线性系统理论--跟踪控制
- 格式:ppt
- 大小:2.95 MB
- 文档页数:142
研究生“线性系统理论”课程建设的深化与教法探索作者:徐为民来源:《教育教学论坛》 2017年第43期摘要:针对线性系统理论课的特点和教学中普遍存在的问题,结合研究生专业基础性课程建设的要求和学校的实际情况,本文采取了多种教学形式和方法,探索出基础性课程建设的有效途径。
教学实践是一种服务于人才培养的、知识传授模式的探索,需要充分挖掘教育者的潜能,并结合学生的实际情况,是一个循序提高的渐近式探索过程。
经过近几年的教学实践表明,我校课程建设取得了较好效果。
关键词:线性系统理论;知识点与知识面;教学实践;案例教学中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2017)43-0139-02一、引言“线性系统理论”课程是普通高校控制理论与控制工程、检测技术与自动化装置等学科的研究生学位基础课。
它涉及的概念、方法、原理和结论对于其他相关控制课程,如最优控制、自适应控制等都具有十分重要的作用[1]。
在“线性系统理论”教学中,教师要使学生在学习课程的基本定义、基本概念和核心定理等内容的同时,能更深刻地掌握和理解该课程在控制系统状态空间建模、系统分析和系统综合中的运用,提高学生灵活运用知识分析问题、解决问题的综合素质和能力,这一直是专业基础性课程建设、实践和探索的主要问题。
近年来,在教学实践中,我们依据课程内容及课程教学特点,结合航运中需要解决的控制问题和港航控制领域特色,将开放性、交互性和研究性教学思想贯穿于课程教学的各个环节,在总结传统专业基础类课程教学存在问题的基础上,在课程内容整合、教学方法运用、科研方法训练、课程考核等方面,对该课程教学和课程改革进行了探索。
二、线性系统理论教学中存在的问题目前,国内很多学校开设了“线性系统理论”课程,无论在教学内容、教学方式和手段、实习实践教学等方面都各有所长,为相关课程建设提供了有价值的借鉴和参考。
结合我们教学团队多年来开展基础类课程教学的经验发现,在“线性系统理论”等专业基础课程的教学中,往往会存在一些共性问题[2,3],主要体现在:教学内容上,单纯按照教材组织授课程内容;教学形式上,缺乏授课内容的设计、知识点的提炼;忽视与教学内容、相关领域的控制问题的结合。
线性系统理论线性系统理论是一个广泛应用的数学分支,该分支研究线性系统的性质、行为和解决方案。
线性系统可以描述很多现实世界中的问题,包括电子、机械、化学和经济系统等。
在这篇文章中,我们将探讨线性系统理论的基础、应用、稳定性和控制等不同方面。
一、线性系统基础线性系统是一种对于输入响应线性的系统。
当输入为零时,系统的响应为零,称之为零输入响应。
当没有外界干扰时,系统内部存在固有的动态响应,称之为自然响应。
当有外界输入时,系统将对输入做出响应,称之为强制响应。
线性系统具有很多性质,可以让我们更好地理解系统的行为。
其中一个重要的性质是线性可加性,就是说当输入是线性可加的时候,输出也是线性可加的。
换句话说,如果我们有两个输入信号,将它们分别输入到系统中,我们可以在系统的输出中将它们加起来,并得到对应的输出信号。
另外一个重要的性质是时不变性,就是说当输入信号的时间变化时,输出信号的时间变化也会随之发生。
这个性质告诉我们,系统的行为不随着时间的改变而改变。
除此之外,线性系统还有其他很多性质,比如可逆性、稳定性、因果性等等。
二、线性系统的应用线性系统有着广泛的应用,它们可以用来描述很多各种各样的问题,包括但不限于电子电路、航天控制、化学反应、经济系统等等。
下面我们来看看这些应用领域中的具体案例。
1. 电子电路线性系统在电子电路中有着广泛应用。
例如,如果我们想要设计一个低通滤波器,以使高频信号被抑制,我们可以使用线性系统来描述它的行为。
