地磁学_1
- 格式:ppt
- 大小:54.90 MB
- 文档页数:46
物理地磁知识点总结归纳1. 地球磁场的基本特征地球磁场是指地球周围存在的一种特殊的磁场,它具有以下几个基本特征:(1) 磁场的三维分布不均匀,呈现出复杂的结构;(2) 在地球表面上,磁场的强度和方向均有明显的地域性差异,这种差异称为地磁畸变;(3) 在地球的内部,磁场的强弱和方向可能会发生变化,这种变化称为地磁异常。
2. 地球磁场的产生地球磁场的产生主要是由地球内部的磁性物质运动产生的。
地球内部的核物质在地球自转的作用下形成了涡流,这种涡流产生的磁场叫做地球自发磁场。
除此之外,地球的地壳中也存在一些磁性矿物,它们的磁性使得地壳中也存在磁场。
地球自发磁场和地壳磁场共同作用形成了地球总磁场。
3. 地球磁场的变化地球磁场存在着一些周期性的变化,其中最重要的是地球磁极的漂移和磁场强度的变化。
(1) 地球磁极的漂移是指地球磁场的地理北极和地理南极位置会随时间而发生变化。
这种漂移是非常缓慢的,大约每一两百万年才会发生一次翻转。
地球磁极的漂移对导航定位和航天探测等有重要影响。
(2) 地球磁场的强度也会随时间而变化,这种变化是不规则的,在一定时间内,地球磁场的强度可能会有显著的增弱或增强。
地球磁场的强度变化会对地球内部活动和生物生态系统产生一定影响。
4. 地球磁场的应用地球磁场具有重要的应用价值,主要可以体现在以下几个方面:(1) 导航定位:地球磁场可以作为地面、航空、航天导航定位的重要参考依据。
利用地球磁场的性质,可以确定地理方向和定位坐标。
(2) 矿产资源勘探:地球磁场对地壳中的磁性矿物产生显著的影响,利用地球磁场的变化可以寻找地下的磁性矿产资源。
(3) 环境监测:地球磁场的变化还可以用来监测大气活动、地壳活动,以及太阳和地球磁层相互作用的情况,对于环境监测和预警具有一定作用。
5. 地球磁场的研究方法地球磁场研究的方法主要包括实地观测和实验室研究两种。
(1) 实地观测:包括对地球磁场强度、方向、地磁异常和地磁畸变等进行实地观测,通常采用磁力计、地磁测量仪、磁性测量仪等设备进行观测。
地球物理学中的地磁学研究地球是我们生存的家园,生命的起源和演化与地球的物理特征密切相关。
其中地磁场是地球物理学中研究的重要领域之一。
地磁学研究的主要任务是探测地球磁场的变化规律和机制,及其对地球和人类生活的影响。
一、地磁场的基本特征地磁场是指地球所持有的磁场,其主要作用是保护地球表面的生命体不受太空带来的辐射伤害。
地球的磁场具有复杂的空间结构和时间变化规律。
磁场强度一般随着纬度的增加而逐渐减小。
地磁场还有一个十分特殊的点,称为地球磁极。
地球磁极分为北极和南极,其位置会随时变化。
近年来,科学家们越来越关注地球磁极移动的趋势及其影响。
二、地磁场的研究方法地磁学的研究方法包括观测、实验和理论模拟三种。
观测方法主要包括地球磁场测量、地球磁场探测、地磁场监测等。
地球磁场测量是研究地球磁场基本参数如强度、方向和倾斜角等的主要方法。
地球磁场探测则是指用测量地球磁场强度、方向、倾斜角等参数的方法来探测地下矿物、油藏等的空间分布规律和地质构造。
地磁场监测则是监测地球磁场的变化,包括对地球磁场变化的突发事件进行实时监测、探测和预警等。
实验方法主要是通过实验室环境中的地磁场测试,来加深对地球磁场变化机理的理解,以及提供实验基础数据来验证地磁场理论。
理论模拟方法是通过分析、建模以及模拟计算,来对地球磁场的变化机理进行理论推断和模拟预测。
据此,科学家们可以更好地认识和理解地球磁场的基本特征、动力学和变化规律。
三、地磁学在科学研究中的应用地磁学在人类活动中有着广泛的应用场景,主要涉及天然资源开发、环境保护、气象、国防、地震等领域。
在资源勘探方面,地磁场探测技术可用于寻找地下矿物、油藏等的空间分布规律,为标定靶区提供了可靠的基础数据。
