重金属废水处理原理及控制条件(20200831054011)
- 格式:docx
- 大小:39.57 KB
- 文档页数:16
重金属废水反应原理及控制条件1.含铬废水前处理废水包括镀前准备过程中的脱脂、除油等工序产生的清洗废水,主要污染物为有机物、悬浮物、石油类、磷酸盐以及表面活性剂等。
电镀含铬废水的铬的存在形式有Cr6+和Cr3+两种,其中以Cr6+的毒性最大。
含铬废水的处理方法较多,常用的有化学法、电解法、离子交换法等。
电镀废水中的六价铬主要以CrO42-和Cr2O72-两种形式存在,在酸性条件下,六价铬主要以Cr2O72-形式存在,碱性条件下则以CrO42-形式存在。
六价铬的还原在酸性条件下反应较快,一般要求pH<4,通常控制pH2.5~3。
常用的还原剂有:焦亚硫酸钠、亚硫酸钠、亚硫酸氢钠、连二亚硫酸钠、硫代硫酸钠、硫酸亚铁、二氧化硫、水合肼、铁屑铁粉等。
还原后Cr3+以Cr(OH)3沉淀的最佳pH为7~9,所以铬还原以后的废水应进行中和。
(1)亚硫酸盐还原法目前电镀厂含铬废水化学还原处理常用亚硫酸氢钠或亚硫酸钠作为还原剂,有时也用焦磷酸钠,六价铬与还原剂亚硫酸氢钠发生反应:4H2CrO4+6NaHSO3+3H2SO4==2Cr2(SO4)3+3Na2SO4+10H2O2H2CrO4+3Na2SO3+3H2SO4==Cr2(SO4)3+3Na2SO4+5H2O还原后用NaOH中和至pH=7~8,使Cr3+生成Cr(OH)3沉淀。
采用亚硫酸盐还原法的工艺参数控制如下:①废水中六价铬浓度一般控制在100~1000mg/L;②废水pH为2.5~3③还原剂的理论用量为(重量比):亚硫酸氢钠∶六价铬=4∶1焦亚硫酸钠∶六价铬=3∶1亚硫酸钠∶六价铬=4∶1投料比不应过大,否则既浪费药剂,也可能生成[Cr2(OH)2SO3]2-而沉淀不下来;ORP= 250~300mv④还原反应时间约为30min;⑤氢氧化铬沉淀pH控制在7~8,沉淀剂可用石灰、碳酸钠或氢氧化钠,可根据实际情况选用。
2.含氰废水含氰废水来源于氰化镀铜、碱性氰化物镀金、中性和酸性镀金、氰化物镀银、氰化镀铜锡合金、仿金电镀等含氰电镀工序,废水中主要污染物为氰化物、重金属离子(以络合态存在)等。
重金属污水处理重金属污水处理是一项关乎环境保护和人类健康的重要任务。
本文将详细介绍重金属污水处理的标准格式,包括概述、处理流程、技术原理、操作要点以及效果评估等内容。
一、概述重金属污水是指含有高浓度重金属离子的废水,如铅、镉、铬、汞等。
这些重金属对环境和生物体具有严重的毒性和潜在的危害。
因此,重金属污水处理是一项至关重要的任务,旨在将重金属离子从废水中去除,以保护环境和人类健康。
二、处理流程重金属污水处理一般包括预处理、主处理和后处理三个阶段。
1. 预处理阶段预处理阶段的主要目的是去除废水中的悬浮物、沉淀物和有机物等杂质,以减少后续处理过程中的干扰。
常用的预处理方法包括筛网过滤、沉淀、调节pH值等。
2. 主处理阶段主处理阶段是重金属离子的去除过程。
常用的处理方法包括化学沉淀、离子交换、吸附、膜分离等。
化学沉淀是最常用的方法之一,通过加入适当的沉淀剂使重金属离子与沉淀剂发生反应,生成沉淀物并沉淀下来。
离子交换和吸附则是利用特定材料的吸附性能将重金属离子吸附在其表面,从而实现去除。
3. 后处理阶段后处理阶段主要是对处理后的废水进行净化和消毒,以达到排放标准。
常用的后处理方法包括活性炭吸附、臭氧氧化、紫外线消毒等。
三、技术原理重金属污水处理的技术原理主要涉及化学反应、物理吸附和分离等过程。
化学反应是指通过添加适当的化学药剂使重金属离子与其发生反应,形成沉淀物或沉淀下来。
物理吸附是指利用材料的吸附性能将重金属离子吸附在其表面。
分离则是指利用膜分离、离子交换等方法将重金属离子与废水分离开来。
四、操作要点在进行重金属污水处理时,需要注意以下几个操作要点:1. 严格控制处理过程中的pH值,避免过高或过低对处理效果的影响。
2. 选择合适的沉淀剂、吸附剂和膜材料,确保其对目标重金属离子具有高效的去除能力。
3. 控制处理过程中的温度和时间,以保证处理效果和操作效率。
4. 定期检测处理系统中的重金属离子浓度和处理效果,及时调整处理参数和操作方式。
重金属废水处理原理及控制条件物理法是通过物理手段将重金属颗粒从废水中分离或沉淀。
常用的物理处理方法有澄清、絮凝、过滤、膜分离等。
澄清是利用重金属颗粒的沉降速度差异来实现分离,絮凝则是通过加入絮凝剂使重金属颗粒结合成较大颗粒,便于沉降或过滤。
膜分离是利用不同孔径的膜将水和重金属离子分离。
化学法是通过化学反应将重金属离子转化为不溶于水的化合物,从而实现废水中重金属的分离。
常用的化学处理方法有沉淀、离子交换、络合、螯合等。
沉淀是将重金属离子与一些特定物质反应生成难溶性沉淀物。
离子交换是利用具有固定亲合性的树脂将重金属离子从废水中吸附出来。
络合是指重金属离子与络合剂反应形成络合物,从而降低其毒性。
螯合是通过加入螯合剂与重金属离子形成配位键,使其形成不溶性或难溶性络合物。
生物法是利用微生物的吸附、蓄积和转化能力来处理重金属废水。
生物处理主要是通过细菌、藻类和真菌等微生物对废水中的重金属离子进行吸附和转化。
吸附是指微生物细胞表面的胞外多糖或泌胺与重金属离子形成络合物。
转化是指通过微生物代谢作用,将重金属离子转化成不溶性的金属硫化物、金属氧化物或金属盐等。
生物法具有工艺简单、运行成本低廉等优点。
在处理重金属废水时,需要控制一些条件以确保处理效果。
首先是调节pH值。
不同重金属离子对pH值的适应性不同,一般在处理过程中需要根据不同的重金属离子选择相应的pH值来实现处理效果的最大化。
其次是控制温度。
温度对微生物的活性和反应速率有很大影响,因此需要在适宜的温度范围内进行废水处理。
此外,还需控制废水中重金属离子的浓度、溶液中其他的离子浓度、反应时间和添加剂的用量等因素,以调节重金属废水的处理效果。