我们可以将电子电路看作一个输入信号到输出信号的转换器。
这个转换器的输出信号可以通过控制电子器件的电流、电压等参数来实现。
这种线性系统可以用来滤掉任何频率的信号,因此在广播和通信中也有广泛的应用。
2. 航天控制航天控制是线性系统理论的一个应用重点。
它包括控制飞行器姿态、轨道以及动力学行为。
在这些问题中,线性可变系统被广泛应用。
这种系统的输出信号是受到飞行器的控制和环境因素的影响。
控制器的任务是计算信号,以引导飞行员和总体系统实现期望的性能和特征。
线性系统理论论文论文题目:线性系统理论综述—连续系统线性二次最优控制学院:年级:专业:姓名:学号:指导教师:目录摘要 (3)前言 (3)第一章线性系统理论概述 (3)1.1线性系统理论的研究对象 (4)1.2 线性系统理论的主要任务 (4)1.3 线性系统的主要学派 (5)1.4 现代线性系统的主要特点 (5)1.5 线性系统的发展 (6)第二章连续系统线性二次最优控制 (6)2.1最优控制问题 (6)2.2最优控制的性能指标 (7)2.3 最优控制问题的求解方法 (8)2.4 线性二次型最优控制 (9)2.5 连续系统线性二次型最优控制实例 (10)2.6 小结 (13)总结 (13)参考文献 (13)摘要线性系统理论是现代控制理论中最基本、最重要也是最成熟的一个分支,是生产过程控制、信息处理、通信系统、网络系统等多方面的基础理论。
本文对线性系统的历史背景、研究现状和发展趋势作了简单的综述。
线性二次最优控制理论内容丰富、应用广泛,引起广泛地关注并取得了丰硕成果。
最优控制问题就是在一切可能的控制方案中寻找一个控制系统的最优控制方案或最优控制规律,使系统能最优地达到预期的目标。
本文基于连续系统线性二次最优控制,提出新的控制算法并结合实例进行了仿真验证。
关键字:线性系统;线性二次最优控制;控制系统;连续系统前言线性系统理主要阐述线性系统时域理论,给出了线性系统状态空间的概念、组成方法和基本性质,进而导出系统的状态空间描述。
以状态空间法为主要工具研究多变量线性系统的理论[1]。
随着计算机技术的发展,以线性系统为对象的计算方法和计算辅助设计问题也受到普遍的重视。
与经典线性控制理论相比,现代线性系统主要特点是:研究对象一般是多变量线性系统,而经典线性理论则以单输入单输出系统为对象;除输入和输出变量外,还描述系统内部状态的变量;在分析和综合方面以时域方法为主而经典理论主要采用频域方法;使用更多数据工具。
随着航海、航天、导航和控制技术不断深入研究,系统的最优化问题已成为一个重要的问题。
线性系统理论课程大作业论文线性系统理论综述及其应用这学期学习的线性系统理论属于系统控制理论的一个最为基本和成熟发展的分支,主要包括以下内容:介绍采用系统理论解决工程问题的一般步骤,明确建模、分析、综合在解决实际问题中的作用,并重点介绍线性系统模型的特征和分析方法;介绍系统的状态空间描述,结余状态空间方法的分析和系统结构特征和结构的规范分解以及状态反馈及其性质等。
一.线性系统理论研究内容综述系统是系统控制理论所要研究的对象,从系统控制理论的角度,通常将系统定义为由相互关联和相互制约的若干部分组成的具有特定功能的整体。
动态系统是运动规律按照确定规律或者确定的统计的规律岁时间演化的一类系统,动态系统的行为由各类变量间的关系来表征,系统的变量可以分为三种形式,一类是反映外部对系统的影响或者作用的输入变量组,如控制、投入、扰动等;二是表征系统状态行为的内部状态变量组;三是反映系统外部作用或影响的输入变量组如响应,产出。
表征系统动态的过程的数学描述具有两类基本形式,一是系统的内部描述,另一组是输入变量对状态变量的组的动态影响。
