数学概念整理
- 格式:doc
- 大小:42.00 KB
- 文档页数:20
五年级数学上册概念整理五年级数学上册概念整理一、小数乘法1、小数乘法计算法则:先按整数乘法算出积,再给积点上小数点。
因数中有几位小数,积的右边(或个位)就有几位小数,小数位数不够时,要在前面补足再点小数点。
2、当一个因数大于1时,积大于另一个因数(另一个因数不等于1);当一个因数小于1时,积小于另一个因数(另一个因数不等于1);当一个因数等于1时,积等于另一个因数。
3、小数的四则运算顺序与整数相同。
小数连乘从左到右依次运算,小数的乘加、乘减混合运算先算乘法再算加法或减法。
4、整数乘法的交换律、结合律和分配律对于小数乘法也适用。
5、一个数(除外)乘大于1的数时,积比原来的数大;一个数(除外)乘小于1的数时,积比原来的数小。
6、一个因数扩大多少倍,另一个因数缩小相同的倍数,积不变。
一个因数不变,另一个因数扩大(缩小)多少倍,积也扩大(缩小)多少倍。
7、一个小数乘10、100、1000…只要把这个小数的小数点向右移动一位、两位、三位…二、小数除法:1、除数是整数的除法按整数除法的方法去除,商的小数点要和被除数的小数点对齐,整数部分不够除,商再除;如果有余数,要添再除。
2、一个数除以小数:先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位;然后按照除数是整数的除法计算。
取商的近似值时要看清题目要求,需要保留几位小数就除到后面一位,再用“四舍五入法”取商的近似值。
3、循环小数是指小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。
小数位数是有限的小数叫做有限小数,小数位数是无限的小数叫做无限小数。
4、被除数和除数同时扩大(缩小)相同的倍数,商不变。
被除数扩大(缩小)多少倍,除数不变,商扩大(缩小)多少倍。
被除数不变,除数扩大(缩小)多少倍,商缩小(扩大)多少倍。
5、当除数大于1时,商小于被除数(被除数不等于1);当除数小于1时,商大于被除数(被除数不等于1);当除数等于1时,商等于被除数。
初中数学知识点整理一、数与代数。
1. 有理数。
- 有理数的概念:整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 数轴:规定了原点、正方向和单位长度的直线叫做数轴。
任何有理数都可以用数轴上的点来表示。
- 相反数:绝对值相等,符号相反的两个数互为相反数。
0的相反数是0。
- 绝对值:一个数在数轴上所对应的点与原点的距离,叫做这个数的绝对值。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
- 有理数的运算。
- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。
- 减法:减去一个数,等于加上这个数的相反数。
- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0。
- 除法:除以一个不等于0的数,等于乘以这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
- 乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
a的n次方中,a叫做底数,n叫做指数。
- 有理数的混合运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的。
2. 实数。
- 无理数:无限不循环小数叫做无理数。
如√(2)、π等。
- 实数的概念:有理数和无理数统称为实数。
- 实数与数轴:每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。
- 实数的运算:实数的运算顺序和有理数的运算顺序相同,在进行实数运算时,有理数的运算律和运算法则同样适用。
3. 代数式。
- 代数式的概念:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或者一个字母也是代数式。
- 代数式的值:用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值。
数学知识点总结整理一、基本概念数学是一门基础学科,它研究数量、结构、变化以及空间等概念与关系。
数学的基本概念包括数、集合、函数、方程等。
在数学中,数是最基本的概念,它可以分为整数、有理数和实数三个部分。
集合是由一些确定元素所构成的整体,可以用集合论的方式来描述和运算。
函数是一个特殊的关系,它把一个集合内的元素按照一定的方式与另一个集合内的元素对应起来。
方程是一种等式,在方程中,未知数和已知数之间存在一种数量关系。
二、初等数学初等数学是指数学中最基础的部分,它涉及了数的四则运算、代数表达式的化简和展开、方程的解法、数列的性质等内容。
在初等数学中,我们常见的概念有整数、分数、小数、百分数等。
数的四则运算包括加法、减法、乘法和除法,是初等数学的基础操作。
代数表达式的化简和展开是通过运用数学的性质和规律,将复杂的代数式简化为简单的形式或者将简单的代数式展开成复杂的形式。
方程的解法是指根据方程的性质和条件,求出方程中未知数的取值范围。
数列是由一系列数字按照一定规律排列而成的,数列的性质包括等差数列和等比数列等。
三、几何学几何学是研究空间形状、尺寸和结构等概念与关系的数学分支。
几何学的基本概念包括点、直线、平面、角等。
点是几何学的最基本单位,它没有具体的大小和形状。
直线是由无数个点按照同一方向和同一直线上的距离所连成的,它没有具体的长度。
平面是由无数个点按照同一平面上的距离所连成的,它没有具体的厚度。
角是由两条射线所夹的一部分平面,角的大小可以用角度或者弧度来表示。
几何学的主要内容包括点、线、面的性质和关系、图形的分类和性质、空间几何的应用等。
四、概率与统计概率与统计是一门研究不确定性和随机性的数学分支。
概率是指根据一定的条件和规律,对某一事件发生的可能性进行度量和计算。
