泉州市泉港区2019-2020学年八年级下期末考试数学试卷
- 格式:doc
- 大小:248.00 KB
- 文档页数:6
泉州市2019-2020学年初二下期末质量跟踪监视数学试题一、选择题(每题只有一个答案正确)1.如图,函数2x+3y =-的图象与x 轴、y 轴分别交于点A 、B ,则OAB ∆的面积为( )A .32B .92C .94D .92.如图,在△ABC 中,点D 为BC 的中点,连接AD ,过点C 作CE ∥AB 交AD 的延长线于点E ,下列说法错误的是( )A .△ABD ≌△ECDB .连接BE ,四边形ABEC 为平行四边形C .DA =DED .CE =CA3.甲、乙、丙、丁四人进行射击测试,每人射击10次,四人的平均成绩均是9.4环,方差分别是0.43,1.13,0.90,1.68,则在本次射击测试中,成绩最稳定的是( )A .甲B .乙C .丙D .丁4.若一次函数(2)y m x m =-+的图像经过第一,二,三象限,则m 的取值范围是( )A .02m <<B .02m <≤C .2m >D .02m ≤<5.在平面直角坐标系中,点P (﹣3,4)关于y 轴对称点的坐标为( )A .(﹣3,4)B .(3,4)C .(3,﹣4)D .(﹣3,﹣4)6.下列化简正确的是( )A .B .C .D .7.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,AD=8,AB=7,则BC+CD 等于( )A .63B .53C .43D .338.如图,在平行四边形ABCD 中,∠A=40°,则∠B 的度数为( )A .100°B .120°C .140°D .160°9.若一次函数(3)y a x a =--的图象经过第二、三、四象限,则a 的取值范围是( )A .a ≠3B .a >0C .a <3D .0<a <310.如图,在▱ABCD 中,AD =8,点E ,F 分别是AB ,AC 的中点,则EF 等于( )A .2B .3C .4D .5二、填空题 11.汽车开始行驶时,油箱中有油40L ,如果每小时耗油5L ,则油箱内余油量y (L )与行驶时间x (h )的关系式为_____.12.计算:226+23⨯-() 13.如图,已知:∠MON=30°,点A 1、A 2、A 3 在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=a ,则△A 6B 6A 7的边长为______.14.分解因式:22()4a b b --=___.15.如图,在平面直角坐标系xOy 中,已知Rt OAB ∆的直角顶点A 在x 轴上,30B ∠=,反比例函数()0k y k x=≠在第一象限的图像经过边OB 上点C 和AB 的中点D ,连接AC .若46OAC S ∆=则实数k 的值为__________.16.从A,B两题中任选一题作答:A.如图,在ΔABC中,分别以点A,B为圆心,大于12AB的长为半径画弧,两弧交与点M,N,作直线MN交AB于点E,交BC于点F,连接AF。
八(下)期末数学泉港卷一、选择题(共40分)1.0.00021用科学记数法可记为2.1×10n 是,其中n 的值是( ). A .2 B .3 C .4 D .5 2.下列计算结果为负数的是( ).A .2)3(-B .2)3(--C .0)3(-D . 03-3.如图,四边形ABCD 中,AC 、BD 交于点O ,点E 、G 在BD 上,AE 交BC 于点F , CG 交AD 于点H ,则以EG 为一条对角线的四边形是( ). A .四边形ABCD B .四边形AFCH C .四边形AECG D .四边形AECH4.若分式11-x 有决义,则x 的取值范围是( ).A .0≠xB .1≠xC .0>xD .1>x5.如图,在□ABCD 中,点E 在边AD 上,AB=AE ,则∠ABC=( ).A .∠AB .∠DEBC .∠ AEBD .2∠AEB 6.如图,是某函数的图象,则下列结论中正确的是( ). A .当3-=y x 的值是0、2 B .当1=y 时,x 的取值是23- C .当23-=x 时,函数值y 最大 D .当3->x 时, y 随x 的增大而增大 7.已知反比例函数 xky =(k>0)的图象经过点(1,a ),B (3,b ), 则a 与b 的关系正确的是( ).A .b a >B .b a <C .b a =D .b a -=8.组由正整数组成的数据:2、3、4、5、a 、b ,若这组数据的平均数为3, 众数为2,则a 为( ). A .1 B .2 C .3 D . 49.如图,在正方形ABCD 内作等边三角形DCE ,则∠EAC=( )A .350B .280C .300D . 45010.已知直线p x y +=与x 轴交于点A ,直线与x 轴交于点B ,两条直线交于点C 。
若点A 在点B的右侧,且△ABC 的面积为1,则下列正确的是( )(第3题)B(第5题)(第6题)(第9题)CDA .2=+q p B .2-=+q p C .2=-q p D .2-=-q p二、填空题(共24分.) 11.计算:mm m 221+⋅+=________. 12.一组数据2、2、2、2、2、x 。
2020年福建省泉州市八年级第二学期期末学业质量监测数学试题一、选择题(每题只有一个答案正确)1.如图,若DE是△ABC的中位线,△ADE的周长为1,则△ABC的周长为()A.1 B.2 C.3 D.42.如图在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交BC于点D,若CD=2,AB=8,则△ABD的面积是()A.16 B.32 C.8 D.43.下列因式分解正确的是()A.2x2﹣2=2(x+1)(x﹣1)B.x2+2x﹣1=(x﹣1)2C.x2﹣1=(x﹣1)2D.x2﹣x+2=x(x﹣1)+24.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠A:∠B:∠C=9:12:15 D.∠C=∠A﹣∠B=,5.如图,菱形ABCD的对角线AC、BD交于点O,E、F分别是AD、CD边的中点,连接EF,若EF3 =,则菱形ABCD的面积是()OB4A.24B.20C.12D.66.分式可变形为()A.B.C.D.7.如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A.1 B.12C.13D.148.关于一组数据:1,5,6,3,5,下列说法错误的是()A.平均数是4 B.众数是5 C.中位数是6 D.方差是3.29.小亮从家步行到公交车站台,等公交车去学校. 图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系. 下列说法错误的是A.他离家8km共用了30min B.他等公交车时间为6minC.他步行的速度是100m/min D.公交车的速度是350m/min10.下列各组数据中,能作为直角三角形三边长的是()A.4,5,6 B.5,12,13 C.6,7,8 D.8,9,10二、填空题11.如图,菱形的周长为20,对角线的长为6,则对角线的长为______.12.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过10A,那么用电器可变电阻R应控制的范围是____.14.直线y=﹣2x﹣1向上平移3个单位,再向左平移2个单位,得到的直线是_____.15.据统计,2008年上海市常住人口数量约为18884600人,用科学计数法表示上海市常住人口数是___________.(保留4个有效数字)16.若次函数y=(a﹣1)x+a﹣8的图象经过第一,三,四象限,且关于y的分式方程5311y ay y-+=--有整数解,则满足条件的整数a的值之和为_____.17.一次函数y=(m+2)x+3-m,若y随x的增大而增大,函数图象与y轴的交点在x轴的上方,则m 的取值范围是____.三、解答题18.在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=﹣2x的图象与直线AB交于点P.(1)求P点的坐标.(2)若点Q是x轴上一点,且△PQB的面积为6,求点Q的坐标.(3)若直线y=﹣2x+m与△AOB三条边只有两个公共点,求m的取值范围.19.(6分)如图,已知G、H是△ABC的边AC的三等分点,GE∥BH,交AB于点E,HF∥BG交BC于点F,延长EG、FH交于点D,连接AD、DC,设AC和BD交于点O,求证:四边形ABCD是平行四边形.20.(6分)某蛋糕店为了吸引顾客,在A、B两种蛋糕中,轮流降低其中一种蛋糕价格,这样形成两种盈利模式,模式一:A种蛋糕利润每盒8元,B种蛋糕利润每盒15元;模式二:A种蛋糕利润每盒14元,B 种蛋糕利润每盒11元每天限定销售A、B两种蛋糕共40盒,且都能售完,设每天销售A种蛋糕x盒(1)设按模式一销售A、B两种蛋糕所获利润为y1元,按模式二销售A、B两种蛋糕所获利润为y2元,分别求出y1、y2关于x的函数解析式;(2)在同一个坐标系内分别画出(1)题中的两个函数的图象;(3)若y 始终表示y 1、y 2中较大的值,请问y 是否为x 的函数,并说说你的理由,并直接写出y 的最小值.21.(6分)在平面直角坐标系中,直线33y x =+分别交x 轴,y 轴于点,A B .(1)当03y <≤,自变量x 的取值范围是 (直接写出结果);(2)点2(,)3C n -在直线33y x =+上.①直接写出n 的值为 ;②过C 点作CD AB ⊥交x 轴于点D ,求直线CD 的解析式.22.(8分)如图,已知正方形ABCD 的边长为6,点E 、F 分别在BC 、DC 上,CE=DF=2,DE 与AF 相交于点G ,点H 为AE 的中点,连接GH .(1)求证:△ADF ≌△DCE ;(2)求GH 的长.23.(8分)甲骑自行年,乙乘坐汽车从A 地出发沿同一路线匀速前往B 地,甲先出发.设甲行驶的时间为x(h),甲、乙两人距出发点的路程S 甲(km)、S 乙(km)关于x 的函数图象如图1所示,甲、乙两人之同的距离y(km)关于x 的函数图象如图2所示,请你解决以下问题:(1)甲的速度是__________km/h ,乙的速度是_______km/h ;(2)a=_______,b=_______;(3)甲出发多少时间后,甲、乙两人第二次相距7.5km ?24.(10分)如图,正方形ABCD 的对角线AC ,BD 交于点O ,DE 平分ODA ∠交OA 于点E ,若2AB =,则线段OE 的长为________.25.(10分)在甲村至乙村的公路上有一块山地正在开发,现有一C 处需要爆破.已知点C 与公路上的停靠站A 的距离为300米,与公路上的另一停靠站B 的距离为400米,且CA CB ⊥,如图所示为了安全起见,爆破点C 周围半径250米范围内不得进入,问在进行爆破时,公路AB 段是否因为有危险而需要暂时封锁?请说明理由.参考答案一、选择题(每题只有一个答案正确)1.B【解析】【分析】根据三角形中位线定理得到BC=2DE ,AB=2AD ,AC=2AE ,再通过计算,得到答案.【详解】∵DE 是△ABC 的中位线,∴DE=1BC ,AD=1AB ,AE=1AC ,∵△ADE的周长= AD+DE+AE=1,∴△ABC的周长=AB+BC+AC=2(AD+DE+AE)=2,故选B.【点睛】本题考查的是三角形的中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.2.C【解析】【分析】作DH⊥AB于H.利用角平分线的性质定理证明DH=DC=2即可解决问题.【详解】解:作DH⊥AB于H.由作图可知:PA平分∠CAB,∵DC⊥AC,DH⊥AB,∴DH=DC=2,∴S△ABD=•AB•DH=×8×2=8,故选:C.【点睛】本题考查作图﹣基本作图,角平分线的性质定理等知识,解题的关键是理解题意,学会添加常用辅助线,属于中考常考题型.3.A【解析】【分析】由题意根据因式分解的意义,即可得答案判断选项.【详解】解:A、2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1),故A符合题意;B、x2+2x+1=(x+1)2,故B不符合题意;C、x2﹣1=(x+1)(x﹣1),故C不符合题意;D、不能分解,故D不符合题意;【点睛】本题考查因式分解的意义,一提,二套,三检查,注意分解要彻底.4.C【解析】【分析】根据勾股定理逆定理可判断出A、B是否是直角三角形;根据三角形内角和定理可得C、D是否是直角三角形.【详解】A、∵b2-c2=a2,∴b2=c2+a2,故△ABC为直角三角形;B、∵32+42=52,∴△ABC为直角三角形;C、∵∠A:∠B:∠C=9:12:15,151807591215C︒︒∠=⨯=++,故不能判定△ABC是直角三角形;D、∵∠C=∠A-∠B,且∠A+∠B+∠C=180°,∴∠A=90°,故△ABC为直角三角形;故选C.【点睛】考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.5.A【解析】【分析】根据EF是ACD的中位线,根据三角形中位线定理求的AC的长,然后根据菱形的面积公式求解.【详解】解:E、F分别是AD,CD边上的中点,即EF是ACD的中位线,26AC EF∴==,则11682422ABCDS AC BD=⋅=⨯⨯=菱形.故选:A.【点睛】本题考查了三角形的中位线定理和菱形的面积公式,理解中位线定理求的AC的长是关键.6.B【解析】【分析】根据分式的基本性质进行变形即可.【详解】=.故选B.【点睛】此题主要考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.7.B【解析】【分析】根据轴对称图形的性质,解决问题即可.【详解】解:∵四边形ABCD是正方形,∴直线AC是正方形ABCD的对称轴,∵EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.∴根据对称性可知:四边形EFHG的面积与四边形EFJI的面积相等,∴S阴=12S正方形ABCD=12,故选B.【点睛】本题考查正方形的性质,解题的关键是利用轴对称的性质解决问题,属于中考常考题型.8.C【解析】【分析】【详解】解:A.这组数据的平均数是(1+5+6+3+5)÷5=4,故本选项正确;B.5出现了2次,出现的次数最多,则众数是3,故本选项正确;C.把这组数据从小到大排列为:1,3,5,5,6,最中间的数是5,则中位数是5,故本选项错误;D.这组数据的方差是:15[(1﹣4)2+(5﹣4)2+(6﹣4)2+(3﹣4)2+(5﹣4)2]=3.2,故本选项正确;故选C.考点:方差;算术平均数;中位数;众数.9.D【解析】A、依题意得他离家8km共用了30min,故选项正确;B、依题意在第10min开始等公交车,第16min结束,故他等公交车时间为6min,故选项正确;D、公交车(30-16)min走了(8-1)km,故公交车的速度为7000÷14=500m/min,故选项错误.故选D.10.B【解析】【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】A、∵42+52=41≠62,∴不能作为直角三角形三边长,故本选项错误;B、∵52+122=169=132,∴能作为直角三角形三边长,故本选项正确;C、∵62+72=85≠82,∴不能作为直角三角形三边长,故本选项错误;D、∵82+92=141≠102,∴不能作为直角三角形三边长,故本选项错误.故选B.【点睛】本题考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.二、填空题11.8【解析】【分析】利用菱形的性质根据勾股定理求得AO的长,然后求得AC的长即可.【详解】如图,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO∵BD=6,∵周长为20,∴AB=5,由勾股定理得:AO==4,∴AC=8,故答案为:8【点睛】本题主要考查了菱形的性质,解题的关键是菱形问题转化为直角三角形问题求解.12.R≥3.1【解析】【详解】解:设电流I与电阻R的函数关系式为I=kR,∵图象经过的点(9,4),∴k=31,∴I=36R,k=31>0,在每一个象限内,I随R的增大而减小,∴当I取得最大值10时,R取得最小值3610=3.1,∴R≥3.1,故答案为R≥3.1.13.1.【解析】【分析】把(1,0)代入y=ax2-bx+5得a-b+5=0,然后利用整体代入的方法计算b-a+2014的值.【详解】解:把(1,0)代入y=ax2-bx+5得a-b+5=0,所以b-a=5,所以b-a+2014=5+2014=1.故答案为1.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.14.y=﹣2x﹣2【分析】根据“左加右减,上加下减”的平移规律即可求解.【详解】解:直线21y x =--先向上平移3个单位,再向左平移2个单位得到直线2(2)13y x =-+-+,即22y x =--.故答案为22y x =--.【点睛】本题考查图形的平移变换和函数解析式之间的关系.掌握平移规律“左加右减,上加下减”是解题的关键. 15.1.888×710【解析】【分析】先用用科学记数法表示为:10n a ⨯的形式,然后将a 保留4位有效数字可得.【详解】18884600=1.88846×710≈1.888×710故答案为:1.888×710【点睛】本题考查科学记数法,注意科学记数法还可以表示较小的数,表示形式为:10n a -⨯.16.1【解析】【分析】根据题意得到关于a 的不等式组,解之得到a 的取值范围,解分式方程根据“该方程有整数解,且1y ≠”,得到a 的取值范围,结合a 为整数,取所有符合题意的整数a ,即可得到答案.【详解】 解:函数(1)8y a x a =-+-的图象经过第一,三,四象限,∴1080a a ->⎧⎨-<⎩解得:18a <<,方程两边同时乘以(1)y -得:(5)3(1)y y a --+-=,去括号得:533y y a -++-=,移项得:353y y a -+=-+,合并同类项得:22y a =-,系数化为1得:22a y -=, 该方程有整数解,且1y ≠,2a -是2的整数倍,且22a -≠,即2a -是2的整数倍,且4a ≠,18a <<,∴整数a 为:2,6,268∴+=,故答案为1.【点睛】本题考查了分式方程的解和一元一次不等式组的整数解,正确掌握解分式方程的方法和解一元一次不等式组的方法是解题的关键.17.-2<m <1【解析】【分析】【详解】解:由已知得:2030m m >>+⎧⎨-⎩, 解得:-2<m <1.故答案为:-2<m <1.三、解答题18.(1)P (﹣3,1);(2)Q (1,0)或(5,0);(3)0<m <1.【解析】【分析】(1)根据两直线相交的性质进行作答.(2)根据三角形面积计算方式进行作答.(3)先做出直线经过O 点、B 点的讨论,再结合题意进行作答.【详解】(1)∵A (0,3)、点B (3,0),∴直线AB 的解析式为y =﹣x +3,由23y x y x =-⎧⎨=-+⎩,解得36xy=-⎧⎨=⎩,∴P(﹣3,1).(2)设Q(m,0),由题意:12•|m﹣3|•1=1,解得m=5或1,∴Q(1,0)或(5,0).(3)当直线y=﹣2x+m经过点O时,m=0,当直线y=﹣2x+m经过点B时,m=1,∴若直线y=﹣2x+m与△AOB三条边只有两个公共点,则有0<m<1.【点睛】本题考查了两直线相交的相关性质和三角形面积计算方式及与直线的综合运用,熟练掌握两直线相交的相关性质和三角形面积计算方式及与直线的综合运用是本题解题关键.19.证明见解析.【解析】分析:根据题意得出EG、FH分别是△ABH和△CBG的中位线,从而得出ED∥BH,FD∥BG,即四边形BHDG 是平行四边形,从而得出OB=OD,OG=OH,结合AG=CH得出OA=OC,从而根据对角线互相平分的四边形是平行四边形得出答案.详解:证明:∵G、H是AC的三等分点且GE∥BH,HF∥BG,∴AG=GH=HC,EG、FH分别是△ABH和△CBG的中位线,∴ED∥BH,FD∥BG,∴四边形BHDG是平行四边形,∴OB=OD,OG=OH,OA=OG+AG=OH+CH=OC,∴四边形ABCD是平行四边形.点睛:本题主要考查的是平行四边形的性质与判定,属于中等难度的题型.根据中位线的性质得出四边形BHDG是平行四边形是解决这个问题的关键.20.(1)y1==-7x+600,y2==3x+440(2)答案见解析(3)答案见解析【解析】【分析】(1)根据两种盈利模式,分别列出y 1、y 2关于x 的函数解析式;(2)利用描点法画出两函数图像;(3)由y 1=y 2,建立关于x 的方程,解方程求出x 的值,就可得到两函数的交点坐标,再利用一次函数的性质,就可得出当0≤x≤40时,y 1随x 的增大而增大,y 2随x 的增大而减小,可得到每一个自变量x 都有唯一的一个y 的值与之对应,由此可得出判断.【详解】(1)解: 由题意得:y 1=8x+15(40-x )=-7x+600,y 2=14x+11(40-x )=3x+440 ;(2)解: 如图,(3)解: 当y 1=y 2时,-7x+600=3x+440解之:x=16∴x=16时,y=3×16+440=488当0≤x≤40时,y 1随x 的增大而增大,y 2随x 的增大而减小,∴7600(010)3440(1040)x x y x x -+≤≤⎧=⎨+<≤⎩ ∴每一个自变量x 都有唯一的一个y 的值与之对应,∴y 是x 的函数,当x=16时,y 的最小值为488.【点睛】本题主要考查一次函数的应用,根据题意列出函数关系式并能熟练掌握一次函数的性质是解答本题的关键.21.(1)10x -<≤;(2)①1;② 1739y x =-+ 【解析】【分析】(1)先利用直线y=3x+3确定A 、B 的解析式,然后利用一次函数的性质求解;(2))①把C(-23,n)代入y=3x+3可求出n的值;②利用两直线垂直,一次项系数互为负倒数可设直线CD的解析式为y=-13x+b,然后把C(-23,1)代入求出b即可.【详解】解:(1)当y=0时,3x+3=0,解得x=-1,则A(-1,0),当x=0时,y=3x+3=3,则B(0,3),当0<y≤3,自变量x的取值范围是-1≤x<0;(2)①把C(-23,n)代入y=3x+3得3×(-23)+3=n,解得n=1;②∵AB⊥CD,∴设直线CD的解析式为y=-13x+b,把C(-23,1)代入得-13×(-23)+b=1,解得b=79,∴直线CD的解析式为y=-13x+79.【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数的性质.22.