专题01 平行线知识讲义(原卷版)
- 格式:docx
- 大小:1.04 MB
- 文档页数:31
《平行线》复习讲义一、教学内容:1. 了解对顶角的概念,掌握其性质,并会用它们进行推理和计算.2. 了解垂线、垂线段等概念,了解垂线段最短的性质,体会点到直线距离的意义.3. 知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线.4. 知道两直线平行同位角相等,并进一步探索平行线的特征.5. 知道过直线外一点有且仅有一条直线平行于已知直线.会用三角尺和直尺过已知直线外一点画这条直线的平行线.6. 掌握平行线的三个判定方法,并会用它们进行直线平行的推理.二、知识要点:1. 两条直线的位置关系(1)在同一平面内,两条直线的位置关系有两种:相交与平行.(2)平行线:在同一平面内,不相交的两条直线叫平行线.2. 几种特殊关系的角(1)余角和补角:如果两个角的和是直角,称这两个角互为余角.如果两个角的和是平角,称这两个角互为补角.(2)对顶角:①定义:一个角的两边分别是另一个角两边的反向延长线,这两个角叫对顶角.②性质:对顶角相等.(3)同位角、内错角、同旁内角两条直线分别与第三条直线相交,构成八个角.①在两条直线之间并且在第三条直线的两旁的两个角叫做内错角.②在两条直线的同一侧并且在第三条直线同旁的两个角叫做同位角.③在两条直线之间并且在第三条直线同旁的两个角叫做同旁内角.3. 主要的结论(1)垂线①过一点有且只有一条直线与已知直线垂直.②直线外一点与直线上各点连结的所有线段中,垂线段最短.简称:垂线段最短.(2)平行线的特征及判定平行线的判定平行线的特征同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补经过直线外一点,有且只有一条直线与已知直线平行4. 几个概念(1)垂线段:过直线外一点,作已知直线的垂线,这点和垂足之间的线段.(2)点到直线的距离:从直线外一点到这条直线的垂线段的长度.5. 几个基本图形(1)相交线型.①一般型(如图①);②特殊型(垂直,如图②).ABC DOABCD O ①②(2)三线八角.①一般型(如图①);②特殊型(平行,如图②).A BCDEFABCDEF①②三、重点难点:重点有两个:一方面要掌握关于相交线和平行线的一些基本事实,另一方面学会借助三角尺上的直角或量角器画已知直线的垂线,用移动三角尺的方法画平行线.难点是是利用对顶角的性质、平行线的特征、两直线平行的条件等进行推理和计算.四、考点分析:考查(1)对顶角的性质;(2)平行线的识别方法;(3)平行线的特征,其中依据平行线的识别与特征解决一类与平行线有关的几何问题是历届中考命题的重要考点.常见题型有填空题、选择题和解答题,单纯考查一个知识点的题目并不难,属于中低档题,将平行线的特征与其他知识综合起来考查的题目难度较大,属高档题.【典型例题】例1. 如图所示,已知FC ∥AB ∥DE ,∠α∶∠D ∶∠B =2∶3∶4,求∠α、∠D 、∠B 的度数.ABC DEF12α分析:由条件∠α∶∠D ∶∠B =2∶3∶4.可以分别设出∠α、∠D 、∠B ,再根据题目给出的条件建立方程求解.解:设∠α=2x ,∠D =3x ,∠B =4x . ∵FC ∥AB ∥DE ,∴∠2+∠B =180°,∠1+∠D =180°, ∴∠2=180°-4x ,∠1=180°-3x , 又∵∠1+∠α+∠2=180°,∴180°-3x +2x +180°-4x =180°,∴5x =180°,x =36°,∴∠α=2x =72°,∠D =3x =108°,∠B =4x =144°.评析:解答这类计算题不仅要熟悉图形的性质,还要善于进行等量转化,把待求的角逐步和已知条件建立起联系来,当待求结论要经过复杂过程才能求得时,一定要思路清晰、叙述表达严密.例2. 如图所示,直线a ∥b ,则∠A =__________.AB C Ea b28°50°ABCDEa b28°50°分析:已知条件a ∥b 能转化为三线八角,过A 作AD ∥a ,那么已知的两个角可转换到顶点A (都用内错关系转化),可求∠A. 由AD ∥a ,a ∥b ,可知AD ∥b ,由两直线平行内错角相等得:∠DAB =∠ABE =28°,∠DAE =50°,∴∠EAB =50°-28°=22°.解:22°评析:用平行线三线八角把已知角转化成以A 为顶点的角即可.例3. 已知:如图所示,DF ∥AC ,∠1=∠2.试说明DE ∥AB.ABC DEF 12分析:要说明DE ∥AB ,可以证明∠1=∠A ,而由DF ∥AC ,有∠2=∠A ,又因为∠1=∠2,故有∠1=∠A ,从而结论成立.解:∵DF ∥AC (已知),∴∠2=∠A (两直线平行,同位角相等). ∵∠1=∠2(已知), ∴∠1=∠A (等式性质),∴DE ∥AB (同位角相等,两直线平行).评析:说明两直线平行的方法有:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行于同一条直线的两条直线互相平行;⑤垂直于同一条直线的两条直线互相平行.例4. 试说明:两条平行线被第三条直线所截,一对内错角的平分线互相平行. 分析:先根据题意画出图形,标注字母,找出已知条件和问题,再进行说明.ABCDG HMN EF12解:已知:如图所示,AB ∥CD ,EF 分别交AB 、CD 于G 、H ,GM 、HN 分别平分∠BGF 、∠EHC. 说明GM ∥HN .∵GM 、HN 分别平分∠BGF 、∠EHC (已知), ∴∠1=∠BGF ,∠2=∠EHC (角平分线定义). ∵AB ∥CD ,∴∠BGF =∠EHC (两直线平行,内错角相等). ∴∠1=∠2.∴GM ∥HN (内错角相等,两直线平行). 评析:(1)上题把内错角平分线改为同位角平分线,原结论也成立,请同学们自己试着解一解.(2)此题为文字题,首先应根据题意画出图形,再根据已知条件和结论结合图形写出解题过程.例5. 如图所示,已知CE ∥DF ,说明∠ACE =∠A +∠ABF .ABCDEFG分析:结论中∠ACE ,∠A 与∠ABF 在三个顶点处,条件CE ∥DF 不能直接运用,结论形式启示我们用割补法,即构造一个角等于∠A +∠ABF ,因此想到在点A 处补上一个∠GAB =∠ABF ,只要GA ∥DF 即可,同时可得GA ∥CE ,∠GAC =∠ACE ,结论便成立.解:过A 作AG ∥DF ,∴∠GAB =∠ABF (两直线平行,内错角相等) 又∵AG ∥DF ,CE ∥DF (已知)∴AG ∥CE (平行于同一直线的两条直线互相平行) ∴∠GAC =∠ACE (两直线平行,内错角相等) 又∵∠GAC =∠BAC +∠GAB (已知) ∴∠ACE =∠BAC +∠ABF (等量代换). 评析:(1)割补法是一种常用方法.(2)此题还可以过点C 作一条直线与AB 平行,把∠ACE 分成两个角后,分别说明这两个角与∠A 、∠ABF 相等.例6. 解放战争时期,有一天江南某游击队在村庄A 点出发向正东行进,此时有一支残匪在游击队的东北方向B 点处(如图所示,残匪沿北偏东60°角方向,向C 村进发.游击队步行到A ’处,A ’正在B 的正南方向上,突然接到上级命令,决定改变行进方向,沿北偏东30°方向赶往C 村.问游击队进发方向A ’C 与残匪行进方向BC 至少是多少角度时,才能保证C 村村民不受伤害?A BCA'北东A BCA'北东D E分析:如图可知A ’C 与BC 的夹角最小值是∠BCA ’.本题关键是引辅助线,延长A ’B 到D ,过C 作CE ∥A ’D ,通过平行线特征来求解.解:根据题意∠DBC =60°,∠BA ’C =30°.过点C作CE∥A’B,则∠BCE=∠DBC=60°,∠A’CE=∠BA’C=30°.∴∠BCA’=∠BCE-∠A’CE=60°-30°=30°.夹角至少为30°时才能保证C村村民不受伤害.评析:本题较综合地运用了角、方位角、平行线的有关知识.【方法总结】1. 方程的思想几何图形中常见一些已知线段、角,而要求未知线段和角,我们可以把它们分别视为已知量、未知量,用方程的思想方法求解.2. 比较的思想方法利用比较这一思想方法,分清易混概念和性质,加深对概念性质的理解和认识.例如平行线的性质是理解判定定理时最易混淆的,学习时,可通过比较其异同弄清它们的区别和联系.3. 推理的方法推理是一个思维形式,它是从一个或几个判断得出新判断的思维形式.推理时要时刻明确最终目标,最后推出结论,推理过程要步步有根据,不能“想当然”,推理的根据,可以是已知条件、定义、性质、基本事实等.【模拟试题】(答题时间:60分钟)一. 选择题1. 如图所示,下列说法中正确的是()A. 图中没有同位角、内错角、同旁内角B. 图中没有同位角和内错角,但有一对同旁内角C. 图中没有内错角和同旁内角,但有三对同位角D. 图中没有同位角和内错角,但有三对同旁内角AB C2. 一条公路两次转弯后又回到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B =140°,那么,∠C应是()A. 140°B. 40°C. 100°D. 180°140°AB CD3. 如图所示,下列说法正确的是()A. 若AB∥CD,则∠B+∠A=180°B. 若AD∥BC,则∠B+∠C=180°C. 若AB∥CD,则∠B+∠D=180°D. 若AD∥BC,则∠B+∠A=180°AB CD4. 如图所示,要得到DE ∥BC ,需要条件( )A. CD ⊥AB ,GF ⊥ABB. ∠DCE +∠DEC =180°C. ∠EDC =∠DCBD. ∠BGF =∠DCBABC D EF G5. 如图所示,AB ⊥AC ,AD ⊥BC ,DE ∥AB ,则∠CDE 与∠BAD 的关系是( ) A. 互余 B. 互补 C. 相等 D. 不能确定ABCDE6. 如图所示,已知AB ∥CD ,CE 平分∠ACD ,∠A =110°,则∠ECD 的度数等于( ) A. 110° B. 70° C. 55° D. 35°C ABED*7. 两条平行线被第三条直线所截,角平分线互相垂直的是( )A. 内错角B. 同旁内角C. 同位角D. 内错角或同位角**8. 学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图(1)~(4)):P(1)P(2)P(3)P(4)从图中可知,小敏画平行线的依据有:( )①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.( )A. ①②B. ②③C. ③④D. ①④ 二. 填空题1. 如图所示,A 、B 之间是一座山,一条铁路要通过A 、B 两地,在A 地测得B 地在北偏东70°,如果A 、B 两地同时开工修建铁路,那么在B 地应按__________方向开凿,才能使铁路在山腹中准确接通.AB北70°北2. 如图所示,A 、C 、B 在同一直线上,DC ⊥CE 于C ,∠ACD =53°,则∠BCE =_______.ABCDE3. 如图所示,四边形ABCD 中,∠1=∠2,∠D =72°,则∠BCD =__________.ABCD12*4. 如图所示,AB ∥CD 、BEFD 是AB 、CD 之间的一条折线,则∠1+∠2+∠3+∠4=__________.ABCDE F12345. 如图所示,a ∥b ,∠1=3∠2,则∠1=__________,∠2=__________.a b 12*6. 已知,如图,AD 与BC 相交于点O ,AB ∥CD ,如果∠B =20°,∠D =40°,那么∠BOD 为__________度.ABCD O7. 如图所示,若AE ∥BD ,那么相等的角有__________;若AB ∥EC ,那么互补的角有__________.A CDB1234567E**8. 设a 、b 、c 为平面内三条不同的直线.(1)若a ∥b ,c ⊥a ,则c 与b 的位置关系是__________;(2)若c ⊥a ,c ⊥b ,则a 与b 的位置关系是__________;(3)若a ∥b ,则c 与b 的位置关系是__________.三. 解答题1. 如图所示,已知AB ⊥BC ,BC ⊥CD ,∠1=∠2,试判断BE 与CF 的关系,并说明理由.ABCD12EF2. 如图所示,已知AB ∥CD ,直线EF ⊥CD 于F ,∠1=2∠2,求∠2的度数.C DEF AB12G*3. 如图所示,已知AB ∥DE ,∠ABC =60°,∠CDE =140°,求∠BCD 的度数.AB CDE4. 如图所示,小刚准备在C 处牵牛到河边AB 饮水.