统计是指收集和分析数据,通过对数据的整理和分析,得出对总体的某种特征或者规律的推断。
在概率与统计中,我们经常用到的概念有随机变量、概率分布、统计量等。
上学期一.数的整除概念:整除、倍数和因数、奇数和偶数、素数和合数、分解素因数、公倍数和公约数、最小公倍数和最大公约数,互素(1)整除:整数a除以整数b,如果除得的商是整数且余数为零,我们说a能够被b整除,或则b能整除a。
、、都是整数。
注:除尽被除数和除数不一定是整数,商是整数或有限小数,a b c÷=,其中a b c没有余数。
(2)倍数和因数:整数a能够被b整除,a就叫做b的倍数,b就叫做a的因数。
(3)奇数和偶数:整数中能被2整除的整数叫做偶数(2n),余下的整数都是奇数[(2n+1)或(2n-1)](4)素数和合数:一个正整数,如果只有1和他本身两个因数,这样的数叫做素数(也叫做质数);除了1和本身以外还有别的因数,这样的数叫做合数。
其中:1既不是素数也不是合数。
(4)分解素因数:每个合数都可以写成几个素数相乘的形式,其中每个素数都是这个合数的因数,叫做这个合数的素因数。
把一个合数用素因数的相乘的形式表示出来,叫做分解素因数。
(7289243322233=⨯=⨯⨯⨯=⨯⨯⨯⨯)(5)公倍数和公约数:几个数公有的倍数,叫做这个几个数的公倍数,其中最小的一个叫做最小公倍数;几个数公有的因数,叫做这几个数的公因数,其中最大的一个叫做最大公约数。
求最大公因数的方法1.列举法:分别列出两个数的因数,从公因数中找出它们的最大公因数2.分解素因数法:把两个数分解素因数,最大公因数就是它们公有素因数的乘积3.短除法:用两个数的公因数去除,除到商互素为止,所有除数的乘积就是这两个数的最大公因数4.特征法:如果两个数是互素,那么最小数就是这个数的最大公因数。
(6)互素:如果两个整数的最大公因数为1,那么这两个数互素1~100的素数有:2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 972是偶数中唯一的素数;整数:正整数,负整数,零自然数(非负整数):正整数,零正整数:素数,合数,1二.分数概念:分数的种类、最简分数、约分、通分、分数的运算法则、倒数、分数和小数的互化(1)分数的种类:真分数、假分数、带分数。
初中数学基本概念整理数学是一门理科,它以数字、符号和公式为基础,研究数量、结构、变化和空间等概念之间的关系。
在初中阶段,学生们开始接触到一些数学的基本概念,这些概念是建立数学知识体系的基础。
下面,我们将整理一些初中数学的基本概念,以帮助学生们更好地理解和应用这些概念。
1. 整数:正整数、负整数和零统称为整数。
在数轴上,整数被表示为点,其中正整数位于零的右侧,负整数位于零的左侧。
整数可以进行加减乘除的运算,如2 + 3 = 5,4 - 6 = -2,5 × (-2) = -10,等等。
2. 分数:分数是表示两个整数之间的部分关系的数字。
它由一个分子和一个分母组成,分子表示分数的一部分,分母表示整体被分成的部分数。
例如,1/2表示一个整体被等分为两个部分中的一部分。
3. 百分数:百分数是将数值表示为百分比的形式。
百分号表示每100个单位中的多少个单位。
例如,75%表示每100个单位中的75个单位。
4. 质数和合数:质数是只能被1和自身整除的正整数,例如2、3、5、7等。
而合数是至少有一个真除数(除了1和它本身)的正整数,例如4、6、8、9等。
5. 小数:小数是表示数值中的小部分的方式,它们由整数部分和小数部分组成,中间用小数点分隔。
例如,3.14是圆周率的一个近似值。
6. 比例和比例关系:比例是指两个或多个数字之间的比较关系。
比例关系是用来描述这种比较关系的数学表达式。
例如,当两个量的比例保持不变时,我们可以说它们之间存在比例关系。
7. 平方数和平方根:平方数是一个数的平方,例如1、4、9、16等。
平方根是一个数的平方等于给定数的正数解,例如√4 = 2。
8. 代数表达式和方程式:代数表达式是由数字、变量和运算符组成的数学表达式,可以用来表示数学关系。
方程式是由等号连接的两个代数表达式,我们可以通过求解方程式来找到使其成立的变量值。
9. 图形:图形是平面上的点、线和面之间的关系和组合。
常见的图形包括点、线段、角、三角形、四边形等。
数学知识点归纳总结7篇篇1一、引言数学作为自然科学的基础学科,知识点众多且相互关联。
为了帮助我们更好地掌握数学知识,本文将对其核心知识点进行归纳总结。
本文内容严谨、结构清晰,旨在帮助读者系统地理解数学的基本概念和方法。
二、数与代数1. 数的认识(1)自然数、整数、有理数、无理数、实数的概念与性质。
(2)数的分类与数轴表示。
2. 代数式(1)代数式的概念、分类与运算。
(2)代数式的化简、因式分解。
3. 方程与不等式(1)一元一次方程、一元二次方程的解法。
(2)不等式的基本性质与解法。
(3)方程与不等式的应用。
三、几何知识1. 平面几何(1)点、线、面、角的性质。
(2)三角形、四边形、圆的性质与计算。
(3)相似与全等图形的概念与性质。
2. 立体几何(1)三维图形的认识与分类。
(2)表面积、体积的计算。
(3)空间位置关系。
四、函数与图像1. 函数概念与性质(1)函数的概念、分类与性质。
(2)反函数、复合函数的概念与应用。
2. 图像与性质分析(1)函数的图像表示。
(2)函数图像的平移、对称性质。
(3)函数的单调性、周期性分析。
五、数列与极限1. 数列概念与性质(1)数列的分类、通项公式与前n项和公式。
等差数列和等比数列的性质与应用。
无穷数列的概念与性质。
极限概念及计算六、微积分知识初级微积分知识,包括导数概念与应用,微分法则;积分概念,积分运算方法,定积分的应用等。
七、概率与统计概率基础知识,随机事件及其概率计算;统计学的描述性统计和推断性统计基础,包括数据的收集、整理与分析等。
八、数学史与数学文化介绍数学的发展历程,著名数学家的生平与贡献,数学在各个领域的应用等。
九、总结通过上述归纳和总结,我们可以清晰地看到数学知识体系的框架和各个知识点之间的联系。
为了更好地掌握数学知识,我们需要不断地学习与实践,深入理解各个知识点,掌握其应用方法。
