机械设计第7章 轮系
- 格式:ppt
- 大小:1.78 MB
- 文档页数:31
第七章1.轮系的分类依据是什么?轮系在运转过程中各轮几何轴线在空间的相对位置关系是否变动2.怎样计算定轴轮系的传动比?如何确定从动轮的转向?定轴轮系的传动比等于组成轮系的各对齿轮传动比的连乘积,也等于从动轮齿数的连乘积与主动轮齿数的连乘积之比。
对于首末两轮的轴线相平行的轮系,其转向关系用正、负号表示。
还可用画箭头的方法来确定齿轮的转向3.定轴轮系和周转轮系的区别有哪些?定轴轮系是指在轮系运转过程中,各个齿轮的轴线相对于机架的位置都是固定的。
周转轮系是指在轮系运转过程中,其中至少有1个齿轮轴线的位置不固定,而是绕着其他齿轮的固定轴线回转4.怎样求混合轮系的传动比?分解混合轮系的关键是什么?如何划分?在计算复合轮系时,首要的问题是必须正确地将轮系中的各组成部分加以划分。
而正确划分的关键是要把其中的周转轮系部分找出来。
周转轮系的特点是具有行星轮和行星架,所以要找到轮系中的行星轮,然后找出行星架(行星架往往是由轮系中具有其他功用的构件所兼任)。
每一行星架,连同行星架上的行星轮和行星轮相啮合的太阳轮就组成一个基本的周转轮系,当周转轮系一一找出之后,剩下的便是定轴轮系部分了5.轮系的设计应从哪些方面考虑?考虑机构的外廓尺寸、效率、重量、成本等。
根据工作要求和使用场合合理地设计对应的轮系。
6.如图7-32所示为一蜗杆传动的定轴轮系,已知蜗杆转速n 1 = 750 r/min ,z 1 = 3,z 2 = 60,z 3 = 18,z 4 = 27,z 5 = 20,z 6 = 50。
试用画箭头的方法确定z 6的转向,并计算其转速。
答:齿轮方向向左,n6=75r/min7.如图7-33示为一大传动比的减速器,z 1 = 100,z 2 = 101,z 2 = 100,z 3 = 99。
求:输入件H 对输出件1的传动比i H1。
图7-32 蜗杆传动的定轴轮系 图7-33 减速器 答:100001 H i8.如图7-34所示为卷扬机传动示意图,悬挂重物G 的钢丝绳绕在鼓轮5上,鼓轮5与蜗轮4连接在一起。
机械设计基础第七章轮系的设计(上课)一、教学内容本节课的教学内容来自于机械设计基础第七章,主要讲解轮系的设计。
轮系是由齿轮、蜗轮、蜗杆等传动元件组成的机械传动系统,广泛应用于各种机械设备中。
本节课将介绍轮系的基本原理、类型、设计和计算方法。
二、教学目标1. 让学生掌握轮系的基本原理和类型,了解各种轮系的结构特点和应用范围。
2. 培养学生运用轮系进行传动设计的能力,掌握轮系的设计和计算方法。
3. 提高学生分析问题和解决问题的能力,使他们在实际工程中能够灵活运用轮系知识。
三、教学难点与重点重点:轮系的基本原理、类型、设计和计算方法。
难点:轮系的设计和计算方法,特别是多种轮系组合时的传动比计算。
四、教具与学具准备教具:多媒体教学设备、黑板、粉笔、轮系模型。
学具:教材、笔记本、尺子、计算器。
五、教学过程1. 实践情景引入:展示一台采用轮系传动的机械设备,让学生观察并分析其工作原理。
2. 知识点讲解:(1) 轮系的基本原理:齿轮传动、蜗轮传动、蜗杆传动的特点和关系。
(2) 轮系的类型:定轴轮系、周转轮系、混合轮系的结构及应用。
(3) 轮系的设计和计算方法:包括齿轮尺寸计算、传动比计算、齿轮啮合参数计算等。
3. 例题讲解:分析一个轮系设计实例,讲解设计过程和计算方法。
4. 随堂练习:让学生分组讨论,设计一个简单的轮系传动系统,并计算其传动比。
5. 课堂互动:邀请学生上台演示轮系设计过程,解答其他学生的疑问。