(1)请用三角板作出小刚的最短路线(不考虑其他因素);(2)如图乙,若小刚在C 处牵牛到河边AB 饮水,并且必须到河边D 处观察河水的水质情况,请作出小刚行走的最短路线(不写作法,保留作图痕迹).甲ABC乙ABCD典型例题例1 如图2-45是梯形的有上底的一部分,已知量得∠A =115°,∠D=100°,梯形另外两个角各是多少度?图2-45分析:已知是梯形,可知它的上、下两底平行,要求另外两个角的度数,直接应用平行线的特征即可求出.解:因为梯形上、下两底平行,所以,∠A与∠B互补,∠D与∠C互补,于是∠B=180°-115°=65°,∠C=180°-100°=80°梯形的另外两个角分别是65°、80°.例2 已知,如图2-46,直线a∥b,c∥d,∠1=70°,求∠2、∠3的度数.图2-46分析:这是平行线的特征的应用的计算题,要注意格式.解:∵a∥b(已知),∴∠2=∠1=70°(两直线平行,内错角相等) ∵c∥d(已知),∴∠3=∠2=70°(两直线平行,同位角相等)参考例题[2.2.1探索直线平行的条件(一)][例1]若∠1=52°,如图2-18,问应使∠C为多少度时,能使直线AB∥CD?图2-18分析:要使直线AB∥CD,则需使同位角相等,即∠1=∠C.这样即可求出.解:若∠1=52°,当∠C=52°时,直线AB∥CD.[例2]如图2-19,若∠1=∠4,∠1+∠2=180°,则AB、CD、EF的位置关系如何?图2-19分析:由已知∠1=∠4, 可知:AB ∥EF ,∴可猜想:AB ∥CD ∥EF .由图中可知:∠2+∠3=180°, 而已知:∠1+∠2=180°.∴由同角的补角相等可得∠1=∠3, 这样得到AB ∥CD .由“两条直线都与第三条直线平行,则这两条直线平行”可得:AB ∥CD ∥EF .解:⎪⎭⎪⎬⎫→∠=∠→∠=∠→⎭⎬⎫︒=∠+∠︒=∠+∠EF||CD||AB AB 41311802318021 →AB ∥CD ∥EF . 二、参考练习1.如图2-20,∠1=45°,∠2=135°,则l 1∥l 2吗?为什么? 解:平行.∵∠1+∠3=180°,∠1=45°. ∴∠3=135°,又∵∠2=135°. ∴∠2=∠3,因此l 1∥l 2.图2-20 图2-212.如图2-21,∠1=120°,∠2=60°,问直线a 与b 的关系? 解:直线a 与b 平行.∵:∠2+∠3=180°,∠2=60°, ∴∠3=120°, 又∵∠1=120°.∴∠1=∠3,因此a ∥b .3.在三角形ABC 中,∠B =90°,D 在AC 边上,DF ⊥BC 于F ,DE ⊥AB 于E ,则线段AB 与DF平行吗?BC与DE平行吗?为什么?图2-22解:线段AB与DF平行.线段BC与DE也平行.∵:DF⊥BC于F,则∠DFC=90°,又∵∠B=90°,∴∠B=∠DFC,因此AB∥DF.BC与ED平行的理由同上.【试题答案】一. 选择题1. D2. A3. D4. C5. A6. D7. B8. C二. 填空题1. 南偏西70°2. 37°3. 108°4. 540°分别过点E、F作AB的平行线.5. 135°,45°6. 607. ∠1=∠3,∠5=∠6;∠B与∠BCE,∠BAE与∠68. 垂直,平行,平行或相交三. 解答题1. ∵AB⊥BC,BC⊥CD,∴∠ABC=∠BCD=90°,又∵∠1=∠2,∴∠ABC-∠1=∠BCD -∠2,即∠EBC=∠BCF,∴BE∥CF.2. ∵AB∥CD,∴∠1=∠CFG=2∠2,∵EF⊥CD,∴∠CFE=∠CFG+∠2=2∠2+∠2=3∠2=90°,∴∠2=30°.3. 延长ED交BC于点G,过点C作CF∥AB,则∠BCD=∠BCF-∠DCF=∠ABC-∠GDC=60°-(180°-∠CDE)=20°.4. (1)甲:过C作AB的垂线,垂足与C点之间的线段为最短路线,根据是:垂线段最短.(2)乙:连结CD得线段CD就是最短线段,根据是:两点之间线段最短.《二元一次方程组》复习讲义【学习目标】1.了解二元一次方程(组)的有关概念,会解简单的(数字系数);能根据具体问题中的数量关系,列出二元一次方程组解决简单的实际问题,并能检验解的合理性.2.了解解二元一次方程组的“消元”思想,从而初步理解化“未知”为“已知”和化复杂问题为简单问题的划归思想.【知识网络】【要点梳理】要点一、二元一次方程组的相关概念1. 二元一次方程的定义定义:方程中含有两个未知数(x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程.要点诠释:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1.(3)二元一次方程的左边和右边都必须是整式.2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 要点诠释:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧ba ==y x 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩. 要点诠释:(1)它的一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 不同时为零). (2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组.(3)符号“{”表示同时满足,相当于“且”的意思.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释:(1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.(2)方程组的解要用大括号联立;(3)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组⎩⎨⎧=+=+6252y x y x 无解,而方程组⎩⎨⎧-=+-=+2221y x y x 的解有无数个.要点二、二元一次方程组的解法1.解二元一次方程组的思想转化消元一元一次方程二元一次方程组2.解二元一次方程组的基本方法:代入消元法、加减消元法和图像法(1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式; ②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值;⑤用“{”联立两个未知数的值,就是方程组的解.要点诠释:(1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比较容易的方程变形;(2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程;(3)要善于分析方程的特点,寻找简便的解法.如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法.整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率.(2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值;⑤将两个未知数的值用“ ”联立在一起即可.要点诠释:当方程组中有一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用加减消元法较简单.(3)图像法解二元一次方程组的一般过程:①把二元一次方程化成一次函数的形式.②在直角坐标系中画出两个一次函数的图像,并标出交点.③交点坐标就是方程组的解.要点诠释:二元一次方程组无解<=>一次函数的图像平行(无交点)二元一次方程组有一解<=>一次函数的图像相交(有一个交点)二元一次方程组有无数个解<=>一次函数的图像重合(有无数个交点)利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.相反,求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.要点三、实际问题与二元一次方程组要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.要点四、三元一次方程组1.定义:含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程;含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.412,325,51,x y z x y z x y z +-=⎧⎪++=-⎨⎪-+=⎩ 273,31,34a b a c b c +=⎧⎪-=⎨⎪-+=⎩等都是三元一次方程组.要点诠释:理解三元一次方程组的定义时,要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)如果三个一元一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组.2.三元一次方程组的解法解三元一次方程组的基本思想仍是消元,一般的,应利用代入法或加减法消去一个未知数,从而化三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.解三元一次方程组的一般步骤是:(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用“{”合写在一起.要点诠释:(1)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求比较简单的解法.(2)要检验求得的未知数的值是不是原方程组的解,将所求得的一组未知数的值分别代入原方程组里的每一个方程中,看每个方程的左右两边是否相等,若相等,则是原方程组的解,只要有一个方程的左、右两边不相等就不是原方程组的解.3. 三元一次方程组的应用列三元一次方程组解应用题的一般步骤:(1)弄清题意和题目中的数量关系,用字母(如x ,y ,z)表示题目中的两个(或三个)未知数;(2)找出能够表达应用题全部含义的相等关系;(3)根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;(4)解这个方程组,求出未知数的值;(5)写出答案(包括单位名称).要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去.(2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一.(3)一般来说,设几个未知数,就应列出几个方程并组成方程组.【典型例题】类型一、二元一次方程组的相关概念1.下列方程组中,不是二元一次方程组的是( ).A.⎩⎨⎧+==-13032x y y xB.⎩⎨⎧=-=+211z y xC.⎩⎨⎧=+-=+63222y x y x x x D.⎩⎨⎧-=+=6352x x y【思路点拨】利用二元一次方程组的定义一一进行判断.【答案】B.【解析】二元一次方程组中只含有两个未知数,并且含有未知数的次数都是1,方程组⎩⎨⎧=+-=+63222y x y x x x 中,y x x x 3222-=+可以整理为y x 32-=.【总结升华】准确理解二元一次方程组和二元一次方程的定义是解本题的关键. 举一反三:【变式】若32225a b a b x y --+-=是二元一次方程,则a = ,b = .【答案】1, 0.2.以⎩⎨⎧-==11y x 为解的二元一次方程组是( ). A.⎩⎨⎧=-=+10y x y x B.⎩⎨⎧-=-=+10y x y x C.⎩⎨⎧=-=+20y x y x D.⎩⎨⎧-=-=+20y x y x【答案】C.【解析】通过观察四个选项可知,每个选项的第一个二元一次方程都是0=+y x ,第二个方程的左边都是y x -,而右边不同,根据二元一次方程的解的意义可知,当⎩⎨⎧-==11y x 时,211)1(1=+=--=-y x .【总结升华】不满足或不全部满足方程组中的各方程的选项都不是方程组的解.举一反三:【变式】若⎩⎨⎧==12y x 是关于y x 、的方程032=+-k y x 的解,则=k . 【答案】 -1.类型二、二元一次方程组的解法3.解方程组15(2)3(25)4(34)5x y x y +=+⎧⎨--+=⎩【思路点拨】由于本题结构比较复杂,不能直接消元,应先将方程组化为一般形式,再看如何消元,即用加减或代入消元法.【答案与解析】解:将原方程组化简得5926x y x y -=⎧⎨-=⎩①-②得:-3y =3,得y =-1,将y =-1代入①中,x =9-5=4.