同时,我们还需要注重数学与其他学科的交叉融合,拓展数学知识在各个领域的应用。
初中数学课本基本概念整理【1】七上有理数:整数和分数的统称。
数轴:用一条直线上的点表示数,这条直线叫做数轴。
原点:在直线上任取一个点表示数0,这个点叫做原点。
相反数:只有符号不同的两个数叫做互为相反数。
绝对值:一般地,数轴上表示午数a的点与原点的距离叫做数a的绝对值,记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是。
倒数:乘积是1的两个数互为倒数。
乘方:求n个相同因数的积的运算。
幂:乘方的结果。
科学计数法:把一个大于10的数表示成a•10n的形式(其中a大于或等于1且小于10,n是正整数)单项式:数或字母的积的式子以及单独的一个字母或一个数。
系数:单项式中的数字因数叫做这个单项式的系数。
单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
多项式:几个单项式的和。
多项式的项:多项式中每个单项式叫做多项式的项。
多项式的次数:多项式里,次数最高项的的次数,叫做这个多项式的次数。
整式:样单项式与多项式的统称。
同类项:所含字母相同,并且相同字幕的指数也相同的项叫做同类项。
合并同类项:把多项式中的同类项合并成一项。
合并同类项后,所得项的系数是合并前个同类项的系数的和,且字母连同它的指数不变。
方程:含有未知数的等式。
一元一次方程:只含有一个未知数,未知数的次数都是一,等号两边都是整式。
等式的性质1:等式两边加(减)同一个数,(或式子结果仍相等。
等式的性质2:等式两边乘同一个数,或除以同一个不为的数,结果仍相等。
七下:在同一平面内,过一点有且只有一条直线与已知直线垂直。
垂线段最短直线外一点到这条直线的垂线段长度,叫点到直线的距离。
经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都与第三条直线平行,那么这两条直线互相平行。
同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补判断一件事情的语句,叫命题,命题由题设和结论组成如果题设成立那么结论一定成立,叫真命题如果题设成立结论不一定成立,叫假命题正确性得到推理证实的真命题叫定理推理一个命题的正确性叫证明0的算数平方根是0若一个正数a平方等于x,a叫x的算数平方根。
四年级数学概念整理
四年级数学概念整理如下:
1、整数概念:
(1)整数的意义:自然数和0统称为整数。
(2)自然数的单位:1。
(3)计数单位:一(个)、十、百、千、万……
(4)数的位数:一位(个位)、两位(十位)、三位(百位)、四位(千位)、五位(万位)……
2、数的读法和写法:
(1)读数和写数,都从高位起。
(2)读万和万的写法。
3、数的顺序:
(1)从大到小:亿、千万、百万、十万、万、千、百、十、个。
(2)从小到大:……个、十、百、千、万、……亿。
4、数的组成:
(1)一个数位上有几个这样的计数单位组成它的计数单位。
(2)数是由几个亿、几个千万、几个百万、几个十万、几个万、几个千、几个百、几个十和几个一组成的。
5、数的改写:
(1)改写成以“万”为单位的数:先找到万位,再在后面点上小数点,并把末尾的0去掉。
(2)改写成以“亿”为单位的数:先找到亿位,再在后面点上小数点,并把末尾的0去掉。
6、比较数的大小:
(1)位数不同的两个数,位数多的数比较大。
(2)位数相同的两个数,从最高位开始比较。
7、数的四舍五入法:
(1)要省略一个数的末尾的零,可以用“四舍五入”法。
(2)省略一个数的最高位上的数,一般用“四舍五入”法,但有时要根据实际情况灵活运用。
第一单元 分数乘法一、分数乘法 1、分数乘法的意义。
①、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512 ×6表示6个512 相加的和是多少,还表示512 的6倍是多少。
②、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512 表示:6的512 是多少。
27 ×512 表示:27 的512 是多少。
2、分数乘法的计算法则:①、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
②、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
4、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:ɑ×b=b ×d 乘法结合律:ɑ×b ×c= ɑ×(b ×c) 乘法分配律: ɑ×( b+c )= ɑb + ɑc 或ɑ ×( b —c )= ɑb — ɑc 二、分数乘法的解决问题1、分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量 (3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
2、已知单位“1”的数量,求单位“1”的几分之几是多少?(1)、找单位“1”: “占”、“是”、“比”的后面 (2)、求一个数的几分之几是多少?用乘法计算方法:单位“1”的数量×对应分率=对应量。
注意:分率与量要对应。
归纳整理在小学数学课堂中的应用分析
一、归纳整理的基本概念和方法
1. 基本概念:归纳整理是指通过对一系列相关事物或事实的分析和总结,得出共性
和规律的过程。
在小学数学中,归纳整理多用于整理数列、几何图形等等方面。
2. 方法:归纳整理通常包括两个步骤。
首先,收集和观察一组相关的事物,找出它
们之间的共性和规律,然后通过归纳和推理,得出总结性的结论。
1. 数列:数列的求和、阶梯式数列、斐波那契数列等等的求解过程都需要用到归纳
整理的方法。
特别是在阶梯式数列中,通过观察数列中的数、找出数列中每一项与前一项
之间的规律,从而得出该数列的通项公式。
2. 几何图形:在小学阶段,几何图形主要包括平面图形和立体图形。
在归纳整理的