六、板书设计板书内容主要包括轮系的基本原理、类型、设计和计算方法。
通过图文结合的方式,展示轮系的结构特点和传动原理。
七、作业设计1. 题目:设计一个由两个齿轮组成的定轴轮系,齿轮直径分别为40mm和80mm,求传动比。
答案:传动比为2:1。
2. 题目:计算一个周转轮系中,齿轮A与齿轮B的传动比,已知齿轮A的齿数为30,齿轮B的齿数为15。
答案:传动比为2:1。
八、课后反思及拓展延伸本节课通过实践情景引入,让学生了解轮系的实际应用,通过知识点讲解、例题分析和随堂练习,使学生掌握轮系的基本原理、类型、设计和计算方法。
7-19 图7-71所示为一大传动比的减速器。
已知其各齿轮的齿数为Z1=100,Z2=101,Z2′=100,Z3=99,求原动件对从动件1的传动比i H1 .又当Z1=99而其他齿轮齿数均不变,求传动比i H1。
试分析该减速器有何变化。
图7-71 1)解法一:这是一个简单行星轮系。
其转化机构的传动比为:()100100991011'21322313113⨯⨯=-=--==z z z z i H H H HH ωωωωωω1001009910101133⨯⨯=--==H H Hi ωωωω所以:由于10000100100991011111=⨯⨯-==∴ωωH H i解法二:10000/1100001100100991011zz z z 11112132131==∴=⨯⨯-=-=-='H H HH i i i i )(上式直接用公式:2)将Z1=99代入,求得i H1= -100.3)齿轮1的转向从与原动件H 相同变为与原动件H 相反。
7-20 在图7-72示双螺旋桨飞机的减速器中,已知18,30,20,265421====z z z z ,及1n =15000r/min ,试求Q P n n 和的大小和方向。
(提示:先根据同心,求得3z 和6z 后再求解。
)图7-72解:由图可知n 3=n 6=0 根据同心条件:66202262213=⨯+=+=z z z 64253021866z z z =+=+⨯=1)1-2-3-P(H)组成行星轮系 i 13P=n 1−n p n 3−n p=15000−n p 0−n p=−z 3z 1=−6626解得n p =4239.5r/min (与n 1同向) n 4=n p =4239.5r/min 2)4-5-6-Q(H)组成行星轮系 i 46Q=n 4−n Q n 6−n Q=4239.5−n Q−n Q=−z 6z 4=−6630解得min /737.1324r n Q =(与n 1同向).7-21 在图7-73所示输送带的行星减速器中,已知:z 1=10, z 2=32, z 3=74, z 4=72, z 2,=30 及电动机的转速为1450r/min ,求输出轴的转速n 4。
机械设计基础之轮系详解在机械工程中,轮系的设计与使用至关重要。
轮系主要由一系列相互啮合的齿轮组成,通过齿轮的旋转运动,可以实现动力的传输、速度的改变、方向的转换等功能。
本文将详细解析轮系的基本概念、类型及设计要点。
一、轮系的类型根据齿轮轴线的相对位置,轮系可以分为两大类:平面轮系和空间轮系。
1、平面轮系:所有齿轮的轴线都在同一平面内。
这种类型的轮系在机械设计中最为常见,包括定轴轮系、周转轮系和混合轮系。
2、空间轮系:齿轮的轴线不在同一平面内,而是相互交错。
这种类型的轮系相对复杂,包括差动轮系和行星轮系。
二、定轴轮系定轴轮系是最简单的轮系类型,所有齿轮的轴线都固定在同一轴线上。
这种轮系的主要功能是通过齿轮的旋转实现动力的传输和速度的改变。
定轴轮系的传动比可以根据齿轮的齿数和转速计算得出。