(1)详见解析;(213【解析】【分析】(1)根据正方形的性质可得AD=DC,∠ADC=∠C=90°,然后即可利用SAS证得结论;(2)根据全等三角形的性质和余角的性质可得∠DGF=90°,根据勾股定理易求得AE的长,然后根据直角三角形斜边中线的性质即得结果.【详解】(1)证明:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°,∵DF = CE,∴△ADF≌△DCE(SAS);(2)解:∵△ADF≌△DCE,∴∠DAF=∠CDE,∵∠DAF+∠DFA=90°,∴∠CDE +∠DFA=90°,∴∠DGF=90°,∴∠AGE=90°,∵AB=BC=6,EC=2,∴BE=4,∵∠B=90°,∴AE=222264AB BE+=+=213,∵点H为AE的中点,∴GH=13.【点睛】本题考查了正方形的性质、全等三角形的判定和性质、勾股定理和直角三角形的性质等知识,属于常见题型,熟练掌握上述基本知识是解题的关键.23.(1)甲的速度是10km/h,乙的速度是25km/h ;(2)53a=,5b=;(3)136h【解析】【分析】(1)根据函数图象中的数据,由路程除以时间可求得甲乙的速度;(2)根据a、b点的实际意义列出方程求解即可;(3)由图象可知甲乙相距7.5km有两种情况,第二次相距7.5km时,汽车在自行车的前面,据此列出方程即可解答本题.【详解】(1)甲的速度为:25÷2.5=10km/h,乙的速度是25÷(2-1)=25÷1=25km/h;故答案为:10,25;(2)由题意得:25(a-1)=10a解得53 a=;由题意可知,当汽车到达B地时,两人相距bkm. ∴b=25-10×2=5故答案为:53a=,5b=(3)甲、乙两人第二次相距7.5km是在甲乙相遇之后,汽车在自行车的前面,设甲出发xh,甲、乙两人第二次相距7.5km,由题意可得:25(x-1)-10x=7.5,解得:136 x=.答:甲出发136h后,甲乙两人第二次相距7.5km.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,准确识别函数图像并利用方程思想解答.24.【解析】【分析】由正方形的性质可得AB=CD,∠COD=90°,OC=OD,∠ADB=∠ACD=∠CDO=45°,又因DE平分∠ODA,所以∠BDE=∠ADE=1.5°;在△ADE中,根据三角形的内角和定理可得∠CED=2.5°,所以∠CED=∠CDE=2.5°;根据等腰三角形的性质可得CD=CE=2;在等腰Rt△COD中,根据勾股定理求得,由此即可求得OE的长.【详解】∵四边形ABCD为正方形,∴AB=CD,∠COD=90°,OC=OD,∠ADB=∠ACD=∠CDO=45°,∵DE平分ODA∠,∴∠BDE=∠ADE=1.5°,∴∠CDE=∠BDE+∠CDO =2.5°;在△ADE中,根据三角形的内角和定理可得∠CED=2.5°,∴∠CED=∠CDE=2.5°,∴CD=CE=2,在等腰Rt△COD中,根据勾股定理求得,∴.故答案为.【点睛】本题考查了正方形的性质,等腰三角形的判定及勾股定理,正确求得CE的长是解决问题的关键. 25.公路AB段需要暂时封锁.理由见解析.【解析】【分析】如图,本题需要判断点C到AB的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C 作CD⊥AB于D,然后根据勾股定理在直角三角形ABC中即可求出AB的长度,然后利用三角形的公式即可求出CD ,然后和250米比较大小即可判断需要暂时封锁.【详解】公路AB 段需要暂时封锁.理由如下:如图,过点C 作CD AB ⊥于点D .因为400BC =米,300AC =米,90ACB ∠=︒,所以由勾股定理知222AB BC AC =+,即500AB =米. 因为1122ABC S AB CD BC AC =⋅=⋅, 所以400300240500BC AC CD AB ⋅⨯===(米). 由于240米<250米,故有危险,因此公路AB 段需要暂时封锁.【点睛】本题考查运用勾股定理,掌握勾股定理的运用是解题的关键.。
2019 年春季八年级期末教学质量检测数学参考答案一、选择题(每小题4分,共40分)1.C;2.A;3.D;4.B;5.C;6.B;7.C;8.A;9.D;10.B二、填空题(每小题4分,共24分)3b11.1.810 6 ;12.;13.15.4;2a4 11 14.y 2x 15;15. 3 ;16.(5,)或(5,)3 3三、解答题(共86分)17.(8 分)解:原式=x x x 11 x(x 1)……………………………………………4 分1=x 11当x 2时,=x 1…………………………………………………………6 分1………………………………………………7分2 11……………………………………………………8 分318.(8 分)证明:在□ABCD中,AD∥BC,AD=BC………………………………4分又∵AE=CF∴DE=BF………………………………………………………5分∴四边形BEDF是平行四边形……………………………………7分∴BE=DF…………………………………………………………8分19.(8 分)(1)0.6,2.4 …………………………………………………………4分(2)设l的解析式为y kx…………………………………………5分2∵l过点(0.6,2.4)2∴2.4=0.6k………………………………………………………6分k 4∴y 4x………………………………………………………7分当x 1.2 时,y 4.8答:乙车走1.2(分)时与B处的距离是4.8(米)…………………………8分八年级数学参考答案120.(8分)解:(1)画图…………………………………………………………4分(2)在正方形ABCD 中,∠BCD=90°,BC=CD∴∠DBC=∠CDB=45°………………………………………5分∵BE 平分∠CBD,EF⊥BD,∠BCD=90°∴EF=EC∴∠EFC=∠ECF ………………………………………………6分又∵∠CFE=90°,∠BCD=90°∴∠BFC=∠BCF ……………………………………………7分∴∠BCF=12(180°-45°)=67.5°………………………8分21.(8 分)解:(1)设乙队单独完成此项任务需x 天,依题意得x 785x……………………………………………………2分x 20 ……………………………………………………3分经检验,x 20 是该方程的根……………………………4分x 8 28答:甲队单独完成需28 天、乙队单独完成需20 天……………5分(2)设甲队至少再单独施工y 天,依题意,得1 1 2y ( ) 5 28 20 28 1………………………………………7分y 8答:甲队至少再单独施工8 天…………………………………8分22.(10 分)(1)证明:在平行四边形ABCD 中,CD∥AB∴∠DCO=∠BAO,∠CEO=∠AFO ………………………2分又∵□ABCD 的对角线AC、BD 相交于点O∴OC=OA ……………………………………………………3分∴△CEO≌△AFO …………………………………………4分∴CE=AF …………………………………………………5分(2)解:连结DF、BE,四边形BEDF 是菱形…………………………6分∵△CEO≌△AFO∴OE=OF八年级数学参考答案2又∵□ABCD 中,OD =OB∴四边形BEDF 是平行四边形 …………………………………7分 在△ABD 中,DB =2,BC =1,CD = 52+BC 2=CD 2……………………………………………8 分∴DB∴△CBD 是直角三角形,且∠CBD =90°∵OD =OB =1 2DB =1 ∴BC =OB =1∴△OBC 是等腰直角三角形 …………………………………9 分 ∴∠BOC =45°当AC 绕点O 逆时针旋转45°时,即∠COE =45° ∴∠BOE =∠BOC +∠COE =90° 即EF ⊥BD∴□BEDF 是菱形 ……………………………………………10 分23.(10 分)解:(1)A 区污染指数平均数:115108 2100 95 B 区污染指数平均数: 85 80 70 35012 4579…3分105 95 490 85 80 70 260 124580 (6)分(2)A 区污染指数平均数为79,B 区污染指数平均数为80,所以A 区污染指数平均数较低,空气质量较好………………7 分A 区空气质量的众数是50,B 区空气质量的众数是90,所以A 区污 染指数的众数较小,空气质量较好………………………9 分(或A 区空气质量的中位数是82.5,B 区空气质量的中位数是87.5, 所以A 区污染指数的中位数较小,空气质量较好 ……………9 分) 综上所述:A 区空气质量较好……………………………10 分124.(13 分)解:(1)∵CN,点 N (2,0)21 ) ………………………………………………1 分 ∴点C (2,2八年级数学参考答案3n1 )………………………2分∵反比例函数y 过点C(2,x2∴n xy 1 …………………………………………………3分(2)四边形ABCD是菱形…………………………………………4分当n=2 时,得反比例函数的解析式分别为2 8当x 2 时,y 1,y 4x x y2与xy8x∴点A(2,4),点C(2,1)…………………………………5分∵点P是线段AC的中点∴点P(2,52),PA=PC=32∵AC⊥BD,AC⊥x轴∴点B、D与点P的纵坐标均为5 2当5y 时,由2由yy2,得xx8,得xx451654 5 16∴点B(,),点D(5 2 56 6∴PB=,PD=5 5 ,52)……………………………6分∴PB=PD∴四边形ABCD为平行四边形…………………………………7分∵AC⊥BD∴四边形ABCD是菱形………………………………………8分n n4n(3)当x 2 时,y ,y 2nx 2 xn∴点A(2,2n),点C(2,)……………………………9分2正方形ABCD中,PA=PC∴点P(2,5n4)八年级数学参考答案45n 3n∴PA =2n - 44=………………………………………10 分5n ∴点B 与点P 的纵坐标均为45n n 4当y 时,由y ,得x4 x5 4 6∴PB =2- =……………………………………………11分55正方形ABCD 中,PA =PB3n 6 =45 8 n5 16 5∴点A (2,),点B (4 5,2) (12)分 设直线BC 的解析式为y =kx +b ,得∴16 2k b 54k b 2 5∴b6 5 6 ∴OE =…………………………………………………13分525.(13 分)解:(1) 在矩形ABCD 中,CD ∥AB∴∠NPA =∠PAB……………………………………………1 分又∵∠FAP =∠PAB∴∠NPA =∠FAP ……………………………………………2 分∴NA =NP……………………………………………………3 分(2)连结AC当点E 恰好在AD 的延长线时,AE =AC ,PE =PC …………4 分 在矩形ABCD 中,∠ADC =90°,点E 恰好在AD 的延长线上 ∴∠PDE =180°-∠ADC =90° ……………………………5 分在矩形ABCD 中,BC=AD=3,CD=AB=4,∠B=90°∴AC AB2 BC2 5八年级数学参考答案5∴AE=AC=5DE=AE-AD=2 ………………………………………6分设DP=x,则PE=PC=4-x在Rt△PDE 中,DE 2 DP 2 PE222 x (4 x) ……………………………………………7分2 23x23即DP ……………………………………………………8分2(3)过点D 分别作DG⊥AF 于点G,DH ⊥EF 于点H ………9分又∵∠AFE=∠ABC=90°∴四边形FGDH 是矩形∴FH=DG …………………………………………………10分E在矩形ABCD 中,∠DAB=90°H∴∠PAB=90°-∠PAD=60°∴∠FAP=∠PAB=60°FND PC G∴∠GAD=∠FAP -∠PAD=30°1 3∴DG AD2 A B23即FH ……………………………………………11分DG2又∵EF=BC=3∴EH EF FH 32∴FH=EH …………………………………………………12分又∵DH ⊥EF即DH 是EF 的垂直平分线∴DF=DE即△DEF 是等腰三角形…………………………………13 分八年级数学参考答案6。
泉州市2020年初二下期末统考数学试题一、选择题(每题只有一个答案正确)1.王师傅驾车到某地办事,汽车出发前油箱中有50升油.王师傅的车每小时耗油12升,行驶3小时后,他在一高速公路服务站先停车加油26升,再吃饭、休息,此过程共耗时1小时,然后他继续行驶,下列图象大致反映油箱中剩余油量y (升)与行驶时间t (小时)之间的函数关系的是( ) A . B .C .D .2.函数1y x =+中自变量x 的取值范围是( )A .x ≥ 1B .x ≤ 1C .x ≠ 1D .x > 13.在下列说法中:①有一个外角是 120°的等腰三角形是等边三角形.② 有两个外角相等的等腰三角形是等边三角形.③ 有一边上的高也是这边上的中线的等腰三角形是等边三角形.④ 三个外角都相等的三角形是等边三角形.其中正确的有( )A .1 个B .2 个C .3 个D .4 个4.下列二次根式中属于最简二次根式的是( )A .14B .32C .a bD .44a +5.在下列汽车标志中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .6.下列矩形都是由大小不等的正方形按照一定规律组成,其中,第①个矩形的周长为6,第②个矩形的周长为10,第③个矩形的周长为16,…则第⑥个矩形的周长为( )① ② ③ ④A .42B .46C .68D .727.一个多边形的每一个外角都等于36,则这个多边形的边数n 等于( )A .8B .10C .12D .148.一元二次方程2440x x -+=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定9.如图,在矩形ABCD 中,AB =6,AD =8,以BC 为斜边在矩形的外部作直角三角形BEC ,点F 是CD 的中点,则EF 的最大值为( )A .8B .9C .10D .241 10.一个菱形的两条对角线的长分别为5和8,那么这个菱形的面积是( )A .40B .20C .10D .25 二、填空题11.若分式11x x --的值为零,则x 的值为______. 12.如图,在△ABC 中,AB=AC ,点E 在CA 延长线上,EP ⊥BC 于点P ,交AB 于点F ,若AF=2,BF=3,则CE 的长度为 .13.将点(4,3)A 先向左平移6个单位,再向下平移4个单位得到点1A ,则1A 的坐标是__.14.在平面直角坐标系中,一次函数y kx b =+(k 、b 为常数,0k ≠)的图象如图所示,根据图象中的信息可求得关于x 的方程3kx b +=的解为____.15.当a__________时,分式32a a -+有意义. 16.一盒中只有黑、白两色的棋子(这些棋除颜色外无其他差别),设黑棋有x 枚,白棋有y 枚.如果从盒中随机取出一枚为黑棋的概率是14,那么y =___.(请用含x 的式子表示y ) 17.如图,平行四边形ABCD 中,∠ABC =60°,E ,F 分别在CD 和BC 的延长线上,AE ∥BD ,EF ⊥BC ,CF =1,求AB 的长是___________.三、解答题18.如图,在△AOB 中,∠ABO=90°,OB=4,AB=8,直线y=-x+b 分别交OA 、AB 于点C 、D ,且ΔBOD 的面积是4.(1)求直线AO 的解析式;(2)求直线CD 的解析式;(3)若点M 是x 轴上的点,且使得点M 到点A 和点C 的距离之和最小,求点的坐标.19.(6分)如图,在平面直角坐标系中,A (3,0),B (0,3),过点B 画y 轴的垂线l ,点C 在线段AB 上,连结OC 并延长交直线l 于点D ,过点C 画CE ⊥OC 交直线l 于点E .(1)求∠OBA 的度数,并直接写出直线AB 的解析式;(2)若点C 的横坐标为2,求BE 的长;(3)当BE =1时,求点C 的坐标.20.(6分)在平面直角坐标系中,直线l 经过点A (﹣1,﹣4)和B (1,0),求直线l 的函数表达式. 21.(6分)为了丰富学生的课外活动,拓展孩子们的课外视野,我校的社团活动每年都在增加,社员也一直在增加.2017年我校八年级社员的总人数是300人,2019年我校八年级总校社员有432人。
2019-2020学年泉州市八年级第二学期期末质量跟踪监视数学试题一、选择题(每题只有一个答案正确)1.已知关于x 的不等式组2401x x a -⎧⎨+<⎩无解,则a 的取值范围是( ) A .a <3 B .a≤3 C .a >3 D .a≥32.如图,在正方形ABCD 中,△BPC 是等边三角形,BP ,CP 的延长线分别交AD 于点E ,F ,连接BD ,DP ,BD 与CF 交于点H .下列结论:①BE=2AE ;②△DFP ∽△BPH ;③△PFD ∽△PDB ;④DP 2=PH•PC ,其中正确的结论是A .①②③④B .②③C .①②④D .①③④3.如图,A 、B 两点在反比例函数1k y x =的图象上,C 、D 两点在反比例函数2k y x =的图象上,AC y ⊥轴于点E ,BD y ⊥轴于点F ,4AC =,2BD =,6EF =,则12k k -的值是( )A .8B .6C .4D .104.下列从左到右的变形,属于因式分解的是( )A .2(2)(2)4x x x +-=-B .24+3(2)(2)3x x x x x -=+-+C .2+4(4)x xy x x x y -=+D .21(1)(1)a a a -=+- 5.反比例函数k y x=经过点(1,3-),则k 的值为( ) A .3B .3-C .13D .13- 6.已知,,是反比例函数的图象上的三点,且,则、、的大小关系是( )A .B .C .D . 7.若分式12x +在实数范围内有意义,则实数x 的取值范围是( ) A .x >﹣2 B .x <﹣2 C .x=﹣2 D .x≠﹣28.一个事件的概率不可能是( )A .1B .0C .12D .329.抛物线y =x 2﹣4x+5的顶点坐标是( )A .(2,1)B .(﹣2,1)C .(2,5)D .(﹣2,5)10.如图,在菱形ABCD 中,A 60∠=,AD 8=.P 是AB 边上的一点,E ,F 分别是DP ,BP 的中点,则线段EF 的长为( )A .8B .25C .4D .22二、填空题 11.如图,O 是ABC ∆内一点,且在BC 的垂直平分线上,连接OA ,OC .若3OA =,4OC =,5AB =,则点O 到AB 的距离为_________.12.一个正多边形的每个外角等于72°,则它的边数是__________.13.实数a 在数轴上的位置如图示,化简:21(2)a a -+-=_____.14.若2220x y -=,且2x y +=-,则x y -的值是__________.150.160.4916.如图,双曲线y=2x(x >0)经过四边形OABC 的顶点A 、C ,∠ABC=90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴.将△ABC 沿AC 翻折后得△AB′C ,B′点落在OA 上,则四边形OABC 的面积是 .17.如图,如果甲图中的阴影面积为S 1,乙图中的阴影面积为S 2,那么12S S =________.(用含a 、b 的代数式表示)三、解答题18.如图是甲、乙两名射击运动员的5次训练成绩的折线统计图:(1)分别计算甲、乙运动员射击环数;(2)分别计算甲、乙运动员射击成绩的方差;(3)如果你是教练员,会选择哪位运动员参加比赛,请说明理由.19.(6分)已知在矩形ABCD 中,∠ADC 的平分线DE 与BC 边所在的直线交于点E ,点P 是线段DE 上一定点(其中EP<PD )(1)如图1,若点F 在CD 边上(不与D 重合),将∠DPF 绕点P 逆时针旋转90°后,角的两边PD 、PF 分别交射线DA 于点H 、G .①求证:PG=PF ;②探究:DF 、DG 、DP 之间有怎样的数量关系,并证明你的结论.(2)拓展:如图2,若点F 在CD 的延长线上(不与D 重合),过点P 作PG ⊥PF ,交射线DA 于点G ,你认为(1)中DE 、DG 、DP 之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.20.(6分)如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm.求:(1)FC的长;(2)EF的长.21.(6分)已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.(1)求k的值;(2)如果这个方程有两个整数根,求出它的根.22.(8分)在一条直线上依次有A、B、C三个海岛,某海巡船从A岛出发沿直线匀速经B 岛驶向C岛,执行海巡任务,最终达到C岛.设该海巡船行驶x(h)后,与.B.港的距离....为y(km),y与x的函数关系如图所示.(1)填空:A、C两港口间的距离为 km,;(2)求y与x的函数关系式,并请解释图中点P的坐标所表示的实际意义;(3)在B岛有一不间断发射信号的信号发射台,发射的信号覆盖半径为15km,求该海巡船能接受到该信号的时间有多长?23.(8分)如图,矩形ABCD的边BC在x轴上,点A(a,4)和D分别在反比函数y=-和y=(m>0)的图象上.(1)当AB=BC时,求m的值。
