估算和数据处理等。
1.4 课程设计的基本要求本设计的基本要求是:1. 能从机器功能要求出发,制定或分析设计方案,合理选择电动机、传动机构和零件。
2. 能按机器的工作状况分析和计算作用在零件上的载荷,合理选择零件材料,正确计算零件工作能力和确定零件主要参数及尺寸。
3. 能考虑制造工艺、安装于调整、使用与维护、经济和安全等问题,对机器和零件进行结构设计。
4. 图面符合制图标准,尺寸及公差标注正确,技术要求完整合理。
2.1 机构简化下图为此次课程设计所要完成的任务的装配图:图2-1:六足机器人装配图为了研究其在运动学及动力学方面的方便,需要将机构简化为平面机构,在机器人只是向上抬腿时,因为机器人的下底盘不会前后左右移动,只会沿着z轴方向上下移动,因此,在上升过程中,可将上底盘固定,在下脚连电机处加上一移动副和转动副,将机构转化为如下图所示的机构:图2-2:简化的平面机构图2.2 方案设计根据简化机构,我们制定如下设计方案:一:传动装置的方案设计:分析拟定传动系统方案,绘制机械系统运动简图。
二:传动装置的总体设计:计算传动系统运动学和动力学参数,选择电动机。
三:传动零件的设计:确定传动零件的材料,主要参数及结构尺寸,包括轴的设计及校核,轴承及轴承组合设计,选择键联接和联轴器。
四:机器人装配图及零件图绘制:绘制机器人装配图和零件图,标注尺寸和配合。
五:对整个设计过程进行总结。
3.1 杆长分析假设无限长,那么在图中机构,若杆绕A 点逆时针旋转,则滑块上升。
但此时,几乎不影响杆与x 轴夹角b 的变化。
因此,可得如下结论:机构的抬腿高度此时完全由的长度决定,但在实际过程中,不可能选择为无限长,但当长度远远大于时,抬腿高度基本由的长度确定,再考虑上其他因素的影响,因此预先确定杆长。
ab xy Rrl l 12h图3-1 简化机构图由上图可看出,步距基本上由杆长和转角确定,假设的最大值为度,则此时3003l 46cos30cos45l Δx ==。
而,因此大体上。
大体上,可由此预先确定杆长。
根据要求。
抬腿高度为mm ,步长为mm 。
根据上述,可预先确定杆长,,圆整到,这样262mm 412180l 2l l 351=⨯+=+=。
3.2 杆长验证由图3-1所示:可得: ()()2222221223R r y 2l R r y l l cosa -+-++-=用matlab 编程模拟选的杆长是否可用,程序如下: %用杆长计算电机转角l1=270;l2=87;r=36;R=90;g=33;b=r-R;y=250:0.1:285;a3=acos((l2*l2-l1*l1+y.*y+(r-R)^2)./(2*l2*sqrt(y.*y+(r -R)^2)));a2=atan(y./(R-r));a=(pi-a2-a3)*180/piplot(y,a)title('用杆长计算电机转角 a- -y');xlabel('y,高度-抬腿高度');ylabel('a,电机转角');设定杆,,,,从变到。
由此运行出下图结果:图3-2 抬腿高度与电机转角图电机转角最大值:当时,;电机转角最小值:当时,。
这是上底盘不动,下底盘上升时,电机转角的变化范围。
当下底盘不动,上底盘上升时,电机的转角变化也应是3.3 位置分析:根据电机转角与抬腿高度的关系,验证在此杆长下,下底盘中心的运动范围。
其结构图如下图所示。
图3-3 结构示意图设,则点在坐标系中位置矢量为)3,2,1(,634,0sin cos =-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=i i r r b i i i io πηηη, 点在坐标系中,位置矢量为)3,2,1(,634,0sin cos =-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=i i r r a i i i io πηηη, 点在坐标系中,其中为点与轴的夹角。
假设矢量在坐标中,则矢量在坐标系。
因为,22(sin )cos (sin )sin cos i i i i i i i R l r x B P R l r y l z θηθηθ+--⎡⎤⎢⎥=+--⎢⎥⎢⎥-⎣⎦2[][]22222221(sin )cos (sin )sin (cos )i i i i i i R l r x R l r y l z l θηθηθ+--++--+-= ①图3-4 支链矢量图其中,,2221353544cos i il l l l l α=++ ②因为点,点投影在Y 轴上,所以,通过坐标变换得(其中,,分别为点横纵坐标)1131cos 240sin 240sin B B x y l α︒-︒=,2232cos120sin120sin B B x y l α︒-︒=。
即,则132333cos cos cos ααα⎧⎪=⎪⎪⎪=⎨⎪⎪⎪=⎪⎩ ③⎪⎪⎩⎪⎪⎨⎧-++=+-++=+--++=22352523213223525232122235252321144)3(424)3(424x l l l l l y x l l l l l y x l l l l l ④ 根据①②③式得位置反解:()[]⎪⎪⎭⎫ ⎝⎛---++-------+-+--=2222222222222222221113)(22arctan )432)3)(()(arcsin(yl x l r R l zl l z yl x l r R l z y x l y x r R r R l θ()[]⎪⎪⎭⎫ ⎝⎛-+-++-------+-+--=2222222222222222221223)(22arctan )432)3)(()(arcsin(yl x l r R l zl l z yl x l r R l z y x l y x r R r R l θ⎪⎪⎭⎫ ⎝⎛+-+++------+--=)(22arctan )4)(4)(2)(arcsin(22222222222222133y r R l z l l z y r R l z y x l y r R r R l θ 根据位置反解,我们得到了电机转角与步长之间的关系,我们用MATLAB 进行了仿真,其关系如图3-5所示:图3-5 步长与转角关系图放大之后的图像如下图所示:图3-6 步长放大图其程序见附录一。
与此同时,我们建立了另一个程序对最大步长进行了检验,图形如下图3-7 角度与步长关系验证程序图3-8 角度与步长关系放大图同样,由图3-1可得y 与a 的关系如下:()22212)cos()sin(wt l R r l wt l y +--+= 其仿真图像如下图3-7所示图3-7 电机转角与抬腿高度图3.4 速度分析abxyRrl l 12v图3-8 速度分析图sin(wt)w)cos(wt))(l l +R -(r cos(wt)l +R -(r -l 1+cos(wt)w l =x 2222212电机转角与速度关系如下图所示图3-9 速度与转角关系图4.1电机转矩计算图4-1 受力分析图如图4-1所示,为力的分析图,可得电机转矩与电机转角之间的关系,以及L1杆上受力与电机转角的关系。
公式如下:2221212cos(wt)l +R -r -l +cos(wt))l +R -(r (tan(wt)l l g=m图4-2 电机转角与扭矩关系图4.2 杆件受力分析12 221l) cos(wt)) l+R-(r-l=sinb图4-3 电机转角与受力关系图4.3 电机选择根据所需的最大扭矩,以及电机的重量,查阅资料,可选择如下电机电机:86BYG9416电机铭牌图4-4 电机接线图5.1 轴的尺寸与校核由受力分析可知,电机的最大扭矩为:。