总之,重金属废水处理的原理包括物理法、化学法和生物法,根据不同的情况选择适合的处理方法。
同时,通过调节pH值、温度、重金属离子浓度和用量等控制条件,可以提高重金属废水的处理效果。
重金属废水的处理是一项专业技术,需要进行专门的工艺设计和操作控制。
重金属废水处理系统原理重金属废水处理系统是用于处理含有高浓度重金属的废水的技术装置。
其基本原理是通过一系列的物理、化学和生物处理过程,将废水中的重金属离子与悬浮物质、有机物质等分离、沉淀、吸附、还原、氧化等操作,最终将重金属降至安全排放标准以下。
1.机械预处理:废水经过格栅、砂沉池等机械设备的处理,去除其中的大颗粒物质和悬浮物,减少对后续处理设备的负荷。
2.化学沉淀:废水经过给药设备通入化学药剂,通过化学反应使废水中的重金属离子转化成沉淀物,进而以沉淀的形式从水中分离出来。
常用的化学药剂包括氢氧化钙、氢氧化铁等。
3.吸附:废水经过吸附剂处理,将重金属离子吸附到吸附剂的表面,将其从水中分离出来。
常用的吸附剂有活性炭、离子交换树脂等。
4.活性污泥法:废水中的有机物和重金属离子可以通过微生物降解和吸附的方式去除。
通过调节废水中的溶解氧、温度、pH值等条件,利用活性污泥中的微生物来降解有机物,同时微生物也可以吸附并还原重金属离子。
5.离子交换:废水通过离子交换柱,将废水中的重金属离子与其他离子交换,使重金属离子和废水分离。
6.膜分离:废水经过膜过滤、膜分离等技术,利用膜的微孔、分离层等特性,将废水中的重金属离子和其他杂质分离出来,纯净水得到回收,废水中的重金属得以集中处理。
以上是重金属废水处理系统的基本原理,根据废水的实际情况和要求,还可以通过电解、浮选、气浮、化学氧化等技术对重金属废水进行处理。
重金属废水处理系统的设计和运行需要综合考虑废水的特性、处理要求、运行成本等因素,以达到高效处理和循环利用废水资源的目的。
重金属污水处理一、背景介绍重金属污水是指含有高浓度重金属元素的废水,如铅、汞、镉等。
这些重金属元素对环境和人体健康具有严重危害。
因此,重金属污水处理是一项重要的环保工作,旨在减少重金属元素的排放,保护环境和人类健康。
二、处理技术1. 化学沉淀法化学沉淀法是一种常用的重金属污水处理技术。
通过添加适量的沉淀剂,如氢氧化钙、氢氧化铁等,使重金属离子与沉淀剂发生反应生成沉淀物,从而实现重金属的去除。
处理后的污水经过沉淀、澄清等步骤后即可达到排放标准。
2. 离子交换法离子交换法利用特殊的树脂材料,通过吸附和交换作用,将重金属离子从污水中去除。
该技术具有高效、可再生的特点,适合于处理高浓度重金属污水。
处理后的树脂可通过再生,实现重金属的回收和资源化利用。
3. 活性炭吸附法活性炭吸附法是一种物理吸附技术,通过活性炭对重金属离子的吸附作用,将其从污水中去除。
活性炭具有较大的比表面积和孔隙结构,能够有效吸附重金属离子。
处理后的活性炭可通过再生或者焚烧处理,实现重金属的回收和处理。
4. 膜分离技术膜分离技术包括微滤、超滤、逆渗透等,通过不同孔径的膜对污水进行分离和过滤,将重金属离子和其他污染物分离出来。
膜分离技术具有高效、节能的特点,适合于处理低浓度重金属污水。
三、处理效果评估1. 重金属去除率重金属去除率是评估处理效果的重要指标,通常以去除率来衡量处理工艺的效果。
重金属去除率的计算公式为:去除率(%)=(进水浓度-出水浓度)/进水浓度×100%。
根据国家相关标准,重金属去除率应达到一定的要求,如铅的去除率应达到80%以上。
2. 出水水质指标出水水质指标是评估处理效果的另一个重要指标,包括重金属浓度、pH值、悬浮物浓度等。
根据国家相关标准,处理后的污水应满足相应的排放标准,如重金属浓度应低于规定的限值。
3. 经济性评估除了处理效果,经济性也是重金属污水处理的重要考虑因素。
经济性评估主要包括处理成本、能耗等指标。
重金属污水处理重金属污水处理是指针对含有高浓度重金属物质的污水进行处理,以减少对环境和人体健康的危害。
重金属污水通常来自于工业生产过程中的废水排放,其中包含的重金属物质如铅、镉、汞等对环境和生态系统造成严重影响,甚至对人体健康产生潜在风险。
为了有效处理重金属污水,以下是一套标准格式的文本,详细介绍了重金属污水处理的步骤、技术和效果。
一、重金属污水处理的步骤1. 前处理:对进入处理系统的重金属污水进行初步处理,包括去除悬浮物、沉淀物和有机物等。
常见的前处理方法有筛网过滤、沉淀池和调节池等。
2. 主处理:主要采用物理、化学和生物处理等方法来去除重金属物质。
常见的处理技术包括沉淀、吸附、离子交换、电解沉积和生物吸附等。
3. 深度处理:对主处理后仍含有一定浓度重金属物质的污水进行进一步处理,以达到排放标准。
深度处理方法包括膜分离、活性炭吸附和高级氧化等。
4. 余泥处理:处理过程中产生的污泥需要进行处理和处置。
常见的处理方法包括浓缩、脱水和焚烧等,确保污泥中的重金属物质不会再次释放到环境中。
二、重金属污水处理的技术1. 沉淀:通过调节pH值和添加沉淀剂,使重金属物质以沉淀的形式从污水中分离出来。
常用的沉淀剂有氢氧化钙、氢氧化铁和聚合氯化铝等。
2. 吸附:利用吸附剂吸附重金属物质,常见的吸附剂有活性炭、天然沸石和合成树脂等。
吸附剂具有较大的比表面积和吸附能力,可有效去除重金属离子。
3. 离子交换:利用离子交换树脂对重金属离子进行吸附和释放,从而实现重金属污水的处理。
离子交换树脂具有良好的选择性和吸附容量,能够高效去除重金属离子。
4. 电解沉积:通过电解沉积技术,将重金属离子还原为金属沉积在电极上,从而实现重金属的去除和回收。
电解沉积技术具有高效、节能的特点。
5. 生物吸附:利用微生物对重金属离子进行吸附和生物转化,将重金属物质转化为无毒或低毒的形式。
生物吸附技术具有环保、经济的特点。
三、重金属污水处理的效果1. 去除率:重金属污水处理过程中,重金属物质的去除率是评估处理效果的重要指标。