2019年春泉州市八年级下册数学期末试题一.选择题(共10小题)1.在函数y =中x的取值范围是()A.x >B.x <C.x ≠D.x ≠﹣2.在下列分式中,是最简分式的是()A .B .C .D .3.某种植物细胞的直径约为0.00012mm,用科学记数法表示这个数为()mm.A.1.2×104B.12×10﹣3C.1.2×10﹣3D.1.2×10﹣4 4.如果点P(a,b)在第二象限,那么点Q(﹣a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限5.一次函数y=(k﹣1)x+2的图象如图所示,则k的取值范围是()A.k>0B.k<0C.k>1D.k<16.如图,在▱ABCD中,对角线AC,BD相交于点O,AC=6,BD=10,则AD的长度可以是()A.2B.7C.8D.107.如图,矩形ABCD的对角线AC,BD交于点O,AC=6,∠AOB=60°,则AB的长为()A.3B.4C.4D.28.如图,已知双曲线y =经过Rt△OAB的直角边AB的中点P,则△AOP的面积为()A .B.1C.2D.49.甲乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图所示.下列结论正确的个数是()(1)t=5时,s=150;(2)t=35时,s=450;(3)甲的速度是30米/分;(4)t=12.5时,s=0.A.1个B.2个C.3个D.4个(第9题)(第10题)10.如图,函数y =﹣x+3的图象分别与x轴、y轴交于点A、B,∠BAO的平分线AC与y轴交于点C,则点C的纵坐标为()A .B .C.2D .二.填空题(共6小题)11.计算=.12.P(m ﹣1,2﹣m)在y轴上,则m=.13.如图,在平行四边形ABCD中,AC,BD相交于点O,AB=13,AD=12,AC⊥BC,则AO=.(第13题)(第15题)(第16题)14.将代数式3x﹣2y3化为只含有正整数指数幂的形式是.15.如图,已知正方形ABCD,以BC为边作等边△BCE,则∠DAE的度数是.16.如图,A、B是反比例函数y=在第一象限内的图象上的两点,且A、B两点的横坐标分别是4和8,则△OAB的面积是.三.解答题(共9小题)17.计算:(﹣1)2019﹣(π﹣3.14)0+()-2.18.解方程:﹣=1.19.先化简,再求值:(1+)÷,其中x=2.20.为推进“足球进校园活动”,某校计划利用3600元添置某品牌同一型号的足球若干个;实际购买时足球的单价按原价打九折销售,比原计划多购买了4个足球.问每个足球的原价为多少元?21.在▱ABCD中,点E、F在对角线AC上,且DE∥BF,求证:BF=DE.22.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求平行四边形ACDE的面积.23.如图,在平面直角坐标系中,直线y =x与反比例函数y =(x>0)在第一象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y =x向上平移后与反比例函数图象在第一象限内交于点B,与y轴交于点C,且△ABO 的面积为,求直线BC的解析式.24.如图,把矩形OABC放入平面直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,其中AB=15,对角线AC所在直线解析式为y =﹣x+b,将矩形OABC 沿着BE折叠,使点A落在边OC上的点D处.(1)求点B的坐标;(2)求EA的长度;(3)点P是y轴上一动点,是否存在点P使得△PBE的周长最小,若存在,请求出点P的坐标,若不存在,请说明理由.25.如图1,在平面直角坐标系中,直线l:y =与x轴交于点A,且经过点B(2,m)、点C(3,0).(1)求直线BC的函数解析式;(2)y轴上有一动点P,直线BC上有一动点M,若△APM是以线段AM为斜边的等腰直角三角形,求出点M的坐标;(3)如图2,E为线段AC上一点,连结BE,一动点F从点B出发,沿线段BE以每秒1个单位运动到点E再沿线段EA 以每秒个单位运动到A后停止,设点F在整个运动过程中所用时间为t,求t的最小值.参考答案与试题解析一.选择题(共10小题)1.C;2B;3.D;4.A;5.C;6.B;7.A;8.B;9.D;10.B二.填空题(共6小题)11.1.12.1.13.14..15.15°16.6.三.解答题(共9小题)17.解:原式=-1﹣1+4,……..6分=2.……..8分18.解:去分母得:2x+2=x﹣2,……..3分解得:x=﹣4,……..7分经检验x=﹣4是分式方程的解.……..8分19.解:(1+)÷=÷……..3分=•=,…….5分当x=2时,原式==.……..8分20.解:设每只足球的原价为x元,根据题意得:=﹣4,…….4分解得:x=100,……..6分经检验:x=100是分式方程的解,且符合题意,则足球的原价为100元/只.……..8分21.证明:∵四边形ABCD是平行四边形,∴BC=AD,BC∥AD,∴∠BCF=∠DAE,……..3分∵DE∥BF,∴∠BFE=∠DEF,∴∠BFC=∠DEA,在△BCF和△DAE 中,,…….6分∴△BCF≌△DAE(AAS),∴BF=DE.……..8分22.【10分】证明:(1)∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,……2分∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;…….6分(2)∵四边形ABCD是菱形,AC=8,BD=6,∴DO=3,AC⊥BD…….8分∴S▱ACDE=AC×DO=24…….10分23.【10】解:(1)∵直线y =x过点A(m,1),∴m=1,解得m=2,∴A(2,1).…….2分∵反比例函数y =(k≠0)的图象过点A(2,1),∴k=2×1=2,∴反比例函数的解析式为y =;…….5分(2)设直线BC的解析式为y =x+b,连接AC,由平行线间的距离处处相等可得△ACO与△ABO面积相等,且△ABO的面积为,∴△ACO 的面积=OC•2=,…….8分∴OC =,∴b =,∴直线BC的解析式为y =.…….10分24.【13分】解:(1)∵AB=15,四边形OABC是矩形,∴OC=AB=15,∴C(0,15),代入y=y =﹣x+b得到b=15,∴直线AC的解析式为y =﹣x+15,令y=0,得到x=9,∴A(9,0),B(9,15).…….4分(2)在Rt△BCD中,BC=9,BD=AB=15,∴CD ==12,∴OD=15﹣12=3,设DE=AE=x,在Rt△DEO中,∵DE2=OD2+OE2,∴x2=32+(9﹣x)2,∴x=5,∴AE=5.…….8分(3)如图作点E关于y轴的对称点E′,连接BE′交y轴于P,此时△BPE的周长最小.∵E(4,0),∴E′(﹣4,0),设直线BE′的解析式为y=kx+b ,则有,解得,∴直线BE′的解析式为y =x +,∴P(0,).…….13分25.【13分】解:(1)将点B坐标代入直线l的表达式得:m ==3,点B(2,3),令y=0,则x=﹣2,即点A(﹣2,0),将点B、C的坐标代入一次函数表达式:y=kx+b 得:,解得:,故:直线BC的表达式为:y=﹣3x+9;…….4分(2)过点P作x轴的平行线分别于过点A、M与y轴的平行线于点G、H,设点P的坐标为(0,n)、点M(m,9﹣3m),∵∠GP A+∠GAP=90°,∠GP A+∠HPM=90°,∴∠HPM=∠GAP,又P A=PM,∠G=∠H=90°,∴△AGP≌△PHM(AAS),GP=HM=2,GA=PH,即:,解得:m =或,即点M 的坐标为(,)或(,﹣);…….8分(4)t =+=AB +AE,过点A作倾斜角为45度的直线l2,过点E作EF⊥l2交于点F,则:EF =AE,即t=BE+EF,当B、E、F三点共线且垂直于直线l2时,t最小,即:t=BF′,同理,直线l2的表达式为:y=﹣x﹣2,直线BF表达式为:y=x+1,将上述两个表达式联立并解得:x =﹣,即:点F ′(﹣,﹣),t=BF ′==.…….13分。
福建省泉州市2020年八年级第二学期期末检测数学试题一、选择题(每题只有一个答案正确)1.下图入口处进入,最后到达的是()A.甲B.乙C.丙D.丁2.已知x=-1 是一元二次方程x2+px+q=0 的一个根,则代数式p-q 的值是()A.1 B.-1 C.2 D.-23.下列结论中,错误的有:()①所有的菱形都相似;②放大镜下的图形与原图形不一定相似;③等边三角形都相似;④有一个角为110度的两个等腰三角形相似;⑤所有的矩形不一定相似.A.1个B.2个C.3个D.4个4.不等式3(x-2)≥x+4的解集是( )A.x≥5B.x≥3C.x≤5D.x≥-55.下列事件中是必然事件的是()A.投掷一枚质地均匀的硬币100次,正面朝上的次数为50次B.一组对边平行,另一组对边相等的四边形是等腰梯形=C.如果22=,那么a ba bD.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月6.如图,已知四边形ABCD是平行四边形,下列结论中错误的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当AC=BD时,它是矩形D.当∠ABC=90°时,它是正方形7.下列各式计算正确的是A.3+3=33B483=4C2?3=5D4=2±8.班上数学兴趣小组的同学在元旦时,互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共互送了90张贺年卡,那么数学兴趣小组的人数是多少?设数学兴趣小组人数为x人,则可列方程为( )A .x(x -1)=90B .x(x -1)=2×90C .x(x -1)=90÷2D .x(x +1)=909.正方形具有而菱形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角相等10.下列命题是假命题的是( )A .四个角相等的四边形是矩形B .对角线相等的平行四边形是矩形C .对角线垂直的四边形是菱形D .对角线垂直的平行四边形是菱形二、填空题11.点A(x 1,y 1)、B(x 2,y 2)在一次函数y=-2x+b 的图象上,若x 1<x 2,则y 1______y 2(填“<”或“>”或“=”). 12.如图,一同学在广场边的一水坑里看到一棵树,他目测出自己与树的距离约为20m ,树的顶端在水中的倒影距自己约5m 远,该同学的身高为1.7m ,则树高约为_____m .13.如图,,AB DE 是互相垂直的小路,它们用,BC CD 连接,则ABC BCD CDE ∠+∠+∠=_______.14.如图,直线y=23x+4与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA 上一动点,PC+PD 值最小时点P 的坐标为_____.15.函数y =(k+1)x ﹣7中,当k 满足_____时,它是一次函数.16.(2017四川省德阳市)某校欲招聘一名数学老师,甲、乙两位应试者经审查符合基本条件,参加了笔式和面试,他们的成绩如右图所示,请你按笔试成绩40%,面试成绩点60%选出综合成绩较高的应试者是____.17.样本容量为80,共分为六组,前四个组的频数分别为12,13,15,16,第五组的频率是0.1,那么第六组的频率是_____.三、解答题18.计算:(23﹣1)2+(3+4)(3-4).19.(6分)全国两会民生话题成为社会焦点.合肥市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了合肥市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.组别焦点话题频数(人数)A 食品安全80B 教育医疗mC 就业养老nD 生态环保120E 其他60请根据图表中提供的信息解答下列问题:(1)填空:m= ,n= .扇形统计图中E组所占的百分比为%;(2)合肥市人口现有750万人,请你估计其中关注D组话题的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?20.(6分)近些年全国各地频发雾霾天气,给人民群众的身体健康带来了危害,某商场看到商机后决定购进甲、乙两种空气净化器进行销售.若每台甲种空气净化器的进价比每台乙种空气净化器的进价少300元,且用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同.(1)求每台甲种空气净化器、每台乙种空气净化器的进价分别为多少元?(2)若该商场准备进货甲、乙两种空气净化器共30台,且进货花费不超过42000元,问最少进货甲种空气净化器多少台?21.(6分)已知22212xx=--,求⎪⎭⎫⎝⎛+-÷⎪⎭⎫⎝⎛+--xxxxx111112的值.22.(8分)如图,对称轴为直线x=1的抛物线经过A(﹣1,0)、C(0,3)两点,与x轴的另一个交点为B,点D在y轴上,且OB=3OD(1)求该抛物线的表达式;(2)设该抛物线上的一个动点P的横坐标为t①当0<t<3时,求四边形CDBP的面积S与t的函数关系式,并求出S的最大值;②点Q在直线BC上,若以CD为边,点C、D、Q、P为顶点的四边形是平行四边形,请求出所有符合条件的点P的坐标.23.(8分)如图,四边形ABCD 是矩形,把矩形沿直线BD 拆叠,点C 落在点E 处,连接DE,DE 与AD 交于点M.(1)证明四边形ABDE 是等腰梯形;(2)写出等腰梯形ABDE 与矩形ABCD 的面积大小关系,并证明你的结论.24.(10分)如图,AC是正方形ABCD的对角线,点O是AC的中点,点Q是AB上一点,连接CQ,DP⊥CQ 于点E,交BC于点P,连接OP,OQ;求证:(1)△BCQ≌△CDP;(2)OP=OQ.25.(10分)(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下列两题:①如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE =45°,BE=4,则DE=.②如图4,在△ABC中,∠BAC=45°,AD⊥BC,且BD=2,AD=6,求△ABC的面积.参考答案一、选择题(每题只有一个答案正确)1.C【解析】【分析】根据平行四边形的性质和对角线的定义对命题进行判断即可.【详解】等腰梯形也满足此条件,可知该命题不是真命题;根据平行四边形的判定方法,可知该命题是真命题;根据题意最后最后结果为丙.故选C.【点睛】本题考查命题和定理,解题关键在于熟练掌握平行四边形的性质和对角线的定义.2.A【解析】【分析】由一元二次方程的解的定义,把x=-1代入已知方程,化简整理即可求得结果.【详解】解:∵x=-1 是一元二次方程x2+px+q=0 的一个根,∴,即,∴p-q =1.故选A.【点睛】本题考查了一元二次方程的解的定义,此类问题的一般思路:见解代入,整理化简.3.B【解析】【分析】根据相似多边形的定义判断①⑤,根据相似图形的定义判断②,根据相似三角形的判定判断③④.【详解】相似多边形对应边成比例,对应角相等,菱形之间的对应角不一定相等,故①错误;放大镜下的图形只是大小发生了变化,形状不变,所以一定相似,②错误;等边三角形的角都是60°,一定相似,③正确;钝角只能是等腰三角形的顶角,则底角只能是35°,所以两个等腰三角形相似,④正确;矩形之间的对应角相等,但是对应边不一定成比例,故⑤正确.有2个错误,故选B.【点睛】本题考查相似图形的判定,注意相似三角形与相似多边形判定的区别.4.A【解析】【分析】去括号、移项,合并同类项,系数化成1即可.【详解】3(x-2)≥x+43x-6≥x+42x≥10∴x≥5故选A.【点睛】本题考查了解一元一次不等式.注意:解一元一次不等式的步骤是:去分母、去括号、移项、合并同类项、系数化成1.5.D【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、投掷一枚质地均匀的硬币100次,正面朝上的次数为50次是随机事件;B、一组对边平行,另一组对边相等的四边形是等腰梯形是随机事件;C、如果a2=b2,那么a=b是随机事件;D、13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月是必然事件;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.D【解析】【分析】【详解】A. 根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A 选项正确;B. ∵四边形ABCD是平行四形,当AC⊥BD时,它是菱形,故B选项正确;C. 根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,故C选项正确;D. 有一个角是直角的平行四边形是矩形,不一定是正方形,故D选项错误;综上所述,符合题意是D选项;故选D.7.B【解析】【分析】利用二次根式的加减法对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的乘法法则对C进行判断;根据算术平方根的定义对D进行判断.【详解】解:A、3A选项错误;B、原式,所以B选项正确;C、原式C选项错误;D、原式=2,所以D选项错误.故选B.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.8.A【解析】【分析】如果设数学兴趣小组人数为x人,每名学生送了(x﹣1)张,共有x人,则一共送了x(x﹣1)张,再根据“共互送了1张贺年卡”,可得出方程为x(x﹣1)=1.【详解】设数学兴趣小组人数为x人,每名学生送了(x﹣1)张,共有x人,根据“共互送了1张贺年卡”,可得出方程为x(x﹣1)=1.故选A.【点睛】本题考查了一元二次方程的应用.解题的关键是读清题意,找准数量关系,列出方程.9.B【解析】【分析】根据正方形的性质以及菱形的性质逐项进行分析即可得答案.【详解】菱形的性质有①菱形的对边互相平行,且四条边都相等,②菱形的对角相等,邻角互补,③菱形的对角线分别平分且垂直,并且每条对角线平分一组对角;正方形具有而菱形不一定具有的性质是矩形的特殊性质(①矩形的四个角都是直角,②矩形的对角线相等),A.菱形和正方形的对角线都互相垂直,故本选项错误;B.菱形的对角线不一定相等,正方形的对角线一定相等,故本选项正确;C.菱形和正方形的对角线互相平分,故本选项错误;D.菱形和正方形的对角都相等,故本选项错误,故选B.【点睛】本题考查了正方形与菱形的性质,解题的关键是熟记正方形与菱形的性质定理.10.C【解析】试题分析:A.四个角相等的四边形是矩形,为真命题,故A选项不符合题意;B.对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;C.对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;D.对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.故选C.考点:命题与定理.二、填空题11.>【解析】【分析】根据一次函数图象的增减性进行答题.【详解】解:∵一次函数y=-2x+b中的x的系数-2<0,∴该一次函数图象是y随x的增大而减小,∴当x1<x2时,y1>y2故答案是:>.【点睛】本题考查了一次函数图象上点的左边特征.此题也可以把点A、B的坐标代入函数解析式,求得相应的y 的值,然后再比较大小.12.5.1.【解析】【分析】因为入射光线和反射光线与镜面的夹角相等,所以构成两个相似三角形,根据相似三角形的性质解答即可.【详解】由题意可得:∠BCA=∠EDA=90°,∠BAC=∠EAD,故△ABC∽△AED,由相似三角形的性质,设树高x米,则5 1.7 205x=-,∴x=5.1m.故答案为:5.1.【点睛】本题考查的是相似三角形的应用,因为入射光线和反射光线与镜面的夹角相等,所以构成两个相似三角形.13.450°【解析】【分析】如图,作出六边形,根据“n边形的内角和是(n-2)•180°”求出内角和,再求∠∠+∠+∠ABC BCD CDE 的度数.【详解】解:过点A作AB的垂线,过点E作DE的垂线,两线相交于点Q,则∠BAQ=∠DEQ=90°,∵DE⊥AB,QA⊥AB,∴DE∥QA,∴∠AQE=180°-∠DEQ=90°,∵六边形ABCDEQ的内角和为:(6-2)•180°=720°,∴∠+∠+∠ABC BCD CDE=720°-90°×3=450°.故答案为:450°.【点睛】本题主要考查了多边形的内角和定理.解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.14.(32-,0)【解析】【分析】根据一次函数解析式求出点A、点B的坐标,再由中点坐标公式求出点C、点D的坐标,根据对称的性质找出点D关于x轴的对称点D′的坐标,结合C、D′的坐标求出直线CD′的解析式,令y=0求出x 的值,从而得到点P的坐标.【详解】作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图,令y=23x+4中x=0,则y=4,∴点B的坐标为(0,4),令y=23x+4中y=0,则23x+4=0,解得:x=-6,∴点A的坐标为(-6,0),∵点C、D分别为线段AB、OB的中点,∴点C(-3,2),点D(0,2),∵点D′和点D关于x轴对称,∴点D′的坐标为(0,-2),设直线CD′的解析式为y=kx+b,∵直线CD′过点C(-3,2),D′(0,-2),∴有322k bb-+=⎧⎨=-⎩,解得:432kb⎧=-⎪⎨⎪=-⎩,∴直线CD′的解析式为y=-43x-2,令y=0,则0=-43x-2,解得:x=-32,∴点P的坐标为(-32,0),故答案为(-32,0).【点睛】本题考查了待定系数法、一次函数以及轴对称中最短路径问题,解题的关键是求出直线CD′的解析式,解决此类问题时找点的坐标,常利用待定系数法求出函数解析式.15.k≠﹣1.【解析】【分析】根据一次函数的定义即可解答.【详解】根据一次函数定义得,k+1≠0,解得k≠﹣1.故答案为:k≠﹣1.【点睛】本题考查了一次函数的定义,熟知形如y=kx+b(k≠0)的函数是一次函数是解决问题的关键.16.甲.【解析】解:甲的平均成绩为:80×40%+90×60%=86(分),乙的平均成绩为:85×40%+86×60%=85.6(分),因为甲的平均分数最高.故答案为:甲.17.0.2.【解析】【分析】首先根据频率=频数÷总数,计算从第一组到第四组的频率之和,再进一步根据一组数据中,各组的频率和是1,进行计算.【详解】解:根据题意得:第一组到第四组的频率之和是121315160.780+++=,又因为第五组的频率是0.1,所以第六组的频率是10.70.10.2--=.故答案为0.2.【点睛】本题考查的是频率分布直方图,这类题目主要涉及以下三个计算公式:频率=频数÷样本容量,各组的频率之和为1,各组的频数之和=样本容量.三、解答题18.【解析】【分析】利用完全平方公式和平方差公式计算.【详解】解:原式121316=-+-=-【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.(1)40;100;15;(2)225万人;(3)14. 【解析】试题分析:(1)求得总人数,然后根据百分比的定义即可求得;(2)利用总人数100万,乘以所对应的比例即可求解;(3)利用频率的计算公式即可求解.