北师大版八年级上数学教案-平方根(一)
- 格式:doc
- 大小:162.00 KB
- 文档页数:7
上埠二中《农村中小学信息技术与数学教学有效整合的实践研究》课题组2.2 平方根第1课时算术平方根第一环节:问题情境方法一:问题导入内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我的小正方形,通过剪一剪,1们做过的:由两个边长为a的大的正方形,那么有拼一拼,得到一个边长为2aa是无理数.在2是有理数,,,2?a2aaxx 叫的平方,叫前面我们学过若,则反过来ax?的什么呢?本节课我们一起来学习.方法二:问题导入前面我们学习了勾股定理,请大家根据勾股定理,结内容:合图形完成填空:222,,,?z?x?y2?w.让学生体会到学习算目的:方法一和二都是带着问题进入到这节课的学习,术平方根的必要性.2222,但不能求得,,;能求得效果:能表示,4z?5w?2?x3?y2?z wx ,,的值.y方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前说明:启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二.上埠二中《农村中小学信息技术与数学教学有效整合的实践研究》课题组第二环节:初步探究1:情境引出新概念内容2222x,你能求出来,,已知幂和指数,求底数,,4z?5?2w?x3y?吗?让学生体验概念形成过程,感受到概念引入的必要性.目的:wx之间的数但无是2到效果:学生可以估算出之间的数,,是1到23y wx,从而激发学生继续往下学习的兴趣,进而引入新的运算——,,法表示y开方.都是激发学生继续往下学习说明:无论是用方法一引入,还是方法二引入,x ,你能求出来吗?”的兴趣,都可以提出同样的问题“已知幂和指数,求底数2:在上面思考的基础上,明晰概念:内容2axxa就叫做,那么这个正数,如果一个正数一般地,即的平方等于ax?a的算术平方.特别地,我们规定的算术平方根,记为“”,读作“根号0”a0?0 ,即0.根是目的:对算术平方根概念的认识.知道平方运算和求正数的算术平方根是互逆效果:了解算术平方根的概念,的.巩固概念3:简单运用内容求下列各数的算术平方根:1 例49 (4) 14.;(3) ;(1) 900;(2) 1 64利用平方运算求一个正数的算体验求一个正数的算术平方根的过程,目的:有的正数的算让学生明白有的正数的算术平方根可以开出来,术平方根的方法,的算术平方根是.术平方根只能用根号表示,如1414效果:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个,负数没有算术平方根.0的算术平方根是0正数的算术平方根是正数,上埠二中《农村中小学信息技术与数学教学有效整合的实践研究》课题组2,即30;答案:解:(1)因为,所以900的算术平方根是30900?90030?2 1;,即(2)因为,所以1的算术平方根是11?11?4977494972?()即;的算术平方根是,所以因为(3) ,?648648864 的算术平方根是.(4)1414内容4:回解课堂引入问题2222x?,,,,.,那么5w?5?2w?x3?y3y?第三环节:深入探究t)(与下落时间自由下落物体的高度(米)秒例内容1:2h2米高的建筑物上自由下落,的关系为19.6.有一铁球从t94h?.到达地面需要多长时间?目的:用算术平方根的知识解决实际问题.2t94.h?进行变形,再效果:学生多能利用等式的性质将用求算术平方根的方法求得题目的解.224?4.9tt?h,所以正数解:将,得代入公式6h.?192??t4 .(秒) 即铁球到达地面需要2秒.t是正数,用的是算术平方根,此题是为得出下面的结说明:强调实际问题论作铺垫的.观察我们刚才求出的算术平方根有什么特点.内容2:aa是一个非负让学生认识到算术平方根定义中的两层含义:中的目的:aa也是一个非负数,负数没有算术平方根.这也是算术平的算术平方根数,方根的性质——双重非负性.上埠二中《农村中小学信息技术与数学教学有效整合的实践研究》课题组明确只有非负数才有算术平方再一次深入地认识算术平方根的概念,效果:根.第四环节:反馈练习一、填空题:;1.若一个数的算术平方根是,那么这个数是7;2 .