重金属污水处理一、背景介绍重金属污水是指含有高浓度重金属离子的废水,如铅、汞、镉、铬等。
这些重金属离子对环境和人体健康具有严重危害,因此重金属污水的处理成为环保领域的重要任务之一。
本文将详细介绍重金属污水处理的标准格式文本,包括处理目的、处理原理、处理方法、处理效果评估等内容。
二、处理目的重金属污水处理的目的是将废水中的重金属离子去除或转化为无害物质,以保护环境和人类健康。
通过合理的处理方法,降低重金属离子的浓度,确保废水排放符合相关环保法规标准。
三、处理原理重金属污水处理的原理主要包括物理方法、化学方法和生物方法。
1. 物理方法:通过物理过程,如沉淀、过滤、吸附等,将废水中的重金属离子与固体颗粒分离,达到去除的目的。
常用的物理方法有沉淀法、吸附法和膜分离法。
2. 化学方法:利用化学反应将重金属离子转化为沉淀物或无害物质,从而实现去除的效果。
常用的化学方法有络合沉淀法、氧化还原法和离子交换法。
3. 生物方法:利用微生物的代谢活动将重金属离子转化为无害物质,或通过微生物的吸附作用去除重金属离子。
常用的生物方法有生物沉淀法、生物吸附法和生物膜法。
四、处理方法根据重金属污水的特性和处理要求,选择合适的处理方法进行处理。
常用的处理方法包括以下几种:1. 化学沉淀法:通过加入适当的沉淀剂,使重金属离子与沉淀剂发生反应生成沉淀物,然后通过沉淀分离的方式去除重金属离子。
2. 吸附法:利用吸附剂对重金属离子进行吸附,将其从废水中去除。
常用的吸附剂有活性炭、离子交换树脂等。
3. 膜分离法:利用特殊的膜材料,通过渗透、过滤等方式将重金属离子与废水分离,达到去除的目的。
4. 生物处理法:利用特定的微生物对重金属离子进行降解、转化或吸附,从而去除重金属污染物。
五、处理效果评估对重金属污水处理后的效果进行评估,可以通过以下指标进行评价:1. 重金属离子去除率:通过对处理前后废水中重金属离子浓度的比较,计算出去除率,评估处理效果的好坏。
重金属污水处理标题:重金属污水处理引言概述:重金属污水是指含有高浓度重金属离子的废水,它对环境和人类健康造成严重威胁。
因此,重金属污水处理成为了当今环境保护领域的重要课题。
本文将从五个方面探讨重金属污水处理的方法和技术。
一、物理处理方法1.1 沉淀法:利用沉淀剂与重金属离子发生反应,形成沉淀物,从而实现重金属的去除。
1.2 吸附法:通过将重金属离子吸附在特定的吸附剂上,如活性炭或离子交换树脂,从而达到去除的效果。
1.3 膜分离法:利用微孔膜或反渗透膜等,通过物理隔离的方式将重金属离子从废水中分离出来。
二、化学处理方法2.1 氧化还原法:通过添加氧化剂或还原剂,使重金属离子发生氧化还原反应,从而将其转化为无害的物质。
2.2 沉淀-过滤法:将沉淀剂与重金属离子反应生成沉淀物,然后通过过滤将沉淀物分离出来。
2.3 配位沉淀法:利用络合剂与重金属离子形成络合物,然后通过沉淀将络合物从废水中去除。
三、生物处理方法3.1 微生物降解法:利用具有重金属耐受性和降解能力的微生物,将重金属离子转化为无毒或低毒的物质。
3.2 植物吸收法:通过植物的根系吸收重金属离子,将其富集在植物体内,从而实现重金属的去除。
3.3 微生物修复法:利用微生物的生长代谢过程,将重金属离子还原为金属或沉淀物,并修复受污染的土壤或水体。
四、高级氧化技术4.1 光催化氧化法:利用紫外光或可见光激发催化剂,产生高活性的氧化剂,将重金属离子氧化分解。
4.2 电化学氧化法:通过电解的方式,在电极上产生氧化剂,将重金属离子氧化为无害的物质。
4.3 高压臭氧氧化法:将臭氧气体引入废水中,通过氧化反应将重金属离子转化为沉淀物或无毒物质。
五、综合处理技术5.1 聚合物吸附-沉淀法:将聚合物吸附剂与沉淀剂结合使用,既能吸附重金属离子,又能沉淀污染物。
5.2 聚合物膜分离法:利用聚合物膜对重金属离子进行分离和去除,具有高效、节能的特点。
5.3 聚合物修饰法:通过在聚合物材料表面修饰功能基团,实现对重金属离子的选择性吸附和去除。
重金属废水处理技术 重金属废水处理的技术原理主要是微滤、超滤、纳滤和反渗透,其中纳滤可以浓缩废水中金属离子、盐类等,反渗透膜可以截留金属离子和有机添加剂,而让水分子透过膜,而达到分离、浓缩目的。
含重金属废水进入处理系统,根据需要,经过复合试剂预处理,减少其它离子对膜系统的影响,之后通过纳滤膜、反渗透膜实现物料分离、浓缩。
本系统设置多套纳滤装置,既可以辅助实现浓缩倍数的要求,也可以切换实现出水重金属离子实现达标排放的要求。
重金属废水处理反渗透法反渗透是一种采用半透膜进行高压过滤的浓缩分离技术,问世于1953年。
20世纪70年代初开始用于电镀废水处理的试验和研究。
该技术历史很短,但发展的速度却很快,其中处理含镍废水较为成熟,在具体工程应用中,反渗透法已大规模用于镀锌、镍漂洗水和混合重金属废水的处理,同时清水回用和回收电镀液废水的特点,国内外均在研制新型的抗强酸、耐氧化的膜材料,已达到直接处理含镍。
含氰等废水的目的。
可以预计,随着反渗透膜质量的提高和反渗透设备的改进,应用范围将不断扩大。
但是反渗透膜寿命只有3-5年,且价格昂贵,使处理成本提高,对进水的预处理要求很高,膜在较大的外压下工作,膜组件易堵塞,不具备获得高浓度溶液的能力,浓缩比有限。
重金属废水处理生物吸附法近些年来,很多研究者将各种生物(如植物、细菌、真菌、藻类以及酵母)经处理加工成生物吸附剂,用于处理含重金属废水。
生物体具有特定的化学结构以及成分特征,而生物吸附法的主要原理,就是利用生物体的这些特性来吸附溶于水中的重金属离子。
生物吸附法具有几个特点:1、生物吸附剂可以降解,一般不会发生二次污染。
2、来源广泛,容易获取并且价格便宜。
3、生物吸附剂容易解析,能够有效地回收重金属。
重金属废水处理系统原理
一、工厂所排出的废水不是均匀的,PH值大小不等,所以要在调节池内用高压空气充分搅拌,使其均匀。