试题解析:解:(1)总人数是:80÷20%=400(人),则m=400×10%=40(人),C 组的频数n=400﹣80﹣40﹣120﹣60=100,E 组所占的百分比是:60400×100%=15%; (2)750×120400=225(万人); (3)随机抽查一人,则此人关注C 组话题的概率是100400=14. 故答案为40,100,15,14. 考点:频数(率)分布表;用样本估计总体;扇形统计图;概率公式.20.(1)每台甲种空气净化器、每台乙种空气净化器的进价分别为1200元,1500元(2)至少进货甲种空气净化器10台.【解析】【分析】(1)设每台甲种空气净化器为x 元,乙种净化器为(x +300)元,根据用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同,列出方程求解即可;(2)设甲种空气净化器为y 台,乙种净化器为(30﹣y )台,根据进货花费不超过42000元,列出不等式求解即可.【详解】(1)设每台甲种空气净化器为x 元,乙种净化器为(x +300)元,由题意得:60007500300x x =+, 解得:x =1200,经检验得:x =1200是原方程的解,则x +300=1500,答:每台甲种空气净化器、每台乙种空气净化器的进价分别为1200元,1500元.(2)设甲种空气净化器为y 台,乙种净化器为(30﹣y )台,根据题意得:1200y +1500(30﹣y )≤42000,y ≥10,答:至少进货甲种空气净化器10台.【点睛】本题考查分式方程和不等式的应用,分析题意,找到合适的等量关系列出方程和不等式是解决问题的关键.21.【解析】【分析】将分式通分、化简,再将已知条件变形,整体代入.【详解】 解:211111x x x x x ⎛⎫⎛⎫-÷+ ⎪ ⎪-+-⎝⎭⎝⎭= -()()211x x x -+÷()()311x x x -+ = -()()211xx x -+()()311x x x -+ =-22x ∵222x x =-∴222x x-=即1-22x∴-22x∴原式【点睛】本题考查分式的化简,整体代入的思想.22.(1)y =﹣x 1+1x+3(1)①t =32时,S 的最大值为518②P (1,4)或(1,3)或)) 【解析】【分析】(1)设所求抛物线的表达式为 y =a(x+1)(x ﹣3),把点C(2,3)代入表达式,即可求解;(1)①设P(t,﹣t1+1t+3),则E(t,﹣t+3),S四边形CDBP=S△BCD+S△BPC=12CD•OB+12PE•OB,即可求解;②分点P在点Q上方、下方两种情况讨论即可求解.【详解】(1)∵抛物线的对称轴为x=1,A(﹣1,2),∴B(3,2).∴设所求抛物线的表达式为y=a(x+1)(x﹣3),把点C(2,3)代入,得3=a(2+1)(2﹣3),解得a=﹣1,∴所求抛物线的表达式为y=﹣(x+1)(x﹣3),即y=﹣x1+1x+3;(1)①连结BC.∵B(3,2),C(2,3),∴直线BC的表达式为y=﹣x+3,∵OB=3OD,OB=OC=3,∴OD=1,CD=1,过点P作PE∥y轴,交BC于点E(如图1).设P(t,﹣t1+1t+3),则E(t,﹣t+3).∴PE=﹣t1+1t+3﹣(﹣t+3)=﹣t1+3t.S四边形CDBP=S△BCD+S△BPC=12CD•OB+12PE•OB,即S=12×1×3+12(﹣t1+3t)×3=﹣32(t﹣32)1+518,∵a=﹣32<2,且2<t<3,∴当t=32时,S的最大值为518;②以CD为边,点C、D、Q、P为顶点的四边形是平行四边形,则PQ∥CD,且PQ=CD=1.∵点P在抛物线上,点Q在直线BC上,∴点P(t,﹣t1+1t+3),点Q(t,﹣t+3).分两种情况讨论:(Ⅰ) 如图1,当点P 在点Q 上方时,∴(﹣t 1+1t+3)﹣(﹣t+3)=1.即t 1﹣3t+1=2.解得 t 1=1,t 1=1.∴P 1(1,4),P 1(1,3),(Ⅱ) 如图3,当点P 在点Q 下方时,∴(﹣t+3)﹣(﹣t 1+1t+3)=1.即t 1﹣3t ﹣1=2.解得 t 3=3172t 4=3172, ∴P 3(3172,1172-),P 4(3172,1172-), 综上所述,所有符合条件的点P 的坐标分别为:P(1,4)或(1,3)或317+117--)或317-117-+). 【点睛】本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系. 23.(1)答案见解析;(2)等腰梯形ABDE 小于矩形ABCD 的面积【解析】【分析】(1)结合图形证△AMB ≌△EMD ,再结合图形的折叠关系可得答案.(2) 由AE<BD,以及平行线间的距离相等,可得.AEM BDM S S <的面积的面积由于ABD BDC BDE S S S ==的面积的面积的面积,以及ABM AME BDEABDE S S S S =++梯形, ABM BMD BCD S SS S =++矩形ABCD ,可得结论.【详解】证明:(1)∵四边形ABCD 是矩形,∴AD=BE,AB=ED,AD ∥BC.∴△ADB ≌△DBC ≌△EDB,∠EBD=∠DBC,∠ADB=∠EBD.∴DM=BM ,AM=EM.∴△AMB ≌△EMD.∴AB=DE.AM=EM ,∴∠EAM=∠AEM ,∵DM=BM ,∴∠BDM=∠MBD ,又∵∠AME=∠BMD ,∴∠EAD=∠MDB ,∴AE ∥BD.∵AE≠BD ,∴四边形ABDE 是等腰梯形.(2)∵ABD BDC BDE S SS ==的面积的面积的面积, ∵ABM AME BDE ABDE S SS S =++梯形,ABM BMD BCD S S S S =++矩形ABCD , ∵AE<BD ,∴.AEM BDM S S <的面积的面积∴.ABCD ABDE 矩形等腰梯形S <S∴ 等腰梯形ABDE 小于矩形ABCD 的面积.【点睛】本题考查了等腰梯形的判定, 直角三角形全等的判定, 矩形的性质, 翻折变换(折叠问题),掌握等腰梯形的判定, 直角三角形全等的判定,以及矩形的性质是解题的关键.24.(1)见解析;(2)见解析.【解析】【分析】(1)根据正方形的性质和DP ⊥CQ 于点E 可以得到证明△BCQ ≌△CDP 的全等条件;(2)根据(1)得到BQ=PC ,然后连接OB ,根据正方形的性质可以得到证明△BOQ ≌△COP 的全等条件,然后利用全等三角形的性质就可以解决题目的问题.【详解】证明:(1)∵四边形ABCD 是正方形,∴∠B=∠PCD=90°,BC=CD ,∴∠2+∠3=90°,又∵DP ⊥CQ ,∴∠2+∠1=90°,∴∠1=∠3,在△BCQ 和△CDP 中,,,1 3.B PCD BC CD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BCQ ≌△CDP ;(2)连接OB ,由(1)△BCQ ≌△CDP 可知:BQ=PC ,∵四边形ABCD 是正方形,∴∠ABC=90°,AB=BC ,∵点O 是AC 中点,∴BO=12AC=CO ,∠4=12∠ABC=45°=∠PCO , 在△BOQ 和△COP 中,,4,.BQ CP PCO BO CO =⎧⎪∠=∠⎨⎪=⎩∴△BOQ ≌△COP ,∴OQ=OP .【点睛】解答本题要充分利用正方形的特殊性质.注意在正方形中的特殊三角形的应用,利用它们构造证明全等三角形的条件,然后通过全等三角形的性质解决问题.25.(1)见解析;(2)见解析;(4)①DE=4;②△ABC的面积是1.【解析】【分析】(1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;(2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(4)①过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;②作∠EAB=∠BAD,∠GAC=∠DAC,过B作AE的垂线,垂足是E,过C作AG的垂线,垂足是G,BE和GC相交于点F,BF=2-2=4,设GC=x,则CD=GC=x,FC=2-x,BC=2+x.在直角△BCF中利用勾股定理求得CD 的长,则三角形的面积即可求解.【详解】(1)证明:如图1,在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)证明:如图2,延长AD至F,使DF=BE,连接CF,由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(4)①过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形.AE=AB﹣BE=12﹣4=8,设DF=x,则AD=12﹣x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中,AE2+AD2=DE2,则82+(12﹣x)2=(4+x)2,解得:x=2.则DE=4+2=4.故答案是:4;②作∠EAB=∠BAD,∠GAC=∠DAC,过B作AE的垂线,垂足是E,过C作AG的垂线,垂足是G,BE 和GC相交于点F,则四边形AEFG是正方形,且边长=AD=2,BE=BD=2,则BF=2﹣2=4,设GC=x,则CD=GC=x,FC=2﹣x,BC=2+x.在直角△BCF中,BC2=BF2+FC2,则(2+x)2=42+x2,解得:x=4.则BC=2+4=5,则△ABC的面积是:12AD•BC=12×2×5=1.【点睛】本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.。
泉州市名校2019-2020学年初二下期末经典数学试题一、选择题(每题只有一个答案正确)1.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是()A.2017年第二季度环比有所提高B.2017年第三季度环比有所提高C.2018年第一季度同比有所提高D.2018年第四季度同比有所提高2.一名射击运动员连续打靶10次,命中的环数如图所示,这位运动员命中环数的众数与中位数分别为()A.7与7 B.7与7.5 C.8与7.5 D.8与7363xx的值是()A.6和3 B.3和1 C.2和18 D.只有184.如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形1111A B C D;把正方形1111A B C D 边长按原法延长一倍得到正方形2222A B C D ;以此进行下去⋯,则正方形n n n n A B C D 的面积为( )A .n (5)B .n 5C .n 15-D .n 15+5.如图,将△ABC 绕点 A 按顺时针方向旋转 120°得到△ADE ,点 B 的对应点是点 E ,点 C 的对应点是点 D ,若∠BAC=35°,则∠CAE 的度数为( )A .90°B .75°C .65°D .85°6.图中的圆点是有规律地从里到外逐层排列的.设y 为第n 层(n 为正整数)圆点的个数,则下列函数关系中正确的是( )A .y=4n ﹣4B .y=4nC .y=4n+4D .y=n 27.下列由左到右的变形,属于因式分解的是( )A .2(2)(2)4x x x +-=-B .242(4)2x x x x +-=+-C .24(2)(2)x x x -=+-D .243(2)(2)3x x x x x -+=+-+ 8.下列等式正确的是( )A .AB +BC =CB +BAB .AB ﹣BC =ACC .AB +BC +CD =DAD .AB +BC ﹣AC =0 9.如图,A 是射线5(0)4y x x =上一点,过A 作AB x ⊥轴于点B ,以AB 为边在其右侧作正方形ABCD ,过A 的双曲线k y x =交CD 边于点E ,则DE EC 的值为( )A .54B .95C .2536D .110.等边三角形的边长为2,则该三角形的面积为( ) A .43B .3C .23D .3 二、填空题11.若一组数据121,1,,1n x x x +++的平均数为17,方差为2,则另一组数据122,2,,2n x x x +++的平均数和方差分别为( )A .17,2B .18,2C .17,3D .18,312.在Rt ABC ∆中,90C ∠=︒,3cm AC =,4cm BC =,则斜边AB 上的高为________.13.如图,在矩形ABCD 中,AD =6,AB =4,点E 、G 、H 、F 分别在AB 、BC 、CD 、AD 上,且AF =CG =2,BE =DH =1,点P 是直线EF 、GH 之间任意一点,连接PE 、PF 、PG 、PH ,则△PEF 和△PGH 的面积和等于________.14.若正比例函数23(1)m y m x -=-,y 随x 的增大而减小,则m 的值是_____.15.一次函数y =kx+b(k ,b 是常数,k≠0)图象如图所示,则不等式kx+b >0的解集是_____.16.已知直线y kx b =+与25y x =-平行且经过点(1,3),则y kx b =+的表达式是__________. 17.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s 2:甲 乙 丙 丁平均数(cm )561 560 561 560 方差s 2(cm 2) 3.5 3.5 15.5 16.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择_____.三、解答题18.因式分解:(1)()()222a a a -+-; (2)22363x xy y -+.19.(6分)某校为美化校园,计划对面积为2000m 2的区域进行绿化,安排甲、乙两个工程队完成,已知甲队每天完成绿化的面积是乙队每天完成绿化的面积的2倍,并且在独立完成面积为600m 2区域的绿化时,甲队比乙队少用6天.(1)甲、乙两个工程队每天能完成绿化的面积分别是多少?(2)若学校每天需付给甲队的绿化费用为0.5万元,乙队为0.3万元,要使这次的绿化总费用不超过10万元,至少应安排甲队工作多少天?20.(6分)在正方形ABCD 中,过点A 引射线AH ,交边CD 于点H (点H 与点D 不重合),通过翻折,使点B 落在射线AH 上的点G 处,折痕AE 交BC 于点E ,延长EG 交CD 于点F.如图①,当点H 与点C 重合时,易证得FG=FD (不要求证明);如图②,当点H 为边CD 上任意一点时,求证:FG=FD .(应用)在图②中,已知AB=5,BE=3,则FD= ,△EFC 的面积为 .(直接写结果)21.(6分)一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图象如图所示.(1)求y 关于x 的函数关系式;(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油.在此次行驶过程中,行驶了450千米时,司机发现离前方最近的加油站有75千米的路程.在开往该加油站的途中,当汽车开始提示加油时,离加油站的路程是多少千米?22.(8分)如图,一次函数y=kx+b 的图象经过(2,4)、(0,2)两点,与x 轴相交于点C .求:(1)此一次函数的解析式;(2)△AOC的面积.23.(8分)如图,在菱形ABCD中,∠ABC=60°,过点A作AE⊥CD于点E,交对角线BD于点F,过点F 作FG⊥AD于点G.(1)若AB=2,求四边形ABFG的面积;(2)求证:BF=AE+FG.24.(10分)如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE(1)求∠DCE的度数;(2)若AB=4,CD=3AD,求DE的长.⨯的网格中的格点上,25.(10分)如图所示,ABC的顶点在88()1画出ABC绕点A逆时针旋转90得到的ABC;11()2画出ABC绕点A顺时针旋转180得到的AB C22参考答案一、选择题(每题只有一个答案正确)1.C【解析】【分析】根据环比和同比的比较方法,验证每一个选项即可.【详解】2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正确;2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C错误;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D 正确;故选C.【点睛】本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键.2.A【解析】【分析】根据众数的定义找出出现次数最多的数;根据中位数的定义求出最中间两个数的平均数即可.【详解】解:根据统计图可得:7出现了4次,出现的次数最多,则众数是7;∵共有10个数,∴中位数是第5和6个数的平均数,∴中位数是(7+7)÷2=7;故选:A.【点睛】此题考查了众数和中位数,用到的知识点是众数和中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数,注意众数不止一个.3.C【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】解:原式=是整数,1=13=, 解得:x =2或x =18,故选:C .【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的性质,本题属于基础题型.4.B【解析】【分析】根据三角形的面积公式,可知每一次延长一倍后,得到的一个直角三角形的面积和延长前的正方形的面积相等,即每一次延长一倍后,得到的图形是延长前的正方形的面积的5倍,从而解答.【详解】解:如图,已知小正方形ABCD 的面积为1,则把它的各边延长一倍后,11AA D 的面积21212AB AB AB =⨯⨯==, 新正方形1111A B C D 的面积是4115⨯+=,从而正方形2222A B C D 的面积为5525⨯=,以此进行下去⋯,则正方形n n n n A B C D 的面积为5n .故选:B .【点睛】此题考查了正方形的性质和三角形的面积公式,能够从图形中发现规律,利用规律解决问题.5.D【解析】【分析】由题意可得∠BAE是旋转角为120°且∠BAC=35°,可求∠CAE的度数.【详解】∵将△ABC绕点A按顺时针方向旋转120°得到△ADE∴∠BAE=120°且∠BAC=35°∴∠CAE=85°故选D.【点睛】本题考查了旋转的性质,关键是熟练运用旋转的性质解决问题.6.B【解析】【详解】试题解析:由题图可知:n=1时,圆点有4个,即y=4×1=4;n=2时,圆点有8个,即y=4×2=8;n=3时,圆点有12个,即y=4×3=12;……∴y=4n.故选B.7.C【解析】【分析】根据因式分解的意义,可得答案.【详解】A. 是整式的乘法,故A错误;B. 没把一个多项式转化成几个整式积的形式,故B错误;C. 把一个多项式转化成几个整式积的形式,故C正确;D没把一个多项式转化成几个整式积的形式,故D错误.故答案选:C.【点睛】本题考查的知识点是因式分解的意义,解题的关键是熟练的掌握因式分解的意义.8.D【解析】【分析】根据三角形法则即可判断.【详解】∵AB BC AC +=,∴0AB BC AC AC AC +-=-= ,故选D .【点睛】本题考查平面向量的三角形法则,解题的关键是熟练掌握三角形法则.9.A【解析】【分析】设点A 的横坐标为m(m >0),则点B 的坐标为(m ,0),把x =m 代入5(0)4y x x =得到点A 的坐标,结合正方形的性质,得到点C ,点D 和点E 的横坐标,把点A 的坐标代入反比例函数k y x=,得到关于m 的k 的值,把点E 的横坐标代入反比例函数的解析式,得到点E 的纵坐标,求出线段DE 和线段EC 的长度,即可得到答案.【详解】解:设点A 的横坐标为m(m >0),则点B 的坐标为(m ,0),把x =m 代入5y x 4=,得5y m 4=. 则点A 的坐标为:(m ,5m 4),线段AB 的长度为5m 4,点D 的纵坐标为5m 4. ∵点A 在反比例函数k y x =上, ∴25k m 4= 即反比例函数的解析式为:25m y 4x= ∵四边形ABCD 为正方形, ∴四边形的边长为5m 4.∴点C 、点D 、点E 的横坐标为:59m m m 44+= 把x=9m 4代入25m y 4x=得:5y m 9=. ∴点E 的纵坐标为:5m 9, ∴CE=5m 9,DE=5525m m m 4936-=, ∴DE 5EC 4=. 故选择:A.【点睛】 本题考查了反比例函数和一次函数的结合,解题的关键是找到反比例函数与一次函数的交点坐标,结合正方形性质找到解题的突破口.10.B【解析】∵等边三角形高线即中点,AB=2,∴BD=CD=1,在Rt △ABD 中,AB=2,BD=1,∴=∴S △ABC=12BC ⋅AD=12 故选B.二、填空题11.B【解析】【分析】根据平均数和方差的变化规律,即可得出答案.【详解】∵数据x 1+1,x 1+1,,x n +1的平均数为17,∴x 1+1,x 1+1,,x n +1的平均数为18,∵数据x 1+1,x 1+1,,x n +1的方差为1,∴数据x 1+1,x 1+1,,x n +1的方差不变,还是1;故选B .【点睛】本题考查了方差与平均数,用到的知识点:如果一组数据x 1,x 1,,x n 的平均数为x ,方差为S 1,那么另一组数据ax 1+b ,ax 1+b ,,ax n +b 的平均数为a x +b ,方差为a 1S 1.12.2.4cm【解析】【分析】利用面积法,分别以直角边为底和斜边为底,根据三角形面积相等,可以列出方程,解得答案【详解】解:设斜边AB 上的高为h ,在Rt △ABC中,利用勾股定理可得:AB 5=== 根据三角形面积两种算法可列方程为:1134522h ⨯⨯=⋅⋅ 解得:h=2.4cm ,故答案为2.4cm【点睛】本题考查勾股定理和利用面积法算垂线段的长度,要熟练掌握.13.1【解析】【分析】连接EG ,FH ,根据题目数据可以证明△AEF 与△CGH 全等,根据全等三角形对应边相等可得EF=GH ,同理可得EG=FH ,然后根据两组对边相等的四边形是平行四边形可得四边形EGHF 是平行四边形,所以△PEF 和△PGH 的面积和等于平行四边形EGHF 的面积的一半,再利用平行四边形EGHF 的面积等于矩形ABCD 的面积减去四周四个小直角三角形的面积即可求解.【详解】解:∵在矩形ABCD 中,AD=6,AB=4,AF=CG=2,BE=DH=1,∴AE=AB-BE=4-1=3,CH=CD-DH=4-1=3,∴AE=CH ,在△AEF 与△CGH 中,{90AE CHA C AF CG=∠=∠=︒=,∴△AEF ≌△CGH (SAS ),∴EF=GH ,同理可得,△BGE ≌△DFH ,∴EG=FH ,∴四边形EGHF 是平行四边形,∵△PEF 和△PGH 的高的和等于点H 到直线EF 的距离,∴△PEF 和△PGH 的面积和=12×平行四边形EGHF 的面积, 平行四边形EGHF 的面积=4×6-12×2×3-12×1×(6-2)-12×2×3-12×1×(6-2), =24-3-2-3-2,=14,∴△PEF 和△PGH 的面积和=12×14=1. 