故原方程组的解为41x y =⎧⎨=-⎩.【总结升华】消元法是解方程组的基本方法,消元的目的是把多元一次方程组逐步转化为一元一次方程,从而使问题获解.举一反三:【变式】已知方程组35x y x y +=⎧⎨-=⎩的解是二元一次方程m(x+1)=3(x-y)的一个解,则m= .【答案】3.类型三、实际问题与二元一次方程组4. 2001年以来,我国曾五次实施药品降价,累计降价的总金额为269亿元,五次药品降价的年份与相应降价金额如下表所示,表中缺失了2003、2007年相关数据. 已知2007年药品降价金额是2003年药品降价金额的6倍,结合表中的信息,求2003年和2007年的药品降价金额. 年份2002 2003 2004 2005 2007 降价金额(亿元) 54 35 40 【思路点拨】本题的两个相等关系为:(1)五年的降价金额一共是269亿元;(2)2007年药品降价金额=6×2003年的药品降价金额.【答案与解析】解:设2003年和2007年药品降价金额分别为x 亿元、y 亿元.根据题意,得⎩⎨⎧=++++=2694035546y x x y ,解方程组得⎩⎨⎧==12020y x .答:2003年和2007年的药品降价金额分别为20亿元和120亿元.【总结升华】列方程(组)解实际问题的关键就是准确地找出等量关系,列方程(组)求解. 举一反三:【变式】(山东济南)如图所示,教师节来临之际,群群所在的班级准备向每位辛勤工作的教师献一束鲜花,每束由4支鲜花包装而成,其中有象征母爱的康乃馨和象征尊敬的水仙花两种鲜花,同一种鲜花每支的价格相同,请你根据第一、二束鲜花提供的信息,求出第三束鲜花的价格.【答案】解:设康乃馨每支x 元,水仙花每支y 元.根据题意,可列方程组3192218x y x y +=⎧⎨+=⎩,解得54x y =⎧⎨=⎩. 所以第三束鲜花的价格是x+3y =5+3×4=17(元).答:第三束鲜花的价格是17元.类型四、三元一次方程组7.解方程组312,23,3716.x y z x y z x y z ++=⎧⎪--=-⎨⎪+-=-⎩①②③ 【思路点拨】先用加减法消去y ,变为x 、z 的二元一次方程组.【答案与解析】解:①+②,得329x z +=.②+③,得5819x z -=-.解方程组329,5819,x z x z +=⎧⎨-=-⎩得1,3.x z =⎧⎨=⎩把13x z =⎧⎨=⎩,代入①,得2y =. 所以方程组的解是1,2,3.x y z =⎧⎪=⎨⎪=⎩【总结升华】因为y 的系数为1+或1-,所以先消去y 比先消去x 或z 更简便.。
学员姓名:辅导课目:数学年级:八年级学科教师:汪老师授课日期及时段课题第一章《平行线》复习学习目标1、理解平行线的性质及其判定2、知道如何求两平行线间的距离教学内容第一章《平行线》复习1.1、同位角、内错角、同旁内角:1、先看图中∠1和∠5,这两个角分别在直线AB、CD的上方,并且都在直线EF的右侧,像这样位置相同的一对角叫做同位角。
在图(1)中,像这样具有类似位置关系的角还有吗?如果你仔细观察,会发现∠2与∠6,∠3与∠7,∠4与∠8也是同位角。
变式图形:图中的∠1与∠2都是同位角。
图形特征:在形如字母“F”的图形中有同位角。
2、再看∠3与∠5,这两个角都在直线AB、CD之间,且3在直线EF左侧,∠5在直线EF右侧,像这样的一对角叫做内错角。
同样,∠4与∠6也具有类似位置特征,∠4与∠6也是内错角。
变式图形:图中的∠1与∠2都是内错角。
图形特征:在形如“Z”的图形中有内错角。
3、在图(1)中,∠3和∠6也在直线AB、CD之间,但它们在直线EF的同一旁像这样的一对角,我们称它为同旁内角。
具有类似的位置特征的还有∠4与∠5,因此它们也是同旁内角。
变式图形:图中的∠1与∠2都是同旁内角。
图形特征:在形如“n ”的图形中有同旁内角。
与两直线的位置关系 与截线的位置关系 同位角 两直线同侧 截线的同旁 内错角 两直线之间 截线异侧 同旁内角两直线之间截线同侧1.2、平行线的性质:性质1:两条直线被第三条直线所截,如果两条直线平行,那么同位角相等。
简单说成:两直线平行,同位角相等。
几何语言:∵ AB//CD ∴ ∠PMA=∠MNC性质2:两条直线被第三条直线所截,如果两条直线平行,那么内错角相等。
简单说成:两直线平行,内错角相等。
几何语言:∵ AB//CD ∴ ∠BMN=∠CNM性质3:两条直线被第三条直线所截,如果两条直线平行,那么同旁内角互补。
简单说成:两直线平行,同旁内角互补。
几何语言:∵ AB//CD∴ ∠AMN+∠CNM=180°1.3、平行线的判定:几何符号语言:ABE 1 3 4(1)∵ ∠3=∠2 ∴ AB ∥CD (同位角相等,两直线平行) (2)∵ ∠1=∠2 ∴ AB ∥CD (内错角相等,两直线平行)(3)∵ ∠4+∠2=180° ∴ AB ∥CD (同旁内角互补,两直线平行)1.4、两条平行线的距离如图,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F ,则称线段EF 的长度为两平行线AB 与CD 间的距离。
专题01 平行线中的拐点模型之猪蹄模型(M型)与锯齿模型平行线中的拐点模型在初中数学几何模块中属于基础工具类问题,也是学生必须掌握的一块内容,熟悉这些模型可以快速得到角的关系,求出所需的角。
本专题就平行线中的拐点模型(猪蹄模型(M型)与锯齿模型)进行梳理及对应试题分析,方便掌握。
拐点(平行线)模型的核心是一组平行线与一个点,然后把点与两条线分别连起来,就构成了拐点模型,这个点叫做拐点,两条线的夹角叫做拐角。
通用解法:见拐点作平行线;基本思路:和差拆分与等角转化。
模型1:猪蹄模型(M型)与锯齿模型【模型解读】图1 图2 图3如图1,①已知:AM∥BN,结论:∠APB=∠A+∠B;②已知:∠APB=∠A+∠B,结论:AM∥BN.如图2,已知:AM∥BN,结论:∠P1+∠P3=∠A+∠B+∠P2.如图3,已知:AM∥BN,结论:∠P1+∠P3+...+∠P2n+1=∠A+∠B+∠P2+...+∠P2n.【模型证明】(1)∠APB=∠A+∠B这个结论正确,理由如下:如图1,过点P作PQ∥AM,∵PQ∥AM,AM∥BN,∴PQ∥AM∥BN,∴∠A=∠APQ,∠B=∠BPQ,∴∠A+∠B=∠APQ+∠BPQ=∠APB,即:∠APB=∠A+∠B.(2)根据(1)中结论可得,∠A+∠B+∠P2=∠P1+∠P3,故答案为:∠A+∠B+∠P2=∠P1+∠P3,(3)由(2)的规律得,∠A+∠B+∠P2+…+P2n=∠P1+∠P3+∠P5+…+∠P2n+1故答案为:∠A+∠B+∠P2+…+P2n=∠P1+∠P3+∠P5+…+∠P2n+1A.55°B.65例2.(2023春·安徽蚌埠·九年级校联考期中)太阳灶、卫星信号接收锅、探照灯及其他很多灯具都与抛物线有关.如图,从点O照射到抛物线上的光线Ð=°,88ABO46Ð=°,则OCDA.116°例3.(2023下·湖北黄冈A.α+β=180°例4.(2023春·河南驻马店Ð=°,则FE66Ð为(例6.(2023下·湖北恩施·七年级统考期中)如图,若BAE CPF Ð=Ð,1202E a°Ð=+,210F aÐ=-例7.(2023下·江苏南通·式.例8.(2023下·江西赣州CD有怎样的位置关系以证明.(3)如图3已知证明.例9.(2023上·黑龙江哈尔滨·七年级校考期中)已知:直线AB 与直线CD 内部有一个点P ,连接BP .(1)如图1,当点E 在直线CD 上,连接PE ,若B PEC P Ð+Ð=Ð,求证:AB CD P ;(2)如图2,当点E 在直线AB 与直线CD 的内部,点H 在直线CD 上,连接EH ,若ABP PEH P EHD Ð+Ð=Ð+Ð,求证:AB CD P ;(3)如图3,在(2)的条件下,BG 、EF 分别是ABP Ð、PEH Ð的角平分线,BG 和EF 相交于点G ,EF 和直线AB 相交于点F ,当BP PE ^时,若10BFG EHD Ð=Ð+°,36BGE Ð=°,求EHD Ð的度数.课后专项训练1.(2023下·江苏无锡·七年级校联考期中)如图,a b ∥,370Ð=°,1210°Ð-Ð=,则1Ð的度数是( )A . 30°B . 40°C . 50°D . 60°2.(2023下·江苏镇江·七年级统考期末)将一副三角尺(厚度不计)如图摆放,使AB 边与CD 边互相平行,则图中1Ð的大小为( )A .120°B .115°C .110°D .105°3.(2023下·安徽马鞍山·七年级校考期末)如图,直线12l l ∥,130Ð=°,则23Ð+Ð=( )A .150°B .210°C .230°D .240°4.(2022下·广东七年级期中)如图AB CD P ,CD EF ∥,^BG GF ,DH 是CDF Ð的平分线,50B G D F Ð=°,,,三点在一条直线上,则GDH Ð的度数为( )A .110°B .140°C .80°D .100°5.(2023·江苏·七年级假期作业)如图,AB CD ∥,点E 在AC 上,11015A D Ð=°Ð=°,,则下列结论正确的个数是( )A.1个B.2个6.(2023下·辽宁铁岭·七年级校考阶段练习)如图,直线()A.a b+7.(2023下·山东德州Ð+Ð=°,M,N1290A.①④B8.(2022下·湖北省直辖县级单位∠西45°方向,则ACB=9.(2023下·江苏扬州于.10.(2023下·江苏连云港上.若165Ð=°,则2Ð等于11.(2023下·江苏扬州·九年级阶段练习)如图,已知:12.(2023下·江苏镇江·七年级统考期中)探照灯、汽车灯及其他很多灯具都与抛物线形状有关,如图是一13.(2023上·江苏常州·八年级统考期中)则2Ð= °.14.(2022下·江苏宿迁·七年级统考期末)如图,直线15.(2023下·江苏苏州Ð=Ð,则AEC m AFC16.(2023下·江苏淮安B C BECÐ+Ð=Ð.求证:_________________)14ECD Ð.知识回顾](1)如图1,点E 在两平行线之间,试说明:BED ABE EDC Ð=Ð+Ð.知识应用](2)如图2,BP 、DP 分别平分ABE Ð、EDC Ð,利用()1中的结论,试说明:12BPD BED Ð=Ð;(1)如图①,求证:AEB DAE CBE Ð=Ð+Ð;(2)如图②,若AE 平分DAC Ð,CAB Ð=①请动动你聪明的头脑,你会发现:ABE AEB ÐÐ+=______°;②如图③,若ACD Ð的平分线与BA 的延长线交于点F ,与AE 交于点P ,且55F Ð=数.23.(2023下·江苏苏州·七年级校考期中)如图1,由线段,,,AB AM CM CD 组成的图形像英文字母M ,称为“M 形BAMCD ”.(1)如图1,M 形BAMCD 中,若//,50AB CD A C Ð+Ð=°,则M Ð=______;(2)如图2,连接M 形BAMCD 中,B D 两点,若150,B D AMC a Ð+Ð=°Ð=,试探求A Ð与C Ð的数量关系,并说明理由;(3)如图3,在(2)的条件下,且AC 的延长线与BD 的延长线有交点,当点M 在线段BD 的延长线上从左向右移动的过程中,直接写出A Ð与C Ð所有可能的数量关系.。
板块一平行线平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线a与直线b互相平行,记作a∥b。
平行线的性质:平行线之间的距离处处相等.两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。
因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)注意:判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,则两直线平行;③两个或两个以上公共点,则两直线重合(因为两点确定一条直线)平行线的画法:平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线).板块二平行公理――平行线的存在性与惟一性经过直线外一点,有且只有一条直线与这条直线平行平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行平行线的判定两直线平行的判定方法方法一两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简称:同位角相等,两直线平行方法二两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行简称:内错角相等,两直线平行方法三两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行简称:同旁内角互补,两直线平行方法四垂直于同一条直线的两条直线互相平行方法五(平行线公理推论)如果两条直线都与第三条直线平行,那么这两条直线也互相平行方法六(平行线定义)在同一平面内,不相交的两条直线平行板块三.平行线的性质:性质一:两条平行线被第三条直线所截,同位角相等简称:两条直线平行,同位角相等性质二:两条平行线被第三条直线所截,内错角相等简称:两条直线平行,内错角相等性质三:两条平行线被第三条直线所截,同旁内角互补简称:两条直线平行,同旁内角互补2. 两条平行线间的距离:同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度叫做这两条平行线的距离。