二、用提升泵从调节池内把废水抽至中和池,用氢氧化钠或硫酸中和,调节其PH值到8~10,然后加PAC,充分搅拌反应。
三、用污泥泵将反应好的废水溶液抽到污泥搅拌桶和PAM阳离子溶液充分搅拌均匀,经过过滤机过滤,产生的污泥装袋交到有资格的部门处理。
四、过滤后的清液再次调节PH值至8~10,然后加PAM阴离子、PAC、重捕剂充分搅拌后,再经一体净化器过滤,过滤后的清水达标排放。
酸性气体处理流程原理
车间里产生的酸性气体经过收集经过洗涤塔,通过与液碱充分混合中和,把气体内的酸性物质吸收,达标气体排放。
进
风
口液碱液碱
处雾层
填料层。
重金属污水处理一、背景介绍重金属污水是指含有高浓度重金属离子的废水,如铅、汞、镉、铬等。
这些重金属离子对环境和人体健康具有严重的危害。
因此,重金属污水的处理成为环保领域的重要任务之一。
二、重金属污水处理的原理重金属污水处理的目标是将重金属离子从废水中去除或者转化为无毒的物质。
常见的处理方法包括化学沉淀、吸附、离子交换、膜分离等。
1. 化学沉淀化学沉淀是将重金属离子与沉淀剂反应生成沉淀物,从而达到去除重金属的目的。
常用的沉淀剂有氢氧化钙、氢氧化铁等。
在适当的pH值和温度条件下,重金属离子与沉淀剂反应生成沉淀物,通过过滤或者离心等操作将沉淀物与废水分离。
2. 吸附吸附是利用吸附剂将重金属离子吸附在其表面,从而实现去除重金属的目的。
常用的吸附剂有活性炭、氧化铝、离子交换树脂等。
废水通过吸附剂床层时,重金属离子会被吸附剂表面的活性位点吸附,从而实现去除。
3. 离子交换离子交换是利用离子交换树脂将废水中的重金属离子与其上的其他离子进行交换,从而实现去除重金属的目的。
离子交换树脂具有特定的离子选择性,可以选择性地吸附重金属离子。
当离子交换树脂吸附满重金属离子后,可以通过酸洗或者碱洗再生,使离子交换树脂重新恢复吸附能力。
4. 膜分离膜分离是利用半透膜将废水中的重金属离子与其他物质分离,从而实现去除重金属的目的。
常见的膜分离技术有超滤、反渗透等。
通过调节膜的孔径和操作条件,可以实现对重金属离子的有效分离。
三、重金属污水处理的工艺流程重金属污水处理的具体工艺流程可以根据实际情况进行调整,以下是一个常见的处理流程示例:1. 原水处理原水处理是指对进入处理系统的废水进行预处理,去除悬浮物、油脂、有机物等杂质,以保护后续处理设备的正常运行。
常见的原水处理方法包括筛网过滤、沉淀池沉淀等。
2. 化学沉淀将经过原水处理的废水调节pH值,加入适量的沉淀剂,使重金属离子与沉淀剂反应生成沉淀物。
通过沉淀池或者沉淀槽将废水与沉淀物分离。
重金属污水处理一、背景介绍重金属污水是指含有高浓度重金属离子的废水,如铅、镉、铬、汞等。
这些重金属对环境和人体健康具有严重的危害,因此对重金属污水进行有效处理是保护环境和维护人类健康的重要任务。
二、重金属污水处理的目标1. 减少重金属污染物的浓度,使其达到国家排放标准;2. 实现重金属污水的可持续处理,减少对环境的负面影响;3. 提高处理效率,降低处理成本。
三、重金属污水处理的方法1. 化学沉淀法:通过加入适当的化学试剂,使重金属离子与沉淀剂发生反应生成沉淀物,从而达到去除重金属的目的。
常用的沉淀剂有氢氧化钙、氢氧化铁等。
2. 离子交换法:利用离子交换树脂的吸附性能,将重金属离子从废水中吸附到树脂上,再通过再生处理将重金属离子从树脂上解吸下来,实现重金属的去除。
3. 膜分离法:利用特殊的膜材料,通过渗透、过滤、扩散等作用,将重金属离子从废水中分离出来。
常用的膜分离技术有超滤、纳滤、反渗透等。
4. 生物吸附法:利用微生物或生物材料对重金属离子具有吸附能力的特点,将废水中的重金属离子吸附到生物体表面,从而实现去除重金属的目的。
5. 活性炭吸附法:利用活性炭对重金属离子具有良好的吸附性能,将废水中的重金属离子吸附到活性炭上,达到去除重金属的效果。
四、重金属污水处理的工艺流程1. 原水处理:首先对重金属污水进行预处理,包括去除悬浮物、油脂等杂质,以保证后续处理工艺的正常运行。
2. 化学沉淀法处理:将经过预处理的废水与适量的化学试剂混合,使重金属离子与沉淀剂发生反应生成沉淀物,再通过沉淀、过滤等步骤将沉淀物与水分离。
3. 离子交换法处理:将化学沉淀后的废水通过离子交换树脂柱进行处理,离子交换树脂吸附重金属离子,将处理后的废水中的重金属浓度降低到合格标准。
4. 膜分离法处理:将离子交换后的废水通过膜分离设备进行处理,通过膜的渗透、过滤等作用,将废水中的重金属离子分离出来,得到清洁的废水。
5. 活性炭吸附法处理:将膜分离后的废水通过活性炭吸附设备进行处理,活性炭吸附废水中的残余重金属离子,提高废水的处理效果。
重金属污水处理一、背景介绍重金属污水是指含有高浓度重金属离子的废水,如铅、汞、镉、铬等。
这些重金属离子对环境和人体健康都具有严重的危害。
因此,重金属污水处理成为环境保护和健康安全的重要任务。
二、处理方法1. 化学沉淀法化学沉淀法是常见的重金属污水处理方法之一。
通过加入适量的沉淀剂,如氢氧化钙、氢氧化铁等,使重金属离子与沉淀剂发生反应,生成沉淀物,从而达到去除重金属的目的。
该方法适合于重金属浓度较高的污水处理。
2. 离子交换法离子交换法是将重金属离子与交换树脂进行交换,使重金属离子被吸附在树脂上,从而实现去除重金属的目的。
该方法适合于重金属浓度较低的污水处理。
3. 吸附剂法吸附剂法是利用吸附剂对重金属离子进行吸附,从而去除重金属污染物。
常用的吸附剂有活性炭、氧化铁等。
该方法具有处理效果好、成本低的优点。
4. 膜分离法膜分离法是利用特殊的膜材料,通过渗透、过滤等作用,将重金属离子与水分离。
常见的膜分离方法有超滤、逆渗透等。
膜分离法具有高效、节能的特点,适合于重金属浓度较低的污水处理。
三、处理设备1. 沉淀池沉淀池是用于化学沉淀法处理重金属污水的设备。