故答案为1.考点:矩形的性质;平行四边形的判定与性质.14.﹣2【解析】【分析】根据正比例函数的定义及性质可得231m -=,且m-1<0,即可求出m 的值.【详解】由题意可知: 231m -=,且m-1<0,解得m=-2.故答案为:-2.【点睛】本题考查了正比例函数定义及性质.当k <0时,函数值y 随x 的增大而减小;当k >0时,函数值y 随x 的增大而增大.15.x >-2【解析】试题解析:根据图象可知:当x >-2时,一次函数y=kx+b 的图象在x 轴的上方.即kx+b >0.考点:一次函数与一元一次不等式.16.21y x =+【解析】【分析】先根据两直线平行的问题得到k=2,然后把(1,3)代入y=2x+b 中求出b 即可.【详解】∵直线y=kx+b 与y=2x+1平行,∴k=2,把(1,3)代入y=2x+b 得2+b=3,解得b=1,∴y=kx+b 的表达式是y=2x+1.故答案为:y=2x+1.【点睛】此题考查一次函数中的直线位置关系,解题关键在于求k 的值.17.甲【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】 ∵==x x x x 甲乙丁丙> ,∴从甲和丙中选择一人参加比赛,∵22S S 甲丙< ,∴选择甲参赛,故答案为甲.【点睛】此题考查了平均数和方差,关键是根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.三、解答题18. (1) (a-1)(a+1);(1) 3(x-y )1.【解析】【分析】(1)直接提取公因式(a-1)即可;(1)先提取公因式3,再根据完全平方公式进行二次分解.【详解】(1)a (a-1)+1(a-1),=(a-1)(a+1);(1)3x 1-6xy+3y 1=3(x1-1xy+y1)=3(x-y)1.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.19.(1)甲工程队每天能完成绿化的面积为3m1,乙工程队每天能完成绿化的面积为2m1.(1)至少应安排甲队工作10天.【解析】【分析】(1)设乙工程队每天能完成绿化的面积为xm1,则甲工程队每天能完成绿化的面积为1xm1,根据“在独立完成面积为600m1区域的绿化时,甲队比乙队少用6天”,即可得出关于x的分式方程,解之并检验后,即可得出结论;(1)设安排甲工程队工作y天,则乙工程队工作200010040250yy-=-天,根据总费用=需付给甲队总费用+需付给乙队总费用结合这次的绿化总费用不超过10万元,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,取其内的最小正整数即可.【详解】(1)设乙工程队每天能完成绿化的面积为xm1,则甲工程队每天能完成绿化的面积为1xm1,根据题意得:60060062x x-=,解得:x=2.经检验,x=2是原方程的解,∴1x=3.答:甲工程队每天能完成绿化的面积为3m1,乙工程队每天能完成绿化的面积为2m1.(1)设安排甲工程队工作y天,则乙工程队工作200010040250yy-=-天,根据题意得:0.5y+0.3(40﹣1y)≤10,解得:y≥10.答:至少应安排甲队工作10天.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,列出关于x 的分式方程;(1)根据总费用=需付给甲队总费用+需付给乙队总费用结合这次的绿化总费用不超过10万元,列出关于y的一元一次不等式.20.(1)证明见解析;(2)应用:54;154【解析】试题分析:由折叠的性质可得AB=AG=AD ,∠AGF=∠AGE=∠B=∠D=90°,再结合AF 为△AGF 和△ADF 的公共边,从而证明△AGF ≌△ADF ,从而得出结论.[应用]设FG=x ,则FC=5-x ,FE=3+x ,在Rt △ECF 中利用勾股定理可求出x 的值,进而可得出答案. 试题解析:(1)由翻折得AB=AG,∠AGE=∠ABE=90°∴∠AGF=90°由正方形ABCD 得 AB=AD∴AG=AD在Rt △AGF 和Rt △ADF 中,AG AD AF AF=⎧⎨=⎩ ∴Rt △AGF ≌ Rt △ADF∴FG=FD(2)[应用]设FG=x ,则FC=5-x ,FE=3+x ,在Rt △ECF 中,EF 2=FC 2+EC 2,即(3+x )2=(5-x )2+22,解得x=54. 即FG 的长为54. 由(1)得:FD=FG=54,FC=5-54=154,BC=AB=5,BE=3 ∴EC=5-3=2∴ΔEFC 的面积=115152=244⨯⨯ 21.(1)该一次函数解析式为y=110-x+1;(2)离加油站的路程是10千米. 【解析】【分析】(1)分析题意,首先根据函数图象中点的坐标利用待定系数法求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,用总路程减去剩余油量为8升时行驶的路程即可解答本题。
2019-2020学年泉州一中八年级下学期期末数学试卷一、选择题(本大题共10小题,共40.0分)1.下列计算中正确的是()A. x2+x2=x4B. x6÷x3=x2C. (x3)2=x6D. x−1=x2.海口市农业局局长介绍,今年该局将采取八项措施加快推进农业品牌建设,计划投入15000000元重点抓好10−15个农业品牌标准化示范基地建设,带动品牌农业规模化、标准化发展.数据15000000用科学记数法表示为()A. 150×105B. 1.5×107C. 15×107D. 0.15×1083.能使式子√2−x+√x−1成立的x的取值范围是()A. x≥1B. x≥2C. 1≤x≤2D. x≤24.点A(−3,2)与点B(−3,−2)的关系是()A. 关于x轴对称B. 关于y轴对称C. 关于原点对称D. 以上各项都不对5.下列说法正确的是()A. 数据1,2,3,2,5的中位数是3B. 数据5,5,7,5,7,6,11的众数是7C. 若甲组数据方差S甲2=0.15,乙组数据方差S乙2=0.15,则乙组数据比甲组数据稳定D. 数据1,2,2,3,7的平均数是36.点O是矩形ABCD的对角线AC的中点,E是BC边的中点,AD=8,OE=3,则线段OD的长为()A. 5B. 6C. 8D. 10(k≠0)的图象过点(2,−2),则此函数的图象在()7.反比例函数y=kxA. 一、三象限B. 三、四象限C. 一、二象限D. 二、四象限8.如图,菱形ABCD中,对角线AC,BD相交于点O,M,N分别是边AB,AD的中点,连接OM,ON,MN,则下列叙述正确的是()A. △AOM和△AON都是等边三角形B. 四边形MBON和四边形MODN都是菱形C. 四边形AMON与四边形ABCD是位似图形D. 四边形MBCO和四边形NDCO都是等腰梯形9.如图,在平行四边形ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC=4,则AE:EF等于()A. 1:2B. 2:1C. 3:2D. 3:110.7、若是关于x的一元二次方程,则A. a=−1B. a≠1C. a=1D. a=±1二、填空题(本大题共5小题,共20.0分)11.方程7x(5x+2)=6(5x+2)的解为______.12.化简6m2−9+1m+3的结果是______.13.为从甲、乙两名射击运动员中选出一人参加市锦标赛,特统计了他们最近10次射击训练的成绩,其中,他们射击的平均成绩都为8.9环,方差分别是S甲2=0.8,S乙2=1.3,从稳定性的角度来看______ 的成绩更稳定.(填“甲”或“乙”)14.一次函数y=12x+3与x轴的交点坐标是______,与y轴的交点坐标是______.15.13.已知一次函数的图像与反比例函数的图像交于A(4,2),B(−2,m)两点,则一次函数的表达式为___________________三、计算题(本大题共1小题,共8.0分)16.先化简,再求值:2xx+1−2x−4x2−1÷x−2x2−2x+1,然后在不等式x≤2的非负整数解中选择一个适当的数代入求值.四、解答题(本大题共8小题,共68.0分)17.解方程1x−2+1=2x2x+1.18.为了解射击运动员小明的集训效果,教练统计了他集训前后的两次测试成绩(每次测试射击10次),制作了如图所示的条形统计图.(1)填写下列表格:众数中位数平均数集训前8______ 8.6集训后______ 9______(2)请你用所学的统计知识作出分析,从某个角度评价小明这次集训的效果.19.已知关于x的一元二次方程x2+2x+2k−4=0有两个相等的实数根.求k的值.20.如图,在直角梯形ABCD中,AD//BC,∠C=90°,BC=16,DC=12,AD=21.动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P、Q分别从点D、C同时出发,当点Q运动到点B时,点P随之停止运动,设运动的时间为t秒.(1)设△BPQ的面积为S,求S与t之间的函数关系式.(2)当线段PQ与线段AB相交于点O,且2AO=OB时,求∠BQP的正切值.(3)当PQ⊥BD时,求t的值.21.如图,一次函数y=x+2的图象交x轴于点A,且过点B(1,m).点B(k≠0)的图象上.在反比例函数y=kx(1)求该反比例函数的解析式;(2)连结OB,求△AOB的面积;并结合图形直接写出当函数值y<m时,该反比例函数的自变量x的取值范围.22.为了更好服务我市创建“国家卫生城市”工作,某商场购进A,B两种新型号的垃圾箱共100个进行销售,两种新型号垃圾箱的进价和售价如表所示,设商场购进A型垃圾箱x个(x为正整数),且所购进的两种型号垃圾箱能全部卖出,获得的总利润为w元.(1)求总利润w关于x的函数关系式.(2)如果购进两种垃圾箱的总费用不超过6000元,那么该商场如何进货才能获利最多?并求出最大利润.A型垃圾箱B型垃圾箱进价(元/个)6254售价(元/个)766023.如图,在平行四边形ABCD中,点M为边AD的中点,过点C作AB的垂线交AB于点E,连接ME,已知AM=2AE=4,∠BCE=30°.(1)求平行四边形ABCD的面积S;(2)求证:∠EMC=2∠AEM.24. 如图,直线l1的解析表达式为y=−3x+3,且l1与x轴交于点D,直线l2经过点A、B,直线l1、l2交于点C.(1)求直线l2的解析表达式;(2)求△ADC的面积.【答案与解析】1.答案:C解析:解:A 、x 2+x 2=2x 2,故此选项错误;B 、x 6÷x 3=x 3,故此选项错误;C 、(x 3)2=x 6,正确;D 、x −1=1x,故此选项错误; 故选:C .直接利用同底数幂的乘法运算法则以及合并同类项法则、负指数幂的性质分别化简得出答案. 此题主要考查了同底数幂的乘法运算以及合并同类项、负指数幂的性质,正确掌握运算法则是解题关键. 2.答案:B解析:解:15000000=1.5×107,故选:B .科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.答案:C解析:解:根据题意得:{2−x ≥0x −1≥0, 解得:1≤x ≤2.故选:C .根据二次根式的性质,被开方数大于等于0,就可以求解.本题考查了函数自变量的取值范围,涉及的知识点为:二次根式的被开方数是非负数.4.答案:A解析:解:点A(−3,2)与点B(−3,−2)的关系是关于x 轴对称.故选:A .直接利用关于x 轴对称点的性质得出答案.此题主要考查了关于x 轴对称点的性质,正确记忆横纵坐标的关系是解题关键.5.答案:D解析:解:A、把这组数据从小到大排列为:1,2,2,3,5,中位数是2,故本选项错误;B、在数据5,5,7,5,7,6,11中,5出现了3次,出现的次数最多,则众数是5,故本选项错误;C、因为甲组数据方差S甲2=0.15,乙组数据方差S乙2=0.15,则S甲2=S乙2,所以乙组数据和甲组数据同样稳定,故本选项错误;D、数据1,2,2,3,7的平均数是(1+2+2+3+7)÷5=3,故本选项正确;故选D.根据方差、众数、中位数、平均数的计算公式和定义分别进行分析,即可得出答案.此题考查了方差、众数、中位数和平均数,平均数平均数表示一组数据的平均程度;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.6.答案:A解析:解:∵在矩形ABCD中,AD=8,OE=3,O是矩形ABCD的对角线AC的中点,E是BC边的中点,∴BC=AD=8,AB=2OE=6,∠B=90°,∴AC=√AB2+BC2=√62+82=10,∵点O为AC的中点,∠ADC=90°,∴OD=1AC=5,2故选:A.根据题意,利用三角形中位线定理可以得到AB的长,然后根据勾股定理可以得到AC的长,再根据直角三角形斜边上的中线等于斜边的一半可以得到OD的长,本题得以解决.本题考查三角形中位线定理、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.7.答案:D(k≠0)的图象过点(2,−2)求出k的值,再根据k的符号即解析:试题分析:先根据反比例函数y=kx可得出结论.(k≠0)的图象过点(2,−2),∵反比例函数y=kx∴k=xy=2×(−2)=−4<0,∴此函数的图象在二、四象限.故选D.8.答案:C解析:此题考查菱形的性质及位似图形的概念.菱形的四边相等,且对角线互相垂直平分.位似图形指两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,对应边互相平行.由M,N 分别是边AB,AD的中点,可知MN//BD,OM//BC//AD,ON//CD//AB且AM=OM=ON=AN,所以四边形AMON为菱形,则菱形AMON与菱形ABCD为相似图形,每组对应点所在的直线都经过同一个点A,且对应边互相平行,因此这两个图形是位似图形.另外此题容易推出△AOM和△AON为等腰三角形,四边形MBON和四边形MODN为平行四边形,四边形MBCO和NDCO都是梯形,故可用排除法,推出C项正确.9.答案:B解析:解:∵在平行四边形ABCD中,CE是∠DCB的平分线,∴∠DCE=∠BCE,∠DCE=∠CEB,∴∠BCE=∠CEB,∴EB=BC,∵F是AB的中点,AB=6,BC=4,∴AF=BF=3,BE=4,∴AE=AB−BE=6−4=2,∴EF=AF−AE=3−2=1,则AE:EF=2:1.故选:B.根据平行四边形的性质以及角平分线的性质得出BE=BC,再利用F是中点得出AF,以及AE的长,进而得出AE:EF的值.此题主要考查了平行四边形的性质以及角平分线的性质等知识,利用已知得出BE的长是解题关键.10.答案:A解析:由题意得,解得a=−1,故选A.11.答案:x 1=−25,x 2=67解析:解:移项,得7x(5x +2)−6(5x +2)=0,∴(5x +2)(7x −6)=0,∴5x +2=0或7x −6=0,∴x 1=−25,x 2=67. 故答案为:x 1=−25,x 2=67.先移项,利用因式分解的提取公因式法求方程的解.本题考查了解一元二次方程,掌握因式分解的提取公因式法是解决本题的关键. 12.答案:1m−3解析:解:原式=6(m+3)(m−3)+m−3(m+3)(m−3)=m +3(m +3)(m −3)=1m−3.故答案为:1m−3.直接将原式通分,进而利用分式的加减运算法则计算得出答案.此题主要考查了分式的加减运算,正确进行通分运算是解题关键. 13.答案:甲解析:解:∵S 甲2=0.8,S 乙2=1.3,∴S 甲2<S 乙2,∴成绩最稳定的运动员是甲,故答案是:甲.根据方差的意义即可得.本题主要考查方差,熟练掌握方差的意义:方差越小,数据的密集度越高,波动幅度越小是解题的关键.14.答案:(−6,0) (0,3)解析:解:令y =0,得12x +3=0,解得x =−6;令x =0,得y =3;故图象与x轴的交点坐标是(−6,0),图象与y轴的交点坐标是(0,3).图象与x轴的交点纵坐标为0,与y轴的交点横坐标为0.熟悉坐标轴上点的坐标特点,根据解析式求点的坐标.15.答案:y=x−2解析:16.答案:解:原式=2xx+1−2(x−2)(x+1)(x−1)⋅(x−1)2x−2=2xx+1−2(x−1)x+1=2x+1,∵x≤2的非负整数解为:x=0,1,2,且(x−1)(x+1)(x−2)≠0,∴当x=0时,原式=2.解析:原式第二项利用除法法则变形,约分后利用同分母分式的减法法则计算得到最简结果,把x 的值代入计算即可求出值.此题考查了分式的化简求值,以及一元一次不等式的整数解,熟练掌握运算法则是解本题的关键.17.答案:解:1x−2+1=2x2x+1方程两边乘(x−2)(2x+1),得(2x+1)+(x−2)(2x+1)=2x(x−2)解得x=13,检验:当x=13时,(x−2)(2x+1)≠0,所以,原分式方程的解为x=13.解析:根据解分式方程的步骤先去掉分母,再根据解整数方程的步骤求出x的值,然后检验即可得出答案.此题考查了解分式方程,掌握解分式方程的步骤是解题的关键,注意分式方程一定要检验.18.答案:8.59 9解析:解:(1)填写下列表格:众数中位数平均数集训前88.58.6集训后 99 9故答案为8.5,9,9;(2)小明集训前后两次测试成绩的众数由集训前的8环上升到集训后的9环,中位数由集训前的8.5环上升到集训后的9环,平均数由集训前的8.6环上升到集训后的9环,说明集训后成绩比前有进步,集训的效果较好.(1)把集训前10次成绩由小到大排列,利用中位数的定义求出集训前成绩的中位数;根据众数的定义可得集训后成绩的众数为9环;根据平均数的定义可得集训后10次成绩的平均数;(2)根据(1)中数据可得答案.本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.也考查了加权平均数,中位数,以及众数.19.答案:解:根据题意知,△=22−4×1×(2k−4)=0,解得:k=5.2解析:由方程有两个相等实数根得△=22−4×1×(2k−4)=0,解之即可.本题主要考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.20.答案:解:(1)如图1,图1∵BQ=16−t,∴S=BQ×CD=(16−t)⋅12S=96−6t;(2),如图2,过Q作QE⊥AD于E,则QE=12,∵AD//BC,∴△OPA∽△OQB,∴=,∵BO=2AO,∴=,t=,PE=t=,tan∠BQP=tan∠EPQ==;(3)如图3,当PQ⊥BD时,过Q作QF⊥AD于F,则∠QFP=∠C=∠BOQ=90°,∴∠DBC+∠BDC=90°,∠DBC+∠BQP=90°,∴∠BDC=∠BQP,∵AD//BC,∴∠FPQ=∠BQP,∴∠FPQ=∠BDC,∵∠C=∠QFP,∴△PQF∽△DBC,∴=,∴=,∴t=9.解析:(1)求出BQ=16−t,根据S=12BQ×CD求出即可;(2)过Q作QE⊥AD于E,证△OPA∽△OQB,得出APBQ =AOOB,代入得出方程2t−2116−t=12,求出t,即可求出PE=t=585,解直角三角形求出即可;(3)当PQ⊥BD时,过Q作QF⊥AD于F,证△PQF∽△DBC,得出PFFQ =DCCB,代入求出即可.21.答案:解:(1)∵一次函数y=x+2的图象过点B(1,m),∴m=1+2=3.∴点B的坐标为(1,3).∵点B在反比例函数y=kx(k≠0)的图象上,∴3=k1,即k=3.∴该反比例函数的解析式为y=3x.(2)在y=x+2中,令y=0,则0=x+2,得x=−2,∴点A的坐标为(−2,0),∴OA=2.又∵点B的坐标为(1,3),∴△AOB中OA边上的高为3.∴S△AOB=12×2×3=3,当函数值y<m时,即y<3,由函数图象可知自变量x的取值范围是:x>1或x<0.解析:(1)把B点坐标代入一次函数可求得m,可求得B点坐标,代入反比例函数解析式可求得k,可求得反比例函数解析式;(2)可先求得A点的坐标,结合B点坐标可求得△AOB的面积;结合图象可知当函数值y<m时,即反比例函数图象在点B下方的部分对应的x的值,可得出x的范围.本题主要考查反比例函数与一次函数的综合应用,在(1)中注意点的坐标与函数解析式的关系,在(2)中注意数形结合思想的应用.22.答案:解:(1)设购进A型垃圾箱x个,则购进B型垃圾箱(100−x)个,w=(76−62)x+(60−54)×(100−x)=8x+600,即总利润w关于x的函数关系式时w=8x+600;(2)∵购进两种垃圾箱的总费用不超过6000元,∴62x+54(100−x)≤6000,解得,x≤75,∵w=8x+600,k=8>0,∴w随x的增大而增大,∴当x=75时,w取得最大值,此时w=8×75+600=1200,100−x=25,答:当购进A型垃圾箱75个,购进B型垃圾箱25个时,获利最大,最大利润为1200元.解析:(1)根据题意和表格中的数据,可以写出总利润w关于x的函数关系式;(2)根据购进两种垃圾箱的总费用不超过6000元,可以求得x的取值范围,再根据一次函数的性质,即可得到该商场如何进货才能获利最多,并求出最大利润.本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.23.答案:(1)解:∵M为AD的中点,AM=2AE=4,∴AD=2AM=8.在▱ABCD的面积中,BC=AD=8,又∵CE⊥AB,∴∠BEC=90°,∵∠BCE=30°,∴BE=1BC=4,2∴AB=6,CE=√82−42=4√3,∴▱ABCD的面积为:AB×CE=6×4√3=24√3;(2)证明:延长EM,CD交于点N,∵在▱ABCD中,AB//CD,∴∠AEM =∠N ,在△AEM 和△DNM 中∵{∠AEM =∠N AM =DM ∠AME =∠DMN, ∴△AEM≌△DNM(AAS),∴EM =MN ,又∵AB//CD ,CE ⊥AB ,∴CE ⊥CD ,∴CM 是Rt △ECN 斜边EN 的中线,∴MN =MC ,∴∠N =∠MCN ,∴∠EMC =2∠N =2∠AEM .解析:此题主要考查了平行四边形的性质与判定以及全等三角形的判定与性质等知识,熟练应用平行四边形的性质是解题关键.(1)利用平行四边形的性质以及直角三角形的性质得出CE 的长,进而得出答案;(2)利用全等三角形的判定得出△AEM≌△DNM(AAS),根据全等三角形的性质得到EM =MN ,根据直角三角形斜边中线的性质得到MN =MC ,根据等腰三角形和三角形的外角的性质即可得到结论. 24.答案:解:(1)设l 2的表达式为y =kx +b ,由图可知经过点A(4,0)、B(3,−32),∴{4k +b =03k +b =−32,解得{k =32b =−6, ∴直线l 2的解析表达式为:y =32x −6;(2)当y =0时,−3x +3=0,解得x =1,∴点D 的坐标是(1,0),直线l 1的解析表达式与直线l 2的解析表达式联立得,{y =−3x +3y =32x −6,解得{x =2y =−3, ∴点C 的坐标是(2,−3),∴△ADC的面积=12×(4−1)×|−3|=12×3×3=92.故答案为:(1)y=32x−6,(2)92.解析:(1)根据图形,直线l2经过点A、B,利用待定系数法求解即可;(2)根据直线l1的解析表达式为y=−3x+3求出点D的坐标,再两直线解析式联立方程组求出点C 的坐标,利用三角形的面积公式求解即可.本题考查了直线相交的问题与待定系数法求函数解析式,难度不大,关键是求出点的坐标.。