过程中,可通过观察和总结平面图形、立体图形的特点,得出它们的性质和规律,从而推
导出新的定理。
3. 模式识别:在小学数学中,模式识别的方法主要运用在数学游戏中。
比如猜数字
游戏,在进行游戏时,可以通过归纳整理的方法,分析已知的数字,找到它们之间的共性
和规律,从而猜出未知的数字。
4. 数据分析:在小学数学中,也需要进行数据分析,比如班级人数、成绩分布等等。
在数据分析中,也需要使用到归纳整理的方法,通过分类、比较、统计等方式,找出数据
的规律和特点。
三、结论
在小学数学课堂中,归纳整理的应用非常广泛。
通过运用归纳整理的方法,可以更好
地理解和掌握数学知识,从而提高数学成绩。
同时,也能够培养学生的观察能力和逻辑思
维能力,为他们未来的学习和生活打下坚实的基础。
一到六年级数学概念整理资料一年级数学概念。
1. 数的认识。
- 0 - 20各数的认识,包括数的读写、数的顺序、数的大小比较等。
例如,11读作十一,15大于13。
- 基数和序数的概念,基数表示物体的数量,如3个苹果;序数表示物体的顺序,如第3个小朋友。
2. 数的运算。
- 加法的含义:把两个数合并成一个数的运算。
例如,1 + 2 = 3,表示1和2合起来是3。
- 减法的含义:从一个数里去掉一部分,求剩下的部分。
如3 - 1 = 2,表示3里面去掉1还剩2。
3. 图形认识。
- 认识长方体、正方体、圆柱、球等立体图形。
能区分它们的形状特征,如长方体有6个面,相对的面大小相等。
- 认识长方形、正方形、三角形、圆形等平面图形。
例如,正方形四条边一样长,四个角都是直角。
4. 钟表的认识。
- 认识时针和分针,时针短,分针长。
- 整时的认识,分针指向12,时针指向几就是几时,如时针指向3,分针指向12,就是3时。
二年级数学概念。
1. 数与代数。
- 100以内数的认识,包括数的组成(如35是由3个十和5个一组成)、数的读写、数的大小比较等。
- 100以内的加减法,相同数位对齐,从个位加起或减起。
进位加法和退位减法的计算方法,如计算28+36时,个位8 + 6 = 14,向十位进1,十位2+3 + 1=6,结果是64;计算42 - 19时,个位2不够减9,从十位借1当10,12 - 9 = 3,十位4 - 1 - 1 = 2,结果是23。
- 乘法的初步认识,乘法是求几个相同加数和的简便运算。
例如,3+3+3+3 = 3×4 = 12。
- 除法的初步认识,平均分的概念,把一些物品分成几份,每份分得同样多叫平均分。
除法是已知两个因数的积与其中一个因数,求另一个因数的运算。
如把12个苹果平均分成3份,每份4个,可以用12÷3 = 4表示。
2. 图形与几何。
- 角的初步认识,角有一个顶点和两条边。
直角是一种特殊的角,三角板上有一个直角。
数学知识点总结整理大全I. 代数1. 数的性质- 自然数、整数、有理数、无理数、实数、复数的概念和性质- 数轴和数的排列- 绝对值的概念及性质2. 四则运算- 加法、减法、乘法、除法的运算规则- 分数运算- 整式的加减乘除3. 方程与不等式- 一元一次方程与不等式- 二元一次方程组与不等式组- 二次方程与一元二次不等式4. 函数- 函数的概念与表示- 一次函数、二次函数、绝对值函数、指数函数、对数函数的性质与图像5. 数列与数列的通项公式- 等差数列与等差数列的通项公式- 等比数列与等比数列的通项公式- 斐波那契数列与其性质II. 几何1. 平面几何- 点、线、面的基本概念- 平面图形的性质与判定- 三角形的性质与判定- 直角三角形、等腰三角形、等边三角形的性质与判定2. 立体几何- 空间几何体的性质与判定- 三棱锥、四棱锥、棱柱、棱台、圆锥、圆柱的性质与计算- 正多面体的性质与计算3. 相似与全等- 相似三角形的性质与判定- 全等三角形的性质与判定- 相似多边形与全等多边形的性质与应用4. 三角函数- 任意角的概念及其弧度制- 三角函数的定义、性质与应用- 三角恒等变换与解三角形III. 概率与统计1. 概率- 随机事件的概念与性质- 事件的概率与计算- 几何概型与概率- 条件概率与乘法定理- 独立事件与加法定理2. 统计- 统计调查与统计图表- 数据的表示与分析- 平均数、中位数、众数的计算与应用- 样本调查与总体参数的估计IV. 解析几何1. 坐标系与直线- 点的坐标表示及其性质- 直线与斜率的概念- 直线的方程与性质(包括一般式、截距式、点斜式等)2. 圆与圆的方程- 圆的性质与判定- 圆的方程及其应用- 切线与割线的性质3. 曲线的方程- 二次曲线的性质及方程(包括抛物线、椭圆、双曲线等)- 配方法与根的判别- 图形的平移、伸缩、旋转与应用V. 数论1. 整数与倍数- 整数与自然数的概念- 整数的性质与运算- 奇数与偶数、质数与合数的判定与性质- 约数与倍数的性质与应用2. 最大公因数与最小公倍数- 公因数与公倍数的概念与性质- 最大公因数与最小公倍数的计算与应用- 约分、通分与分数运算3. 整式与因式分解- 整式的概念与运算- 因式及其性质- 因式分解的方法与应用- 公式的推导与应用以上是关于各个数学知识点的简要总结整理,相信对你学习、复习数学知识有所帮助。
考研数学中的常见概念整理在考研数学的备考过程中,理解和掌握各种常见概念是非常重要的。
本文将整理一些常见的数学概念,以帮助考生更好地备考。
一、集合论概念1. 集合的定义与表示方法集合是由确定元素组成的整体,可以用列举法、描述法、区间表示法等形式表示。
2. 子集与包含关系若集合A中的所有元素都属于集合B,那么A是B的子集,B则包含A。
3. 并集与交集若有两个集合A和B,A和B的并集是包含A和B中所有元素的集合,A和B的交集是同时属于A和B的元素组成的集合。
4. 基本的集合运算包括并、交、差、补等集合运算。
二、数列与数列极限1. 数列的定义数列是按照一定的规律排列成的一组数的序列。
2. 数列的通项公式数列中的每一项可以通过通项公式进行表示。
3. 数列的递推公式数列中的每一项可以通过前一项或前几项与常数的运算得到。
4. 数列的极限数列极限是当数列的项趋向无穷大时,数列趋向的一个确定值。
三、极限与连续1. 极限的定义与性质极限是用来描述函数在某点的趋向行为的概念,极限具有唯一性和保序性。