其主要功能是促使重金属离子与沉淀剂充分接触反应,并形成沉淀物。
沉淀池应具备良好的搅拌和沉淀效果,以确保处理效果。
2. 离子交换柱离子交换柱是用于离子交换法处理重金属污水的设备。
其内部填充有交换树脂,重金属离子在经过交换柱时被树脂吸附,从而实现去除重金属的目的。
离子交换柱应具备较大的吸附容量和较高的吸附效率。
3. 吸附剂过滤器吸附剂过滤器是用于吸附剂法处理重金属污水的设备。
其内部填充有吸附剂,重金属离子在经过过滤器时被吸附剂吸附,从而实现去除重金属的目的。
吸附剂过滤器应具备较大的吸附容量和较好的过滤效果。
4. 膜分离装置膜分离装置是用于膜分离法处理重金属污水的设备。
其主要包括膜模块、膜容器和膜支撑体等组成部份。
膜分离装置应具备良好的膜分离效果和较高的处理效率。
重金属废水的处理原则与处理方法工业革命时期人类社会采取放任式的发展观念,只追求生产与经济的发展,而忽视了环保的问题,造成了严重的环境污染问题。
污水中的重金属污染已经对人体健康和植物生长造成了极大的危害,艾柯废水处理设备能有效去除废水中的重金属离子,减少重金属废水对环境,人体动植物的危害。
历史的发展教训告诉我们,为了减小对环境的污染,对废水必须要采取科学的处理原则与方法进行处理后才能进行排放。
污水重金属处理原则采用生物、化学和物理方法处理污水中的重金属时,应遵循以下两个原则1.现场处理原则重金属废水应在产生废水的地方就地处理。
这种处理有助于减少废水的排放量,避免与其他废水混合,增加废水处理的难度。
同时也有利于减少排污管道等耗材的投入,降低废水处理的成本。
2.生产工艺改进原则对于企业要不断提高生产技术,提高生产工艺,从源头上减少废水的产生,才有采取科学的技术管理和工艺流程,采用更合理的生产工艺,才能减少生产过程中重金属的使用量和废水排放的量,从而降低后期废水处理的难度和成本。
同时企业也要提高污水处理的技术,如果自身废水处理的成本高耗时耗力且处理效果欠佳,这个时候就建议采用专门的废水处理设备。
污水中重金属超标的处理措施1.吸附重金属原理:机体通过化学作用吸收金属离子。
优点:吸附容量大,浓度适用范围广。
不足:易受环境因素影响,微生物对重金属的吸附具有选择性。
重金属废水中往往含有多种有害重金属,影响微生物的活动效果,限制了微生物的应用。
因此,还需要进一步的研究。
2.膜分离法原理:在外部压力作用下,采用艾柯废水处理设备PVDF特殊的半透膜分离或浓缩溶剂和溶质而不改变溶液中的化学形态的方法。
优点:能耗低,占地面积小。
缺点:重金属废水成分复杂,处理条件恶劣,使得膜材料必须具有良好的分离性能和较长的使用寿命。
3.化学沉淀法原理:在重金属废水中加入重金属捕集剂,使其发生化学反应,使其变成不溶性物质,从而沉淀分离重金属离子的方法。
重金属废水处理方法一、化学沉淀法包括中和沉淀法、硫化物沉淀、铁氧体沉淀、电化学法和高分子重金属捕集剂法二、物理处理法包括吸附法、萃取法、离子交换法、膜分离法、蒸发和凝固法三、生物处理法包括絮凝法、生物吸附法及植物修复法一、化学沉淀法原理:通过化学反应使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物,通过过滤和分离使沉淀物从水溶液中去除。
常用沉淀剂:石灰、氢氧化钠、硫化钠等。
弊端:由于受沉淀剂和环境条件的影响,沉淀法往往出水浓度达不到要求,需作进一步处理,产生的沉淀物必须很好地处理与处置,否则会造成二次污染。
1、中和沉淀法:在含有重金属离子的废水中加碱进行中和反应,使重金属生成难溶于水的氢氧化物从而进一步分离。
此方法操作简单,但转移污染物容易造成二次污染2、硫化物沉淀法:向重金属废水中加入硫化物,使重金属离子同硫化物反应生成硫化物沉淀析出常用的硫化剂为:硫化钠、硫化氢、硫化亚铁(最常用的)与中和沉淀法相比,重金属硫化物的溶解度要低于氢氧化物,沉渣含水量低,不易造成二次污染,但硫化物有毒,价格贵,硫化物沉淀颗粒小,易形成胶体。
3、铁氧体沉淀法:向重金属废水中加入FeSo4,重金属离子同FeSo4反应生成铁氧体晶体析出铁氧体通式:M2FeO4或MOFe2O3(M表示其它金属),呈尖晶石状立方结晶构造过程:a、FeSO4++Cr6+→→Fe3++Cr3+b、加碱后,过量Fe2++Fe3++Cr6+→→M(OH)r沉淀c、在60-80℃下通风氧化,一部分Fe(OH)2转化为Fe(OH)3,这样就逐渐形成了铁氧体晶体而沉淀。
4、化学还原法:利用重金属的多种价态,在重金属废水中加入一定剂量的氧化剂和还原剂,从而得到人们所需的价态。
这种方法可以使水中的重金属离子向更容易生产沉淀或毒性更小的价态转换,然后再沉淀去除。
根据此法衍生出的“还原沉淀法”极其广泛的应用在电镀废水处理中常用的还原剂:硼氢化钠、亚硫酸氢钠、硫酸亚铁等。
重金属污水处理标题:重金属污水处理引言概述:重金属污水是指含有高浓度重金属离子的废水,对环境和人体健康造成严重威胁。
因此,重金属污水处理成为环境保护和可持续发展的重要课题。
本文将从五个方面详细阐述重金属污水处理的方法和技术。
一、重金属污水的成因:1.1 工业活动:重金属污水主要来自冶金、化工、电镀等工业生产过程中的废水排放。
1.2 自然因素:重金属污水也可由自然界中的矿石破碎、岩石风化等过程释放。
1.3 农业活动:农业生产中使用的农药和化肥含有重金属成份,可能通过农田排水进入水体。
二、重金属污水的危害:2.1 环境危害:重金属离子在水中积累,对水生生物造成毒性影响,破坏水生态系统平衡。
2.2 人体健康危害:饮用含有重金属的水会导致慢性中毒,伤害肝脏、肾脏等重要器官。
2.3 生物放大效应:重金属在食物链中逐级富集,通过食物摄入进一步危害人体健康。
三、重金属污水处理方法:3.1 化学沉淀法:通过加入沉淀剂,使重金属离子与沉淀剂发生反应,形成沉淀物,从而达到去除重金属的目的。
3.2 吸附法:利用吸附剂吸附重金属离子,将其从水中去除。
