高能束加工1
- 格式:ppt
- 大小:37.20 MB
- 文档页数:66
高能束焊接技术的发展和应用高能束焊接技术是一种现代焊接技术,它采用高能束作为焊接热源,利用高能束的集中能量和高能流密度,将焊接接头迅速加热至熔化温度并实现焊接。
高能束焊接技术包括激光焊接、电子束焊接和等离子焊接等多种形式。
这些焊接技术具有高能量浓度、热输入集中、加热速度快、熔深大、焊接变形小等优点,被广泛应用于航空航天、汽车制造、电子设备等领域。
高能束焊接技术的发展可追溯到20世纪40年代。
当时,电子束焊接技术首次应用于军事工业领域。
随着激光技术和等离子技术的发展,高能束焊接技术的应用范围逐渐扩大。
高能束焊接技术在航空航天领域中的应用十分广泛。
航空航天器的结构件往往需要具备高强度和高精度的特点,而高能束焊接技术能够满足这些要求。
激光焊接技术被应用于喷气发动机涡轮叶片的制造,能够提高制品的性能并保证焊接接头的质量。
电子束焊接技术被广泛应用于轻型航空航天器的生产,能够实现高效率、高质量的焊接,提高产品的可靠性。
在汽车制造领域,高能束焊接技术也发挥了重要作用。
汽车的表面涂层和涂漆往往会影响到其外观和耐腐蚀性能,而高能束焊接技术能够在不破坏基材的情况下,有效地去除涂层。
高能束焊接技术还可以用于汽车零部件的焊接,提高产品的质量和可靠性。
电子设备制造领域也是高能束焊接技术的主要应用领域之一。
电子器件往往需要高精度和高可靠性的连接,而高能束焊接技术能够实现精确的焊接和微小尺寸的焊接接头。
激光焊接技术被广泛应用于集成电路的封装和电子组装的焊接。
高能束焊接技术的发展和应用为现代工业生产带来了许多优势。
它能够实现高效率、高质量的焊接,提高产品的性能和可靠性。
随着科技的不断进步和创新,高能束焊接技术还将继续发展,并在更多领域得到应用。
高能束流加工技术的现状及发展一、引言高能束流加工技术是一种先进的制造加工技术,其利用高能束流对材料进行加工处理,可以实现高精度、高效率、低损伤的加工效果。
随着科技的不断进步和应用领域的不断扩展,高能束流加工技术已经成为了当前最具前景和潜力的制造加工技术之一。
二、高能束流加工技术的基本原理1. 高能束流的产生高能束流包括电子束、离子束和激光束等。
其中,电子束和离子束是通过电子枪或离子源产生,并通过磁场聚焦形成细小且密集的束流;激光束则是通过激光器产生,并通过透镜系统聚焦形成极小直径的光斑。
2. 高能束流与材料相互作用当高能束流与材料相互作用时,会发生以下几种物理过程:撞击效应、热效应、化学效应和辐射效应。
其中,撞击效应主要指由于高速粒子与固体表面发生碰撞而导致表面变形或破裂;热效应主要指由于高能束流的能量被转化为材料内部的热能而导致材料熔化或蒸发;化学效应主要指由于高能束流与材料发生化学反应而导致表面化学性质的改变;辐射效应主要指由于高能束流所产生的辐射而导致材料受到辐射损伤。
3. 高能束流加工技术的基本过程高能束流加工技术包括预处理、加工和后处理三个基本过程。
其中,预处理主要是对待加工材料进行表面清洗和处理,以确保其表面光洁度和化学性质符合加工要求;加工过程则是将高能束流对材料进行精细加工,包括切割、打孔、雕刻等多种形式;后处理则是对已经完成的产品进行表面处理和质量检测,以确保其符合产品标准。
三、高能束流加工技术在各领域中的应用1. 航空航天领域在航空航天领域中,高能束流加工技术被广泛应用于制造发动机喷口、涡轮叶片等关键部件。
这些部件需要高精度、高强度和高温性能,而高能束流加工技术可以实现对这些部件的精细加工和表面处理,提高其性能和寿命。
2. 电子信息领域在电子信息领域中,高能束流加工技术被广泛应用于制造微电子器件、光学器件等高精度产品。
这些产品需要极高的精度和表面光洁度,而高能束流加工技术可以实现对这些产品的微米级别加工和表面处理。