2. 无穷小与无穷大无穷小是当自变量趋向某一点时,函数值趋向于零;无穷大是当自变量趋向某一点时,函数值趋向于无穷。
3. 连续函数与间断点连续函数是在其定义域内的任意一点都存在极限并且极限等于函数值;间断点是函数在某一点处不连续的点。
四、微分与积分1. 导数的定义与性质导数描述了函数在某一点处的变化率,具有线性性、乘积法则、链式法则等性质。
2. 函数的增减性与极值函数在某一区间上的增减性与函数的导数的正负有关,极值则是函数在区间内达到的最大值或最小值。
3. 定积分的定义与性质定积分描述了函数在区间上的面积,具有线性性、积分中值定理等性质。
4. 牛顿-莱布尼茨公式牛顿-莱布尼茨公式是积分与导数之间的基本关系,描述了函数在某一区间上的积分与函数原函数的关系。
五、概率与统计1. 随机变量与概率随机变量是随机试验结果的数值描述,概率则是随机变量取某个值的可能性。
数学分析重点概念整理第一章 集合与函数1. 集合定理1.1.1可列个可列集之并也是可列集。
定理1.1.2 有理数集Q 是可列集Descartes 乘积集合{(,)|}A B x y x A y B ⨯=∈∈并且 2. 映射与函数映射的基本要素映射要求元素的像必须是唯一的,但不要求逆像也具有唯一性。
基本初等函数Dirichlet 函数,任何有理数都是其周期。
定义1.2.7 算术平均值:1...n a a n ++,调和平均值111...nna a ++第二章 数列极限1.实数系的连续性上确界的定义:下确界的定义:定理 2.1.1(确界存在定理——实数系连续性定理)非空有上界的数集必有上确界;非空有下界的数集必有下确界。
定理2.1.2非空有界数集的上(下)确界是唯一的。
2.数列与数列极限数列极限的形式 (1)唯一性定理2.2.1 收敛数列的极限必唯一 (2)有界性定理2.2.2收敛数列必有界 (3)数列的保序性定理2.2.3 设数列{},{}n n x y 均收敛,若,且a b <,则存在正整数N ,当n N >是,成立n n x y <四则运算只能推广到有限个数列的情况3.无穷大量4.收敛准则定理2.4.1 单调有界数列必定收敛。
(确界存在定理)用定理证明的时候先用方法证明有界性(归纳法等),再证明单调性(做差)用闭区间套定理可以证明定理2.4.3 实数集R 是不可列集。
定理2.4.5(Bolzano-Weierstrass 定理)有界数列必有收敛子列。
定理 2.4.6 若{}n x 是一个无界数列,则存在子列{}k n x 使得lim k n k x →∞=∞。
定理2.4.7(Cauchy收敛原理)数列{}n x收敛的充要条件是{}n x是基本数列。
由实数构成的基本数列必存在实数极限,这一性质称为实数系的完备性,有理数不具有完备性。
实数系之间的推理关系:定理2.4.8 实数系的完备性等价于实数系的连续性。
五年级数学上册主要包括以下几个模块的内容:整数的概念与运算、
分数的认识与运算、小数的认识与运算、图形与运动、大数据运算。
一、整数的概念与运算
1.整数的概念:正整数、负整数、零、整数的大小比较。
2.整数的运算:整数的加法、整数的减法、整数的乘法、整数的除法。
3.整数的应用:温度计、高度计、摄氏度和华氏度的转换等。
二、分数的认识与运算
1.分数的概念:分子、分母、真分数、假分数、带分数。
2.分数的比较:相等的分数、分母相同的分数的大小比较。
3.分数的运算:分数的加法、分数的减法、分数的乘法、分数的除法。
4.分数的应用:计算问题中的分数。
三、小数的认识与运算
1.小数的概念:小数点的读法、小数的大小比较。
2.小数的运算:小数的加减法、小数的乘法、小数的除法。
3.分数与小数的转化:分数转化为小数、小数转化为分数。
四、图形与运动
1.各种图形的辨认:多边形、三角形、四边形、五边形、六边形、圆。
2.图形的面积与周长:长方形的面积与周长、正方形的面积与周长、
三角形的面积。
3.时钟和日历的认识:表示时间的时钟,简单的时间计算。
4.坐标的认识:平面直角坐标系、点的坐标表示。
五、大数据运算
1.加减法的计算:整数的加减法运算、分数与整数的加减法运算、小数加减法运算。
2.乘法的计算:整数的乘法运算、分数与整数的乘法运算、小数乘法运算。
3.除法的计算:整数的除法运算、带余除法、分数的除法运算、小数的除法运算。
4.大数计算:多位整数的加减法运算、多位整数的乘法算术、多位整数的除法算术。
180条小学数学基础概念导语:180条小学数学基础概念,说实话,整理不易,希望能对孩子们有所帮助。
这是概念性知识,需要结合题目讲解给孩子,帮孩子梳理清楚小学的概念。
整数概念【自然数】我们在数物体的时候,用来表示物体个数的1,2,3,4,5,...叫做自然数。
一个物体也没有,用“0”表示,“0”也是自然数,它是最小的自然数,没有最大的自然数,自然数是无限的。
【整数】在小学阶段,整数通常指自然数。
【数字】表示数目的符号叫做数字,通常把数字叫做数码。
【加法】把两个数合并成一个数的运算,叫做加法。
【加数】在加法中相加的两个数,叫做加数。
【和】在加法中两个加数相加得到的数叫做和。
【减法】已知两个数的和与其中一个数,求另一个加数的运算,叫做减法。
【被减数】在减法中,已知的和叫做被减数。
【减数】在减法中,减去的已知加数叫做减数。
【差】在减法中,求出的未知加数叫做差。
【乘法】求几个相同加数的和的简便运算,叫做乘法。
【因数】在乘法中,相乘的两个数都叫做积的因数。
【积】在乘法中,乘得的结果叫做积。
【除法】已知两个因数的积,与其中一个因数,求另一个因数的运算,叫做除法。
【被除数】在除法中已知的积叫做被除数。
【除数】在除法中,已知的一个因数叫做除数。
【商】在除法中,未知的因数叫做商。
【计数单位】一,十,百,千,万,十万,百万,千万,亿......都叫做计数单位。
【十进制计数法】每相邻的两个计数单位间的进率是十。
这种计数方法叫做十进制计数法。
【数位】写数的时候,把计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
一个数字所在的数位不同,表示的数的大小也不同。