从机制的角度来看,动态系统可被分类为连续系统变量动态系统和离散事件动态系统;从特征的角度,动态系统可分别分类为线性系统和非线性系统,参数集成系统和分布参数系统;从作用时间类型角度,动态系统可被称为连续时间系统和离散时间系统。
线性系统理论是系统控制理论最为成熟和最为基础的分支。
他是现代控制理论的一个重要组成部分,也是对经典控制理论的延申。
现代控制理论主要是着重研究现性状态的运动规律和改变这种规律的可能性和方法。
线性系统的理论和方法是建立在建模的基础上。
在建模的基础上,可以进一步把线性系统的理论进一步区分为“分析理论”和“综合理论”。
分析理论分为定量分析和定性分析,定量分析是着重于研究对系统性能和控制具有重要意义的结构特性。
系统综合理论是建立在分析的基础上,系统综合目的是使系统的性能达到期望的指标或实现最优化。
线性系统理论一、主要内容本课程是一门信息科学的专业基础课程,阐述分析和综合线性多变量系统的理论、方法和工程上的实用性,本理论在控制技术、计算方法和信号处理等领域有着广泛的应用。
1、系统、系统模型,线性系统理论基本内容2、状态、状态空间,状态和状态空间的数学描述,连续变量动态的状态空间描述,系统输入输出描述与状态空间描述的关系,LTI系统的特征结构,状态方程的约当规范型,系统状态方程与传递函数矩阵的关系,组合系统的状态空间描述3、连续时间LTI系统的运动分析,状态转移矩阵和脉冲响应矩阵,连续时间LTV系统的运动分析,连续时间LTI系统的时间离散化,离散时间线性系统的运动分析4、线性系统的能控性和能观测性,连续时间LTI系统的能控性和能观测性判据,离散时间线性系统的能控性和能观测性判据5、对偶系统和对偶性原理,时间离散化线性系统保持能控性和能观测性的条件,能控和能观测规范型,连续时间LTI系统的结构分解6、系统外部和内部稳定性,李亚普诺夫稳定的基本概念,李亚普诺夫第二方法的主要定理,连续时间线性系统的状态运动稳定性判据,离散时间线性系统的状态运动稳定性判据7、系统综合问题,状态反馈和输出反馈,状态重构和状态观测器,降维状态观测器,状态观测器状态反馈系统的等价性问题二、线性系统及其研究的对象一般说来,许多物理系统在其工作点的附近都可以近似地用一个有限维的线性系统来描述,这不仅是由于线性系统便于从数学上进行处理,更为重要的,它可以在相当广泛的范围内反映系统在工作点附近的本质。
因此,线性系统理论研究对象是 (线性的)模型系统,不是物理系统。
控制理论发展到今天,包括了众多的分支,如最优控制,鲁棒控制,自适应控制等。
但可以毫不夸张地说,线性系统的理论几乎是所有现代控制理论分支的基础,也是其它相关学科如通讯理论等的基础。
三、研究线性系统的基本工具研究有限维线性系统的基本工具是线性代数或矩阵论。
用线性代数的基本理论来处理系统与控制理论中的问题,往往易于把握住问题的核心而得到理论上深刻的结果。
这是一种跟踪控制的方法
跟踪控制方法是一种用于实现目标跟踪的控制策略。
它通过不断调整控制输入,使系统输出与期望目标轨迹尽可能接近,从而实现目标的准确追踪和控制。
以下是一种常见的跟踪控制方法:
1. 确定目标轨迹:首先需要确定要跟踪的目标轨迹。
可以通过数学模型、实验数据或先验知识等方式确定目标的位置和运动轨迹。
2. 设计控制器:根据目标轨迹和系统模型,设计合适的控制器。
常用的控制策略包括比例控制、积分控制、微分控制以及组合控制等。
3. 实时更新控制输入:根据当前系统的状态和目标轨迹,实时计算并更新控制输入,使系统输出与目标轨迹尽可能接近。
可以使用反馈控制方法,通过测量系统输出与目标轨迹的误差,不断调整控制输入。
4. 跟踪性能评估:对系统的跟踪性能进行评估,可以通过测量系统输出与目标轨迹的误差、稳定性和鲁棒性等指标来评估。
跟踪控制方法在许多领域中都有广泛的应用,包括自动驾驶、机器人控制、航空航天等。
不同的跟踪控制方法适用于不同的系统和应用场景,需要根据具体情况进行选择和设计。