的算术平方根是922)(;的算术平方根是3.32.4,则.若2?2?m??2)(m二、求下列各数的算术平方根:121504?)(,,.36 ,,0.64,15,102251446向地面拉三、如图,从帐篷支撑竿AB的顶部A米,地固定帐篷.若绳子的长度为AC5.5一根绳子则米,4.5C到帐篷支撑竿底部B的距离是面固定点帐篷支撑竿的高是多少米?23;二、4;.答案:一、17;2..3;.163112?151510.;;6;1;;0.8;12△ABC米,∠4.5ABC=90°,在Rt米,三、解:由题意得AC=5.5BC=2222.所以帐篷支撑竿(中,由勾股定理得米)10?5.5?4.5?BC?ABAC?10 的高是米.以便根据学生目的:旨在检测学生对算术平方根的概念和性质的掌握情况,.情况调整教学进程一步步加深对算术平方根的概练习注意了问题的梯度性,效果:由浅入深,.念以及性质的认识对学生的回答,教师要给予评价和点评.上埠二中《农村中小学信息技术与数学教学有效整合的实践研究》课题组第五环节:学习小结是为以后的学习做铺垫内容:这节课学习的算术平方根是本章的基本概念,的.通过这节课的学习,我们要掌握以下的内容:,二是≥0.0算术平方根的概念,式子中的双重非负性:一是a≥(1) a a(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根.目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质.第六环节:作业布置习题2.3四、教学设计反思1.细讲概念、强化训练要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.“讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根2ax ax,那的本质特征就是定义中指出的:“如果一个正数,即的平方等于xax”,即被开方数是正的,由的算术平方根,”的“正数么这个正数就叫做a也是正数,因此算术平方根也必须是正的.当然零的算术平方根平方的意义,是零.“加强训练”不但指要加强求算术平方根的基本训练,使练习题达到一定的不是直接写出算也包括书写格式的训练,如在求正数的算术平方根时,质和量,上埠二中《农村中小学信息技术与数学教学有效整合的实践研究》课题组非平方数的算术平方根只能用根而是通过平方运算来求算术平方根,术平方根,. 号来表示组“逐步深化”是指利用算术平方根的概念和性质的题目按不同的“梯度”.成题组,在教学的不同阶段按由浅入深的原则加以使用.发展思维、适度拓展2在教学中,根据学生的实际情况,在学有余力的情况下,可以对的双重a非负性的知识进行适当的拓展.。
北师大版数学八年级上册《算术平方根》说课稿1一. 教材分析北师大版数学八年级上册《算术平方根》是学生在学习了有理数的乘方、平方根的基础上,进一步研究算术平方根的概念和性质。
本节课的内容包括算术平方根的定义、性质和求法,以及算术平方根在实际问题中的应用。
通过本节课的学习,学生能够理解算术平方根的概念,掌握求算术平方根的方法,并能应用于解决实际问题。
二. 学情分析学生在七年级时已经学习了平方根的概念和性质,对平方根有一定的了解。
但算术平方根与平方根有所不同,需要学生进一步理解和掌握。
另外,学生在之前的学习中,已经接触过一些实际问题的解决方法,但对于一些复杂的实际问题,还需要进一步的学习和实践。
三. 说教学目标1.知识与技能目标:学生能够理解算术平方根的概念,掌握求算术平方根的方法,并能应用于解决实际问题。
2.过程与方法目标:学生通过自主学习、合作交流的方式,培养观察、思考、表达和解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,增强对数学学习的兴趣和自信心。
四. 说教学重难点1.教学重点:算术平方根的概念和性质,求算术平方根的方法。
2.教学难点:理解算术平方根与平方根的区别,以及在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师引导的教学方法,让学生在探究中学习,培养观察、思考、表达和解决问题的能力。
2.教学手段:利用多媒体课件、实物模型等辅助教学,帮助学生直观地理解算术平方根的概念和性质。