3.3 离子交换法:通过离子交换树脂吸附重金属离子,再用酸或者盐溶液进行再生,实现重金属的回收。
四、重金属污水处理技术:4.1 活性炭吸附技术:活性炭具有很强的吸附能力,可用于去除重金属离子。
4.2 膜分离技术:利用膜的选择性通透性,将重金属离子与水分离,实现去除和回收。
4.3 生物技术:利用微生物的吸附、还原、沉淀等作用,降解和去除重金属污染物。
五、重金属污水处理的发展趋势:5.1 绿色技术:发展环境友好型的重金属污水处理技术,减少对环境的二次污染。
5.2 组合技术:采用多种处理方法的组合,提高处理效果和资源回收利用率。
5.3 自动化控制:引入自动化控制技术,提高处理过程的稳定性和效率。
总结:重金属污水的处理是保护环境和人类健康的重要任务。
通过化学沉淀、吸附和离子交换等方法,结合活性炭吸附、膜分离和生物技术等处理技术,可以有效去除重金属污染物。
重金属污水处理一、引言重金属污水是指含有高浓度重金属物质的废水,如铅、镉、铬、汞等。
这些重金属对环境和人类健康具有严重的危害,因此重金属污水处理成为一项重要的环境保护任务。
本文将详细介绍重金属污水处理的标准格式,包括背景介绍、处理流程、技术原理、设备要求和效果评估等方面的内容。
二、背景介绍重金属污水的排放主要来自工业生产过程中的废水排放,如电镀、冶金、化工等行业。
这些废水中含有大量的重金属物质,如果直接排放到环境中,会对水体、土壤和生物造成严重的污染。
因此,对重金属污水进行有效的处理是保护环境、维护生态平衡的重要措施。
三、处理流程1. 预处理:对重金属污水进行初步处理,包括调整pH值、去除悬浮物和沉淀物等。
这一步骤的目的是减少后续处理过程中的干扰物质,提高处理效果。
2. 深度处理:采用适当的处理技术对重金属污水进行深度处理。
常用的处理技术包括化学沉淀、离子交换、膜分离和生物吸附等。
根据具体情况选择合适的处理方法,并进行工艺优化,以达到最佳的处理效果。
3. 二次处理:对处理后的污水进行再次处理,以确保排放水质达到国家和地方的相关标准要求。
二次处理可以采用进一步的化学处理、生物处理或者其他适合的技术手段。
四、技术原理1. 化学沉淀:通过加入适量的沉淀剂,使重金属离子与沉淀剂反应生成沉淀物,从而实现重金属的去除。
2. 离子交换:利用离子交换树脂对重金属离子进行吸附和交换,将重金属离子从污水中去除。
3. 膜分离:利用膜的选择性渗透性质,将重金属离子从污水中分离出来,达到去除的目的。
4. 生物吸附:利用某些微生物对重金属离子具有较强吸附能力的特性,将重金属离子从污水中吸附到微生物体表面,从而实现去除。
五、设备要求1. 反应槽:用于进行化学沉淀、离子交换和生物吸附等处理过程。
反应槽应具有良好的密封性能和耐腐蚀性能,以确保处理过程的安全和稳定。
2. 混合器:用于混合添加剂和污水,以促进化学反应的进行。
3. 沉淀池:用于沉淀剂与重金属离子反应生成的沉淀物的沉淀和分离。
重金属污水处理一、背景介绍重金属污水是指含有高浓度重金属离子的废水,如铅、镉、汞等。
这些重金属对环境和人体健康造成严重威胁,因此需要进行有效的处理和去除。
二、处理原理重金属污水处理的主要目标是将重金属离子从废水中去除,使废水达到排放标准。
常用的处理方法包括化学沉淀、离子交换、电化学方法等。
1. 化学沉淀化学沉淀是利用化学反应使重金属离子与沉淀剂反应生成不溶性的沉淀物,从而实现去除的方法。
常用的沉淀剂包括氢氧化钙、氢氧化铁等。
通过调整pH值和沉淀剂的投加量,可以实现对重金属离子的高效去除。
2. 离子交换离子交换是利用离子交换树脂将废水中的重金属离子与树脂上的其他离子进行交换,从而实现去除的方法。
离子交换树脂通常具有特定的选择性,可以选择性地吸附和去除目标重金属离子。
3. 电化学方法电化学方法包括电沉积、电吸附、电解沉淀等,通过电流的作用使重金属离子在电极上发生沉积、吸附或者沉淀,从而实现去除的方法。
电化学方法具有操作简单、处理效果好的优点。
三、处理工艺流程重金属污水处理的工艺流程根据具体情况可能有所不同,以下是一种常见的处理工艺流程:1. 预处理:对进水进行初步处理,包括去除悬浮物、调节pH值等,以减少对后续处理设备的影响。
2. 化学沉淀:将经过预处理的废水与适量的沉淀剂混合,通过化学反应将重金属离子转化为不溶性沉淀物。
3. 沉淀分离:将化学沉淀后的废水进行沉淀分离,将沉淀物与水分离,得到清洁的废水。
4. 离子交换:将沉淀分离后的废水通过离子交换树脂床进行处理,使重金属离子与树脂上的其他离子进行交换,实现去除。
5. 再生处理:当离子交换树脂饱和时,需要进行再生处理,将吸附的重金属离子从树脂上解吸,使树脂恢复吸附能力。
6. 电化学处理:对经过离子交换的废水进行电化学处理,利用电流作用使重金属离子在电极上发生沉积、吸附或者沉淀,进一步去除。
7. 二次沉淀分离:将经过电化学处理的废水进行沉淀分离,将沉淀物与水分离,得到清洁的废水。
重金属废水反应原理及控制条件1.含铬废水 (2)2.含氰废水 (3)3.含镍废水 (4)4.含锌废水 (5)5.含铜废水 (6)6.含砷废水 (8)7.含银废水 (9)8.含氟废水 (10)9.含磷废水 (11)10.含汞废水 (11)11.氢氟酸回收 (13)12.研磨废水 (14)13.晶体硅废水 (15)14.含铅废水 (17)15.含镉废水 (17)前处理废水包括镀前准备过程中的脱脂、除油等工序产生的清洗废水,主要污染物为有机物、悬浮物、石油类、磷酸盐以及表面活性剂等。
电镀含铬废水的铬的存在形式有Cr6+和Cr3+两种,其中以Cr6+的毒性最大。
含铬废水的处理方法较多,常用的有化学法、电解法、离子交换法等。
电镀废水中的六价铬主要以CrO42-和Cr2O72-两种形式存在,在酸性条件下,六价铬主要以Cr2O72-形式存在,碱性条件下则以CrO42-形式存在。