一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. 0.1010010001…B. √4C. -πD. 1/22. 下列运算中,错误的是()A. (-3)² = 9B. √(-1) = iC. 3/4 + 5/6 = 23/12D. 2x + 3x = 5x3. 已知 a = -2,b = 3,则a² - 2ab + b² 的值为()A. 1B. 0C. -1D. 94. 在等腰三角形ABC中,AB = AC,且∠BAC =40°,则∠B 的度数为()A. 40°B. 50°C. 60°D. 70°5. 若x² - 5x + 6 = 0,则 x 的值为()A. 2 或 3B. 1 或 4C. 1 或 3D. 2 或 46. 下列函数中,为一次函数的是()A. y = 2x² + 3B. y = 3x - 4C. y = x³ + 2D. y = 5/x7. 若 a > b,则下列不等式中正确的是()A. a - b > 0B. a + b < 0C. ab > 0D. a² - b² < 08. 在平面直角坐标系中,点 P(2, -3) 关于 x 轴的对称点为()A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)9. 下列命题中,正确的是()A. 平行四边形的对边相等B. 等腰三角形的底角相等C. 直角三角形的斜边最短D. 直角三角形的两个锐角互余10. 下列函数中,为反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x² + 1D. y = 2x³二、填空题(每题3分,共30分)11. 已知 a = -3,b = 2,则a² - 2ab + b² 的值为 _______。
2019-2020学年八年级下册第二学期期末考试数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.若分式11xx+-有意义,则x的取值范围是()A.x≠1B.x≠﹣1 C.x=1 D.x=﹣1 2.在下列各式由左到右的变形中,不是因式分解的是()A.a2﹣ab=a(a﹣b)B.(a﹣2)(a+1)=a2﹣a﹣2C.x2﹣2x+1=(x﹣1)2D.x2﹣y2=(x+y)(x﹣y)3.在△ABC中,AB=AC,∠A=60°,BC=6,则AB的值是()A.12 B.8 C.6 D.34.以下由两个全等的30°直角三角板拼成的图形中,属于中心对称图形的是()5.已知等腰三角形有两条边的长分别是3,7,则这个等腰三角形的周长为()A.17 B.13 C.17或13 D.106.一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集是()A.x<﹣2 B.x<0 C.x>0 D.x>4 7.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°8.2008北京奥运会的吉祥物是“福娃”,某玩具厂要生产a只“福娃”,原计划每天生产b只,实际每天生产了(b+c)只,则该厂提前完成任务的天数是()A.acB.ab c+-abC.ab c+D.ab-ab c+9.在▱ABCD中,对角线AC,BD相交于点O,以点O为坐标原点建立平面直角坐标系,其中A(a,b),B(a﹣1,b+2),C(3,1),则点D的坐标是()A.(4,﹣1)B.(﹣3,﹣1)C.(2,3)D.(﹣4,1)10.如图,在5×5的方格纸中,A,B两点在格点上,线段AB绕某点逆时针旋转角α后得到线段A 'B ',点A '与A 对应,则角α的大小为( )A .30°B .60°C .90°D .120°二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题纸的相应位置) 11.计算2515x y y x = . 12.“若实数a ,b ,c 满足a <b <c ,则a +b <c ”,能够说明该命题是假命题的一组a ,b ,c 的值依次为 .13.将点A (4,3)先向左平移6个单位,再向下平移4个单位得到点A 1,则A 1的坐标是 .14.过n 边形的一个顶点共有2条对角线,则该n 边形的内角和是 度.15.如图,点E 在∠BOA 的平分线上,EC ⊥OB ,垂足为C ,点F 在OA 上,若∠AFE =30°,EC =3,则EF = .16.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE ⊥AC 交AB 于点E ,若BC =4,△AOE 的面积为6,则BE = .三、解答题(本大题共9小题,共86分,请在答题纸的相应位置解答)17.(8分)已知ab =3,a +b =5,利用因式分解求a 3b +2a 2b 2+ab 3的值.18.(8分)解不等式组37113222x x x x -≤+⎧⎪⎨+>⎪⎩ () ().19.(8分)先化简,再求值:(2﹣1a a +)÷241a a -+,其中a=2+2.20.(8分)已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.21.(8分)求证:三角形的一条中位线与第三边上的中线互相平分.要求:(1)根据给出的△ABC和它的一条中位线DE,在给出的图形上,请用尺规作出BC边上的中线AF,交DE于点O.不写作法,保留痕迹;(2)据此写出已知,求证和证明过程.22.(10分)荔枝上市后,某水果店的老板用500元购进第一批荔枝,销售完后,又用800元购进第二批荔枝,所购件数是第一批购进件数的2倍,但每件进价比第一批进价少5元.(1)求第一批荔枝每件的进价;(2)若第二批荔枝以30元/件的价格销售,在售出所购件数的50%后,为了尽快售完,决定降价销售,要使第二批荔枝的销售利润不少于300元,剩余的荔枝每件售价至少多少元?23.(10分)如图,在△ABC中,∠C=90°,∠CAB=20°,BC=7;线段AD是由线段AC绕点A 按逆时针方向旋转110°得到,△EFG是由△ABC沿CB方向平移得到,且直线EF过点D(1)求∠DAE的大小.(2)求DE的长.24.(12分)在平面直角坐标系xOy中,一次函数y1=k1x+4m(m≠0)的图象l1经过点B(p,2m).(1)当m=1,k1=﹣1时,且正比例函数y2=k2x的图象l2经过点B.①若y1<y2,求x的取值范围;②若一次函数y3=k3x+1的图象为l3,且l1,l2,l3不能围成三角形,求k3的值;(2)若直线l1与x轴交于点C(n,0),且n+2p=4m,求m,n的数量关系.25.(14分)如图,在▱ABCD中,点O是对角线AC的中点,点E在BC上,且AB=AE,连接EO 并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)求证:DF=BE;(2)若∠ACB=45°.①求证:∠BAG=∠BGA;②探索DF与CG的数量关系,并说明理由.参考答案与解析一、选择题(本大题共10小题,每小题4分,共40分)1.若分式11xx+-有意义,则x的取值范围是()A.x≠1 B.x≠﹣1 C.x=1 D.x=﹣1答案:A2.在下列各式由左到右的变形中,不是因式分解的是()A.a2﹣ab=a(a﹣b)B.(a﹣2)(a+1)=a2﹣a﹣2C.x2﹣2x+1=(x﹣1)2D.x2﹣y2=(x+y)(x﹣y)答案:B3.在△ABC中,AB=AC,∠A=60°,BC=6,则AB的值是()A.12 B.8 C.6 D.3答案:C4.以下由两个全等的30°直角三角板拼成的图形中,属于中心对称图形的是()答案:D5.已知等腰三角形有两条边的长分别是3,7,则这个等腰三角形的周长为()A.17 B.13 C.17或13 D.10答案:A6.一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集是()A.x<﹣2 B.x<0 C.x>0 D.x>4答案:A7.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A .20°B .35°C .40°D .70°答案:B 8.2008北京奥运会的吉祥物是“福娃”,某玩具厂要生产a 只“福娃”,原计划每天生产b 只,实际每天生产了(b +c )只,则该厂提前完成任务的天数是( )A .a cB .a b c +-a bC .a b c +D .a b -a b c+ 答案:D9.在▱ABCD 中,对角线AC ,BD 相交于点O ,以点O 为坐标原点建立平面直角坐标系,其中A (a ,b ),B (a ﹣1,b +2),C (3,1),则点D 的坐标是( )A .(4,﹣1)B .(﹣3,﹣1)C .(2,3)D .(﹣4,1)答案:A10.如图,在5×5的方格纸中,A ,B 两点在格点上,线段AB 绕某点逆时针旋转角α后得到线段A 'B ',点A '与A 对应,则角α的大小为( )A .30°B .60°C .90°D .120°答案:C 二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题纸的相应位置) 11.计算2515x y y x = . 答案:13x12.“若实数a ,b ,c 满足a <b <c ,则a +b <c ”,能够说明该命题是假命题的一组a ,b ,c 的值依次为 .答案:1,2,313.将点A (4,3)先向左平移6个单位,再向下平移4个单位得到点A 1,则A 1的坐标是 .答案:(﹣2,﹣1)14.过n 边形的一个顶点共有2条对角线,则该n 边形的内角和是 度.答案:54015.如图,点E 在∠BOA 的平分线上,EC ⊥OB ,垂足为C ,点F 在OA 上,若∠AFE =30°,EC =3,则EF = .答案:616.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE ⊥AC 交AB 于点E ,若BC =4,△AOE 的面积为6,则BE = .答案:25三、解答题(本大题共9小题,共86分,请在答题纸的相应位置解答)17.(8分)已知ab =3,a +b =5,利用因式分解求a 3b +2a 2b 2+ab 3的值.解:原式=222(2)()ab a ab b ab a b ++=+=3×52=7518.(8分)解不等式组37113222x x x x -≤+⎧⎪⎨+>⎪⎩ () (). 解:由(1)得:x ≤4由(2)得:x >1,所以,原不等式组的解为:1<x ≤419.(8分)先化简,再求值:(2﹣1a a +)÷241a a -+,其中a =2+2. 解:原式=21a a ++÷241a a -+ =21a a ++×1(2)(2)a a a ++- =12a - 当a =2+2时,原式=22 20.(8分)已知:在△ABC 中,AB =AC ,D 为AC 的中点,DE ⊥AB ,DF ⊥BC ,垂足分别为点E ,F ,且DE =DF .求证:△ABC 是等边三角形.解:因为DE ⊥AB ,DF ⊥BC ,且DE =DF ,又D 是AC 的中点,所以,AD =DC ,在Rt △AED 和Rt △CFD 中DE DF AD DC =⎧⎨=⎩, 所以,Rt △AED ≌Rt △CFD ,所以,∠A =∠C ,所以,BC =BA又AB =AC所以,AB =AC =BC所以,△ABC 是等边三角形.21.(8分)求证:三角形的一条中位线与第三边上的中线互相平分.要求:(1)根据给出的△ABC 和它的一条中位线DE ,在给出的图形上,请用尺规作出BC 边上的中线AF ,交DE 于点O .不写作法,保留痕迹;(2)据此写出已知,求证和证明过程.解:(1)作线段BC 的中段线,BC 的中点为F ,连结AF ,即可。
泉州市八年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2019八下·黄陂月考) 若成立,则的取值范围为().A . ≥0B . 0≤ <1C . <1D . ≥0或<12. (2分) (2019八上·昌平月考) 下列分式中,最简分式是()A .B .C .D .3. (2分)若⊙A的半径为5,圆心A的坐标为(3,4),点P的坐标是(3,-1),则点P与⊙A的位置关系是().A . P在⊙A上B . P在⊙A外C . P在⊙A内D . 以上答案都不对4. (2分)(2020·武汉模拟) 对于反比例函数,下列说法正确的个数是()①函数图象位于第一、三象限;②函数值 y 随 x 的增大而减小;③若 A(-1,),B(2,),C(1, )是图象上三个点,则 < < ;④P 为图象上任一点,过 P 作PQ⊥y 轴于点 Q,则△OPQ 的面积是定值.A . 1 个B . 2 个C . 3 个D . 4 个5. (2分)无为县为执行“两免一补”政策,2010年投入教育经费2500万元,预计2012年投入3600万元.设这两年投入教育经费年平均增长率为x,则下列方程正确的是()A . 2500(1+x)2=3600B . 2500x2=3600C . 2500(1+x%)2=3600D . 2500(1+x)+2500(1+x)2=36006. (2分) (2019九上·桥东月考) 已知圆O的半径为5,P是圆O内一点,且OP=3,过点P作圆O的一条弦AB,则AB值不可以是()A . 7B . 8C . 9D . 10二、填空题 (共20题;共90分)7. (1分)(2019·封开模拟) 分式方程的解为________.8. (1分)分式与的最简公分母是________9. (1分) (2020七下·吉林期末) 比较实数的大小: ________1.10. (1分)(2020·青羊模拟) 设x1 , x2是一元二次方程x2﹣x﹣1=0的两根,则2x12﹣x1+x22=________.11. (1分) (2019八上·利辛月考) 函数y= 中,自变量x的取值范围是________。
泉州市2020年八年级第二学期期末统考数学试题一、选择题(每题只有一个答案正确)1.无论k 为何值时,直线y =k (x+3)+4都恒过平面内一个定点,这个定点的坐标为( ) A .(3,4) B .(3,﹣4) C .(﹣3,﹣4) D .(﹣3,4)2.函数y =ax ﹣a 与y =a x (a≠0)在同一直角坐标系中的图象可能是( ) A . B .C .D .3.如图①,2AB =,点C 在线段AB 上,且满足AC BC AB AC=.如图②,以图①中的AC ,CB 长为边建构矩形ACBF ,以CB 长为边建构正方形CBDE ,则矩形AEDF 的面积为( )A .1465-B .458-C .10522-D .10520-4.如图,在一次实践活动课上,小明为了测量池塘B 、C 两点间的距离,他先在池塘的一侧选定一点A ,然后测量出AB 、AC 的中点D 、E ,且DE=10m ,于是可以计算出池塘B 、C 两点间的距离是( )A .5mB .10mC .15mD .20m5.. 已知样本 x 1 , x 2 , x 3 , x 4 的平均数是2,则 x 1 +3, x 2 +3, x 3 +3, x 4 +3的平均数为( ). A .2 B .2.75 C .3 D .56.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )纸笔测试实践能力成长记录甲90 83 95乙98 90 95丙80 88 90A.甲B.乙丙C.甲乙D.甲丙7.下面计算正确的是()A.3+3=33B.273=3÷C.2?3=5D.()22=2--8.如图,一次函数y1=x-1与反比例函数y2=2x的图象交于点A(2,1)、B(-1,-2),则使y1>y2的x的取值范围是().A.x>2 B.x>2或-1<x<0C.-1<x<0 D.x>2或x<-19.下列图象不能反映y是x的函数的是()A.B.C.D.10.如图,矩形纸片ABCD,AB=3,AD=5,折叠纸片,使点A落在BC边上的E处,折痕为PQ,当点E 在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点E在BC 边上可移动的最大距离为()A .1B .2C .4D .5二、填空题 11.计算21211x x x +-++的结果为_____. 12.如图,在四边形ABCD 中,∠ADC =∠ABC =90°,AD =CD ,DP ⊥AB 于P .若四边形ABCD 的面积是18,则DP 的长是_____.13.某商品的标价比成本高%p ,当该商品降价出售时,为了不亏本,降价幅度不得超过%d ,若用p 表示d ,则d =___.14.数据2,0,1,9的平均数是__________.15.如图,已知()0,2A ,()6,0B ,()2,C m ,当1ABC S ∆=时,m =______.16.分式2354x y 和2276x y 的最简公分母是__________. 17.一般地,在平面直角坐标系中,我们求点到直线间的距离,可用下面的公式求解:点()00P x ,y 到直线Ax By C 0++=的距离()d 公式是:0022Ax By C d A B ++=+如:求:点()P 1,1到直线2x 6y 90+-=的距离.解:由点到直线的距离公式,得222161910d 204026⨯+⨯-===+ 根据平行线的性质,我们利用点到直线的距离公式,也可以求两平行线间的距离.则两条平行线1l :2x 3y 8+=和2l :2x 3y 180++=间的距离是______.三、解答题18.某河流防污治理工程已正式启动,由甲队单独做5个月后,乙队再加入合作3个月就可以完成这项工程。
泉州市名校2020年八年级第二学期期末综合测试数学试题一、选择题(每题只有一个答案正确)1.下列x的值中,是不等式x+1>5的解的是()A.﹣2 B.0 C.4 D.62.如图在4×5的网格中,每个小正方形的边长都是1个单位长度,定义:以网格中小正方形顶点为顶点的正方形叫作格点正方形,图中包含“△”的格点正方形有( )个.A.11 B.15 C.16 D.173.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形4.如图,四边形ABCD是菱形,圆O经过点A、C、D,与BC相交于点E,连接AC、AE.若78D∠=,则EAC∠=()A.51B.27C.24D.755.如图,将两块完全相同的矩形纸片ABCD和矩形纸片AEFG按图示方式放置(点A、D、E在同一直线上),连接AC、AF、CF,已知AD=3,DC=4,则CF的长是()A.5 B.7 C.5D.106.慢车和快车先后从甲地出发沿直线道路匀速驶向乙地,快车比慢车晚出发0.5小时,行驶一段时间后,快车途中休息,休息后继续按原速行驶,到达乙地后停止.慢车和快车离甲地的距离y(千米)与慢车行驶时间x(小时)之间的函数关系如图所示.有以下说法:①快车速度是120千米/小时;②慢车到达乙地比快车到达乙地晚了0.5小时;③点C坐标(43,100);④线段BC对应的函数表达式为y=120x﹣60(0.5≤x≤43);其中正确的个数有( )A .1B .2C .3D .47.如图,ABCD 的周长为18,对角线AC 、BD 相交于点O ,点E 是CD 的中点,5BD =,则DOE ∆的周长为( )A .7B .8C .9D .108.一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y (千米)与慢车行驶时间t (小时)之间的函数图象是( )A .B .C .D .9.如图,□ABCD 的对角线AC 与BD 相交于点O ,AB ⊥AC.若4AB =,6AC =,则BD 的长为( )A .11B .10C .9D .810.某同学粗心大意,因式分解时,把等式x 4-■=(x 2+4)(x+2)(x-▲)中的两个数字弄污了,则式子中“■”和“▲”对应的一组数字可能是( )A .8和1B .16和2C .24和3D .64和8二、填空题11.写出一个经过点()2,1-,且y 随x 的增大而减小的一次函数的关系式:______.12.已知关于x 的方程(m-1)x 2-2x+1=0有两个不相等的实数根,则m 的取值范围是_____.13.已知有两点、都在一次函数的图象上,则的大小关系是______(用“<”连接)14.如图,平行四边形ABCD 的对角线相交于点O ,且AD CD ≠,过点O 作OM AC ⊥,交AD 于点M .若3,AB CDM =∆的周长为9,则BC =______.15.如图,已知2AB =,点D 是等腰Rt ABC ∆斜边AC 上的一动点,以BD 为一边向右下方作正方形BDEF ,当动点D 由点A 运动到点C 时,则动点F 运动的路径长为______.16.已知一个一元二次方程,它的二次项系数为1,两根分别是2和3,则这个方程是______. 17.如图,在平面直角坐标系中,直线与直线相交于点,则关于的二元一次方程组的解是__________.三、解答题18.已知关于x的一元二次方程22(21)40x m x m+++-=.(1)当m为何值时,方程有两个不相等的实数根;(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.19.(6分)如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH.(1)如图1,点A、D分别在EH和EF上,连接BH、AF,BH和AF有何数量关系,并说明理由;(2)将正方形EFGH绕点E顺时针方向旋转,如图2,判断BH和AF的数量关系,并说明理由.20.(6分)计算(1)3224(3)()(5)a b b ab ab⋅---⋅-(2)2(23)(23)()a b a b a b+--++--(3)解下列方程组21367x yx y-=⎧⎨=-⎩(4)解下列方程组3284132x y yx y-+=⎧⎪⎨+=⎪⎩()21.