在环境保护方面,地磁场监测技术可用于研究地球磁场对生物活动的影响、判断太阳风暴对生态环境的影响,为环境保护提供了科学依据。
在气象学中,地磁学理论可用于天气预报,因为地球的磁场变化和气象的变化高度相关。
物理地磁知识点总结地磁学知识点总结1. 地球磁场的产生机制地球磁场是地球内部磁性物质运动所产生的结果。
地球内部存在一个由液态铁合金构成的外核,外核的流动运动导致了地球磁场的产生。
具体来说,地球内核的自转和对流运动产生了一个巨大的磁场,这个磁场与地球表面的磁性物质相互作用,形成了地球的磁场。
地球的自转和外核的对流运动是维持地球磁场的主要机制。
2. 地球磁场的性质地球磁场具有磁场方向、强度和倾角等性质。
地球磁场的磁场方向是指地磁场的方向,即地球某一点上的磁力线的方向。
通常情况下,地球磁场的方向是从地球南极指向地球北极。
地球磁场的强度是指地磁场的大小,通常用高斯(G)或特斯拉(T)作为单位来表示。
地球磁场的倾角是指地磁场线与地球水平面的夹角,它随着地理纬度的变化而变化。
3. 地磁场的测量方法地磁场的测量方法有地面测量和空中测量两种。
地面测量是指在地面上进行的地磁场测量,它通常使用磁通门、磁针和地磁仪等装置来测量地磁场的强度和方向。
空中测量是指在空中进行的地磁场测量,它通常使用飞机、卫星等载具来进行地磁场的测量。
地磁场的测量可以帮助科学家们了解地球磁场的性质和变化规律,为地球科学研究提供重要的数据支持。
4. 地球磁极漂移和磁场翻转地球磁极漂移是指地球磁极位置的变化。
地球磁极并不是固定不变的,它会随着时间的推移发生位置的漂移。
地球磁极漂移是地球磁场的一个重要特征,它可以帮助科学家们了解地球内部的物质运动和地球磁场的演变历史。
另外,地球磁场还会发生磁场翻转,即地球磁场的磁极位置发生颠倒。
地球磁场的翻转是地质历史中的一个重大事件,它对地球环境和生物演化产生了重要影响。
5. 地球磁场对人类的影响地球磁场对人类有着重要的影响。
首先,地球磁场可以保护地球上的生物免受太阳风的侵害。
太阳风中带有高能粒子,如果没有地球磁场的保护,这些粒子将对地球上的生物和电子设备产生严重的危害。
其次,地球磁场还对人类的导航和定位具有重要意义。
地磁场定义:研究磁场的时间变化、空间分布、起源及其规律的学科。
固体地球物理学的一个分支。
地球周围存在磁场,简称地磁场。
地球可视为一个磁偶极,其中一极位在地理北极附近,另一极位在地理南极附近。
通过这两个磁极的假想直线(磁轴)与地球的自转轴大约成11.5度的倾斜。
以前的单位是伽马(=10-9T=1 nT),现在的单位是特斯拉(=10000高斯)。
地磁学的研究意义:1,资源、能源勘探2,地质构造运动、地球内部结构与地球动力学3,预防和减轻灾害(地震、火山、滑坡、环境电磁污染等)4,考古5,军事、航空与航天、航海、通讯等:行军、航海利用地磁场对指南针的作用来定向。
地磁场的变化能影响无线电波的传播。
当地磁场受到太阳黑子活动而发生强烈扰动时,远距离通讯将受到严重影响,甚至中断。
假如没有地磁场,从太阳发出的强大的带电粒子流(通常叫太阳风),就不会受到地磁场的作用发生偏转而直射地球。
在这种高能粒子的轰击下,地球的大气成份可能不是现在的样子,生命将无法存在。
所以地磁场这顶“保护伞” 对我们来说至关重要。
地磁场的基本属性:1、磁场的基本参数是介质磁化率。
2、磁场是一个矢量场。
3、地磁场比较复杂,因为:磁场向量通常不是垂直方向磁场随时间变化快地磁场是非常弱的磁场。
地球磁场的地磁极与磁极:地磁极:地磁轴与地球表面的交点,其连线一定通过地心。