高能束流加工技术的应用与发展高能束流(High Energy Density Beam)加工是利用高能量密度的束流(激光束、电子束、等离子束)作为热源,对材料或构件进行特种加工的技术. 20世纪以来,航空科学技术迅速发展,为保证在高温、高压、高速、重载和强腐蚀等苛刻条件下的工作可靠性,在飞机、发动机和机载设备上大量采用了新结构、新材料和复杂形状的精密零件,这就使产品的制造性日趋恶化,对制造技术不断提出新的挑战。
鉴于对有特殊要求的零件用传统机械加工方法很难完成,难于达到经济性要求。
现在,工艺师们独辟蹊径,借助各种能量形式,探寻新的工艺途径,各种异于传统切削加工方法的新型特种加工方法应运而生,如高能束流加工、电火花加工、电解加工、化学加工、物料切蚀加工以及复合加工。
目前,特种加工技术已成为航空产品制造技术群中不可缺少的分支,在难切削材料、复杂型面、精细表面、低刚度零件及模具加工等领域中已成为重要的工艺方法。
1.现代特种加工技术的特点及发展趋势1.1特种加工技术的特点现代特种加工(SP,Special Machining)技术是直接借助电能、热能、声能、光能、电化学能、化学能及特殊机械能等多种能量或其复合以实现材料切除的加工方法。
与常规机械加工方法相比它具有许多独到之处。
① 以柔克刚。
因为工具与工件不直接接触,加工时无明显的强大机械作用力,故加工脆性材料和精密微细零件、薄壁零件、弹性元件时,工具硬度可低于被加工材料的硬度。
② 用简单运动加工复杂型面。
特种加工技术只需简单的进给运动即可加工出三维复杂型面。
特种加工技术已成为复杂型面的主要加工手段。
③ 不受材料硬度限制。
因为特种加工技术主要不依靠机械力和机械能切除材料,而是直接用电、热、声、光、化学和电化学能去除金属和非金属材料。
它们瞬时能量密度高,可以直接有效地利用各种能量,造成瞬时或局部熔化,以强力、高速爆炸、冲击去除材料。
其加工性能与工件材料的强度或硬度力学性能无关,故可以加工各种超硬超强材料、高脆性和热敏材料以及特殊的金属和非金属材料,因此, 特别适用于航空产品结构材料的加工。
上海市Ⅲ类高峰学科-材料科学与工程(高能束智能加工与绿色制造)是一个重要的学科领域,它涉及高能束智能加工和绿色制造技术的研究与应用。
该学科领域的主要研究方向包括高能束连接技术及智能装备、智能机器人焊接技术及装备、高能束增材制造及区域凝固过程控制技术、数字化增材制造关键技术及装备、先进传感器件微纳制造、微纳新能源材料绿色制造及核心器件等。
这些研究方向紧密围绕高端装备重点产业发展需求,旨在推动材料科学与工程领域的技术创新和产业发展。
为了加强学科建设,该领域积极开展国内外学术交流与合作,引进和培养优秀人才,提升学科的科研水平和创新能力。
同时,该领域还注重产学研合作,加强与企业的合作与联系,推动科技成果的转化和应用。
未来,该学科领域将继续加强高能束智能加工和绿色制造技术的研究与应用,提升我国在该领域的国际竞争力,为我国制造业的高质量发展做出重要贡献。
同时,该领域还将不断拓展新的研究方向和技术领域,培养更多优秀人才,推动材料科学与工程领域的持续发展。
高能束焊接技术的发展和应用高能束焊接技术是一种高效、高精度的焊接方法,它利用高能束作为热源,将工件上的两个或多个金属材料焊接在一起。
随着工业技术的不断发展,高能束焊接技术在航空航天、汽车制造、电子器件制造等领域得到了广泛应用。
本文将就高能束焊接技术的发展历程、工作原理和应用前景进行介绍。
一、高能束焊接技术的发展历程高能束焊接技术的发展可以追溯到20世纪40年代,当时人们开始尝试利用电子束、激光束和等离子束等高能源来进行焊接。
20世纪60年代,随着激光技术的进步,激光束焊接技术逐渐成熟,取得了一系列重要进展。
1970年代,电子束焊接技术也得到了快速发展,成为了航空航天领域、核能工程领域最主要的焊接方法之一。
随着科学技术的不断进步,高能束焊接技术变得更加精确、高效,应用领域也不断扩大。
