人类染色体作图和人类基因定位方法
- 格式:ppt
- 大小:1.91 MB
- 文档页数:71
基因定位的⽅法基因定位的⽅法⼀定义基因所属连锁群或染⾊体以及基因在染⾊体上的位置的测定。
基因定位是遗传学研究中的重要环节。
在遗传学的早期研究中并未发现果蝇等⽣物的基因在染⾊体上的位置和⽣理功能有什么关系。
但以后发现⼀些有类似表型效应的基因是紧密连锁的。
例如1945年E.B.刘易斯在果蝇中发现与中胸发育有关的⼏个基因相邻接,构成⼀个复合座位或称基因复合体或拟等位基因系列;1960年J.莫诺和 F.雅各布报道⼤肠杆菌的与乳糖发酵有关的⼏个基因紧密连锁,构成⼀个操纵⼦。
可见基因的位置并不是和它们的功能完全⽆关的,因此基因定位有助于了解基因的功能。
此外,测定了某⼀基因在某⼀染⾊体上的位置以后,便可以⽤这⼀基因作为所属染⾊体或其⼀部分的标记,追踪并研究染⾊体的⾏为。
例如通过分析⼤肠杆菌的接合过程中各个标记基因在受体菌株中出现的先后次序,就有助于了解接合过程中染⾊体的⾏为(见细菌接合);在许多⽣物中根据杂交⼦代中各个标记基因的组合,可以研究染⾊体⼲涉、染⾊单体⼲涉和染⾊体畸变;在育种⼯作中也经常通过标记基因来识别染⾊体的替换。
1913年C.B.布⾥奇斯⾸先在果蝇中通过 X染⾊体的不离开现象证实了⽩眼基因(white,w)是在X染⾊体上。
同年A.H.斯特蒂⽂特根据两个基因之间的距离愈远则交换频率愈⾼这⼀假设,⾸先在果蝇中进⾏了基因定位⼯作。
⼆基因所属连锁群或染⾊体的测定(⼀)系谱分析法通过分析、统计家系中有关性状的连锁情况和重组率⽽进⾏基因定位的⽅法。
其中连锁分析法是最常⽤的家系分析法(pedigree method)。
早在20世纪30年代,通过家系分析法已将⼈类的绿⾊盲、G6PD、红⾊盲、⾎友病A的基因定位在X染⾊体上。
1.如果某性状只出现在男性,则可将决定这个性状的基因定位在Y染⾊体上。
2.X连锁基因的定位根据伴性遗传原理,男性的X染⾊体总是来⾃他的母亲,⽽这条X染⾊体⼜总是传给他的⼥⼉,所以在正常情况下在X染⾊体上的基因不会出现直接从男性到男性的传递⽅式,⽽是隔代交叉遗传,亦即外祖⽗出现的某种性状在母亲⾝上不出现(当外祖母为纯合正常时),往往出现在其外孙⾝上。
连锁遗传规律•连锁与交换规律•基因定位和遗传学图•链孢霉的连锁、互换和基因定位•性别决定•人类性别异常•伴性遗传、限性遗传和从性遗传粗糙链孢菌(Neurospora crassa)粗糙链孢菌的特点:⒈子囊孢子是单倍体,表型直接反映基因型。
⒉一次只分析一个减数分裂产物。
⒊体积小,易繁殖,易于培养。
⒋可进行有性生殖,染色体结构和功能类似于高等生物。
粗糙链孢酶的生活史:顺序四分子分析及其特点减数分裂产生4个孢子,按一定顺序排列在子囊内,叫顺序四分孢子或顺序四分子,对其进行分析叫顺序四分子分析。
特点:①一个顺序四分子是一个合子一次减数分裂的产物,它不和其它合子的减数分裂产物相混合,因此能够对合子进行单个的分析。
②顺序四分子中的四分孢子来源清楚。
③链孢霉是单倍体,无显隐性之分,不管显性还是隐性都能表现,表现型就代表基因型。
着丝粒作图(centromere mapping)利用四分子分析法,测定基因与着丝粒之间的距离。
将着丝粒作为一个位点(locus)来计算基因与着丝粒之间的距离。
链孢霉的野生型又称为原养型(prototroph),子囊孢子按时成熟呈黑色。
营养缺陷型(auxotroph),只能在完全培养基上生长,成熟较慢,子囊孢子呈灰白色。
Prototrophauxotroph测定营养缺陷型的方法:重组值=(交换型子囊数/交换+非交换型子囊数)×100% × 1/2例:++++---- 105----++++ 129++--++-- 9--++--++ 5++----++ 10--++++-- 16重组值=(9+5+10+16/9+5+10+16+105+129)×100% ×1/2=7.3%Lys 基因与着丝粒之间的距离是7.3cM 。
1/2的含义:在子囊孢子发生交换时,每发生一个交叉,一个子囊中有半数孢子发生重组。