第一个数位称为个位,依次是十位,百位,千位,万位,十万位......【有余数除法】一个整数除以另一个不为零的整数,得到整数的商以后还有余数,这样的除法叫做有余数的除法。
余数比除数小。
【整数四则混合运算】我们学过的加减乘除四种运算,统称为四则运算。
【第一级运算】在四则运算中,加法和减法叫做第一级运算。
下面是人教版六年级数学上册的概念知识点整理:1.数的认识-认识自然数、整数、分数、小数等概念-认识正数、负数和零的概念-了解数的大小比较和排列2.数的读法和写法-数字的读法和写法-十进制的概念,理解位权和数位-简单数的四则运算3.整数的加法和减法-整数的加减法运算-用数轴表示整数的加减法过程-整数运算的法则和性质-解决实际问题的整数运算4.有理数的加法和减法-有理数的加减法运算-解决实际问题的有理数运算5.小数的认识-认识小数的概念和意义-小数的读法和写法-小数的大小比较和排序6.小数的加法和减法-小数的加减法运算-用模拟算法和抽象算法解决小数运算问题7.分数的认识-分数的概念和意义-分数的读法和写法-分数的比较和排序8.分数的加法和减法-分数的加减法运算-分数运算的法则和性质-解决实际问题的分数运算9.对分数的认识-认识多个单位组成的分数-认识真分数、假分数和带分数10.分数的乘法-分数的乘法运算-解决实际问题的分数乘法11.分数的除法-分数的除法运算-解决实际问题的分数除法12.分数和小数的互化-分数和小数的互化过程-分数和小数的相互转换13.常用分数和小数的计算-分数和小数的计算技巧-解决实际问题的分数和小数的计算14.单位换算-体重、长度、容量等常用单位的换算-解决实际问题的单位换算15.图形的认识-认识直线、射线、线段等几何概念-认识多边形、圆等图形16.直角和直角三角形-认识直角和直角三角形的性质和特征-计算直角三角形的长度17.图形的相似-认识相似图形的概念和性质-判定相似图形的条件-计算相似图形的长度比和面积比。
小学数学复习资料(删减版)一、基本概念计数单位:一(个)、十、百、千、万、十万、亿……都是计数单位。
相邻两个计数单位的进率都是10。
3. 数的整除:自然数和0都是整数。
个位上是0、2、4、6、8的数,都能被2整除。
个位上是0或5的数,都能被5整除。
所有位上的数的和能被3整除。
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。
一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12都是合数。
1不是质数也不是合数,自然数除了1外,不是质数就是合数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
几个数公有的约数,叫做这几个数的公约数。
其中最大的一个叫做这几个数的最大公约数,公约数只有1的两个数,叫做互质数。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
小数化成分数:有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
分数化成小数:用分母去除分子能除尽的就化成有限小数,不能除尽,不能化成有限小数的,一般保留三位小数。
小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。
求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。
小学的数学概念总结数学作为一门重要的学科,是培养学生逻辑思维和数学思维的重要方式之一。
小学数学作为学科的起点,承载了培养学生基本数学概念和算法的重任。
下面,我将对小学的数学概念进行总结。
一、数的基本概念数是我们用来计数和度量的工具,是数学研究的基本对象。
小学阶段,我们首先学习了自然数,了解了自然数的基本性质和运算规则。
然后学习了零和负数的概念,进一步扩展了数的概念。
二、数的比较和排序在小学阶段,学生了解了数的比较和排序。
比较是指将两个数进行对比,找出大小的关系。
排序是指将一组数按照从大到小或从小到大的顺序排列。
通过学习比较和排序,培养了学生比较和排序的能力。
三、数与数之间的关系在小学阶段,学生开始接触到数与数之间的关系。
学生学习了数的奇偶性,掌握了判断一个数的奇偶性的方法。
学习了数的因数和倍数,了解了两个数之间的因数倍数关系。
四、数的四则运算四则运算是小学数学的基础内容。
小学阶段,学生学习了加减乘除的基本方法和运算规则,并通过各种练习掌握了运算技巧。
学生学会了计算各种两个数之间的运算结果。
五、数字的表达形式在小学阶段,我们学习了数字的表达形式。
了解了阿拉伯数字的起源和发展过程,掌握了阿拉伯数字的读法和书写方法。
此外,我们还学习了小数的读法和书写方法,学会了分数的表示方法和运算规则。
六、长度、面积和体积的测量在小学阶段,我们学习了长度、面积和体积的测量。
了解了常用长度单位(厘米、米、千米等)、面积单位(平方米、平方厘米等)以及体积单位(立方米、立方厘米等)。
学生通过实际操作和计算,掌握了测量长度、面积和体积的方法。
七、图形与几何小学阶段,学生接触到了图形和几何的概念。
了解了各种基本的平面图形(如正方形、长方形、圆形等)和立体图形(如长方体、圆柱体、球体等)的属性。
学生学会了根据给定条件绘制图形,并进行一些基本的图形变换和构造。
八、时间和时钟的计算小学阶段,我们学习了时间的计算和时钟的读法。
学生了解了时钟的基本构造和指针的运动规律,掌握了读取时钟和计算时间的方法。
数学高中基础知识点整理数学是一门基础学科,对于高中阶段学生来说,数学基础知识点的掌握是学习后续知识的重要前提。
下面我将从数的概念、代数、函数、几何和概率五个方面总结高中数学的基础知识点。
一、数的概念数的概念是整个数学学科的基础,它包含了自然数、整数、有理数和无理数等多个概念。
在高中数学中,学生需要掌握以下基本概念:1. 自然数:指1、2、3……依次增加的整数,记作N+ 。
2. 整数:指自然数、0和相反数,记作Z。
3. 有理数:指可以用整数的比表示的数,记作Q。
4. 无理数:指不能用整数的比表示的数,例如π、√2等。