二、高能束焊接技术的工作原理高能束焊接技术是利用高能束的热源对工件进行加热,使其达到熔化状态,然后将两个或多个工件进行熔汇从而实现焊接。
根据高能束的种类不同,高能束焊接技术又可分为激光束焊接、电子束焊接和等离子束焊接。
激光束焊接是指利用激光器产生的激光束对工件进行加热,通过激光束的高能量密度,将工件表面局部加热至熔化状态,然后使两个或多个工件在熔融态时迅速相互融合,从而完成焊接。
激光束焊接技术由于其高能量密度、热输入小、热影响区小等特点,逐渐成为了航空航天、汽车制造、电子器件制造等领域的主要焊接方法。
电子束焊接则是利用电子发射器产生的电子束对工件进行加热,在高能电子束的作用下,工件表面的金属被迅速加热至熔点,然后实现焊接。
电子束焊接技术由于其高能量密度、焊接速度快等特点,被广泛应用于核能工程、宇航工程、航空制造等高端领域。
等离子束焊接是一种利用等离子束对材料进行加热的焊接方法,通常利用等离子束切割机产生的等离子束对工件进行加热,然后实现焊接。
等离子束焊接技术由于其对材料的热输入小、热影响区小等特点,被广泛应用于微电子器件制造、微细连接技术等领域。
激光切割样品-案图
电子束热加工原理图
真空电子束焊接
利用定向高速运动的电子束流
撞击工件使动能转化为热能而
使工件熔化,形成焊缝。
电子束光刻系统(E-Beam Lithiograpghy)
采用高亮度和高稳定性的TFE电子枪(thermal field emisssion) 出色的电子束偏转控制技术
采用场尺寸调制技术,电子束定位分辨率可达0.0012nm
采用轴对称图形书写技术,图形偏角分辨率可达0.01mrad
广泛应用于半导体制造领域
的原理还可以加工出弯曲孔和斜孔。
电子束打孔在多种精度要求过高的工
下图是加工成形的毛细管:。
一、名词解释:模具---是一种专用工具,用于装在各种压力机上通过压力把金属或非金属材料制造成为所需要零件的形状制品。
快速原型制造(RPM)---采用离散和堆积成型的原理,由CAD 模型直接驱动的快速制造任意三维实体的技术总称。
脉冲单位:每接受一个变频进给脉冲时,工作台的移动距离。
数控加工技术包括数据机械加工技术、数控电加工技术和数控特种加工技术。
线电化磨削法(WECG):用去离子水在低电流下去除极薄的表面层。
线放电磨削法加工(WEDG)---是一种微细电火花加工,它的独特的放电回路是放电仅为一般电火花加工的1/100.塑性磨削:塑性磨削主要是针对脆性材料而言,磨削脆性材料时,切屑形成与塑性材料相似,切屑通过剪切的形式被磨粒从基体上切除下来,这种磨削方式有时也称为剪切磨削。
规准设定—是指对脉宽、脉间、高压、低压、抬刀、高度、抬刀周期、快落高度、防碳和间隙的设定。
刀具长度补偿功能 --预先测量各刀具的长度,将其与基准刀具的差设定在数控系统中,这样即使更换刀具也可无需变换程序而进行加工。
刀具半径补偿—预先把所需的刀具中心轨迹与编程轨迹之间的距离设定在数控系统中,这种对于加工形状按照偏移刀具半径后的轨迹移动刀具的功能。
模具CAD/CAE/CAM技术—是模具设计的一体化加工技术,它以计算机软件的形式,为企业提供一种有效的辅助工具,使工程技术人员借助于计算机对产品性能、模具结构、成形工艺、数控加工及生产管理进行设计和优化。
覆盖效应:在材料放电过程中,一个电极的电腐产物转移到另一电极表面上,形成一定厚度的覆盖层,这种现象叫覆盖效应。
极性效应:电火花加工时,其中一个电极比另一个电极的蚀除量大,这种现象叫极性效应极性系数--阴极蚀除量与阳极蚀除量之比。
连续图形就是由若干条轨迹线首尾相连的一串轨迹线。
特种加工:直接利用电能,热能,光能,化学能。
电化学能和声能等进行加工的工艺方法。
电化学加工---是通过电化学反应去除工件材料或在上面涂覆金属材料的一种特种加工。
特种加工特种加工方法区别于传统切削加工方法,而是利用化学、物理(电、声、光、热、磁)或电化学方法对工件材料进行去除的一系列加工方法的总称。