六价铬的还原在酸性条件下反应较快,一般要求pH<4,通常控制pH2.5~3。
常用的还原剂有:焦亚硫酸钠、亚硫酸钠、亚硫酸氢钠、连二亚硫酸钠、硫代硫酸钠、硫酸亚铁、二氧化硫、水合肼、铁屑铁粉等。
还原后Cr3+以Cr(OH)3沉淀的最佳pH为7~9,所以铬还原以后的废水应进行中和。
(1)亚硫酸盐还原法目前电镀厂含铬废水化学还原处理常用亚硫酸氢钠或亚硫酸钠作为还原剂,有时也用焦磷酸钠,六价铬与还原剂亚硫酸氢钠发生反应:4H2CrO4+6NaHSO3+3H2SO4==2Cr2(SO4)3+3Na2SO4+10H2O2H2CrO4+3Na2SO3+3H2SO4==Cr2(SO4)3+3Na2SO4+5H2O还原后用NaOH中和至pH=7~8,使Cr3+生成Cr(OH)3沉淀。
采用亚硫酸盐还原法的工艺参数控制如下:①废水中六价铬浓度一般控制在100~1000mg/L;②废水pH为2.5~3③还原剂的理论用量为(重量比):亚硫酸氢钠∶六价铬=4∶1焦亚硫酸钠∶六价铬=3∶1亚硫酸钠∶六价铬=4∶1投料比不应过大,否则既浪费药剂,也可能生成[Cr2(OH)2SO3]2-而沉淀不下来;ORP= 250~300mv④还原反应时间约为30min;⑤氢氧化铬沉淀pH控制在7~8,沉淀剂可用石灰、碳酸钠或氢氧化钠,可根据实际情况选用。
重金属废水反应原理及控制条件1. 含铬废水 .........................2. 含氰废水 .........................3. 含镍废水 .........................4. 含锌废水.........................5. 含铜废水.........................6. 含砷废水.........................7. 含银废水.........................8. 含氟废水.........................9. 含磷废水.........................10. 含汞废水 ........................11. 氢氟酸回收 ........................12. 研磨废水 ........................13. 晶体硅废水 ........................14. 含铅废水 ........................15. 含镉废水 ........................1. 含铬废水前处理废水包括镀前准备过程中的脱脂、除油等工序产生的清洗废水,主要污染物为有机物、悬浮物、石油类、磷酸盐以及表面活性剂等。
电镀含铬废水的铬的存在形式有Cr6+和Cr3+两种,其中以Cr6+的毒性最大。
含铬废水的处理方法较多,常用的有化学法、电解法、离子交换法等。
电镀废水中的六价铬主要以CrQ2_和两种形式存在,在酸性条件下,六价铬主要以CwQ2-形式存在,碱性条件下则以CrQ2「形式存在。
六价铬的还原在酸性条件下反应较快,一般要求pHv4,通常控制pH2.5〜3。
常用的还原剂有:焦亚硫酸钠、亚硫酸钠、亚硫酸氢钠、连二亚硫酸钠、硫代硫酸钠、硫酸亚铁、二氧化硫、水合肼、铁屑铁粉等。
还原后Cr3+以Cr (OH 3沉淀的最佳pH为7〜9,所以铬还原以后的废水应进行中和。
(1)亚硫酸盐还原法目前电镀厂含铬废水化学还原处理常用亚硫酸氢钠或亚硫酸钠作为还原剂,有时也用焦磷酸钠,六价铬与还原剂亚硫酸氢钠发生反应:4HCrO+6NaHSO3HSO==26 (SO) 3+3NaSO+10HO 2HCrO+3NaSO+3HSO==Cr2 (SQ) 3+3NaSO+5HO还原后用NaOH中和至pH=7〜8,使Cr3+生成Cr (OH 3沉淀。
采用亚硫酸盐还原法的工艺参数控制如下:①废水中六价铬浓度一般控制在100〜1000mg/L;②废水pH为2.5〜3③还原剂的理论用量为(重量比):亚硫酸氢钠:六价铬=4 :1焦亚硫酸钠:六价铬=3 :1亚硫酸钠:六价铬=4 :1投料比不应过大,否则既浪费药剂,也可能生成2—[Cr2 (OH 2SO]—而沉淀不下来;ORP= 25〜300mv④还原反应时间约为30min;⑤氢氧化铬沉淀pH控制在7〜8,沉淀剂可用石灰、碳酸钠或氢氧化钠,可根据实际情况选用。
2. 含氰废水含氰废水来源于氰化镀铜、碱性氰化物镀金、中性和酸性镀金、氰化物镀银、氰化镀铜锡合金、仿金电镀等含氰电镀工序,废水中主要污染物为氰化物、重金属离子(以络合态存在)等。
氰化镀铜,氰化镀铜作为暂缓淘汰镀铜方式,主要组分,氰化亚铜,氰化钠,Cu (CN 2-以络离子形式存在,铜离子被氧化,氰化物也被氧化,而Fe(CN)64-被氧化后仍然以络离子存在,所以氰离子并不能解离氧化,增加了破氰难度。
氰化物镀锌,在镀锌工艺中占比不高。
采用碱性氯化法,分两阶段破氰,第一阶段为不完全氧化将氰氧化成氰酸盐:CN+OCI+H2O==CNCI+2OHCNCI+2O4CN&CI +H2OCN古OCI■反应首先生成CNC,再水解成CNO;其反应速度取决于pH值、温度和有效氯浓度,pH值越高,水温越高,有效氯浓度越高则水解的速度越快高,据报导CNO勺毒性仅为CN毒性的千分之一;pH=1L 11 和ORP=35& 380mv第二阶段为完全氧化阶段将氰酸盐进一步氧化分解成二氧化碳和氮气:2CNOb3CIO+HO==2CON+3CE2OH pH=7.5〜8.5、ORP=60O640mv药剂投加量第一阶段CN 二Cl2=1:3第二阶段CN 二Cl2=1:4两阶段合计CN二CI 2=1:7〜8第三阶段为混凝阶段加入氢氧化钠充分搅拌,全程对混合液的pH=9.5〜10.5进行监控,同时加入PAC形成悬浮固体(此ph条件下可以有效去铜)3. 含镍废水含镍电镀废水是指电镀镍时所产生的清洗水,一般分为电镀镍废水和化学镀镍废水。