平行关系教学目标1、会在简单的图形中辨认同位角、内错角、同旁内角。
2、会在给定某个条件下进行有关同位角、内错角、同旁内角的判定和计算。
3、理解平行线的判定方法;4、学会用进行简单的几何推理;5、体会用实验的方法得出几何性质(规律)的重要性与合理性.重点、难点1、同位角、内错角、同旁内角的概念与判定 方法2各对关系角的辨认,复杂图形的辨认是本节教学3、推理过程的正确表达.教学内容知识瞭望 1、“三线八角”:如图:直线 a1 , a2 被直线 a3 所截,构成了八个角。
a1a2a3876543212、平行线的判定公理:同位角相等,两直线平行.∵ ∠1=∠2, ∴ a ∥b.判定定理1:内错角相等,两直线平行.∵ ∠1=∠2, ∴ a ∥b.判定定理2:同旁内角互补,两直线平行.∵∠1+∠2=180, ∴ a ∥b.典例剖析例1、∠1的内错角是 ,它们是由直线 和直线 被直线所截而成的,若这两个角相等,那么 ∥∠5的内错角是 ,它们是由直线 和直线 被直线所截而成的,若这两个角相等,那么 ∥∠8的内错角是 ,它们是由直线 和直线 被直线 所截而成的,若这两个角相等,那么 ∥∠3的内错角是 ,它们是由直线 和直线 被直线 所截而成的,若这两个角相等,那么 ∥24865731OBC DAabc21例2、如图,直线AB 、CD 被直线EF 所截,交点分别为点O 、P ,OM 平分∠EOB 、PN 平分∠OPD.如果∠1=∠2,(1)OM ∥PN 吗?为什么?(2)AB ∥CD 吗?为什么? 解:(1)OM ∥PN因为∠1=∠2( )所以 ∥ ( ) (2) AB ∥CD因为OM 平分∠EOB ,PN 平分∠OPD ( ) 所以∠ =21∠EOB, ∠ =21∠OPD( )又∵∠1=∠2(已知)∴∠ =∠ ( )∴ ∥ ( ) 例3、如图,∠E +∠B =∠D ,判断AB 与CD 是否平行点将练兵一.判断题:1.两条直线被第三条直线所截,只要同旁内角相等,则两条直线一定平行。
第一讲 第一章 平行线一、平行线知识点1、平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线a 与直线b 互相平行,记作________. 知识点2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴______;⑵_______。
因此当我们得知在同一平面内两直线不相交时,就可以肯定它们______;反过来也一样(这里,我们把重合的两直线看成一条直线)判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定: ①有且只有一个公共点,两直线______; ②无公共点,则两直线______; ③两个或两个以上公共点,则两直线______(理由:________________) 知识点3、平行公理――平行线的存在性与惟一性经过直线外一点,___且_____一条直线与这条直线平行 知识点4、*平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相_______二、同位角、内错角和同旁内角知识点5、三线八角两条直线被第三条直线所截形成八个角,它们构成了_______、________与__________。
如图,直线b a ,被直线l 所截① 同位角(位置相同)有_____对, 分别是:② 内错角(位置在内且居截线两侧)有______对,分别是:③ 叫做同旁内角(位置在内且居截线同旁)有______对,分别是: ④三线八角也可以成模型中看出。
同位角是“F”型;内错角是“Z”型;同旁内角是“U”型。
知识点6、如何判别三线八角判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,也可用模型(FZU 型)判断。
【例】1.∠1与∠B 是直线____和直线____被直线_____所截而成的_________角;2.∠2与∠A 是直线____和直线____被直线_____所截而成的_________角; 3.∠3与∠B 是直线____和直线____被直线_____所截而成的_________角;思考:∠2与∠B 是同位角、内错角还是同旁内角?为什么?【练】1.如右图,按各角的位置,下列判断错误的是( )(A )∠1与∠2是同旁内角 (B )∠3与∠4是内错角a b l 1 2 3 4 5 6 7 8B E 12348(C)∠5与∠6是同旁内角(D)∠5与∠8是同位角2.下列4个图中,∠1与∠2不是同位角的是()(A) (B)(C )(D)三、平行线的判定与性质知识点7、平行线的判定与性质平行线的性质与判定是互逆的关系:两直线平行同位角相等;两直线平行内错角相等;两直线平行注意:⑴几何中,图形之间的“位置关系”一般都与某种“数量关系”有着内在的联系,常由“位置关系”决定其“数量关系”,反之也可从“数量关系”去确定“位置关系”。
平行线知识总结1、平行线的概念在同一个平面内,不相交的两条直线叫做平行线。
平行用符号“∥”表示,如“AB∥CD”,读作“AB平行于CD”。
同一平面内,两条直线的位置关系只有两种:相交或平行。
注意:(1)平行线是无限延伸的,无论怎样延伸也不相交。
(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。
2、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
3、平行线的判定平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
简称:同位角相等,两直线平行。
平行线的两条判定定理:(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
简称:内错角相等,两直线平行。
(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
简称:同旁内角互补,两直线平行。
补充平行线的判定方法:(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。
4、平行线的性质(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
5、认识三角形(1)三角形构成的条件:两边之和大于第三边;(2)推论:两边之差小于第三边;(3)三角形的中线、角平分线、高的定义。
6、多边形的内角和与外角和(1)用平行线的性质定理证明三角形的内角和是180°;(2)n边形的内角和等于(n-2)·180°;(3)多边形的外角和等于360°。
一、选择题1.下列各组角中,∠1与∠2是对顶角的为( )2如图,描述同位角、内错角、同旁内角关系不正确的是()A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角3.如图,OB⊥OD,OC⊥OA,∠BOC=32°,那么∠AOD等于(A)A.148°B.132°C.128°D.90°4.如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数(B)A.65°B.55°C.45°D.35°5.下列命题中,真命题的个数是(D)①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.A.4 B.3 C.2 D.16.如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD.其中能使AD∥BC的条件为(C)A.①②B.③④C.②④D.①③④12.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B两岛的视角∠ACB=70°.。
平行线讲义◆要点讲解1.平行线的画法:按“落、靠、移、画”四字操作.一落:把三角板的一边落在已知直线上;二靠:用直尺紧靠三角板的另一边;三移:沿直尺移动三角板,使三角板一边恰好经过已知点(或适当)的位置;四画:沿三角板的这一边画直线.2.判定两直线平行的方法:同位角相等,两直线平行,•如果两个相等角不是同位角,则应看能否转化为同位角相等.3.判定两直线平行的方法:在同一平面内,•垂直于同一条直线的两条直线平行,这个平行线判定定理中特别要强调“在同一平面内”,因为空间中也存在两条直线同垂直于一条直线的情况,但它们不一定平行.4.判定两直线平行的方法:(1)内错角相等,两直线平行;(2)同旁内角互补,两直线平行.2.要正确使用判定两直线平行的方法,使解题更加简捷.3.同位角不一定相等,内错角也不一定相等,同旁内角也不一定互补.4.同位角相等或内错角相等或同旁内角互补,两直线平行,•是指被截两直线平行.◆学法指导1.通过设置问题,从具体的实例中抽象出一般的规律,动脑、动手、动口、•分析、比较、归纳、积极参与教学的全过程,提高概括能力和表达能力.2.通过阅读,培养自学能力,生动地、主动地、富有个性地进行学习.3.“在同一平面内,•垂直于同一条直线的两条直线平行”这一平行线判定定理是“同位角相等,两直线平行”判定定理的特殊情形.4.在几何题目中,给出的条件一般不能直接推证结果,必须进行代换、•转化.常见的转换应用的知识为:对顶角相等,邻补角互补,角平分线性质,三角形有关内、外角知识等. 5.初学几何证明题时,从求证方向入手分析、•探寻解题思路要比从已知条件入手步步为营进行推导容易得多,这是几何解题中常用的方法之一.6.如应用定理的图形不完整,应通过添加适当的辅助线将图形补充完整,•解决问题的关键是如何确定辅助线.7.•运用数学的转化思想可把说明线与线之间的平行关系转化为说明角与角之间的关系.◆例题分析【例1】如图所示,直线AB 和CD 被直线EF 所截,且∠1=∠2,求证:AB ∥CD .【分析】∠1=∠2不是同位角,不能直接判断AB ∥CD ,若能根据∠1=∠2得到一组同位角相等,就能得到AB ∥CD .【证明】∵CD 与EF 相交于H ,∴∠GHD=∠2(对顶角相等).又∵∠1=∠2(已知),∴∠1=∠GHD (等量代换).∴AB ∥CD (同位角相等,两直线平行).【注意】不能识认为∠1与∠2是同位角,∠1的同位角是∠GHD ,∠2•的同位角是∠AGH .本题也可以通过证明∠2=∠AGH 得到AB ∥CD .【例2】如图所示,已知直线AB 与DE ,BC 分别交于D ,B ,∠ADE=∠ABC ,DF ,•BG 分别平分∠ADE ,∠ABC .请你说明DE ∥BG .【分析】图中∠1、∠2是DF 和BG 被AB 所截的同位角,只要说明∠1=∠2即可.【解】∵DF ,BG 分别平分∠ADE ,∠ABC (已知),∴∠1=12∠ADE ,∠2=12∠ABC (角平分线定义). ∵∠ADE=∠ABC (已知),∴∠1=∠2,∴DF ∥BG (同位角相等,两直线平行).【注意】∠EDF ,∠CBG 并非是DF ,BG 被AB 所截的同位角.【例3】如图所示,已知直线AB 和CD 被直线EF 所截,且∠2=3∠1,∠1+•∠3=90°,试说明AB ∥CD .【分析】要说明AB ∥CD 只需说明∠1=∠3,据∠2=3∠1和∠2与∠1互补,•可求出∠1.再据∠1+∠3=90°,可求出∠3.【解】∵∠1+∠2=180°(平角的定义),且∠2=3∠1(已知),∴∠1=45°.又∵∠1+∠3=90°(已知),∴∠3=90°-∠1=45°.∴∠1=∠3.∴AB ∥CD (同位角相等,两直线平行).【注意】几何题目中的计算题,常用到方程思想.◆例题分析【例4】如图所示,AB ⊥EF 于G ,CD ⊥EF 于H ,GP 平分∠EGB ,HQ 平分∠CHF ,试找出图中有哪些平行线,并说明理由.【分析】本题是一道结论开放题,故只有利用已知条件进行推导.【解】题中有两组平行线:AB ∥CD ,GP ∥HQ .