(6分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图1摆放时,都可以用“面积法”来证明,请你利用图1或图1证明勾股定理(其中∠DAB=90°)求证:a1+b1=c1.22.(8分)某公司欲招聘一名公务人员,对甲、乙两位应试者进行了面试和笔试,他们的成绩(百分制)如表所示:应试者面试笔试甲86 90乙92 83(1)如果公司认为面试和笔试同等重要,从他们的成绩看,谁将被录取?(2)如果公司认为作为公务人员面试成绩应该比笔试成绩更重要,并分别赋予它们6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?23.(8分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB上一点,过点D作DE⊥BC,交直线MN于点E,垂足为F,连接CD,BE.(1)当点D是AB的中点时,四边形BECD是什么特殊四边形?说明你的理由.(2)在(1)的条件下,当∠A=__________°时,四边形BECD是正方形.24.(10分)如图,将边长为4的正方形ABCD纸片沿EF折叠,点C落在AB边上的点G处,点D与点H 重合,CG与EF交于点p,取GH的中点Q,连接PQ,则△GPQ的周长最小值是__25.(10分)已知四边形ABCD,请你作出一个新图形,使新图形与四边形ABCD的相似比为2:1,用圆规、直尺作图,不写作法,但要保留作图痕迹.参考答案一、选择题(每题只有一个答案正确)1.D【解析】【分析】根据不等式解集的定义即可得出结论.【详解】∵不等式x+1>5的解集是所有大于4的数,∴6是不等式的解.故选D.【点睛】本题考查的是不等式的解集,熟知使不等式成立的未知数的值叫做不等式的解是解答此题的关键.2.C【解析】【分析】分七种情况讨论,即可.【详解】解:图中包含“△”的格点正方形为:边长为1的正方形有:1个,边长为2的正方形有:4个,边长为3的正方形有:4个,2个,边长为4的正方形有:2个边长为1个的正方形有:2个所以图中包含“△”的格点正方形的个数为:1+4+4+2+2+1+2=1.故选:C.【点睛】本题考查的是图像,熟练掌握正方形的性质是解题的关键.3.D【解析】【分析】直接利用特殊平行四边形的判定逐一进行判断即可【详解】有一组邻边相等的平行四边形是菱形,故A正确对角线互相垂直的平行四边形是菱形,故B正确有一个角是直角的平行四边形是矩形,故C正确对角线垂直且相等的平行四边形是正方形,故D错误本题选择不正确的,故选D【点睛】本题主要考查平行四边形性质、矩形的判定定理、正方形判定定理、菱形判定定理,基础知识扎实是解题关键4.B【解析】【分析】根据菱形的性质得到∠ACB=12∠DCB=12(180°-∠D)=51°,根据圆内接四边形的性质得到∠AEB=∠D=78°,由三角形的外角的性质即可得到结论,【详解】解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=12∠DCB=12(180°-∠D)=51°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB−∠ACE=27°,故选B.【点睛】本题主要考查了圆内接四边形的性质,菱形的性质,掌握这些性质是解题的关键.5.C【解析】【分析】由两块完全相同的矩形纸片ABCD和矩形纸片AEFG,得出AG=AD=BC=3,FG=AB=CD=4,∠FGA=∠ABC=90°,由勾股定理求出AC=5,由SAS证得△FGA≌△ABC,得出AF=AC,∠GFA=∠BAC,∠GAF=∠BCA,由∠GFA+∠GAF=90°,推出∠GAF+BAC=90°,得出∠FAC=90°,即△CAF是等腰直角三角形,即可得出结果.【详解】∵两块完全相同的矩形纸片ABCD和矩形纸片AEFG,∴AG=AD=BC=3,FG=AB=CD=4,∠FGA=∠ABC=90°,AC==5,在△FGA和△ABC中,,∴△FGA≌△ABC(SAS),∴AF=AC,∠GFA=∠BAC,∠GAF=∠BCA,∵∠GFA+∠GAF=90°,∴∠GAF+BAC=90°,∴∠FAC=90°,∴△CAF是等腰直角三角形,∴CF=AC=5,故选C.【点睛】本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识,熟练掌握矩形的性质,证明三角形全等与等腰直角三角形的判定是解题的关键.6.D【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否成立,本题得以解决.【详解】解:由图可得,①快车的速度为:(400﹣280)÷(4.5﹣3.5)=120千米/小时,故①正确,②慢车的速度为:280÷3.5=80千米/小时,慢车到达乙地比快车到达乙地晚了:400÷80﹣4.5=0.5小时,故②正确,③点C的纵坐标是:400﹣120×(4.5﹣2)=100,横坐标是:0.5+100÷120=43,即点C的坐标为(43,100),故③正确,④设线段BC对应的函数表达式为y=kx+b,∵点B(0.5,0),点C(43,100),∴0.5k b04k b1003+=⎧⎪⎨+=⎪⎩,得k120b60=⎧⎨=-⎩,即线段BC对应的函数表达式为y=120x﹣60(0.5≤x≤43),故④正确,故选:D.本题主要考查一次函数的应用,能够根据题意结合图象获取有效信息是解题的关键. 7.A 【解析】【分析】利用平行四边形的性质,三角形中位线定理即可解决问题【详解】解:平行四边形ABCD 的周长为18,9BC CD ∴+=,OD OB =,12DE EC CD ==, ∴1=2OE BC 19()22OE DE BC CD ∴+=+=, 5BD =,1522OD BD ∴==, DOE ∴∆的周长为95722+=, 故选A .【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.8.C【解析】因为慢车和快车从相距500千米的甲乙两地同时出发,则时间为0小时,两车相距距离为500千米,经过4小时,两车相遇,则此时两车相距距离为0,相遇之后快车经过小时先到达甲地,此时两车相距(75+50) ×=千米>250千米,然后再经过小时,慢车到达乙地,此时两车相距500千米,故选C.9.B【解析】【分析】根据勾股定理先求出BO 的长,再根据平行四边形的性质即可求解.【详解】∵6AC =,∵AB ⊥AC ,∴∴BD=2BO=10,故选B.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.10.B【解析】【分析】可以看出此题是用平方差公式分解因式,可以根据整式乘法与因式分解是互逆运算变形得出.平方差公式:a 2-b 2=(a+b )(a-b ).【详解】由(x 2+4)(x+2)(x-▲)得出▲=2,则(x 2+4)(x+2)(x-2)=(x 2+4)(x 2-4)=x 4-1,则■=1.故选B .【点睛】此题考查了学生用平方差公式分解因式的掌握情况,灵活性比较强.二、填空题11.y=-x-1【解析】【分析】可设y kx b =+,由增减性可取1k =-,再把点的坐标代入可求得答案.【详解】设一次函数解析式为y kx b =+,y 随x 的增大而减小,∴k 0<,故可取1k =-,∴解析式为y x b =-+,函数图象过点()2,1-,∴12b =+,解得1b =-,∴1y x =--.故答案为:1y x =--(注:答案不唯一,只需满足k 0<,且经过()2,1-的一次函数即可).【点睛】本题有要考查一次函数的性质,掌握“在y kx b =+中,当0k >时y 随x 的增大而增大,当k 0<时y 随x 的增大而减小”是解题的关键.12.m <2且m≠1.【解析】【分析】根据一元二次根的判别式及一元二次方程的定义求解.【详解】解:∵关于x 的方程(m-1)x 2-2x+1=0有两个不相等的实数根,∴m-1≠0,且△>0,即4-4(m-1)>0,解得m <2,∴m 的取值范围是:m <2且m≠1.故答案为:m <2且m≠1.【点睛】本题考查根的判别式及一元二次方程的定义,掌握公式正确计算是解题关键.13.【解析】【分析】利用一次函数的增减性可求得答案.【详解】∵y=−3x+n ,∴y 随x 的增大而减小,∵点、都在一次函数y=−3x+n 的图象上,且1>−2, ∴,故答案为:. 【点睛】此题考查一次函数图象上点的坐标特征,解题关键在于掌握函数图象的走势.14.6.【解析】【分析】根据题意,OM 垂直平分AC ,所以MC=MA ,因此△CDM 的周长=AD+CD ,即可解答.【详解】∵ABCD 是平行四边形,∴OA=OC ,AD=BC,AB=CD∵OM ⊥AC ,∴AM=MC.∴△CDM 的周长=AD+CD=9,BC=9-3=6故答案为6.【点睛】此题考查平行四边形的性质,解题关键在于得出MC=MA15.【解析】【分析】连接CF ,根据题意先证出BAD BCF ∆≅∆,然后得出AD CF =,所以点F 运动的路径长度即为点D 从A 到C 的运动路径,继而得出结论【详解】连接CF ,∵2AB =,ABC ∆是等腰直角三角形,∴AC =∠ABC=90°∵四边形BDEF 是正方形∴BD=BF ,∠DBF=∠ABC=90°,∴∠ABD=∠CBF,在△DAP 与△BAP 中AB BC ABD CBF BD BF =⎧⎪∠=∠⎨⎪=⎩∴BAD BCF ∆≅∆,∴AD CF =,点F 运动的路径长度即为点D 从A 到C 的运动路径,为CF =故答案为:【点睛】本题主要考查的是等腰直角三角形的性质、等边三角形的性质、正方形的性质以及全等三角形的性质和判定,熟练掌握全等三角形的判定和性质是解题的关键.16.2560x x -+=【解析】【分析】设方程为ax 2+bx +c =0,则由已知得出a =1,根据根与系数的关系得,2+3=−b ,2×3=c ,求出即可.【详解】∵二次项系数为1的一元二次方程的两个根为2,3,∴2+3=−b ,2×3=c ,∴b=-5,c=6∴方程为2560x x -+=,故答案为:2560x x -+=.【点睛】本题考查了根与系数的关系:x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a. 17.【解析】【分析】关于x 、y 的二元一次方程组的解即为直线l 1:y=mx-2与直线l 2:y=x+n 的交点P (1,2)的坐标.【详解】解:∵直线l 1:y=mx-2与直线l 2:y=x+n 相交于点P (1,2),∴关于x 、y 的二元一次方程组的解是.故答案为.【点睛】本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.三、解答题18.(1)m >﹣174;(2)m =﹣1. 【解析】【分析】(1)根据方程的系数结合根的判别式,即可得出△=1m +17>0,解之即可得出结论;(2)设方程的两根分别为a 、b ,根据根与系数的关系结合菱形的性质,即可得出关于m 的一元二次方程,解之即可得出m 的值,再根据a +b =﹣2m ﹣1>0,即可确定m 的值.【详解】解:(1)∵方程()222140x m x m +++-=有两个不相等的实数根, ∴△=()()222144m m +--=1m +17>0, 解得:m >﹣174, ∴当m >﹣174时,方程有两个不相等的实数根. (2)设方程的两根分别为a 、b ,根据题意得:a +b =﹣2m ﹣1,ab =24m -.∵2a 、2b 为边长为5的菱形的两条对角线的长,∴()2222a b a b ab +=+-=()()222124m m ---- =2m 2+1m +9=52=25,解得:m =﹣1或m =2.∵a >0,b >0,∴a +b =﹣2m ﹣1>0,∴m =﹣1.若边长为5的菱形的两条对角线的长分别为方程两根的2倍,则m 的值为﹣1.【点睛】本题考查了根的判别式、根与系数的关系、菱形的性质以及解一元二次方程,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=1m +17>0;(2)根据根与系数的关系结合菱形的性质,找出关于m 的一元二次方程.19.(1)BH=AF ,见解析;(2)BH=AF ,见解析.【解析】【分析】(1)根据正方形的性质可得AE=BE ,∠BEH=∠AEF=90°,然后利用“边角边”证明△BEH 和△AEF 全等,根据全等三角形对应边相等即可得证;(2)根据正方形的性质得到AE=BE ,∠BEA=90°,EF=EH ,∠HEF=90°,然后利用“边角边”证明△BEH 和△AEF 全等,根据全等三角形的性质即可得到结论.【详解】(1)BH=AF ,理由如下:在正方形ABCD 中,AE=BE ,∠BEH=∠AEF=90°,∵四边形EFGH 是正方形,∴EF=EH ,在△BEH 和△AEF 中,AE BE BEH AEF EF EH ⎧⎪∠∠⎨⎪⎩=== , ∴△BEH ≌△AEF(SAS),∴BH=AF ;(2)BH=AF ,理由如下:∵四边形ABCD 是正方形,∴AE=BE ,∠BEA=90°,∵四边形EFGH 是正方形,∴EF=EH ,∠HEF=90°,∴∠BEA+∠AEH=∠HEF+∠AEH ,即∠BEH=∠AEF ,在△BEH 与△AEF 中,AE BE BEH AEF EF EH ⎧⎪∠∠⎨⎪⎩===,∴△BEH ≌△AEF(SAS),∴BH=AF.【点睛】本题考查了正方形的性质,旋转的性质,全等三角形的判定和性质,准确找到全等三角形是解题的关键.20.(1)3361a b ;(2)2226932a a b ab -+-++;(3)235x y =⎧⎨=⎩;(4)02x y =⎧⎨=⎩. 【解析】【分析】(1)先计算乘方,然后同底数幂乘法,最后合并即可;(2)原式利用平方差和完全平方公式,化简计算即可;(3)利用代入消元法,即可求出方程组的解;(4)方程先通过化简,然后利用加减消元法解方程即可.【详解】解:(1)原式=32224925a b b ab a b ⋅+⋅=33333625a b a b +=3361a b ;(2)原式=22(23)(23)(2)a b a b a ab b -+-----+=2222(3)42a b a ab b --+-+-=22226942a a b a ab b -+-+-+-=2226932a a b ab -+-++;(3)21367x y x y -=⎧⎨=-⎩①②, 由②代入①,得:67213y y --=,解得:5y =,把5y =代入②,解得:23x =,∴方程组的解为:235x y =⎧⎨=⎩; (4)3284132x y y x y -+=⎧⎪⎨+=⎪⎩() 化简得:324236x y x y +=⎧⎨+=⎩①②, 由23⨯-⨯①②,得:510y -=-,解得:2y =,把2y =代入①,解得:0x =,∴方程组的解为:02x y =⎧⎨=⎩; 【点睛】此题考查了整式的混合运算和解二元一次方程组,熟练掌握运算法则和解二元一次方程组的方法是解本题的关键.21.见解析.【解析】【分析】图1,根据三个直角三角形的面积和等于梯形的面积列式化简即可得证;图1,连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a,表示出S四边形ADCB=S△ACD+S△ABC,S四边形ADCB =S△ADB+S△DCB,两者相等,整理即可得证.【详解】利用图1进行证明:证明:∵∠DAB=90°,点C,A,E在一条直线上,BC∥DE,则CE=a+b,∵S四边形BCED=S△ABC+S△ABD+S△AED=12ab+12c1+12ab,又∵S四边形BCED=12(a+b)1,∴12ab+12c1+12ab=12(a+b)1,∴a1+b1=c1.利用图1进行证明:证明:如图,连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a,∵S四边形ADCB=S△ACD+S△ABC=12b1+12ab.又∵S四边形ADCB=S△ADB+S△DCB=12c1+12a(b﹣a),∴12b1+12ab=12c1+12a(b﹣a),∴a1+b1=c1.【点睛】本题考查勾股定理的证明,解题的关键是利用构图法来证明勾股定理.22. (1)甲将被录取;(2)乙将被录取.【解析】【分析】(1)求得面试和笔试的平均成绩即可得到结论;(2)根据题意先算出甲、乙两位应聘者的加权平均数,再进行比较,即可得出答案.【详解】解:(1)x甲=86902+=89(分),x 乙=92832+=87.5(分),因为x甲>x乙,所以认为面试和笔试成绩同等重要,从他们的成绩看,甲将被录取;(2)甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),因为乙的平均分数较高,所以乙将被录取.【点睛】此题考查了加权平均数的计算公式,解题的关键是:计算平均数时按6和4的权进行计算.23.(1)菱形,理由见解析;(2)1.【解析】【分析】①先证出BD=CE,得出四边形BECD是平行四边形,再由直角三角形斜边上的中线性质得出CD=12AB=BD,即可得出四边形BECD是菱形;②当∠A=1°时,△ABC是等腰直角三角形,由等腰三角形的性质得出CD⊥AB,即可得出四边形BECD是正方形.【详解】解:(1)四边形BECD是菱形,理由如下:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=12AB=BD,∴四边形BECD是菱形;故答案为:菱形;(2)当∠A=1°时,四边形BECD是正方形;理由如下:∵∠ACB=90°,当∠A=1°时,△ABC是等腰直角三角形,∵D为AB的中点,∴CD⊥AB,∴∠CDB=90°,∴四边形BECD是正方形;故答案为:1.【点睛】本题是四边形综合题目,考查了平行四边形的判定与性质、正方形的判定、菱形的判定、直角三角形斜边上的中线性质;熟练掌握平行四边形的判定与性质,并能进行推理论证是解决问题的关键.24.【解析】【分析】如图,取CD的中点N,连接PN,PB,BN.首先证明PQ=PN,PB=PG,推出PQ+PG=PN+PB≥BN,求出BN 即可解决问题.【详解】解:如图,取CD的中点N,连接PN,PB,BN.由翻折的性质以及对称性可知;PQ=PN,PG=PC,HG=CD=4,∵QH=QG,∴QG=2,在Rt△BCN中,BN= ,∵∠CBG=90°,PC=PG,∴PB=PG=PC,∴PQ+PG=PN+PB≥BN=2,∴PQ+PG的最小值为2,∴△GPQ的周长的最小值为2+2,故答案为2+2.【点睛】本题考查翻折变换,正方形的性质,直角三角形斜边中线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题,属于中考填空题中的压轴题.25.见解析.【解析】【分析】根据新图形与四边形ABCD的相似比为2:1,连接BD,延长BA、BD与BC在延长线上截取BA=AE,BD =DF,BC =CG,即可得出所画图形.【详解】解:如图所示.连接BD,延长BA、BD与BC在延长线上截取BA=AE,BD =DF,BC =CG,连接EF,FG,四边形BEFG即所画图形.【点睛】本题考查相似变换的性质,根据相似比得出BE、BF、BG与BA、BD、BC的关系是解决问题的关键.。
2019-2020学年泉州市初二下期末质量跟踪监视数学试题一、选择题(每题只有一个答案正确)1.矩形的对角线长为20,两邻边之比为3:4,则矩形的面积为( ) A .56 B .192C .20D .以上答案都不对2.顺次连接矩形四边中点得到的四边形一定是( ) A .正方形B .矩形C .菱形D .不确定,与矩形的边长有关3.已知反比例函数ky x=(k 为常数,且k ≠0)的图象经过点(3,4),则该函数图象必不经过点( ) A .(2,6) B .(-1,-12)C .(12,24) D .(-3,8)4.将一张矩形纸片按照如图 所示的方式折叠,然后沿虚线 AB 将阴影部分剪下,再将 剪下的阴影部分纸片展开,所得到的平面图形是( )A .直角三角形B .等腰三角形C .矩形D .菱形5.如图,已知一次函数y kx b =+的图象与x 轴,y 轴分别交于点(2,0),点(0,3).有下列结论:①关于x 的方程0kx b +=的解为2x =;②当2x >时,0y <;③当0x <时,3y <. 其中正确的是( )A .①②B .①③C .②③D .①③②6.如图,架在消防车上的云梯AB 长为10m ,∠ADB =90°,AD =2BD ,云梯底部离地面的距离BC 为2m ,则云梯的顶端离地面的距离AE 为( )A .(52)mB .(52)mC .(32)mD .7m7.如图,点P 是正方形ABCD 内一点,将△ABP 绕着B 沿顺时针方向旋转到与△CBP′重合,若PB=3,则PP′的长为( )A .22B .32C .3D .无法确定8.一次函数y=﹣x+2的图象不经过的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限9.已知:如图,折叠矩形ABCD ,使点B 落在对角线AC 上的点F 处,若BC=4,AB=3,则线段CE 的长度是( )A .258B .52C .3D .2.810.如图,90MON ∠=︒,矩形ABCD 在MON ∠的内部,顶点A ,B 分别在射线OM ,ON 上,4AB =,2BC =,则点D 到点O 的最大距离是( )A .222B .222C .252D 22+二、填空题11.已知1<x <52(1)x -____. 12.先化简:224()2442a aa a a a ++÷--+-,再对a 选一个你喜欢的值代入,求代数式的值. 13.分解因式:22344x y xy y -+=______. 1435____________.15.如图,菱形ABCD 在平面直角坐标系中,点A 位坐标原点,点B 在x 轴正半轴上,若点D 的坐标为(1,),则点C 的坐标为 .16.如图,ABC ∆的周长为26,点D ,E 都在边BC 上,ABC ∠的平分线垂直于AE ,垂足为点Q ,ACB ∠的平分线垂直于AD ,垂足为点P ,若10BC =,则PQ 的长为______.17.如图,当1x =时, y 有最大值;当1x <时,y 随x 的增大而______.(填“增大”或“减小”)三、解答题18.某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?19.(6分)甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中超过200元后的价格部分打7折.(1)以x (单位:元)表示商品原价,y (单位:元)表示购物金额,分别就两家商场的让利方式写出y 关于x 的函数解析式;(2)在同一直角坐标系中画出(1)中函数的图象; (3)春节期间如何选择这两家商场去购物更省钱?20.