电镀镍废水的成分比较简单,一般多为镍离子以及硫酸根等,化学镀镍废水成分复杂,除了镍离子外,废水中还含有大量的络合剂,比如柠檬酸、酒石酸、次磷酸钠等。
在电镀废水处理标准中,国家表一标准要求镍排放标准不高于1mg/L,国家表二标准要求不高于0.5mg/L,国家表三标准要求不高于0.1mg/L,《电镀废水治理工程规范》中要求含镍废水需要单独收集,并且镍需要处理至标准才能排放至综合池。
针对电镀含镍废水以及化学镀镍废水,可采用化学沉淀法进行处理,化学沉淀法不需要复杂的设备。
其中,电镀含镍废水可以直接采用加碱至11, PAC混凝,沉淀出水,镍即可达标,如果含镍废水中混有前处理废水,那么需要在加碱之后的出水加入少量重金属捕集剂重金属捕集剂进行螯合反应,重金属捕集剂重金属捕集剂可以把镍离子从低浓度处理至达标。
反应原理:NI2+ +2OH- == NI(OH)2(沉淀)反应条件:pH=10〜11 含有络合剂的含镍废水,首先应该考虑破络,然后进行化学沉淀。
破络方式:酸性条件下次氯酸钠破络;(EDTA胺类)氧化池内控制pH值2-3、ORP fi 450-500mV因原水属于中性或偏碱性,调至酸性PH为2-3时消耗大量的酸液,破络后还需再调至碱性PH在8-9左右沉淀铜,又消耗大量的碱液,处理费用较高。
碱性条件下次氯酸钠破络;(柠檬酸、酒石酸)氧化池内控制pH值控制在10以上、双氧水破络,原水水质6-8 条件下,双氧水破络效果优于次氯酸钠,双氧水投加量为0.34ml/l(340ppm),最佳反应时间40分钟,破络后沉淀最佳ph=10.5,但是会造成污泥上浮;臭氧破络;在偏碱性条件下,臭氧分子在OH勺催化下容易分解成羟基自由基,羟基自由基比臭氧有更强的氧化性,反应速度快,氧化更彻底。
最佳反应时间30分钟,ph控制在7以上(9〜10)。
芬顿芬顿氧化主要以"Q与Fe2+组合的Fen to n试剂为氧化剂,在酸性条件下生成强氧化性的羟基自由基,将大分子有机物开环,最终氧化分解。
(芬顿氧化技术有一定的适用范围,针对含苯环类物质有较好的去除效果)芬顿试剂的主要药剂是硫酸亚铁与双氧水与碱。
先通过正交实验将硫酸亚铁与双氧水的投加比例得出(一旦控制不好便容易返色)。
再按照先调PH=〜4,投加硫酸亚铁,再投加双氧水,再进芬顿试剂投加顺序与污泥沉降处理行pH值调节的顺序进行投加。
在硫酸亚铁投加后反应15分钟左右,再进行双氧水的投加,反应20~40分钟后再加入碱回调pH值,处理效果更佳。
如果确定芬顿反应进行彻底,可在水中投加非离子型的聚丙烯酰胺,它可以帮助污泥加速沉降。
利用硫酸亚铁芬顿对一些高色度与高COD废水的去除率都可以达到90%-95%。
(参考值ORP=350m)vCaO、Bacl 2(钡盐)4. 含锌废水锌是一种两性元素,它的氢氧化物不溶于水,并具有弱碱性和弱酸性,故其化学式可写作:碱式:Zn(0H)2,酸式:H2Zn02由于它呈两性、故在强酸或强碱中能溶解。
在锌酸盐溶液中加适量的碱可折出Zn(0H)2 白色沉淀,再加过量的碱,沉淀又复溶解; 但反之,在锌酸盐溶液中,加适量酸也可析出Zn(0H)2 白色沉淀,再加过量的酸、沉淀又复溶解。
锌的氢氧化合物为两性化合物,pH值过高或过低,均能使沉淀返溶而使出水超标。
所以在用化学沉淀法处理含锌废水的过程中,要注意pH值的控制。
反应原理Zn2+ + 20H- ===Zn(OH)2 (沉淀)反应条件:ph=8.5〜9,5. 含铜废水氰化镀铜主要用于多层电镀的底层或中间镀层,如电镀铜/镍,铜/镍/ 铬,铜/铜/镍/铬,镍/铜/镍/铬等。
由于金属铜的电极电位较正,在钢铁件上镀铜,其性质为阴极性镀层,因此对基体没有电化学保护作用。
作装饰性单层镀铜(如灯具)必须用透明漆作保护。
线路板、电镀含铜废水中,大部分为络合铜,同时存在游离态铜。
对水中存在的游离态金属离子可以通过调碱的方式,使水中金属单质达到共沉淀值或通过使用聚合硫酸铁、聚合氯化铝等高分子混凝剂进行强化混凝处理。
但水中的络合铜稳定性强,难以通过以上方式去除,需要先进行破络处理。
络合铜废水除二价铜离子(Cu2+)外,还有大量的络合铜存在。
线路板废水中与铜离子形成的络合物主要有三种,分别为铜氨络合物[Cu(NH3)4]2+、铜氯络合物[Cu(CI-)4]2+和铜EDTA 络合物[Cu(EDTA)] 2+, 有的线路板厂将络合废水分为氨铜废水(主要污染物是铜氨络合物[Cu(NH3)2+4])和化铜废水(主要污染物是铜EDTA络合物[Cu(EDTA)] 2+)。
对于铜氨络合物[Cu(NH3)4]2+、铜氯络合物[Cu(Cl -) 4] 2+和铜EDTA络合物[Cu(EDTA)]2+,在酸性条件下,使用硫酸亚铁作为破络剂,其机理在于绿矶溶解后所生成的Fe+具有将络合铜中的二价铜离子还原成一价铜离子,一价铜离子与氨、DETA氯离子形成的络合物就不再稳定,一价铜离子容易与水中氢氧根离子反应生成氢氧经亚铜沉淀。
以Cu(CN)2-为例(氰化镀铜中,铜离子多以一价存在),由于铜易从+1价被氧化为+2 价,尽管Cu(CN)2-的络离子稳定常数较大,但二价铜不能与氰离子形成稳定的络合物,所以Cu(CN)2-还是很容易被氧化,结果+1价铜变为+2价铜,氰化物被氧化。
Fe(CN)/-则不然,由于其稳定常数比较大,一般有效氯浓度低或反应温度低时不易被氧化,当强化反应条件使+2价铁被氧化为+3价时,由于Fe (CN);仍十分稳定,所以氰离子并不解离,也不氧化。
反应原理:Cif +20H == Cu(0H)2(沉淀)反应条件:pH=9.5〜10.5含有络合剂的含Cu废水,首先应该考虑破络,然后进行化学沉淀。
破络反应硫化钠将硫化物(硫化钠)加入含络合铜的废水中,然后加入氢氧化钠,控制废水的pH值在9〜10.之间,再适量添加聚丙烯酰胺(PAM),形成溶度积很小的难溶沉淀物硫化铜(CuS),在PAM的作用下将铜离子从废水中除去。
硫化物沉淀法可以将含络合铜废水中的含铜量降低到0.5mg/L 以下。