三、周转轮系周转轮系的齿轮轴线可以绕着其他齿轮的轴线旋转。
这种轮系的主要功能是通过齿轮的旋转实现动力的传输和速度的改变,同时还能实现方向的转换。
周转轮系的传动比可以根据齿轮的齿数和转速计算得出。
四、混合轮系混合轮系是定轴轮系和周转轮系的组合。
这种轮系的优点是可以实现更复杂的运动和动力传输,同时具有较高的传动效率。
混合轮系的传动比可以根据定轴轮系和周转轮系的传动比计算得出。
五、差动轮系差动轮系是一种空间轮系,其特点是两个齿轮的轴线可以不在同一平面内。
这种轮系的主要功能是通过齿轮的旋转实现动力的传输和速度的改变,同时还能实现方向的转换。
差动轮系的传动比可以根据齿轮的齿数和转速计算得出。
六、行星轮系行星轮系是一种空间轮系,其特点是至少有一个齿轮的轴线可以绕着其他齿轮的轴线旋转。
这种轮系的主要功能是通过齿轮的旋转实现动力的传输和速度的改变,同时还能实现方向的转换。
行星轮系的传动比可以根据齿轮的齿数和转速计算得出。
七、设计要点在设计和使用轮系时,需要考虑以下几点:1、传动比:根据实际需求选择合适的传动比,以保证轮系的传动效率和稳定性。
机械设计基础之轮系机械设计基础之轮系轮系是机械设计中重要的基础部分,它的作用主要是通过一系列的齿轮系统传递动力,实现机械设备的运动和动力输出。
本文将详细介绍轮系的组成、分类、设计及实际应用。
一、轮系的组成轮系通常由一系列的齿轮组成,包括主动轮、从动轮和齿轮轴等。
主动轮是动力输入部分,从动轮则是动力输出部分。
齿轮轴是用于支撑和固定齿轮的零件,可以分为输入轴和输出轴。
此外,轮系中还可能包括超越离合器、安全离合器等辅助装置,以保护轮系免受过度载荷或意外损坏。
二、轮系的分类根据轮系中齿轮的形状和啮合方式,可以将轮系分为多种类型,例如凸轮、凹轮、斜齿轮等。
其中,凸轮轮系是最常见的一种,其特点是齿轮的齿形为凸状,具有较高的承载能力和传动效率。
凹轮轮系的齿轮齿形为凹状,通常用于低速传动或高减速比的情况。
斜齿轮轮系则具有较好的啮合性能和承载能力,常用于高速重载场合。
三、轮系的设计轮系的设计主要包括以下几个步骤:1、确定轮系的传动比。
传动比是根据机械设备的需求确定的,通常要求传动比在10:1到1:10之间。
2、选择合适的齿轮类型。
根据传动比和载荷情况,选择合适的齿轮类型,如凸轮、凹轮或斜齿轮等。
3、设计齿轮的尺寸和材料。
根据载荷和转速等情况,设计齿轮的尺寸和材料,通常采用合金钢或碳素钢等材料。
4、校核齿轮的强度和寿命。
通过对齿轮进行强度和寿命的校核,确保齿轮在规定的使用时间内能够正常工作。
四、轮系的实际应用轮系在机械设计中具有广泛的应用,以下列举几个典型的应用场景:1、飞机:飞机的起飞和降落过程中,需要通过轮系将发动机的动力传递到螺旋桨和减速器等部件,实现飞机的起飞和降落。
2、汽车:汽车的变速器中使用了多种类型的轮系,如凸轮、斜齿轮等,用于传递发动机的动力到车轮,实现汽车的加速、减速和转向等操作。
3、船舶:船舶的推进系统中使用了大量的轮系,通过齿轮的啮合实现发动机动力传递到螺旋桨,推动船舶前行。
4、工业机械:工业机械中大量使用轮系,如纺织机械、矿山机械等,通过轮系实现动力的传递和控制。
第1章轮系轮系是指多个齿轮或其它传动轮组成的传动系统。
它广泛应用于各种机器之中,实现复杂的传动功能。
本章的重点是在轮系中各传动齿轮的齿数和主动齿轮转速已知的情况下,计算其它齿轮的转速,或者计算任意两齿轮的转速之比——传动比。
§1-1 轮系及其分类前一章研究的是一对齿轮的啮合原理和几何设计等问题,由一对齿轮啮合组成的传动系统是齿轮传动最简单的形式。
