因为∁RA=(-∞,-3)∪(1,+∞),
所以(∁RA)∩B=(1,3).
(2)由(1)知A=[-3,1].
∁RA=(-∞,-3)∪(1,+∞),B=(-2a,3a).
又(∁RA)∪B=R,
得
-2 < -3,
3
解得 a> .
2
3 > 1,
3
2
即 a 的取值范围为( ,+∞).
考点一
考点二
考点三
则其否定“∃x∈R,x2-2x≤0”是真命题,C满足;对于选项D,因为
x2+2x+2=(x+1)2+1>0恒成立,所以“∃x∈R,x2+2x+2≤0”是假命题,
所以其否定“∀x∈R,x2+2x+2>0”,是真命题,所以D满足.故选CD.
考点一
考点二
考点三
全称量词命题的否定是存在量词命题,存在量词命题的否定是全称
素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A
是集合B的子集,记作A⊆B(或B⊇A),读作A包含于B(或B包含A).
(2)真子集的概念:如果集合A⊆B,但存在元素x∈B且x∉A,我们称集
合A是集合B的真子集,记作A⫋B(或B⫌A),读作A真包含于B(或B真
包含A).
(3)空集的概念:不含任何元素的集合叫作空集,记作⌀.空集是任何
集合的子集,是任何非空集合的真子集.
3.集合的运算
(1)并集的定义:A∪B={x|x∈A,或x∈B};
(2)交集的定义:A∩B={x|x∈A,且x∈B};
(3)补集的定义:∁UA={x|x∈U,且x∉A}.
4.充分条件、必要条件