∵AB ⊥EF ,CD ⊥EF (已知),∴AB ∥CD (同一平面内,垂直于同一条直线的两条直线平行).∵AB ⊥EF (已知),∴∠BGH=∠BGE=90°(垂直的定义).∵GP 平分∠BGE (已知),∴∠BGP=12∠BGE=45°(角平分线定义). ∴∠PGH=∠BGP+∠BGH=135°.同理可证:∠GHQ=135°.∴∠PGH=∠GHQ .∴PG ∥QH (内错角相等,两直线平行)【注意】(1)推出AB ∥CD 只是其中一部分,由于题目的每一个已知条件都要用上,故还得利用另外的条件接着往下推导,到最后,找出了两组平行线.(2)“同理”,就是用相同的方法或性质进行推导,•用这种方法来叙述使解题过程显得简洁.【例5】如图所示,只要添加一个适当的条件,•我们就可以用“同位角相等,两直线平行”来判定AB ∥CD ,除外之外(即不直接用这个判定方法),你还可以发现若______,则AB ∥CD (在横线上填一个条件)也是成立的.并用“同位角相等,两直线平行”来说明你所给出的结论的正确性.【分析】本题结论已确定,要寻求得到结论的条件,方式很多,应以直接与间接两个方面入手,因为间接条件可以通过转化与直接条件建立联系.【解】可以推得AB∥CD的条件有:∠1=∠6,∠2=∠8,∠3=∠7,∠4=∠5,∠2+•∠6=180°,∠1+∠5=180°,∠3+∠8=180°,∠1+∠8=180°,∠4+∠7=180°,∠2+∠7=180°,∠3+∠5=180°,∠4+∠6=180°.若填∠4=∠5∵∠5与∠8是对顶角,∴∠5=∠8.又∵∠4=∠5,∴∠4=∠8.∴AB∥CD(同位角相等,两直线平行).【注意】(1)本题是开放题,答案较多.(2)要判定两直线平行,首先应想一想学过哪些判定方法.【例6】如图1-2-20所示,∠E=∠ABE+∠CDE,请判断AB与CD的位置关系,•并说明理由.【分析】要判定AB与CD的位置关系,根据判定定理,需要构造AB与CD被第三条直线所截的图形,因此可考虑连结BD或延长BE与CD相交或延长DE与AB相交.【解】AB∥CD.连结BD.在△BDE中,∠E+∠EBD+∠BDE=180°,又∵∠E=∠ABE+∠CDE,∴∠ABE+∠CDE+∠EBD+∠BDE=180°.即∠ABD+∠CDB=180°.∴AB∥CD(同旁内角互补,两直线平行).【注意】(1)解本题的关键是构造“三线八角”这个基本图形.(2)延长BE或DE,•用到了“三角形的一个外角等于与其不相邻的两个内角之和”和“内错角相等,两直线平行”等不同数学知识,可引导学生对此题采用多种证明方法,拓展学生思维.。
专题01 平行线的四大模型平行线的性质和判定是证明角相等、研究角的关系的重要依据,是研究几何图形位置关系与数量关系的基础,是平面几何的一个重要内容和学习简单的逻辑推理的素材。
它不但为三角形的内角和定理的证明提供了转化的方法,而且也是今后学习三角形、四边形知识的基础.本节课重点学习平行线的基础模型的应用迁移.模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.专题分析模型分类模型分析【典例1】(2023秋•南岗区校级期中)已知,射线FG分别交射线AB、DC于点F、G,点E为射线FG上一点.(1)如图1,若∠A+∠D=∠AED,求证:AB∥CD.(2)如图2,若AB∥CD,求证:∠A﹣∠D=∠AED.(3)如图3,在(2)的条件下,DI交AI于点Ⅰ,交AE于点K,∠EDI=∠CDE,∠BAI=∠EAI,∠I=∠AED=25°,求∠EKD的度数.【变式1-1】(2023•渝中区校级模拟)如图,已知直线a∥b,∠BAC=90°,∠1=40°,则∠2的度数为()A.40°B.50°C.130°D.140°典例分析【变式1-2】(2023•金安区一模)如图,已知a∥b,∠1=45°,∠2=125°,则∠ABC的度数为()A.100°B.105°C.115°D.125°【变式1-3】(2022春•肇州县期末)如图,AB∥CD,∠C=110°,∠B=120°,则∠BEC =()A.110°B.120°C.130°D.150°【变式1-4】(2023春•巴南区月考)已知直线MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN和PO之间.(1)如图1,求证:∠CAB﹣∠MCA=∠PBA;(2)如图2,CD∥AB,点E在直线PQ上,且∠MCA=∠DCE,求证:∠ECN=∠CAB;(3)如图3,BF平分∠PBA,CG平分∠ACN,且AF∥CG.若∠CAB=50°,直接写出∠AFB的度数.【变式1-5】(2023春•遂宁期末)如图,直线PQ∥MN,两个三角形如图①放置,其中∠ABC =∠CDE=90°,∠ACB=30°,∠BAC=60°,∠DCE=∠DEC=45°,点E在直线PQ上,点B,C均在直线MN上,且CE平分∠ACN.(1)求∠DEQ的度数;(2)如图②,若将△ABC绕B点以每秒3°的速度按逆时针方向旋转(A,C的对应点分别为F,G).设旋转时间为t秒,当t=10时,边BG与CD有何位置关系?请说明理由.模型分析模型二“猪蹄”模型(模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.典例分析【典例2】(2023春•邵阳县期末)如图,直线AB∥CD,连接EF,直线AB,CD及线段EF 把平面分成①②③④四个部分,规定:线上各点不属于任何部分.当动点G落在某个部分时,连接GE,GF,构成∠EGF,∠GEB,∠GFD三个角.(1)当动点G落在第③部分时,如图一,试说明:∠EGF,∠GEB,∠GFD三者的关系;(2)当动点G落在第②部分时,如图二,思考(1)中三者关系是否仍然成立若不成立,说明理由.【变式2-1】(2023•盘锦)如图,直线AB∥CD,将一个含60°角的直角三角尺EGF按图中方式放置,点E在AB上,边GF,EF分别交CD于点H,K,若∠BEF=64°,则∠GHC等于()A.44°B.34°C.24°D.14°【变式2-2】(2023•盘锦)如图,直线AB∥CD,将一个含60°角的直角三角尺EGF按图中方式放置,点E在AB上,边GF,EF分别交CD于点H,K,若∠BEF=64°,则∠GHC等于()A.44°B.34°C.24°D.14°【变式2-3】(2023•海南模拟)如图,已知AB∥DE,∠B=20°,∠D=130°,那么∠BCD 等于()A.60°B.70°C.80°D.90°【变式2-4】(2023春•覃塘区期末)如图,AB∥CD,将一副直角三角板作如下摆放,∠GEF =60°,∠MNP=45°.下列结论:①GE∥MP;②∠EFN=150°;③∠BEF=65°;④∠AEG=35°,其中正确的个数是()A.1B.2C.3D.4【变式2-5】(2023春•赣县区期末)【问题背景】:同学们,观察小猪的猪蹄,你会发现一个熟悉的几何图形,我们就把这个图形的形象称为“猪蹄模型”,猪蹄模型中蕴含着角的数量关系.【问题探究】:(1)如图1,AB∥CD,E为AB、CD之间一点,连接BE、DE,得到∠BED 与∠B、∠D之间的数量关系,并说明理由;【类比迁移】:(2)请你利用上述“猪蹄模型”得到的结论或解题方法,完成下面的问题:如图2,直线AB∥CD,若∠B=23°,∠G=35°,∠D=25°,求∠BEG+∠GFD的度数;【灵活应用】:(3)如图3,直线AB∥CD,若∠E=∠B=60°,∠F=85°,则∠D=25度.【变式2-6】(2023春•邵阳期末)如图1,直线AB∥CD,P是截线MN上的一点.(1)若∠MNB=45°,∠MDP=20°,求∠MPD;(2)如图1,当点P在线段MN上运动时,∠CDP与∠ABP的平分线交于Q,问是否为定值,若是定值,请求出;若不是定值,请说明理由;(3)如图2,若T是直线MN上且位于M点的上方的一点,如图所示,当点P在射线MT上运动时,∠CDP与∠ABP的平分线交于Q,问的值是否和(2)问中的情况一样呢?请你写出探究过程,说明理由.【变式2-7】(2023春•防城港期末)阅读下面材料:(1)小亮同学遇到这样一个问题:已知:如图甲,AB∥CD,E为直线AB,CD之间一点,连接BE、DE得到∠BED.求证:∠BED=∠B+∠D.下面是小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴CD∥EF,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,直线a∥b,BE平分∠ABC,DE平分∠ADC,若∠ABC=50°,∠ADC=60°,求∠BED的度数,(温馨提示:过点E作EF∥AB)模型分析模型三“臭脚”模型“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.典例分析【典例3】(2023春•中山区期末)如图,∠ABE+∠BED=∠CDE.(1)如图1,求证AB∥CD;(2)如图2,点P在AB上,∠CDP=∠EDP,BF平分∠ABE,交PD于点F,探究∠BFP,∠BED的数量关系,并证明你的结论;(3)在(2)的条件下,如图3,PQ交ED延长线于点Q,∠DPQ=2∠APQ,∠PQD =80°,求∠CDE的度数.【变式3-1】已知AB∥CD.(1)如图1,求证:∠ABE+∠DCE﹣∠BEC=180°;(2)如图2,∠DCE的平分线CG的反向延长线交∠ABE的平分线BF于F.若BF∥CE,∠BEC=26°,求∠BFC.模型分析结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.典例分析【典例4】(2022秋•朝阳区校级期末)已知AB∥CD,点E在AB上,点F在DC上,点G 为射线EF上一点.(1)【基础问题】如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分)证明:过点G作直线MN∥AB,又∵AB∥CD,∴∥CD∵MN∥AB,∴∠=∠MGA.∵MN∥CD,∴∠D=()∴∠AGD=∠AGM+∠DGM=∠A+∠D.(2)【类比探究】如图2,当点G在线段EF延长线上时,请写出∠AGD、∠A、∠D三者之间的数量关系,并说明理由.(3)【应用拓展】如图3,AH平分∠GAE,DH交AH于点H,且∠GDH=2∠HDF,∠HDF=22°,∠H=32°,直接写出∠DGA的度数为°.【变式4-1】(2022秋•肃州区校级期末)如图(1),AB∥CD,∠AEP=40°,∠PFD=130°,求∠EPF的度数.小明想到了以下方法:解:如图(1),过点P作PM∥AB,∴∠1=∠AEP=40°(两直线平行,内错角相等)∵AB∥CD(已知)∴PM∥CD(平行于同一条直线的两直线平行)∴∠2+∠PFD=180°(两直线平行,同旁内角互补)∵∠PFD=130°(已知)∴∠2=180°﹣130°=50°∴∠EPF=∠1+∠2=40°+50°=90°即∠EPF=90°【探究】如图(2),AB∥CD,∠AEP=50°,∠PFC=120°,求∠EPF的度数.【应用】如图(3),在【探究】的条件下,∠PEA的平分线和∠PFC的平分线交于点G,求∠G的度数.【变式4-2】(2022春•朝阳县期末)学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1,l2内部,探究∠A,∠APB,∠B的关系,小明过点P作l1的平行线,可得∠APB,∠A,∠B之间的数量关系是:∠APB=.(2)如图2,若AC∥BD,点P在AC,BD外部,∠A,∠B,∠APB的数量关系是否发生变化?请写出证明过程.【变式4-3】(2020春•乳山市期中)【信息阅读】材料信息:如图①,AB∥DE,点C是直线AB,DE外任意一点,连接BC,DC.方法信息:如图②,在“材料信息”的条件下,∠B=55°,∠D=35°,求∠BCD的度数.解:过点C作CF∥AB.∴∠BCF=∠B=55°.∵AB∥DE,∴CF∥DE.∴∠DCF=∠D=35°.∴∠BCD=55°﹣35°=20°.【问题解决】(1)通过【信息阅读】,猜想:∠B,∠D,∠BCD之间有怎样的等量关系?请直接写出结论:;(2)如图③,在“材料信息”的条件下,改变点C的位置,∠B,∠D,∠BCD之间的等量关系是否改变?若不改变,请写出理由;若改变,请写出新的等量关系及理由.1.(2023春•建昌县期末)如图,将一个含30°角的直角三角板的直角顶点C放在直尺的两边MN,PQ之间,则下列结论中:①∠1=∠3;②∠2=∠3;③∠1+∠3=90°;④若∠3=60°,则AB⊥PQ,其中正确结论的个数是()A.1个B.2个C.3个D.4个2.(2023春•芜湖期末)如图所示是汽车灯的剖面图,从位于O点灯发出光照射到凹面镜上反射出的光线BA,CD都是水平线,若∠ABO=α,∠DCO=60°,则∠BOC的度数为()A.180°﹣αB.120°﹣αC.60°+αD.60°﹣α3.