配子数与子囊数性染色体决定型-XY型果蝇:2n=8 人类:雌性:AA(44)+XX(2)雄性:AA(44)+XY(2)性染色体决定型-XY型果蝇、鼠、牛、羊、人等属于这一类型。
基因是一个生物体内重要的组成部分,在染色体中定位基因是基因组学的一个重要研究领域。
以下将介绍几种基因位于染色体上的方法。
1. FISH技术FISH是一种现代的细胞遗传学技术,通过用荧光探针对染色体中的DNA序列进行标记,可以在显微镜下直接观察到特定基因的位置。
这种技术非常精确,并可以用于各种生物样本。
FISH技术不仅可以用于基因组定位,还可以检测基因重排及其他染色体异常。
2. PCR-RFLPPCR-RFLP技术是通过PCR扩增基因片段后,再利用内切酶对DNA片段进行限制性切割,从而检测基因座位点多态性,达到定位位点目的。
这种技术使用方便,结果可靠,但需要特定的试剂和设备。
它被广泛应用于人类遗传学和分子生物学研究中。
3. 连锁分析连锁分析是利用基因组中的遗传标记来推测一个基因位于染色体上的位置。
该技术使用染色体上的可检测遗传标记(如SNP和微卫星)来跟踪基因在家族中的传递。
通过分析大量家族成员之间的遗传相似性,可以确定基因位于哪个染色体上。
这种方法非常实用,被用于遗传性疾病的研究和诊断。
4. 基于HLA的定位HLA是人类主要组织相容性复合体。
由于HLA基因的高度多态性以及其与许多自身免疫性疾病的相关性,HLA位点已经成为定位疾病遗传因素的有力工具。
例如,我们知道多发性硬化症与HLA-DRB1基因密切相关,因此可以通过分析HLA位点的关联性来确定基因位于哪个染色体上。
5. 基因芯片基因芯片技术已经成为研究不同物种的基因组组成和表达情况的标准工具。
这种技术允许我们同时检测和测定大量基因和基因组上的SNP位点。
可以通过与特定疾病的患者和非患者比较来确定基因位于染色体上的位置,从而加快疾病的诊断和治疗。
综上所述,位于染色体上的基因定位是生物学研究的重要部分,该领域的进展为疾病的研究和治疗提供了重要工具。
随着技术的发展,我们可以期待更多高效、准确的基因定位方法的出现。
第八节人类基因组的染色体作图一、人类基因定位方法人体基因组由22条常染色体、一条X染色体和一条Y染色体组成。
有30亿(3×109)个核苷酸对,其中70%(约2×109)核苷酸对是单拷贝的DNA,包括编码蛋白质的结构基因,和一大批功能目前不明的DNA序列。
此外是一些长度不等,拷贝数不同的重复序列,约占人类基因组30%。
20世纪90年代,遗传学进入了揭示人类自身的遗传本质的伟大时代。
这个时代的标志是自1991年始的为期15年、投资30亿美元的全球性的跨世纪的规模宏大的“人类基因组计划”(human genome project,HGP)。
这项巨大的研究计划的主要内容是测定和分析人类基因组DNA的全部核苷酸对的排列顺序,认读全部遗传信息。
这项研究在短短的几年时间里取得了惊人的进展。
至 1990年时,人体基因组中已经确定了在染色体上位置的基因座位共6552个,已经测定了核苷酸序列的基因 772个;发现了2275个基因座有多态性。
制备了各条染色体的探针共11852个,完成了500万个核苷酸对的序列测定,约占人类基因组全序列的2/1000。
1992年绘制了除Y染色体以外的23条染色体的遗传连锁图,美、法科学家绘制出了人的Y染色体长臂和第21染色体长臂的图谱。
这两项成果无疑为按期完成人类基因组计划展示了美好前景。
1993年的资料报道,已定位4183个基因。
到1994年上半年为止,已定位了人的3300个遗传标记,已完成基因组作图第一期工程目标的60%。
将人体的基因(或遗传标记,marker)定位在特定染色体上,有下列方法:(一)家系分析法通过分析、统计家系中有关性状的连锁情况和重组率而进行基因定位的方法。
其中连锁分析法是最常用的家系分析法(pedigree method)。
早在20世纪30年代,通过家系分析法已将人类的绿色盲、G6PD、红色盲、血友病A的基因定位在X染色体上。
1.如果某性状只出现在男性,则可将决定这个性状的基因定位在Y 染色体上。