六. 说教学过程1.导入:通过回顾平方根的概念和性质,引导学生思考算术平方根的含义,激发学生的学习兴趣。
2.新课导入:介绍算术平方根的概念,引导学生通过观察、思考,总结算术平方根的性质。
3.实例讲解:通过具体的例子,讲解求算术平方根的方法,让学生在实践中掌握求解技巧。
4.课堂练习:设计一些练习题,让学生巩固所学知识,提高解决问题的能力。
5.应用拓展:结合实际问题,引导学生运用算术平方根的知识解决问题,提高学生的应用能力。
北师大版八年级数学上册:2.2《平方根》教案一. 教材分析《平方根》是北师大版八年级数学上册第2章“实数与平方根”的第2节内容。
本节内容是在学生已经掌握了有理数、无理数的概念,以及算术平方根的基础上,进一步研究平方根的概念和性质。
通过本节内容的学习,学生能够理解平方根的定义,掌握求一个数的平方根的方法,以及了解平方根在实际生活中的应用。
二. 学情分析学生在学习本节内容之前,已经掌握了有理数、无理数的概念,以及算术平方根的知识。
但是,对于平方根的性质和求法,以及平方根在实际生活中的应用,可能还存在一定的困难。
因此,在教学过程中,需要结合学生的实际情况,逐步引导学生理解和掌握平方根的知识。
三. 教学目标1.理解平方根的概念,掌握求一个数的平方根的方法。
2.能够运用平方根的知识解决实际问题。
3.培养学生的逻辑思维能力和创新能力。
四. 教学重难点1.平方根的概念和性质。
2.求一个数的平方根的方法。
3.平方根在实际生活中的应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解和掌握平方根的知识。
2.启发式教学法:通过提问和讨论,激发学生的思考,培养学生的创新能力。
3.实践操作法:通过实际操作,让学生掌握求一个数的平方根的方法。
六. 教学准备1.教学课件:制作平方根的概念、性质和求法的课件。
2.教学素材:准备一些实际问题,用于引导学生运用平方根的知识解决。
3.练习题:准备一些有关平方根的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如测量物体长度、计算土地面积等,引出平方根的概念。
提问:你们知道这些实例中涉及到的数学知识吗?2.呈现(10分钟)展示平方根的定义和性质,引导学生理解和掌握。
同时,介绍求一个数的平方根的方法,如:分解因式法、配方法等。
3.操练(10分钟)让学生分组讨论,互相练习求一个数的平方根。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些实际问题,让学生运用平方根的知识解决。
北师大版八年级上第二章第2节平方根(1)教案教学目标:(一)教学知识点1.了解数的算术平方根的概念,会用根号表示一个数的算术平方根.2.了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根.3.了解算术平方根的性质.(二)能力训练要求1.加强概念形成过程的教学,提高学生的思维水平.2.鼓励学生进行探索和交流,培养他们的创新意识和合作精神.(三)情感与价值观要求1.让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.2.训练学生动脑、动口、动手能力.教学重点:了解算术平方根的概念、性质,会用根号表示一个正数的算术平方根.教学难点:了解算术平方根的概念、性质.课堂导入:上节课我们学习了无理数、了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如在a2=2中,2是有理数,而a是无理数.在前面我们学过若x2=a,则a叫x的平方,反过来x叫a的什么呢?本节课我们就来一起研究这个问题.教学过程:1.问题的提出:(1)根据勾股定理,结合图形填空.x2=_________y2=_________z2=_________w2=_________(2)x,y,z,w中哪些是有理数?哪些是无理数?(3)怎样表示x,y,z,w呢?请大家仔细看书后回答.解:(1)x2=2, y2=3, z2=4, w2=5.(2)x,y,w是无理数,z是有理数.因为没有任何整数或分数的平方等于2,3,5,所以x,y,z不是有理数,而22=4,所以z=2.(3)x=2,y=3,z=4,w=5.2.