另外,学生需要掌握数的四则运算、分数运算等基本计算方法。
二、代数代数是高中数学中的重点内容,涉及到方程、不等式、函数等多个知识点。
以下是高中代数的基础知识点:1. 一次方程:指未知数的指数最高次为1的方程,例如ax+b=0。
2. 一元二次方程:指未知数的指数最高次为2的方程,例如ax2+bx+c=0。
3. 不等式:包括一元一次不等式、一元二次不等式等,是方程的一种变形,具体形式为ax+b>0、ax+b≥0等。
4. 多项式:指包含有一个或多个项的代数式,例如3x2+5x+7。
5. 分式:指两个多项式之商的形式,例如a/b。
三、函数函数是高中数学人们关注度较高的一个知识点,涵盖了函数的概念、分段函数、反函数等内容。
以下是高中函数的基础知识点:1. 函数的概念:指一组由自变量x确定的因变量y值,记作y=f(x)。
2. 分段函数:指一个函数在不同区间使用不同的解析式来表示函数,例如:\begin{cases}y=x+1 & x>0\\y=2x & x\leq0\end{cases}3. 反函数:指由函数f(x)按照x=y的方式解出y=f-1(x),其作用是将y=f(x)的函数图像通过y=x的对称轴变换得到f-1(x)的函数图像。
四、几何几何也是高中数学中的难点之一,需要掌握的知识点包括平面几何和空间几何。
数学概念整理::整数部分:十进制计数法;一(个)、十、百、千、万……都叫做计数单位。
其中“一”是计数的基本单位。
10个1是10,10个10是100……每两个计数大单位之间的进率都是十。
这种计数方法叫做十进制计数法整数的读法:从高位一级一级读,读出级名(亿、万),每级末尾0都不读。
其他数位一个或连续几个0都只读一个“零”。
整数的写法:从高位一级一级写,哪一位一个单位也没有就写0。
四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。
这种求近似数的方法就叫做四舍五入法。
整数大小的比较:位数多的数较大,数位相同最高位上数大的就大,最高位相同比看第二位较大就大,以此类推。
小数部分:把整数1平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……这些分数可以用小数表示。
如1/10记作0.1,7/100记作0.07。
小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)……小数部分最大的计数单位是十分之一,没有最小的计数单位。
小数部分有几个数位,就叫做几位小数。
如0.36是两位小数,3.066是三位小数小数的读法:整数部分整数读,小数点读点,小数部分顺序读。
小数的写法:小数点写在个位右下角。
小数的性质:小数末尾添0去0大小不变。
化简小数点位置移动引起大小变化:右移扩大左缩小,1十2百3千倍。
小数大小比较:整数部分大就大;整数相同看十分位大就大;以此类推。
分数和百分数■分数和百分数的意义1、分数的意义:把单位“ 1” 平均分成若干份,表示这样的一份或者几份的数,叫做分数。
在分数里,表示把单位“ 1” 平均分成多少份的数,叫做分数的分母;表示取了多少份的数,叫做分数的分子;其中的一份,叫做分数单位。
2、百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数。
也叫百分率或百分比。
百分数通常不写成分数的形式,而用特定的“%”来表示。
百分数一般只表示两个数量关系之间的倍数关系,后面不能带单位名称。
3、百分数表示两个数量之间的倍比关系,它的后面不能写计量单位。
4、成数:几成就是十分之几。
■分数的种类按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数■分数和除法的关系及分数的基本性质1、除法是一种运算,有运算符号;分数是一种数。
因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。
2、由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。
3、分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。
■约分和通分1、分子、分母是互质数的分数,叫做最简分数。
2、把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。
3、约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
4、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
5、通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
■倒数1、乘积是1的两个数互为倒数。
2、求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
3、1的倒数是1,0没有倒数■分数的大小比较1、分母相同的分数,分子大的那个分数就大。
2、分子相同的分数,分母小的那个分数就大。
3、分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。
4、如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。
■百分数与折数、成数的互化:例如:三折就是30%,七五折就是75%,成数就是十分之几,如一成就是牐闯砂俜质褪?0%,则六成五就是65%。
■纳税和利息:税率:应纳税额与各种收入的比率。
利率:利息与本金的百分率。
由银行规定按年或按月计算。
利息的计算公式:利息=本金×利率×时间百分数与分数的区别主要有以下三点:1.意义不同。
百分数是“表示一个数是另一个数的百分之几的数。
”它只能表示两数之间的倍数关系,不能表示某一具体数量。
如:可以说1米是5米的20%,不可以说“一段绳子长为20%米。
”因此,百分数后面不能带单位名称。