在实际机械传动中,为了获得大传动,实现变速、换向及远距离传动等各种不同的工作需要,经常采用若干个相互啮合的齿轮传递运动和动力。
这种由一系列齿轮构成的传动系统称为轮系。
根据轮系在运转过程中各轮几何轴线在空间的相对位置关系是否固定,可以将轮系分为定轴轮系和周转轮系两大类。
一定轴轮系轮系运转时,所有齿轮几何轴线的位置都固定不变的轮系称为定轴轮系,如图7-1所示。
定轴轮系中,若各齿轮的几何轴线相互平行,则称为平面定轴轮系(如图7-1a所示),否则称为空间定轴轮系(如图7-1b所示)。
(a) 平面定轴轮系(b) 空间定轴轮系图1-1定轴轮系二周转轮系轮系运转时,至少有一个齿轮几何轴线的位置相对机架不固定的轮系称为周转轮系,如图7-2所示。
周转轮系中,几何轴线固定的齿轮称为中心轮或太阳轮,如图7-2中的齿轮1和齿轮3,用符号K表示,中心轮可以是转动的,也可以是固定的;几何轴线位置不固定,既可以自转又可以公转的齿轮称为行星轮,如图7-2中的齿轮2;支持行星轮作自转和公转的构件称为行星架,也称为转臂或系杆,用符号H表示。
一个周转轮系中,中心轮和行星架的几何轴线必须重合,否则周转轮系不能运动。
(a) 差动轮系(b) 行星轮系图1-2周转轮系周转轮系的种类很多,通常可以按照以下两种方法分类:1、按照周转轮系所具有的自由度数目分类:⑴差动轮系自由度数目为2的周转轮系称为差动轮系,如图7-2a所示。
为了使其具有确定的运动,该轮系需要2个具有独立运动的主动件。
⑵行星轮系自由度数目为1的周转轮系称为行星轮系,如图7-2b所示。
机械设计基础知识之轮系介绍在机械设计中,轮系是一种常见的机械传动装置。
它由多个齿轮组成,通过齿轮之间的啮合传递动力和运动。
轮系常常用于各种机器和设备中,如汽车、机床、工程机械等。
齿轮基础知识齿轮是轮系的核心组成部分,它由齿顶、齿底、齿根和齿间隙等要素组成。
常见的齿轮类型包括圆柱齿轮、锥齿轮、内齿轮等。
圆柱齿轮的齿轮头上的齿轮轴与齿轮头之间的角度为直角,而锥齿轮的齿轮头上的齿轮轴与齿轮头之间的角度小于直角。
齿轮可以根据齿轮头上的齿轮轴的位置及方向,分为同轴齿轮和异轴齿轮。
同轴齿轮是指齿轮头上的齿轮轴位于同一直线上,而异轴齿轮是指齿轮头上的齿轮轴位于不同直线上。
异轴齿轮由于齿轮轴的不平行而产生速度比和力矩比的变化。
轮系设计原则在进行轮系设计时,有一些基本的原则需要遵循:1.正转传动原则:轮系中,每一个轮子均进行正轴向转动,不应有反转现象出现。
2.传动比原则:根据所需的速度和力矩传递要求,设计合适的传动比。
3.齿数选择原则:为了保证齿轮接触的可靠性和传动的平稳性,应根据齿轮的模数、齿数、啮合系数等参数,合理选择齿轮的齿数。
4.齿轮头选用原则:根据齿轮头载荷、齿轮轴的转速、传递的功率等因素,选择适合的材料和热处理方式,保证齿轮头的强度和耐磨性。
5.轮系布置原则:根据轮系中各个齿轮的尺寸、间距、中心距等参数,合理布置整个轮系,减小振动和噪声。
轮系计算方法在进行轮系设计时,需要进行一系列的计算,以确定合适的齿轮参数和传动比例。
1.传动比计算:根据所需的输出速度和输入速度,计算传动比,确定每个齿轮的齿数。
2.载荷计算:根据输入的力矩和转速,计算每个齿轮头上所承受的载荷。
3.强度计算:根据齿轮头的载荷、材料强度和齿轮几何参数,进行强度计算,确保齿轮头的强度满足设计要求。
4.疲劳寿命计算:根据齿轮头的载荷、转速和材料疲劳强度,进行疲劳寿命计算,确保齿轮头有足够的使用寿命。
轮系设计实例以下是一个简单的轮系设计实例,以帮助理解轮系设计的过程:假设要设计一个用于转动机床主轴的同轴齿轮轮系,输入轴的转速为1000rpm,输出轴的转速为3000rpm。