算术平方根的概念:若一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根.记为“a ”读作“根号a ”.特别地,规定0的算术平方根是0,即0=0.3. 算术平方根的性质: 算术平方根a 具有双重非负性:(1)被开方数a 是非负数,即a ≥0;(2)算术平方根a 本身是非负数,即a ≥0.4.例题讲解:[例1]求下列各数的算术平方根:(1)900;(2)1;(3)6449;(4)14. 解:(1)因为302=900,所以900的算术平方根是30,即900=30;(2)因为12=1,所以1的算术平方根是1,即1=1;(3)因为,6449)87(2=所以6449的算术平方根是87,即876449=; (4)设一个正数x , 142=x ,14=∴x ,即14的算术平方根是14.通过上面的例题,我们可以看出一个正数的平方和求算术平方根是互为逆运算.[例2]自由下落的物体的高度h (米)与下落时间t (秒)的关系为h =4.9t 2.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?解:将h =19.6代入公式 h =4.9t 2 得t 2=4, 所以t =4=2(秒)即铁球到达地面需要2秒.[师]非常正确,那负数的算术平方根是否为负数呢?若(-2)2=4.则4=-2对吗?或者4-=-2对吗?[生甲]不对.因为算术平方根的定义是一个正数的x 的平方等于a ,这个正数x 就叫做a 的算术平方根,所以算术平方根不可能是负数.[师]由此看来,定义中的a 和x 都为正数,即算术平方根是非负数,负数没有算术平方根.用式子表示为a (a ≥0)为非负数,这是算术平方根的性质.课堂练习:(一)P 39随堂练习1、2题.(二)补充练习.1.填空题(1)若一个数的算术平方根是5,则这个数是_________.(2)94的算术平方根是_________. (3)正数_________的平方为971,25144的算术平方根为_________. (4)(-1.44)2的算术平方根为_________.(5)81的算术平方根为_________,04.0=_________2.求下列各数的算术平方根,并用符号表示出来:(1) (7.4)2 ; (2) (-3.9)2 ; (3) 2.25 ; (4) 241. 课后作业:P 40习题2.3活动与探究1. 一个圆的面积为原来的100倍时,它的半径变为原来的多少倍?2. 一个圆的面积变为原来的n 倍时,它的半径变为原来的多少倍?教学反思:要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.参考答案:课堂练习:(一) P 39随堂练习1.6,,43 17, 0.9, 210- 2.10米.(二) 补充练习1.(1)5;(2)32;(3)512,34;(4)1.44;(5)3,0.2 2.(1)7.27.2)2=(;(2) 3.93.9)2=(-;(3) 1.52.25=;(4)23412=.课后作业:P 40习题2.31.11, ,53 1.4, 103 ; 2.0.3米 ; 3.2倍,3倍,10倍,n 倍 活动与探究:1.10倍; 2.n 倍。
《平方根》平方根及算术平方根是两个重要的概念,是全章的教学重点.学生对平方根及算术平方根的概念常常混淆,因此,在教学中引导学生真正理解这两个概念的本质是什么,并能分清它们的区别与联系,引导学生建立清晰的概念系统,有针对性的、有梯度的、形式多样的课堂练习题,让学生在练习中巩固和加深知识的理解和掌握,促使学生尽快地把新知识纳入到自己原有的认知结构中。
【知识与能力目标】1.能说出平方根和算术平方根的概念,会用根号表示一个数的平方根。
2.知道开平方与平方是互逆的运算,会利用这个互逆运算关系求某些非负数的平方根。
3表示的是非负数a 的平方根。
【过程与方法目标】1.通过对比体会平方根、算术平方根的联系和区别;2.在学习开平方运算求一个数的平方根、算术平方根的过程中,体会开平方运算与平方运算之间的互逆关系。
【情感态度价值观目标】进一步感受到所学数学知识之间的内在联系。
【教学重点】平方根和算术平方根的概念和求法.【教学难点】弄清平方根与算术平方根的意义有两个边长为1的正方形,剪刀。