(2022•恩施州)已知直线l1∥l2,将含30°角的直角三角板按如图所示摆放.若∠1=120°,则∠2=()A.120°B.130°C.140°D.150°4.(2022•博山区一模)如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于()A.360°B.300°C.270°D.180°5.(2021春•椒江区校级月考)如图,已知AB∥CD,∠BAD和∠BCD的平分线交于点E,∠FBC=n°,∠BAD=m°,则∠AEC等于()度.A.90﹣+m B.90﹣﹣C.90﹣D.90﹣+ 6.(2023春•赫山区期末)【问题情景】(1)如图1,AB∥CD,∠P AB=135°,∠PCD=115°,求∠APC的度数;【问题迁移】(2)如图2,已知∠MON,AD∥BC,点P在射线OM上运动,当点P在A,B两点之间运动时,连接PD,PC,∠ADP=∠α,∠BCP=∠β,求∠CPD与∠α,∠β之间的数量关系,并说明理由;【知识拓展】(3)在(2)的条件下,若将“点P在A,B两点之间运动”改为“点P在A,B两点外侧运动(点P与点A,B,O三点不重合)”其他条件不变,请直接写出∠CPD 与∠α,∠β之间的数量关系.7.(2022春•良庆区校级期中)已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB=∠CFD,∠BFC=3∠DBE,求∠EBC的度数.8.(2021秋•平昌县期末)如图,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.(1)试说明:∠BAG=∠BGA;(2)如图1,点F在AG的反向延长线上,连接CF交AD于点E,若∠BAG﹣∠F=45°,求证:CF平分∠BCD.(3)如图2,线段AG上有点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上取一点M,使∠PBM=∠DCH,求的值.9.(2023春•黑山县期中)问题情境我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.已知三角板ABC中,∠BAC=60°,∠B=30°,∠C=90°,长方形DEFG中,DE∥GF.问题初探(1)如图(1),若将三角板ABC的顶点A放在长方形的边GF上,BC与DE相交于点M,AB⊥DE于点N,求∠EMC的度数.分析:过点C作CH∥GF.则有CH∥DE,从而得∠CAF=∠HCA,∠EMC=∠MCH,从而可以求得∠EMC的度数.由分析得,请你直接写出:∠CAF的度数为,∠EMC的度数为.类比再探(2)若将三角板ABC按图(2)所示方式摆放(AB与DE不垂直),请你猜想写∠CAF 与∠EMC的数量关系,并说明理由.(3)请你总结(1),(2)解决问题的思路,在图(3)中探究∠BAG与∠BMD的数量关系?并说明理由.10.(2022春•龙亭区校级期末)如图,已知AB∥CD,E、F分别在AB、CD上,点G在AB、CD之间,连接GE、GF.(1)当∠BEG=40°,EP平分∠BEG,FP平分∠DFG时:①如图1,若EG⊥FG,则∠P的度数为;②如图2,在CD的下方有一点Q,EG平分∠BEQ,FD平分∠GFQ,求∠Q+2∠P的度数;(2)如图3,在AB的上方有一点O,若FO平分∠GFC.线段GE的延长线平分∠OEA,则当∠EOF+∠EGF=100°时,请直接写出∠OEA与∠OFC的数量关系.11.(2023春•孝义市期末)综合与探究数学活动课上,老师以“一个含45°的直角三角板和两条平行线”为背景展开探究活动,如图1,已知直线m∥n,直角三角板ABC中,∠ACB=90°,∠BAC=∠ABC=45°.(1)如图1,若∠2=65°,则∠1=;(直接写出答案)(2)“启航”小组在图1的基础上继续展开探究:如图2,调整三角板的位置,当三角板ABC的直角顶点C在直线n上,直线m与AB,AC相交时,他们得出的结论是:∠1﹣∠2=135°,你认为启航小组的结论是否正确,请说明理由;(3)如图3,受到“启航”小组的启发,“睿智”小组提出的问题是:在图2的基础上,继续调整三角板的位置,当点C不在直线n上,直线m与AC,BC相交时,∠1与∠2有怎样的数量关系?请你用平行线的知识说明理由.12.(2023春•安化县期末)在课后学习中,小红探究平行线中的线段与角的数量关系,如图,直线AB∥CD,点N在直线CD上,点P在直线AB上,点M为平面上任意一点,连接MP,MN,PN.(1)如图1,点M在直线CD上,PM平分∠APN,试说明∠PMN=∠MPN;(2)如图2,点M在直线AB,CD之间,∠PMN=70°,∠MNC=30°,求∠APM的度数;(3)如图3,∠APM和∠MNC的平分线交于点Q,∠PQN与∠PMN有何数量关系?并说明理由.12.(2023春•甘井子区期末)如图1,点M在射线BA,CD之间,0°<∠ABM<30°,连接BM,过点M作ME⊥BM交射线CD于点E,且∠MED﹣∠B=90°.(1)求证:AB∥CD;(2)过点C作∠ECN=∠B,交直线ME于点N,先按要求画图,再解决下列问题.①当CN在CD上方,满足∠CNE=5∠B时,在图2中画图,求∠B的度数;②作∠BME的角平分线交射线CD于点K,交∠ECN的角平分线于点F,请直接写出∠MKC与∠MFC之间的数量关系.。
《平行线》全章复习与巩固(基础)知识讲解【学习目标】1. 熟练找出“同位角、内错角、同旁内角”;2. 区别平行线的判定与性质,能用性质和判定解决综合问题;3. 通过具体实例认识平移,理解平移的性质;4. 会运用平行线和平移的知识解决有关的简单问题.【知识网络】【要点梳理】要点一、平行线的定义及三线八角1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线.要点诠释:(1)平行线定义中包含三层含义:在同一平面内、不相交、两条直线.(2)基本事实:经过直线外一点,有且只有一条直线与这条直线平行.2.三线八角:要点二、平行线的判定和性质1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).(3)在同一平面内,垂直于同一直线的两条直线互相平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.3.两条平行线间的距离如图,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB与CD间的距离.要点诠释:(1)两条平行线间的距离处处相等.(2)初中阶级学习了三种距离:两点间的距离、点到直线距离、平行线间的距离.这三种距离的共同点在于都是线段的长度,它们的区别是两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度, 平行线间的距离是一条直线上的一点到与之平行的另一直线的距离.(3)“垂线段”与“距离”的关系:垂线段是一个图形,距离是线段的长度,是一个量,它们之间不能等同. 要点三、图形的平移定义:一个图形沿某个方向移动,在移动的过程中,原图形上所有的点都沿同一个方向移动相等的距离,这样的图形运动叫做图形的平移.要点诠释:平移的性质:(1)平移不改变图形的形状与大小,只改变图形的位置.(2)一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等.【典型例题】类型一、平行线的定义及三线八角1. (乌兰察布校级期中)a、b、c是平面上任意三条直线,交点可以有()A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.都不对举一反三:【变式】如图,在正方体中:(1)找出与线段AB平行的线段:_________;(2)找出与线段AB相交的线段:______.2.如图,已知直线a、b被直线c所截. 图中八个角共有组同位角,组内错角,组同旁内角.举一反三:【变式】观察下图并填空:(1) ∠1 与是同位角;(2) ∠5 与是同旁内角;(3) ∠1 与是内错角.类型二、平行线的判定和性质3.如图,已知∠ADE = ∠B,∠1 =∠2,那么CD∥FG吗?并说明理由.举一反三:【变式】如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.4.如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=( ).A.180°B.270°C.360°D.540°举一反三:【变式】如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系.类型三、图形的平移5.如图(1),线段AB经过平移有一端点到达点C,画出线段AB平移后的线段CD.举一反三:【变式】(福州自主招生)如图,4根火柴棒形成象形“口”字,只通过平移火柴棒,原图形能变成的汉字是()A. B. C. D..类型四、综合应用6.如图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,它们的宽都是2,求草地部分的面积(阴影部分)有多大?【巩固练习】一、选择题1.下列图中,∠1和∠2是对顶角的有()个.A.1个B.2个C.3个D.4个2.如图所示是同位角关系的是().A.∠3和∠4 B.∠1和∠4 C.∠2和∠4 D.不存在3.(春•鄂城区月考)下列语句正确的有()个①任意两条直线的位置关系不是相交就是平行②过一点有且只有一条直线和已知直线平行③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b④若直线a∥b,b∥c,则c∥a.A.4 B.3 C.2 D.14.∠1和∠2是直线AB和CD被直线EF所截得到的同位角,那么∠1和∠2的大小关系是().A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.无法确定5.如图所示中,不能通过基本图形平移得到的是().6.一个人从A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC等于().A.75°B.105°C.45°D.135°7.下列说法中,正确的是().A.过点P画线段AB的垂线.B.P是直线AB外一点,Q是直线AB上一点,连接PQ,使PQ⊥AB.C.过一点有且只有一条直线垂直于已知直线.D.过一点有且只有一条直线平行于已知直线.8.如果在同一平面内有两个图形甲和乙,通过平移,总可以完全重合在一起(不论甲和乙的初始位置如何),则甲和乙是().A.两个点B.两个半径相等的圆C.两个点或两个半径相等的圆D.两个能够完合重合的多边形二、填空题9.如图所示,AB∥CD,EF分别交AB、CD于G、H两点,若∠1=50°,则∠EGB=________.10.(盐津县校级月考)平行用符号 表示,直线AB 与CD 平行,可以记作为 .11.每天小明上学时,需要先由家向东走150米到公共汽车站点,然后再乘车向西900米到学校,每天小明由家到学校移动的方向是________,移动的距离是________.12. (大庆校级自主招生)如图,点E 在AC 的延长线上,对于给出的四个条件: (1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE ;(4)∠D+∠ABD=180°. 能判断AB ∥CD 的有 个.13.如图,已知AB ∥CD ,CE ,AE 分别平分∠ACD ,∠CAB ,则∠1+∠2=________.14.同一平面内的三条直线a ,b ,c ,若a ⊥b ,b ⊥c ,则a________c .若a ∥b ,b ∥c ,则a________c .若a ∥b ,b ⊥c ,则a________c .15. 如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西 .16.如图所示,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC 于点E ,能表示点到直线(或线段)的距离的线段有 条.三、解答题17.(滨湖区校级期末)把图中的互相平行的线写出来,互相垂直的线写出来:18.如图所示,已知∠1=∠2,AC 平分∠DAB ,你能推断哪两条线段平行?说明理由.19.如图,在一块长为a 米,宽为b 米的长方形地上,有一条弯曲的柏油马路,马路的任何地方的水平宽度都是2米,其它部分都是草地.求草地的面积.北 北 甲 乙20.如图所示,点P是∠ABC内一点.(1)画图:①过点P画BC的垂线,垂足为D;②过点P画BC的平行线交AB于点E,过点P画AB的平行线交BC于点F.(2)∠EPF等于∠B吗?为什么?。