分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。
分数不仅可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示一定的数量,如:犌Э恕米等。
2.应用范围不同。
百分数在生产、工作和生活中,常用于调查、统计、分析与比较。
而分数常常是在测量、计算中,得不到整数结果时使用。
3.书写形式不同。
百分数通常不写成分数形式,而采用百分号“%”来表示。
如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。
而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。
数的整除■整除的意义整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)除尽的意义甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。
■约数和倍数1、如果数a能被数b整除,a就叫b的倍数,b就叫a的约数。
2、一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
3、一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大的倍数。
■奇数和偶数1、能被2整除的数叫偶数。
例如:0、2、4、6、8、10……注:0也是偶数2、不能被2整除的数叫基数。
例如:1、3、5、7、9……■整除的特征1、能被2整除的数的特征:个位上是0、2、4、6、8。
2、能被5整除的数的特征:个位上是0或5。
3、能被3整除的数的特征:一个数的各个数位上的数之和能被3整除,这个数就能被3 整除。
■质数和合数1、一个数只有1和它本身两个约数,这个数叫做质数(素数)。
2、一个数除了1和它本身外,还有别的约数,这个数叫做合数。
3、1既不是质数,也不是合数。
4、自然数按约数的个数可分为:质数、合数5、自然数按能否被2整除分为:奇数、偶数■分解质因数1、每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数。
例如:18=3×3×2,3和2叫做18的质因数。
2、把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数。
通常用短除法来分解质因数。
3、几个数公有的因数叫做这几个数的公因数。
其中最大的一个叫这几个数的最大公因数。
公因数只有1的两个数,叫做互质数。
几个数公有的倍数叫做这几个数的公倍数。
其中最大的一个叫这几个数的最大公倍数。
4、特殊情况下几个数的最大公约数和最小公倍数。
(1)如果几个数中,较大数是较小数的倍数,较小数是较大数的约数,则较大数是它们的最小公倍数,较小数是它们的最大公约数。
(2)如果几个数两两互质,则它们的最大公约数是1,小公倍数是这几个数连乘的积。
■奇数和偶数的运算性质:1、相邻两个自然数之和是奇数,之积是偶数。
2、奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数,奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。
整数、小学、分数四则混合运算■四则运算的法则1、加法a、整数和小数:相同数位对齐,从低位加起,满十进一b、同分母分数:分母不变,分子相加;异分母分数:先通分,再相加2、减法a、整数和小数:相同数位对齐,从低位减起,哪一位不够减,退一当十再减b、同分母分数:分母不变,分子相减;异分母分数:先通分,再相减3、乘法a、整数和小数:用乘数每一位上的数去乘被乘数,用哪一位上的数去乘,得数的末位就和哪一位对起,最后把积相加,因数是小数的,积的小数位数与两位因数的小数位数相同b、分数:分子相乘的积作分子,分母相乘的积作分母。
能约分的先约分,结果要化简4、除法a、整数和小数:除数有几位,先看被除数的前几位,(不够就多看一位),除到被除数的哪一位,商就写到哪一位上。
除数是小数是,先化成整数再除,商中的小数点与被除数的小数点对齐b、甲数除以乙数(0除外),等于甲数除以乙数的倒数■运算定律加法交换律a+b=b+a结合律(a+b)+c=a+(b+c)减法性质a-b-c=a-(b+c)a-(b-c)=a-b+c乘法交换律a×b=b×a结合律(a×b)×c=a×(b×c)分配律(a+b)×c=a×c+b×c除法性质a÷(b×c)=a÷b÷ca÷(b÷c)=a÷b×c(a+b)÷c=a÷c+b÷c(a-b)÷c=a÷c-b÷c商不变性质m≠0 a÷b=(a×m)÷(b×m)=(a÷m)÷(b÷m)■积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。
推广:一个因数扩大A倍,另一个因数扩大B倍,积扩大AB倍。
一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍。
■商不变规律:在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍。
被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍。
■利用积的变化规律和商不变规律性质可以使一些计算简便。
但在有余数的除法中要注意余数。
如:8500÷200= 可以把被除数、除数同时缩小100倍来除,即85÷2= ,商不变,但此时的余数1是被缩小100被后的,所以还原成原来的余数应该是100。
简易方程■用字母表示数用字母表示数是代数的基本特点。
既简单明了,又能表达数量关系的一般规律。
■用字母表示数的注意事项1、数字与字母、字母和字母相乘时,乘号可以简写成“•“或省略不写。
数与数相乘,乘号不能省略。
2、当1和任何字母相乘时,“ 1” 省略不写。
3、数字和字母相乘时,将数字写在字母前面。
■含有字母的式子及求值求含有字母的式子的值或利用公式求值,应注意书写格式■等式与方程表示相等关系的式子叫等式。