一、创设情境我们学习了有理数的加、减、乘、除和乘方运算,但在现实生活中,有些问题仅运用这五种运算是无法解决的.例如个面积为 50 平方米的正方形展厅,它的边长应是多少?解决这个问题就要运用一种新的运算方法,这种运算叫做开方.这节课我们就要学习开方运算和平方根。
二、探索新知(1)计算:42,(-4)2; 23()5,23()5;(10)2,(-10)202(2)如果x 2=16,则x 等于多少?因为42=16所以x=4;又因为(-4)2=16,所以x=-4.4或-4的平方都等于16,可以表示为(±4)2=16。
因为4或-4的平方都等于16,我们把4及-4叫做16的平方根。
一般地,如果一个数的平方等于a ,这个数就叫做a 的平方根(或二次方根)。
就是说,如果x 2=a,那么x 就叫做a 的平方根。
比如100的平方根是10与-10。
北师大版数学八年级上册《算术平方根》教案1一. 教材分析《算术平方根》是北师大版数学八年级上册的一章内容。
本章主要介绍了算术平方根的概念、性质和运算方法。
通过学习本章,学生能够理解算术平方根的定义,掌握求算术平方根的方法,并能够运用算术平方根解决实际问题。
二. 学情分析学生在学习本章之前,已经掌握了实数的概念和运算方法,具备了一定的数学基础。
但是,对于算术平方根的概念和运算方法可能较为陌生,需要通过实例和练习来加深理解和掌握。
三. 教学目标1.知识与技能:学生能够理解算术平方根的定义,掌握求算术平方根的方法,并能够运用算术平方根解决实际问题。
2.过程与方法:学生能够通过观察、操作、思考、交流等方式,培养解决问题的能力。
3.情感态度与价值观:学生能够对数学产生兴趣,培养积极的学习态度,增强自信心。
四. 教学重难点1.重点:算术平方根的定义和求法。
2.难点:算术平方根在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例和实际问题,引发学生的兴趣和思考,培养解决问题的能力。
2.启发式教学法:通过提问和引导,激发学生的思维,引导学生主动探索和发现。
3.合作学习法:通过小组讨论和合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教学素材:准备相关的实例和实际问题,用于引发学生的兴趣和思考。
2.教学工具:准备黑板、粉笔等教学工具,用于展示和讲解。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如测量物体长度、计算土地面积等,引发学生的兴趣和思考,引出算术平方根的概念。
2.呈现(15分钟)教师通过讲解和展示,介绍算术平方根的定义和性质,让学生初步了解和认识算术平方根。
3.操练(15分钟)教师给出一些算术平方根的题目,学生独立完成,教师进行个别指导和讲解。
通过反复练习,让学生掌握求算术平方根的方法。
4.巩固(10分钟)教师给出一些实际问题,学生运用算术平方根的知识解决。
通过解决实际问题,巩固学生对算术平方根的理解和掌握。
八年级数学上册2.2平方根第1课时算术平方根教案新版北师大版一. 教材分析平方根是八年级数学上册第2.2节的内容,主要介绍平方根的定义、性质和运算方法。
本节课的内容是学生进一步学习数学的基础,对于培养学生的逻辑思维和运算能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经学习了有理数的乘方和二次根式,对于根式的概念和性质有一定的了解。
但平方根的概念和性质较为抽象,需要学生通过实例和练习来理解和掌握。
三. 教学目标1.理解平方根的定义和性质;2.掌握求一个数的平方根的方法;3.能够运用平方根的概念解决实际问题。
四. 教学重难点1.平方根的定义和性质;2.求一个数的平方根的方法。
五. 教学方法采用问题驱动法和案例教学法,通过引导学生自主探究和合作交流,让学生在实际问题中感受平方根的概念和性质,提高学生的数学思维和解决问题的能力。
六. 教学准备3.练习题。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实例,如测量身高、计算面积等,引导学生思考这些实例中是否涉及到平方根的概念。
通过讨论和回答问题,引出平方根的概念。
2.呈现(10分钟)讲解平方根的定义和性质,通过PPT展示相关的例题和解释,让学生理解和掌握平方根的概念。