磁极(磁倾极):由实测结果得到,即地磁图中倾角为90度而等偏线汇聚的两个,其连线不一定通过地心描述地球磁场空间变化的形式:1、数据表测点坐标、测量时间、地磁要素的数值、通化值2、地磁图:特定时刻各个地磁要素在地面上的分布图3、2000.0年地磁图:将各个地磁要素通化为2000年1月1日0时0分的数值4、2000年地磁图:将各个地磁要素通化为2000年7月1日0时0分的数值5、在现代的地磁场观测中,地磁台一般只记录H,D,Z或X,Y,Z地磁场包括基本磁场和变化磁场两个部分,它们在成因上完全不同。
第四章地磁学两千年前,我们祖先发现天然磁石的吸铁性和指极性。
“阿房前殿,以木兰为梁,磁石为门,怀刃者止之。
”《梦溪笔谈》(沈括,1031-1095)中写道:“方家以磁石磨针锋,则能指南,然常微偏东,不全南也”;北宋时已将指南针用于航海(“舟师识地理,夜则观星,昼则观日,隐晦则观指南针”-《萍洲可谈》);我们古代关于磁铁性质的知识传入欧洲后,欧洲才开始对地球磁场的研究。
1640年,瑞典人受次尝试用罗盘寻找磁铁矿,开辟了利用磁场变化来寻找矿产的新途径。
1832年,高斯建立了地磁场的球谐分析方法,证实了关于地磁场起源于地球本身的论断,奠定了地磁场分析的理论基础.相关现象表明,地球具有磁场,地球上岩石、矿石具有不同的磁性,可以产生不同的磁场,使地球磁场在局部地区发生变化,出现磁场异常。
地磁学主要研究地磁场空间分布和随时间变化的规律以及地磁场的组成、起源和应用。
二十世纪以来,利用地磁测量所发现的各种地磁异常的研究,证明它们与地壳的地质构造与磁性有关的矿产分布有密切的关系,即磁法勘探。
通过岩石及古代文物的磁性来研究史前与地质时期地磁场性质、特征,即古地磁学,对于地质构造运动、地层对比、地磁场长期变化以及地磁场起源等的研究具有重要意义,特别是在研究大陆漂移、海底扩张及全球构造体系—板块构造学说的树立起到了关键性作用。
19世纪20年代世界建立第一批地磁台,1870年,我们最早地磁台诞生(北京);1957年,建立全国地磁台网。
第一节、地球磁场及其变化规律一、地磁要素及其分布磁偏角D磁倾角I总磁场强度T垂直磁场强度Z水平磁场强度H水平X分量(北向)水平Y分量(东向)地磁场是空间和时间的函数,需要实际测量,实际测量方式:固定点上连续测量,即地磁台;野外测点间断测量。
地磁要素随时间变化,将不同时刻观测数据归算到某一特定日期(1月1日0时0分),称作通化。
所成的地磁要素等值线图即为地磁图。
二、地磁场的组成地磁场 = 基本磁场 + 变化磁场 + 磁异常基本磁场:中心偶极子磁场和大陆磁场组成,来源地球内部,占地磁场主要部分(98%以上)。
地球地磁现象物理学
地球拥有自身的磁场,这种自然存在的磁场被称为地球磁场或地磁场。
地磁场的存在对地球及其周围环境有着重要影响,因此研究地磁现象及其物理学机制具有重要意义。
1. 地磁场的产生机制
地磁场的主要来源是地球内部液态外核中电离物质的对流运动。
根据电磁感应定律,带电粒子在导体中运动时会产生电流,而电流又会产生磁场。
地球内核中的对流运动就像一个巨大的电流环,从而产生地磁场。
2. 地磁场的特征
地磁场呈现出明显的空间分布不均匀性。
在地球两极附近,磁场线垂直于地面;在赤道附近,磁场线则与地面平行。
此外,地磁场还随时间变化,包括长期变化(百年尺度)和短期变化(日尺度)。
3. 地磁现象及影响
地磁场对于生命圈、航天器和卫星等都有重要影响。
例如,地磁场可以阻挡部分来自太阳的高能粒子,保护地球免受这些粒子的辐射。
同时,地磁场也会引导这些高能粒子进入极地区,形成极光现象。
4. 地磁学研究方法
研究地磁现象和物理学机制的主要方法包括:地磁观测站测量、航空和卫星遥感探测、模拟实验以及数值模拟等。
通过这些方法,科学家们能够更好地了解地磁场的演化规律,并探索其对地球环境的影响。
地球地磁现象物理学是一个涉及多学科交叉的领域,对于认识地球内部结构、研究行星磁场以及探索宇宙等方面都有重要意义。