第五章订交线与平行线平行线1、平行线的观点:在同一平面内,不订交的两条直线叫做平行线,直线 a 与直线b相互平行,记作 a ∥b。
2、两条直线的地点关系(1)在同一平面内,两条直线的地点关系只有两种:⑴订交;⑵平行。
(2)所以当我们得悉在同一平面内两直线不订交时,就能够必定它们平行;反过来也同样(这里,我们把重合的两直线当作一条直线)(3)判断同一平面内两直线的地点关系时,能够依据它们的公共点的个数来确立:①有且只有一个公共点,两直线订交;②无公共点,则两直线平行;③两个或两个以上公共点,则两直线重合(由于两点确立一条直线)3、平行公义――平行线的存在性与唯一性经过直线外一点,有且只有一条直线与这条直线平行4、平行公义的推论:假如两条直线都与第三条直线平行,那么这两条直线也相互平行ab 如左图所示,∵ b ∥a,c∥a∴ b ∥cc 注意符号语言书写,前提条件是两直线都平行于第三条直线,才会结论,这两条直线都平行。
【典型例题】种类一、两条直线的地点关系1.同一平面内的两条直线若订交,那么有_________交点,若平行则 ______交点 .2.在 ______内,两条直线的地点关系只有______、 ________两种 .3.以下表达的图形是平行线的是()A. 在同一平面内,不订交的两条线叫做平行线.B.在同一平面内,不订交的两条线段叫做平行线.C.在同一平面内,不订交的两条射线叫做平行线.D.在同一平面内,不订交的两条直线叫做平行线.4. 在同一平面内的两条直线的地点可能是( )A. 订交或垂直B.垂直或平行C.平行或订交D.订交或垂直或平行种类二、平行线的画法:一落二靠三移四画5.读以下语句 ,并画出图形 .(1)直线 AB、 CD 是订交直线 ,点 P 是直线 AB、CD 外的一点 ,直线 EF 经过点 P 与直线 AB 平行 ,与直线 CD订交于点 E;(2)点 P 是直线 AB 外一点 ,直线 CD 经过点 P,且与直线AB 平行 .6.读以下语句,并作图:(1)如图 (1),过 A 点画 AF∥ CE 交 BC 于 F;(2)如图 (2),过 C 点画 CE∥ AD 交 BA 的延伸线于 E.种类三、平行公义及其推论7.如图 5.2.1-2, ∵ AB∥ CD (已知 ), 过点 F 可画 EF∥ AB,∴ EF∥ DC,8. 画∠ AOB=90 °,在它的边 OA 上取一点 C,过 C 画 EF ∥ OB,量得∠ ACF=______ 度. 图9. l 、 l 、 l为同一平面内三条直线 ,若 l 与 l 不平行 ,l 与 l 不平行 ,那么以下判断正确的选项是()123 1223A. l 1 与 l 3 必定不平行B. l 1 与 l 3 必定平行C.l 1 与 l 3 必定相互垂直D. l 1 与 l 3 可能订交 ,也可能平行10. 以下说法中 ,错误的选项是 ()①有且只有一条直线与已知直线平行②过一点有且只有一条直线与已知直线平行③过直线外一点有且只有一条直线与已知直线平行④平行于同一条直线的两条直线平行A. ①③B.②④C.③④D. ①②11. 在同一平面内 ,直线 a 与 b 知足以下条件 ,写出其对应的地点关系:(1)a 与 b 没有公共点 ,则 a 与 b________;(2)a 与 b 有且只有一个公共点,则 a 与 b_______;(3)a 与 b 有两个公共点 ,则 a 与 b________.平行线的判断探究一:请同学们认真阅读课本 P13 页“平行线判断的思虑” ,你知道在画平行线这一过程中,三角尺所起的作用吗?由此我们能够获得平行线的判断方法,如图,将以下空白增补完好(填判断方法 1(判断公义)几何语言表述为:∵ ∠ ___=∠ ___ ∴ AB ∥ CD由判断方法 1,联合对顶角的性质,我们能够获得: A判断方法 2(判断定理) 几何语言表述为:∵∠ ___=∠ ___ ∴ AB ∥ CDC由判断方法 1,联合邻补角的性质,我们能够获得: 判断方法 3(判断定理) F几何语言表述为:∵∠ ___+∠ ___=180° ∴ AB ∥CD平行线的判断 1[1] 判断方法 1 的认识1 种就能够)E1 4 B235 8D671.如图,技术人员在制图版时,用“丁”字尺画平行线,其数学依照是 _______.图 图 图2.如图,∠ 3=∠ 7 或________,那么 _______,原因是 _______.3.如图所示,直线 AB 、 DE 被 CD 所截,∠ D=50 °,当∠ BFC =________ 时, AB ∥DE . 4.如图所示,∠ 1=∠2,∠ 3=∠4,则 _______∥ _______∥ _______.图图5.如图 5.2.2-5 所示,判断 AB ∥ CD 的条件是()A. ∠2=∠BB. ∠1=∠AC. ∠3=∠BD. ∠3=∠A[2] 判断方法 1 的应用6.两直线被第三条直线所截,有一对同位角相等,则这一对同位角的角均分线()A. 相互垂直B.相互平行C.订交但不垂直D. 不可以确立7.如图,能使 BF ∥ DG 的条件是() A.∠ 1=∠ 4B.∠ 2=∠4C.∠2= ∠ 3D. ∠1= ∠ 3图图 8.如图所示,若∠ 1 与∠2 互补,∠ 2 与∠ 4 互补,则()A. l ∥ l4∥ l5∥l5∥ l232119.如图所示,∠ 1=1∠ DFG ,ED 均分∠ BEF ,2试问 AB 与 CD 平行吗?为何?图平行线判断2、 3[1] 判断方法 2、 3 的认识1.如图,直线 a 、 b 被直线 c 所截,现给出以下四个条件:①∠ 1=∠ 5;②∠ 1= ∠7; ③∠ 2+∠ 3=180°;④∠ 6=∠ 8;此中能判断 a ∥ b 的条件的序号是 ( ) A. ①②B. ①③C.①④D.③④图图2. 如图 5.2.2-10 所示 ,以下条件中 ,不可以判断 AB ∥ CD 的是 ()∥ EF ,CD ∥ EFB.∠5=∠ AC.∠ ABC+∠ BCD=180°D.∠ 3=∠ 23.如图 5.2.2-11,若∠ 1=67° ,∠ 2=113°,则 _______∥ _______,依据是 ____________.图图4.如图5.2.2-12, 若∠ 1+∠ 2=180° ,那么 ()A. a∥ bB. a∥c∥ d D. a∥ d5.已知:如图 5.2.2-13,以下条件中 ,不可以判断直线 l 1∥ l 2的是 ()A.∠ 1=∠ 3B.∠ 2= ∠3C.∠4= ∠ 5D.∠ 2+∠ 4=180°图[2]判断方法 2、 3 的应用6.在山脚下,甲、乙两地之间要修一条穿山地道如图5.2.2-14,从甲地测得地道走向是北偏东60°,假如甲、乙两地同时动工,那么在乙地地道应按南偏度 ________施工 ,才能使公路正确接通 .图7.如图 5.2.2-15, 直线 MN 分别和直线 AB、CD、EF 订交于 G、H、P,∠ 1=∠2,∠ 2+∠ 3=180° ,试问 :AB与 EF 平行吗 ?为何 ?图8. 已知如图 5.2.2-16,点 B 在 AC 上, BD⊥ BE,∠ 1+∠ C=90 ° .试问射线 CF 与 BD 平行吗?图综合训练( A )一、填空题1. 两条直线被第三条直线所截,假如相等或相等,那么这两条直线平行。
解码专训一:两直线的位置关系名师点金:在同一平面内,不重合的两条直线的位置关系只有两种:平行或相交,而不在同一平面内,不重合的两条直线还存在着既不平行也不相交这种位置关系.同一平面内两直线的位置关系1.下列说法正确的有()(1)同一平面内两直线有相交、平行、重合三种情况;(2)两直线垂直是相交的一种特殊情况;(3)同一平面内,两直线不垂直,则这两直线平行;(4)同一平面内三条直线既不重合也不平行,则它们最多有三个交点.A.1个B.2个C.3个D.4个2.三条直线a,b,c,若a∥c,b∥c,则a与b的位置关系是()A.a⊥b B.a∥bC.a⊥b或a∥b D.无法确定3.在同一平面内画三条直线,使它们分别满足以下条件:(1)它们没有交点;(2)它们有一个交点;(3)它们有两个交点;(4)它们有三个交点.不在同一平面内两直线的位置关系(第4题)4.如图,长方体ABCD-A1B1C1D1中,与棱A1B1平行的棱有________;与棱CC1在同一平面内且垂直的棱有________________;与棱BC既不平行也不相交的棱有______________.解码专训二:“三线八角”的识别方法名师点金:两条直线被第三条直线所截,可得到“三线八角”,识别两个角属于何种类别时可联想英文大写字母,即“F”形的为同位角,“Z”形的为内错角,“U”形的为同旁内角,每类角都有一个共同点,即:有两条边在截线上,另外两条边在被截直线上.识别同位角、内错角、同旁内角1.如图,试判断∠1与∠2,∠1与∠7,∠1与∠BAD,∠2与∠9,∠2与∠6,∠5与∠8各对角的位置关系.(第1题)从复杂图形中找同位角、内错角、同旁内角2.如图,请结合图形找出图中所有的同位角、内错角和同旁内角.(第2题)解码专训三:常见辅助线的作法名师点金:在解决平行线的问题时,当无法直接得到角的关系或两条线之间的位置关系时,通常借助辅助线来帮助解答,如何作辅助线需根据已知条件确定,辅助线的添加既可以产生新的条件,又能将题目中原有的条件联系在一起.加截线(连接两点或延长线段)1.如图,已知AB∥CD,∠ABF=∠DCE.∠BFE与∠FEC有何关系?并说明理由.(第1题)过“拐点”作平行线a.“”形图2.如图,AB∥CD,P为AB,CD之间的一点,已知∠1=32°,∠2=25°,求∠BPC的度数.(第2题)b.“”形图3.如图,已知AB∥CD,请你猜想一下∠B+∠BED+∠D的度数,并说明理由.(第3题)c.“”形图4.如图,AB∥DE,则∠BCD,∠B,∠D有何关系?为什么?(第4题)d.“”形图5.如图,已知AB∥DE,∠ABC=72°,∠CDE=140°,求∠BCD的度数.(第5题)平行线间多折点角度问题探究6.(1)如图①,AB∥CD,则∠BEF+∠FGD与∠B+∠EFG+∠D有何关系?并说明理由.(2)如图②,若AB∥CD,又能得到什么结论?(第6题)解码专训四:几何计数的四种常用方法名师点金:1.对于几何中的计数问题,掌握一定的方法能够让我们准确、高效地得出结果,常见的计数方法有:按顺序计数、按画图计数、按基本图形计数、按从特殊到一般的思想方法计数.2.计数的原则是不重复、不遗漏.按顺序计数问题1.如图,两条直线相交于一点O,则图中共有()对邻补角.(第1题)A.2B.3C.4D.52.在同一平面内有A,B,C,D,E五个点,以其中任意两点画直线最多有________条.按画图计数问题3.请你画图说明同一平面内的4条直线的位置关系,它们分别有几个交点?4.平面内有10条直线,无任何三线共点,要使它们恰好有31个交点,请你画出示意图.按基本图形计数问题5.如图,一组互相平行的直线有6条,它们和两条平行线a,b都相交,构成若干个“#”形,则此图中共有多少个“#”形?(第5题)按从特殊到一般的思想方法计数问题6.观察如图所示的图形,寻找对顶角(不含平角).(第6题)(1)两条直线相交于一点,如图①,共有________对对顶角;(2)三条直线相交于一点,如图②,共有________对对顶角;(3)四条直线相交于一点,如图③,共有________对对顶角;……(4)根据以上结果探究:当n条直线相交于一点时,所构成的对顶角有____________对;(5)根据探究结果,求2 016条直线相交于一点时,所构成的对顶角的对数.7.平面内n条直线最多将平面分成多少个部分?解码专训五:活用判定两直线平行的六种方法名师点金:1.直线平行的判定方法很多,我们要根据图形的特征和已知条件灵活选择方法.2.直线平行的判定常结合角平分线、对顶角、邻补角、垂直等知识.3.直线平行的判定和性质常常结合在一起,解决有关角度的计算或证明角相等等问题.利用平行线的定义1.下面几种说法中,正确的是()A.同一平面内不相交的两条线段平行B.同一平面内不相交的两条射线平行C.同一平面内不相交的两条直线平行D.以上三种说法都不正确利用“同平行于第三条直线的两直线平行”2.如图,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°,试说明AB∥EF.(第2题)利用“同垂直于第三条直线的两直线平行(在同一平面内)”3.如图,在三角形ABC中,CE⊥AB于点E,DF⊥AB于点F,DE∥CA,CE平分∠ACB,试说明∠EDF=∠BDF.(第3题)利用“同位角相等,两直线平行”4.(探究题)如图,已知∠ABC=∠ACB,∠1=∠2,∠3=∠F,试判断EC 与DF是否平行,并说明理由.(第4题)利用“内错角相等,两直线平行”5.如图,CB平分∠ACD,∠1=∠3,说明AB∥CD.(第5题)利用“同旁内角互补,两直线平行”6.如图,∠BEC=95°,∠ABE=120°,∠DCE=35°,则AB与CD平行吗?请说明理由.(第6题)解码专训六:思想方法荟萃名师点金:1.本章体现的主要方法有:基本图形(添加辅助线)法、分离图形法、平移法.2.几种主要的数学思想:方程思想、转化思想、数形结合思想、分类讨论思想等.基本图形(添加辅助线)法1.已知AB∥CD,探讨图中∠APC与∠PAB,∠PCD的数量关系,并请你说明成立的理由.(第1题)分离图形法2.若平行直线EF,MN与相交直线AB,CD相交成如图所示的图形,则共得出同旁内角多少对?(第2题)平移法3.如图,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的小路(阴影部分),余下部分绿化,小路的宽为2 m,则绿化的面积为多少?(第3题)转化思想4.如图,AB∥CD,∠1=∠B,∠2=∠D,试说明BE⊥DE.(第4题)数形结合思想5.如图,直线AB,CD被EF所截,∠1=∠2,∠CNF+∠BMN=180°.试说明:AB∥CD,MP∥NQ.(第5题)分类讨论思想6.如图,已知直线l1∥l2,直线l3交l1于C点,交l2于D点,P是线段CD 上的一个动点,当P在线段CD上运动时,请你探究∠1,∠2,∠3之间的关系.(第6题)。