(6分)健身运动已成为时尚,某公司计划组装A 、B 两种型号的健身器材共40套,捐给社区健身中心. 组装一套A 型健身器材需甲种部件7个和乙种部件4个,组装一套B 型健身器材需甲种部件3个和乙种部件6个.公司现有甲种部件240个,乙种部件196个.(1)公司在组装A 、B 两种型号的健身器材时,共有多少种组装方案?(2)组装一套A 型健身器材需费用20元,组装一套B 型健身器材需费用18元,求总组装费用最少的组装方案,最少总组装费用是多少?21.(6分)某校在招聘数学教师时以考评成绩确定人选.甲、乙两位高校毕业生的各项考评成绩如下.如果按笔试成绩占30%、模拟上课占60%、答辩占10%来计算各人的考评成绩,那么谁将优先录取?成绩/分考评项目甲乙理论知识(笔试)88 95模拟上课95 90答辩88 9022.(8分)已知y是x的一次函数,如表列出了部分y与x的对应值,求m的值.x …﹣1 1 2 …y …m ﹣1 1 …23.(8分)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点F的坐标为(-1,5),求点E的坐标.24.(10分)如图,点E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)试判断四边形AECF的形状;(2)若AE=BE,∠BAC=90°,求证:四边形AECF是菱形.25.(10分)某商店分两次购进A.B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B 两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.参考答案一、选择题(每题只有一个答案正确)1.B【解析】【分析】首先设矩形的两邻边长分别为:3x,4x,可得(3x)2+(4x)2=202,继而求得矩形的两邻边长,则可求得答案.【详解】解:∵矩形的两邻边之比为3:4,∴设矩形的两邻边长分别为:3x,4x,∵对角线长为20,∴(3x)2+(4x)2=202,解得:x=4,∴矩形的两邻边长分别为:12,16;∴矩形的面积为:12×16=1.故选B.2.C【解析】【分析】根据三角形的中位线平行于第三边,且等于第三边的一半求解.需注意新四边形的形状只与对角线有关,不用考虑原四边形的形状.【详解】如图,连接AC、BD.在△ABD中,∵AH=HD,AE=EB,∴EH=12 BD,同理FG=12BD,HG=12AC,EF=12AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:C.【点睛】本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.3.D【解析】【分析】反比例函数kyx=(k为常数,且k≠0)的图象经过点(3,4),求出k值,然后依次判断各选项即可【详解】反比例函数kyx=(k为常数,且k≠0)的图象经过点(3,4),k=3×4=12;依次判断:A、2×6=12经过,B、-1×(-12)=12经过,C、12×24=12经过,D、-3×8=-24不经过,故选D【点睛】熟练掌握反比例函数解析式的基础知识是解决本题的关键,难度不大4.D【解析】【分析】解答该类剪纸问题,通过自己动手操作即可得出答案;或者通过折叠的过程可以发现:该四边形的对角线互相垂直平分,继而进行判断.【详解】解:易得阴影部分展开后是一个四边形,∵四边形的对角线互相平分,∴是平行四边形,∵对角线互相垂直,∴该平行四边形是菱形,故选:D.【点睛】本题主要考查了剪纸问题,学生的分析能力,培养学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.5.A【解析】【分析】根据一次函数图象的性质,一次函数与一元一次方程的关系对各小题分析判断即可得解.【详解】由图象得:①关于x的方程kx+b=0的解为x=2,故①正确;②当x>2时,y<0,故②正确;③当x<0时,y>3,故③错误;故选:A【点睛】本题考查了一次函数图象的性质及一次函数与一元一次方程的关系,对于任意一个以x为未知数的一元一次方程,它都可以转化为kx+b=0(k≠0)的形式,解一元一次方程相当于在某个一次函数的函数y=kx+b值为0时,求自变量的值.6.B【解析】【分析】先根据勾股定理列式求出BD,则AD可求,AE也可求.【详解】解:由勾股定理得:AD2+BD2=AB2,4BD2+BD2=100,BD=AD=2BD=AE=AD+DE=2 .故答案为B【点睛】本题考查了勾股定理,灵活应用勾股定理求线段长是解题的关键.7.B【解析】由旋转的性质,得BP′=BP=3,∠PBP′=∠ABC=90°.在Rt△PBP′中,由勾股定理,得==故选B.8.C【解析】【分析】根据一次函数的系数确定函数图象经过的象限,由此即可得出结论.【详解】∵一次函数y=﹣x+2中k=﹣1<0,b=2>0,∴该函数图象经过第一、二、四象限,不经过第三象限.故选C.【点睛】本题考查了一次函数图象与系数的关系.解答本类型题目时,根据函数系数的正负确定函数图象经过的象限是关键.9.B【解析】【分析】由于AE是折痕,可得到AB=AF,BE=EF,设出未知数.在Rt△EFC中利用勾股定理列出方程,通过解方程可得答案.【详解】设BE=x,∵AE为折痕,∴AB=AF,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,==5,∴Rt△EFC中,FC=5﹣3=2,EC=4﹣x,∴(4﹣x)2=x2+22,解得:x=32.所以CE=4﹣35 22 =.故选B.【点睛】本题考查了折叠问题、勾股定理和矩形的性质;解题中,找准相等的量是正确解答题目的关键.10.B【解析】 【分析】取DC 的中点E ,连接OE 、DE 、OD ,根据三角形的任意两边之和大于第三边可知当O 、E 、D 三点共线时,点D 到点O 的距离最大,再根据勾股定理求出DE 的长,根据直角三角形斜边上的中线等于斜边的一半求出OE 的长,两者相加即可得解. 【详解】取AB 中点E ,连接OE 、DE 、OD ,90MON ∠=︒,122OE AB ∴==. 在Rt DAE ∆中,利用勾股定理可得22DE =.在ODE ∆中,根据三角形三边关系可知DE OE OD +>,∴当O 、E 、D 三点共线时,OD 最大为222OE DE +=+.故选:B . 【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半得到性质,三角形的三边关系,矩形的性质,勾股定理,根据三角形的三边关系判断出点O 、E 、D 三点共线时,点D 到点O 的距离最大是解题的关键. 二、填空题 11.4 【解析】【分析】由已知判断x-1>0,x-5<0,再求绝对值. 【详解】因为1<x <5,()2x 1-所以,故答案为:4【点睛】本题考核知识点:二次根式化简. 解题关键点:求绝对值. 12.2aa -;3 【解析】 【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将a=3代入计算即可求出值. 【详解】原式22(2)(2)42(2)(2)a a a a a a ⎡⎤+--=+⎢⎥--⎣⎦222(2)a a a a -=-2aa =-. ∵a 0≠且a 2≠ ∴当a=3时,原式=3=332- 【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 13.()22y x y - 【解析】 【分析】先提取公共项y ,然后观察式子,继续分解 【详解】()22232244(44)2x y xy y y x xy y y x y -+=-+=-【点睛】本题考查因式分解,掌握因式分解基本方法是解题关键 14【解析】 【分析】直接利用二次根式乘法运算法则化简得出答案. 【详解】【点睛】此题主要考查了二次根式的乘法运算,正确掌握二次根式乘法运算法则是解题关键. 15.(3,).【解析】试题分析:先利用两点间的距离公式计算出AD=2,再根据菱形的性质得到CD=AD=2,CD ∥AB ,然后根据平行于x 轴的直线上的坐标特征写出C 点坐标. 解:∵点D 的坐标为(1,),∴AD==2,∵四边形ABCD 为菱形,∴CD=AD=2,CD ∥AB ,∴C 点坐标为(3,). 故答案为(3,).16.3【解析】【分析】首先判断△BAE 、△CAD 是等腰三角形,从而得出BA=BE ,CA=CD ,由△ABC 的周长为26,及BC=10,可得DE=6,利用中位线定理可求出PQ .【详解】由题知BQ 为AE 的垂直平分线, AB BE ∴=,由题意知CP 为AD 的垂直平分线,AC CD ∴=.26ABC C ∆=,且10BC =,16AB AC ∴+=.16AB AC BE CD ∴+=+=.16BD DE DE CE ∴+++=.6DE ∴=.又点P ,Q 分别为AD ,AE 的中点,116322PQ DE ∴==⨯=. 【点睛】本题考查等腰三角形的判定与性质,解题关键在于利用中位线定理求出PQ.17.增大【解析】【分析】根据函数图像可知,当1x <时,y 随x 的增大而增大,即可得到答案.【详解】解:根据题意,∵当1x =时,y 有最大值;∴函数图像开口向下,∴当1x <时,y 随x 的增大而增大;故答案为:增大.【点睛】本题考查了二次函数的图像和性质,解题的关键是熟练掌握二次函数的图像和性质进行解题.三、解答题18.该商品每个定价为1元,进货100个.【解析】利用销售利润=售价﹣进价,根据题中条件可以列出利润与x的关系式,求出即可.解:设每个商品的定价是x元,由题意,得(x﹣40)[180﹣10(x﹣52)]=2000,整理,得x2﹣110x+3000=0,解得x1=50,x2=1.当x=50时,进货180﹣10(50﹣52)=200个>180个,不符合题意,舍去;当x=1时,进货180﹣10(1﹣52)=100个<180个,符合题意.答:当该商品每个定价为1元时,进货100个.19.(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤200),y=0.7x+60(x>200);(2)详见解析;(3)x<600时,甲商场购物更省钱,x=600时,甲、乙两商场购物更花钱相同,x>600时,乙商场购物更省钱.【解析】【分析】(1)根据两家商场的让利方式分别列式整理即可;(2)利用两点法作出函数图象即可;(3)求出两家商场购物付款相同的x的值,然后根据函数图象作出判断即可.【详解】解:(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤200),y=0.7(x-200)+200=0.7x+60,即y=0.7x+60(x>200);(2)如图所示;(3)当0.8x=0.7x+60时,x=600,所以,x<600时,甲商场购物更省钱,x=600时,甲、乙两商场购物更花钱相同,x>600时,乙商场购物更省钱.本题考查了一次函数的应用,一次函数图象,读懂题目信息,理解两家商场的让利方法是解题的关键,要注意乙商场根据商品原价的取值范围分情况讨论.20.(1)组装A 、B 两种型号的健身器材共有9种组装方案;(2)总组装费用最少的组装方案:组装A 型器材22套,组装B 型器材18套【解析】【分析】(1)设公司组装A 型器材x 套,则组装B 型器材(40-x)套,依题意得()()73402404640196x x x x ⎧+-≤⎪⎨+-≤⎪⎩,解不等式组可得;(2)总的组装费用:y =20x +18(40-x)=2x +720,可分析出最值.【详解】(1)设公司组装A 型器材x 套,则组装B 型器材(40-x)套,依题意得()()73402404640196x x x x ⎧+-≤⎪⎨+-≤⎪⎩, 解得:22≤x≤30 ,由于x 为整数,∴x 取22,23,24,25,26,27,28,29,30,∴组装A 、B 两种型号的健身器材共有9种组装方案;(2)总的组装费用:y =20x +18(40-x)=2x +720 ,∵k =2>0,∴y 随x 的增大而增大,∴当x =22时,总的组装费用最少,最少组装费用是2×22+720=764元,总组装费用最少的组装方案:组装A 型器材22套,组装B 型器材18套.21.甲优先录取.【解析】【分析】根据加权平均数的计算公式分别计算出甲、乙两人的成绩,再进行比较即得结果.【详解】解:甲的考评成绩是:88×30%+91×60%+88×10%=92.2,乙的考评成绩是:91×30%+90×60%+90×10%=91.1.答:甲优先录取.【点睛】本题考查了加权平均数的应用,属于基础题型,熟练掌握计算的方法是解题的关键.22.m =﹣1.【分析】利用待定系数法即可解决问题;【详解】解:设一次函数的解析式为y=kx+b,则有1 21 k bk b+=-⎧⎨+=⎩,解得23 kb=⎧⎨=-⎩,∴一次函数的解析式为y=2x﹣3,当x=﹣1时,m=﹣1.【点睛】本题考查一次函数图象上的点的特征,解题的关键是熟练掌握待定系数法解决问题,属于中考常考题型.23.点E坐标(2,3)【解析】【分析】过点E作AE⊥y轴于点A,过点F作FP⊥AE于点P,由“AAS”可证△AOE≌△PFE,可得AE=PF,PE=AO,即可求点E坐标.【详解】解:如图,过点E作AE⊥y轴于点A,过点F作FP⊥AE于点P,∵四边形是正方形∴EF=OE,∠FEO=90°∵∠FEP+∠PEO=90°,∠PEO+∠AOE=90°∴∠AOE=∠FEP,且EF=OE,∠EPF=∠OAE=90°∴△AOE≌△PFE(AAS)∴AE=PF,PE=AO,∵点F(-1,5)∴AO+PF=5,PE-AE=1∴AO=3=PE,AE=2=PF∴点E坐标(2,3).【点睛】本题考查了正方形的性质,全等三角形的判定和性质,坐标与图形的性质,证明△AOE≌△PFE是本题的关键.24.(1)四边形AECF为平行四边形;(2)见解析【解析】试题分析:(1)四边形AECF为平行四边形.通过平行四边形的判定定理“有一组对边平行且相等的四边形是平行四边形”得出结论:四边形AECF为平行四边形.(2)根据直角△BAC中角与边间的关系证得△AEC是等腰三角形,即平行四边形AECF的邻边AE=EC,易证四边形AECF是菱形.(1)解:四边形AECF为平行四边形.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,又∵BE=DF,∴AF=CE,∴四边形AECF为平行四边形;(2)证明:∵AE=BE,∴∠B=∠BAE,又∵∠BAC=90°,∴∠B+∠BCA=90°,∠CAE+∠BAE=90°,∴∠BCA=∠CAE,∴AE=CE,又∵四边形AECF为平行四边形,∴四边形AECF是菱形.25.(1)A种商品每件的进价为20元,B种商品每件的进价为80元;(2)当购进A种商品800件、B种商品2件时,销售利润最大,最大利润为120元.【解析】试题分析:(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据两次进货情况表,可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000﹣m)件,根据总利润=单件利润×购进数量,即可得出w与m之间的函数关系式,由A种商品的数量不少于B种商品数量的4倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再根据一次函数的性质即可解决最值问题.试题解析:(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据题意得:,解得:.答:A种商品每件的进价为20元,B种商品每件的进价为80元.(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000﹣m)件,根据题意得:w=(30﹣20)(1000﹣m)+(100﹣80)m=10m+1.∵A种商品的数量不少于B种商品数量的4倍,∴1000﹣m≥4m,解得:m≤2.∵在w=10m+1中,k=10>0,∴w的值随m的增大而增大,∴当m=2时,w取最大值,最大值为10×2+1=120,∴当购进A种商品800件、B种商品2件时,销售利润最大,最大利润为120元.考点:一次函数的应用,二元一次方程组的应用,解一元一次不等式.。
泉州市泉港区2019-2020学年八年级下期末考试数学试卷2016年春八年
级教学质量检测
数 学 试 题
(满分:150分 考试时间:120分钟)
一、选择题(每小题4分,共40分)
1
.
化
简
分
式
2
42--x x ,结果
是………………………………………………………………( )
A. 2-x
B. 2+x
C.
24-x D. x
x 2
+ 2.寨卡病毒是一种通过蚊虫进行传播的虫媒病毒,其直径约为0.0000021cm .将数据0.0000021
用科学记数法表示
为……………………………………………………( )
A.7
10
1.2-⨯ B.7
101.2⨯ C.6
101.2-⨯
D.6101.2⨯
3.下列图形中,不属于中心对称图形的
是…………………………………………………( )
A .等边三角形
B .菱形
C .矩形
D .平行四边形
4.下列四组条件中,不能判定四边形ABCD 是平行四边形的是…………………………( )
A .A
B =D
C ,A
D =BC B .AB ∥DC ,AD =BC C .AB ∥DC ,AD ∥BC D .AB ∥DC ,AB =DC 5. 已知□ABCD 的周长为
32,AB =4,则
BC 的长
为………………………………………( )
A.28
B.24
C.12
D.8 6.为筹备期末座谈会,班长对全班同学爱吃哪几种水果作了民意调查.根据调查数据决定最终买什么水果应参照的统计量
是………………………………………………………( )
A .众数
B .中位数
C .平均数
D .方差
7.为了解某小区中学生在暑期期间的学习情况,王老师随机调查了7位学生一天的学习时间,结果如下(单位:小时):3.5,3.5,5,6,4,7,6.5.这组数据的中位数是…( )
A.6
B.6.5
C.4
D. 5 8.如图,水以恒速(即单位时间内注入水的体积相同)注入图1的容器中,容器中水的高度h 与时间t 的函数关系图象可能
为………………………………………………………( )
9.已知函数32-=x y 的自变量x 取值范围为
1<x <5,则函数值的取值范围是……( ) A .y <-2,y >2 B .y <-1,y >7 C .-2<y <2 D . -1<y <7
10.如图,在菱形ABCD 中,E ,F 分别在AB ,CD 上,且BE =DF ,EF
与BD 相交于点O ,连结AO .若∠CBD =35°,则∠DAO 的度数为………………………………………( ) A .35° B .55° C .65° D . 75°
二、填空题(每题4分,共24分).
11.若分式x
x 3-的值是0,则x 的值为 .
12.已知1(A ,)2-与点B 关于y 轴对称.则点B 的坐标
是 .
13.甲、乙两人进行射击测试,每人射击10次.射击成绩的平均数都是
8.5环,方差分别是: 2S 甲=3,2
S 乙=3.5.则射击成绩比较稳定的是
_________ (填“甲”或“乙“).
14. 在□ABCD 中,∠B =50°.则∠C = 度.
15.在菱形ABCD 中,AC =3,BD =6,则菱形ABCD 的面积
为 .
16. 已知函数b x y +=2经过点A (2,1),将其图像绕着A 点旋转一定角度,使得旋转后的函数图像经过点B (-2,7).则①b = ;②旋转后的直线解析式为 _________ . 三、解答题(共86分).
17.(6分)计算:1
)3
1(25)2016(-+--π.
O F E
C A B D
(第10
题图) A . B .
C .
D .
(图
1)
18.(6分)先化简,再求值:2
22+-x x
x ÷2+x x ,其中3-=x .
19.(6分)解分式方程:
2
312+=-x x .
20.(6分)如图,在平面直角坐标系中,已知一次函数62+-=x y 的图
象与x 轴交于点A ,与y 轴交于点B .试求出△OAB 的面积.
中,E ,F 分别在AD ,BC 上,且AE =CF ,连结BE 、DF .
求证:BE =DF .
22.(8分)某校八年级共有四个班,各班的人数如图1所示,人数比例
如图2所示.
(1)试求出该校八年级的学生总人数; (2)请补充条形统计表;
(3)在一次数学考试中,1班、2班、3班、4班的平均成绩分别为
92分、91分、90分、95分.试求出该校八年级学生在本次数
F
E
C
A
B
D
学考试的平均分.
23.(10分)如图,已知四边形ABCD 的对角线AC 、BD 相交于点O ,OB
=OD ,BF =DE ,AE ∥CF . (1)求证:△OAE ≌△OCF ;
(2)若OA =OD ,猜想:四边形ABCD 的形状,请证明你的结论.
24.(10分)小聪、小明两兄弟一起从家里出发到图书馆查阅资料,已知他们家到区图书馆的路程是5千米.小聪骑自行车,小明步行,当小聪从原路回到家时,小明刚好到达区图书馆.图中折线O -A -B -C 和线段OD 分别表示两人离家的路程S (千米)与所经过的时间t (分钟)之间的函数关系,请根据图象回答下列问题:
(1)填空:小聪在图书馆查阅资料的时间为 分钟;
(2)试求出小明离开家的路程S (千米)与所经过的时间t (分钟)之间的函数关系式;
(3)探究:当小聪与小明迎面相遇....时,他们离家的路程是多少千米?
4班 1班 3班
2班
20% 26 % 图2
b %
26%
1班 班级
2班 3班 4班 图
1 O
F E
C
A B D
25.(12分)如图,在平面直角坐标系中,A (a ,0)、B (0,b )是矩形
OACB 的两个顶点.定义:如果双曲线k
y x
=经过AC 的中点D ,那么双曲线x
k
y =
为矩形OACB 的中点双曲线. (1) 若a =3,b =2,请判断x
y 3
=是否为矩形OACB 的中点曲线?并说
的面积
26.(14分)已知正方形ABCD ,AB =8,点E 、F 分别从点A 、D 同时出
发,以每秒1m 的速度分别沿着线段AB 、DC 向点B 、C 方向的运动,设运动时间为t .
(1)求证:OE =OF .
(2)在点E 、F 的运动过程中,连结AF .设线段AE 、OE 、OF 、AF 所形成的图形面积为S .
探究:①S 的大小是否会随着运动时间为t 的变化而变化?若会变
化,试求出S 与t 的函数关系式;若不会变化,请说明理由.
②连结EF ,当运动时间为t 为何值时,ΔOEF 的面积恰好等
1
F
A B D
E。