应用范围:具有高硬度、高强度、高脆性或高熔点的各种难加工材料零件的加工,具有较低刚度或复杂曲面形状的特殊零件的加工等。
主要技术:电火花加工、电解加工、超声波加工、高能束加工。
特点:1.不存机械切削应力。
2.加工用的工具硬度3.加工具有特殊要求的零部件。
4.加工出高精度之加工表面。
5.加工出复杂形状表面。
6.部分加工方法可以複合使用。
一.电火花加工原理:电火花加工是利用工具电极和工件电极间瞬时火花放电所产生的高温,熔蚀工件材料来获得工件成形的.电火花加工原理放电加工是将工件和电极同时浸入介电液中,用特殊电源供给直流脉冲,电源正负极各接于工件和电极上,电极与工件由伺服机构控制,而维持一小间隙,距离最短之处,因介电液的绝缘破坏而产生火花。
反复不停放电直到工件被加工出与电极形状相反之凹穴出现为止。
放电加工特点和应用范围优点:1.能导电即可进行放电加工2.避免硬化变形3.加工断裂在工件内之螺丝攻或钻头4.电极与工件不接触,故不产生切削应力5.没有毛边6.加工薄且脆之工件7.镜面加工8.可自动化,一个人可同时操作数台机器9.切削加工复杂复杂形状之工件10.可制作完全吻合之上下模缺点:1.工件需能导电2.加工是相当慢的3.生成较硬且脆的变质层,微细裂缝产生4.电极会消耗,需准备较多的电极5.操作人员需要相当经验放电加工用的脉冲电源1. 高低压复合波脉冲电源2. 矩形波分组脉冲电源3. 阶梯波脉冲电源放电加工机的种类其用途可分为雕模放电加工机、线切割放电加工机及深孔放电加工机三种,对特殊用途而制作放电切断加工机、轧辊刻印加工机、微放电加工机。
分类:电火花成形加工机床;电火花线切割机床.电火花产品1 产品2 电火花加工过程演示线切割加工二.电解加工利用金属在电解液中产生阳极溶解的原理,去除工件材料的特种加工。
高能束流加工技术高能束流(High Energy Density Beam)加工技术是利用激光束、电子束、离子束和高压水射流等高能量密度的束流(其中高压水射流是冷切割加工技术),对材料或构件进行特种加工的技术。
它的主要技术领域有激光束加工技术、电子束加工技术、离子束及等离子体加工技术以及高能束流复合加工技术等。
它包括焊接、切割、制孔、喷涂、表面改性、刻蚀和精细加工等,用于加工制造具有先进技术指标的构件或制备新型材料。
高能束流加工技术是当今制造技术发展的前沿领域,是当今世界高科技与制造技术相结合的产物,是制造工艺发展的前沿。
它具有常规加工方法无可比拟的优点。
①能量密度极高,可以实现厚板的深穿透加工、焊接和切割,一次可焊透300mm厚的钢板。
②可聚焦成极细的束流,达到微米级的焦点,用于制造微孔结构和精密刻蚀。
③可超高速扫描(速度达900m/s),实现超高速加热和超高速冷却(冷却速度达104℃/S),可以进行材料表面改性和非晶态化,实现新型超细、超薄、超纯材料的合成和金属基复合材料的制备。
④能量密度可在很大范围内进行调节,束流受控偏转柔性好,可进行全方位加工。
⑤适合于金属、非金属材料加工,可实现高质量、高精度、高效率和高经济性加工。
随着航空航天、微电子、汽车、轻工、医疗以及核工业等的迅猛发展,对产品零件的材料性能、结构形状、加工精度和表面完整性要求越来越高,传统的机械加工方法在高技术制造领域所占比重日益减少,高能束加工方法得到了广泛的应用。
例如,把高能束加工技术的深穿透特点用于重型装备厚壁结构、压力容器、运载工具、飞行器的焊接;把精密控制的微焦点高能量密度的热源用于微电子和精密器件的制造,高质量、高效率地实现超大规模集成元件、航空航天航海仪表、陀螺、膜盒的制造和核动力装置燃料棒的封装;利用高能束加工技术的可控高速扫描,实现航宇动力装置上气膜冷却小孔层板结构的高效率、高质量制造;利用高能束加工技术可在真空、高压条件下全方位加工的特点,实现在太空条件下的加工作业;利用高能束加工技术高速加热和高速冷却的特点,对金属材料表面改性和非晶态化,制备特殊功能的涂层和新型材料。