3.操练(10分钟)让学生独立完成PPT上的练习题,教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生分组讨论,互相提问,巩固对平方根的理解。
教师可以提出一些问题,引导学生深入思考。
5.拓展(10分钟)讲解求一个数的平方根的方法,并通过PPT展示相关的例题和解释,让学生掌握求平方根的技巧。
6.小结(5分钟)让学生总结本节课所学的内容,教师进行补充和讲解。
7.家庭作业(5分钟)布置一些有关平方根的练习题,让学生回家巩固所学知识。
8.板书(5分钟)板书本节课的重点内容,方便学生复习和记忆。
教学过程每个环节所用的时间如上所示,供您参考。
希望这份教案能够帮助您更好地进行教学。
2.2 平方根(一)教学目标:(一)教学知识点1.了解数的算术平方根的概念,会用根号表示一个数的算术平方根.2.了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根.3.了解算术平方根的性质.(二)能力训练要求1.加强概念形成过程的教学,提高学生的思维水平.2.鼓励学生进行探索和交流,培养他们的创新意识和合作精神.(三)情感与价值观要求1.让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.2.训练学生动脑、动口、动手能力.教学重点:了解算术平方根的概念、性质,会用根号表示一个正数的算术平方根.教学难点:了解算术平方根的概念、性质.教学过程:Ⅰ.新课导入上节课我们学习了无理数、了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如在a2=2中,2是有理数,而a是无理数.在前面我们学过若x2=a,则a叫x的平方,反过来x叫a的什么呢?本节课我们就来一起研究这个问题.Ⅱ.讲授新课[师]在讲新课之前,我们先回忆一下勾股定理,请同学们回答.[生]勾股定理就是在直角三角形中两条直角边的平方和等于斜边的平方.[师]下面请大家根据勾股定量,结合图形完成填空. 根据下图填空x2=_________y2=_________z2=_________w2=_________[师]请大家思考后回答.[生]x2=2,y2=3,z2=4,w2=5.[师]请大家再分析一下,x,y,z,w中哪些是有理数?哪些是无理数?[生]x,y,w是无理数,z是有理数.[师]为什么呢?[生]因为没有任何整数或分数的平方等于2,3,5,所以x,y,z不是有理数,而22=4,所以z=2.[师]这位同学分析得非常正确,那么大家能不能把上图中的x,y,z,w表示出来呢?请大家仔细看书后回答.[生]x =2,y =3,z =4,w =5.[师]若一个正数x 的平方等于a ,即x 2=a ,则这个正数x 就叫做a 的算术平方根.记为“a ”读作“根号a ”.这就是算术平方根的定义.特别地规定0的算术平方根是0,即0=0.[师]下面我们根据算术平方根的定义求一些数的算术平方根. [例1]求下列各数的算术平方根: (1)900;(2)1;(3)6449;(4)14.解:(1)因为302=900,所以900的算术平方根是30,即900=30;(2)因为12=1,所以1的算术平方根是1,即1=1;(3)因为,6449)87(2=所以6449的算术平方根是87,即876449=;(4)14的算术平方根是14.通过上面的例题,大家思考一下,我们在求算术平方根时是借助于哪一种运算来求的? [生]是通过平方来求的.[师]对.由此我们可以看出一个正数的平方和求算术平方根是互为逆运算.而且我们在例题中的步骤采取语言叙述和符号表示互相补充的做法,目的是让大家明白算术平方根的概念,以及从计算中进一步体会一个正数的平方和求算术平方根是互为逆运算.在以后的步骤中可以简化.[例2]自由下落的物体的高度h (米)与下落时间t (秒)的关系为h =4.9t 2.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?解:将h =19.6代入公式h =4.9t 2得 t 2=4,所以t =4=2(秒)即铁球到达地面需要2秒.[师]下面大家再观察一下刚才咱们求出的算术平方根有什么特点. [生甲]算术平方根是整数或分数,即为有理数. [生乙]不对,那14是不是有理数?若是则是,分数还是整数?[生丙]因为没有任何一个整数或分数的平方等于14,所以14不是有理数,而是无理数.[师]大家的分析都有道理,我提示一下从符号方面考虑. [生甲]噢,算术平方根是正数,如14,5,3,2,2.[生乙]不对,还有零呢.正数的算术平方根是正数,零的算术平方根为零. [师]非常正确,那负数的算术平方根是否为负数呢?若(-2)2=4.则4=-2对吗?或者4-=-2对吗?[生甲]不对.因为算术平方根的定义是一个正数的x 的平方等于a ,这个正数x 就叫做a 的算术平方根,所以算术平方根不可能是负数.[师]由此看来,定义中的a 和x 都为正数,即算术平方根是非负数,负数没有算术平方根.用式子表示为a (a ≥0)为非负数,这是算术平方根的性质.Ⅲ.课堂练习 (一)P 32随堂练习1、2题. (二)补充练习. 一、填空题 1.若一个数的算术平方根是5,则这个数是_________.2.94的算术平方根是_________. 3.正数_________的平方为971,25144的算术平方根为_________.4.(-1.44)2的算术平方根为_________.5.81的算术平方根为_________,04.0=_________二、求下列各数的算术平方根,并用符号表示出来: (1)(7.4)2;(2)(-3.9)2;(3)2.25;(4)241. Ⅳ.课时小结本节课学习了算术平方根的概念,理解了求一个正数的平方和求算术平方根是互为逆运算,求一个非零数的算术平方根,以及算术平方根的性质,即算术平方根是非负数.Ⅴ.课后作业 P 33习题1、3. Ⅵ.活动与探究1.一个正方形的面积变为原来的n 倍时,它的边长变为原来的多少倍?2.一个正方形的面积为原来的100倍时,它的边长变为原来的多少倍? 解:设原来的正方形边长为a ,面积为S 1,后来的正方形面积为S 2. 1.S 1=a 2,S 2=na 2(n a )2∴后来的边长(n a )为原来边长的n 倍.2.S 1=a 2,S 2=100a 2=(10a )2∴后来的边长10a 为原来边长的10倍. 板书设计:一、算术平方根的定义算术平方根的性质 二、举例 三、练习 四、作业 教学反思:2.2 平方根(二)教学目标: (一)教学知识点1.了解平方根的概念、开平方的概念.2.明确算术平方根与平方根的区别与联系.3.进一步明确平方与开方是互为逆运算. (二)能力训练要求1.加强概念形成过程的教学,让学生不仅掌握概念,而且知晓它的理论数据.2.提倡学生进行自学,并能与同学互相交流与合作,变学会知识为会学知识.3.培养学生的求同和求异思维,能从相似的事物中观察到P X 们的共同点和不同点. (三)情感与价值观要求通过学生在学习中互相帮助、相互合作,并能对不同概念进行区分,培养大家的团队精神,以及认真仔细的学习态度,为学生将来走上社会而做准备,使他们能在工作中保持严谨的态度,正确处理好人际关系,成为各方面的佼佼者.教学重点:1.了解平方根、开平方的概念.2.了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.3.了解平方根与算术平方根的区别与联系. 教学难点:1.平方根与算术平方根的区别与联系.2.负数没有平方根,即负数不能进行开平方运算的原因. 教学方法: 讨论比较法.即主要靠大家讨论得出结论,同时对相似的概念进行比较.这样不仅能正确区分这些概念,还能使学生学得更扎实.教学过程:Ⅰ.创设问题情境,引入新课上节课我们学习了算术平方根的概念,性质.知道若一个正数x 的平方等于a ,即x 2=a .则x 叫a 的算术平方根,记作x =a ,而且a 也是非负数,比如正数22=4,则2叫4的算术平方根,4叫2的平方,但是(-2)2=4,则-2叫4的什么根呢?下面我们就来讨论这个问题.Ⅱ.讲授新课1.平方根、开平方的概念 [师]请大家先思考两个问题.(1)9的算术平方根是3,也就是说,3的平方是9,还有其他的数,它的平方也是9吗? (2)平方等于254的数有几个?平方等于0.64的数呢?[生]-3的平方也是9.52的平方是254,-52的平方也是254,即平方等于254的数有两个.[生]平方等于9的数有两个,平方等于254的数有两个,由此可知平方等于0.64的数也有两个.[师]根据上一节课的内容,我们知道了是9的算术平方根,52是254的算术平方根,那么-3,-52叫9、254的什么根呢?请大家认真看书后回答.[生]-3,-52分别叫9、254的平方根.[师]那是不是说3叫9的算术平方根,-3也叫9的算术平方根,即9的算术平方根有一个是3,另一个是-3呢?[生]不对.根据平方根的定义,一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个x 就叫a 的平方根(square root),也叫二次方根,3和-3的平方都等于9,由定义可知3和-3都是9的平方根,即9的平方根有两个3和-3,9的算术平方根只有一个是3.[师]由平方根和算术平方根的定义,大家能否找出它们有什么相同和不同之处呢?请分小组讨论后选代表回答.[生]平方根的定义中是有一个数x 的平方等于a ,则x 叫a 的平方根,x 没有肯定是正数还是负数或零;而算术平方根的定义中是有一个正数x 的平方等于a ,则x 叫a 的算术平方根,这里的x 只能是正数.由此看来都有x 2=a ,这是它们的相同之处,而x 的要求不同,这是它们的不同之处. [师]这位同学分析判断能力特棒,下面我再详细作一总结. 平方根与算术平方根的联系与区别联系:(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种.(2)存在条件相同:平方根和算术平方根都是只有非负数才有. (3)0的平方根,算术平方根都是0. 区别:(1)定义不同:“如果一个数的平方等于a ,这个数就叫做a 的平方根”;“非负数a 的非负平方根叫a 的算术平方根”.(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个. (3)表示法不同:正数a 的平方根表示为±a ,正数a 的算术平方根表示为a .(4)取值范围不同:正数的平方根一正一负,互为相反数;正数的算术平方根只有一个. [师]什么叫开平方呢?[生]求一个数a 的平方根的运算,叫开平方(extraction of square root ),其中a 叫被开方数. [师]我们共学了几种运算呢,这几种运算之间有怎样的联系呢?请大家讨论后回答.[生]我们共学了加、减、乘、除、乘方、开方六种运算.加与减互为逆运算,乘与除互为逆运算,乘方与开方互为逆运算.2.平方根的性质[师]请大家思考以下问题. (1)一个正数有几个平方根. (2)0有几个平方根? (3)负数呢?[生]第一个问题在前面已作过讨论,一个正数9有两个平方根3和-3; 因为只有零的平方为零,所以0有一个平方根是零.因为任何数的平方都不是负数,所以负数没有平方根,例如-3没有平方根.[师]太精彩了.一个正数有两个平方根,且它们互为相反数;0有一个平方根是0,负数没有平方根. 3.讲解例题[例]求下列各数的平方根. (1)64;(2)12149;(3)0.0004;(4)(-25)2;(5)11. 4.想一想(1)(64)2等于多少?(12149)2等于多少?(2)(2.7)2等于多少?(3)对于正数a ,(a )2等于多少?Ⅲ.课堂练习 (一)随堂练习1.求下列各数的平方根 1.44,0,8,49100,441,196,10-42.填空(1)25的平方根是_________; (2)2)5( =_________;(3)(5)2=_________.(二)补充练习1.判断下列各数是否有平方根?并说明理由. (1)(-3)2;(2)0;(3)-0.01;(4)-52;(5)-a 2;(6)a 2-2a +2 2.求下列各数的平方根. (1)121;(2)0.01;(3)297;(4)(-13)2;(5)-(-4)3Ⅳ.课时小结本节课学了如下内容. 1.平方根的概念. 2.平方根的性质.3.平方根与算术平方根的区别与联系.4.求某些非负数的算术平方根和平方根. Ⅴ.课后作业 习题2.4. Ⅵ.活动与探究 1.对于任意数a ,2a 一定等于a 吗?2.a 中的被开方数a 在什么情况下有意义,(a )2等于什么?解:因为任意数的平方都是非负数,也就是非负数才有平方根,所以被开方数a 必须是正数或零,即非负数时有意义.所以(a )2=a (a ≥0)板书设计:§2.2.2 平方根(二)一、平方根的定义;平方根的性质;平方根与算术;平方根的区别与联系.二、例题讲解三、练习四、小结五、作业教学反思:这节主要是算术平方根与平方根的区别与联系,其中表示方法,求式子的值都是很容易混淆的。