课 题 平行线教学目标1、 了解同位角、内错角、同旁内角,掌握平行线的判定和平行线的性质.2、 了解平行线之间的距离.3、 学会运用几何语言进行推理演绎,体验推理过程的严谨性和逻辑性。
重点、难点● 重点:运用平行线的性质和判定解决几何演绎推理问题。
● 难点:合理运用平行线的判定方法、平行线性质.教学内容【新课学习】 一、平行线的性质:性质1:两直线平行, ; 性质2:两直线平行, ; 性质3:两直线平行, 。
【例1】 如图,直线a ‖b ,c ‖d ,∠1=106度,求∠2,∠3的度数。
解: ∵a ∥b (已知)∴∠1 = (两条平行线被第三条直线所截,内错角相等) ∵∠1 = 106(已知)∴∠2 = (等量代换) ∵c ∥d (已知)∴∠2 = ∠3 ( ) ∴∠3 = 【针对性练习】 一、填空1.如图1,已知∠1 = 100°,AB∥CD,则∠2 = ,∠3 = ,∠4 = . 2.如图2,直线AB 、CD 被EF 所截,若∠1 =∠2,则∠AEF +∠CFE = .3.如图3所示,若EF∥AC,则∠A +∠ = 180°。
4.如图4,AB∥CD,∠2 = 2∠1,则∠2 = .5.如图5,AB∥CD,EG⊥AB 于G ,∠1 = 50°,则∠E = .图124 31ABCD E1 2 A B DCE F图2 1 2 3 4 5A B C D FE 图312 ABCDE F 图46.如图6,AB∥CD,AC⊥BC,图中与∠CAB 互余的角有 . 7.如图7,直线l 1∥l 2,AB⊥l 1于O ,BC 与l 2交于E ,∠1 = 43°,则∠2 = . 8.如图8,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(不包括∠1)共有 个. 二、解答下列各题9.如图9,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G.10.如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB 的度数.11.如图11,已知AB∥CD,试再添上一个条件,使∠1 =∠2成立.(要求给出两个以上答案,并选择其中一个加以证明)12.如图12,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 =90°.求证:(1)AB∥CD; (2)∠2 +∠3 = 90°.图912 ACB FGED图102 1BCED图1112 ABEF DC13、如图,AB ∥CD ,BE 平分∠ABC ,CE 平分∠BCD,则∠1与∠2的关系是什么? 说明理由。
专题01 平行线知识讲义【技能一】两条直线的位置关系两条直线的位置关系有三种:(1)平行——没有公共点,在同一平面内;(2)相交——有且只有1个公共点,在同一平面内;(3)异面——没有公共点,不在同一平面内.(如下图所示,直线a与b异面)【技能二】与相交线有关的知识点1. 邻补角互补;2. 对顶角相等;3. 垂直是相交的特殊情况.判断两直线垂直的方法:两直线相交形成的四个角中,①一个为直角;②邻补角相等;③对顶角互补.4. 垂线段最短;5. 从直线外一点到直线的垂线段的长度,叫做点到直线的距离.6. 直角三角形斜边上的高等于直角边的乘积除以斜边的长.由S△=ab÷2=ch÷2得:h=ab÷c【技能三】三线八角1. 同位角近似“F” 【★同位角不一定相等】2. 内错角近似“Z” 【★内错角不一定相等】3. 同旁内角近似“U” 【★同旁内角不一定互补】【技能四】平行线的知识点同一平面内,永远不相交的两条直线互相平行,直线a与直线b平行,记作a∥b.【技能五】令人“烦恼”的前提前提:“同一平面内”,“直线外”在哪些情况下添加?过直线外一点,有且只有一条直线与已知直线平行;同一平面内,过一点有且只有一条直线与已知直线垂直;同一平面内,同垂直于一条直线的两条直线互相平行;【技能六】平行线的判定六法1. 定义——同一平面内,不相交的两条直线平行2. 同位角相等,两直线平行3. 内错角相等,两直线平行4. 同旁内角互补,两直线平行5. 平行线传递性6. 同一平面内,同垂直于一条直线的两条直线互相平行【技能七】平行线的性质及命题两直线平行,同位角相等,内错角相等,同旁内角互补.命题组成:题设、结论.形式:如果……,那么……分类:真命题,假命题★若两个角的两组边分别平行(垂直),则这两个角相等或互补.【如下图所示】【技能八】平移性质两条线段平移前后,长度不变,位置共线或平行.考点一:相交线题型一、基本概念例1.(2020·江阴市长泾月考)下列说法错误的是()A.对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.过任意一点P,只能画一条直线【变式1-1】(2020·右玉县期中)下列说法中正确的有( )①对顶角相等;②一个角的补角大于这个角;③互为邻补角的两个角的平分线互相垂直;④若两个实数的和是正数,则这两个实数都是正数.A .1个B .2个C .3个D .4个题型二、求角度例2-1.(2021·江西赣州期末)北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,過极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道AB 在点O 南偏东70°的方向上,则这条跑道所在射线OB 与正北方向所成角的度数为( )A .160°B .110°C .70°D .20°例2-2.(2020·浙江嘉兴期末)将一把直尺和一块三角板如图叠放,直尺的一边刚好经过直角三角板的直角顶点且与斜边相交,则1∠与2∠一定满足的数量关系是( )A .221∠=∠B .21180∠+∠=︒C .221180∠+∠=︒D .2190∠-∠=︒【变式2-1】.(2021·山东济南期中)如图,直线m 和n 相交于点O ,若∠1=40°,则∠2的度数是( )A .40°B .50°C .140°D .150°【变式2-2】.(2019·河北邢台期末)小明用一副三角板自制对顶角的“小仪器”,第一步固定直角三角板ABC ,并将边AC 延长至点P ,第二步将另一块三角板CDE 的直角顶点与三角板ABC 的直角顶点C 重合,摆放成如图所示,延长DC 至点F ,PCD ∠与ACF ∠就是一组对顶角,若30ACF ∠=,则PCD ∠=__________,若重叠所成的∠BCE =n °(0<n <90),则∠PCF 的度数为__________.【变式2-3】(2020·广东阳江期末)如图,两条直线AB,CD交于点O,射线OM是∠AOC 的平分线,若∠BOD=80°,则∠BOM的度数是.题型三、综合题例3.(2021·湖北十堰期末)如图,直线AB,CD相交于点O,OE平分∠AOD,OF∠OC,(1)图中∠AOF的余角是________ (把符合条件的角都填出来);(2)如果∠AOC=140°,那么根据________,可得∠BOD=________;(3)如果∠1=31°,求∠2和∠3的度数.【变式3-1】(2021·辽宁抚顺期末)如图,已知O 为直线AD 上一点,OB 是AOC ∠内部一条射线且满足AOB ∠与AOC ∠互补,OM ,ON 分别为AOC ∠,AOB ∠的平分线.(1)COD ∠与AOB ∠相等吗?请说明理由;(2)若30AOB ∠=︒,试求MON ∠的度数;(3)若MON α∠=,请直接写出AOC ∠的度数.(用含α的式子表示)考点二:垂线题型一、基础概念例1-1.(2021·山东临沂期末)下列四个生活、生产现象:∠用两枚钉子就可以把木条固定在墙上;∠植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;∠体育课上,老师测量某同学的跳远成绩;∠把弯曲的公路改直,就能缩短路程,其中可用基本事实“两点确定一条直线”来解释的现象有( )A .∠∠B .∠∠C .∠∠D .∠∠例1-2.(2021·北京顺义期末)如图,点P 在直线l 外,点A 、B 在直线l 上,若4PA =,7PB =,则点P 到直线l 的距离可能是( )A .3B .4C .5D .7例1-3.(2020·湖南湘潭月考)下列命题中,其中正确的有( ).∠两条相交直线组成的四个角相等,则这两直线垂直.∠两条相交直线组成的四个角中,若有一个直角,则四角都相等.∠两条直线相交,一角的两邻补角相等,则这两直线垂直.∠两条直线相交,一角与其邻补角相等,则这两直线垂直.A .1个B .2个C .3个D .4个【变式1-1】(2019·山西月考)如图,在三角形ABC 中,90ACB ∠=︒,CD AB ⊥于点D ,则图中能表示点B 到直线AC 的距离的是( )A .CD 的长度B .BC 的长度 C .BD 的长度 D .AD 的长度【变式1-2】(2020·福建三明期中)如图所示,某工程队计划把河水引到水池A 中,他们先过A 点作AB CD ⊥,垂足为B ,然后沿AB 开渠,可以节约人力、物力和财力,这样设计的数学依据是( )A .两点之间线段最短B .经过两点有且只有一条直线C .垂直定义D .垂线段最短【变式1-3】(2020·广西贺州期末)下列语句错误..的是( ). A .直线外一点到这条直线的垂线段叫做点到直线的距离.B .在直线外一点与直线上各点的线段中,垂线段最短.C .同一平面内,过一点有且只有一条直线垂直于已知直线.D .经过直线外一点,有且只有一条直线平行于这条直线.题型二、相关计算例2-1.(2020·河南省淮滨县第一中学七年级期末)如图,OA OC ⊥,OB OD ⊥,且150AOD ∠=︒,则BOC ∠的度数是( )A .60︒B .30C .50︒D .40︒例2-2.(2019·浙江杭州)已知60BOC ︒∠=,OF 平分BOC ∠.若AO BO ⊥,OE 平分AOC ∠,则EOF ∠的度数是( )A.45︒B.15︒C.30︒或60︒D.45︒或15︒例2-3.(2021·江苏泰州期末)如图,直线AB、CD相交于点O,OE平分∠BOD,OF∠CD,若∠BOC比∠DOE大75o.求∠AOD和∠EOF的度数.∠,【变式2-1】(2019·四川绵阳期末)如图,若直线AB与CD相交于点O,OD平分BOF ∠=︒,则COE∠的度数为()⊥且29OE OFBODA.116︒B.118︒C.119︒D.120︒【变式2-2】(2020·湖北咸宁期末)如图,直线AB、CD相交于点O,OE平分∠AOC,OF∠OE 于点O,若∠AOD=70°,则∠AOF=______度.【变式2-3】(2020·沭阳县月考)已知如图,直线AB 、CD 相交于点O ,∠COE =90°. (1)若∠AOC =36°,求∠BOE 的度数;(2)若∠BOD :∠BOC =1:5,求∠AOE 的度数;(3)在(2)的条件下,过点O 作OF ∠AB ,请直接写出∠EOF 的度数.【变式2-4】如图,直线BC 、DE 相交于点O ,OA 、OF 为射线,OA OB ⊥,OF 平分BOE ∠,BOF COD ∠+∠=54.求AOE ∠的度数.考点三:三线八角例1.(2020·长汀县月考)如图所示,下列结论中正确的是()A.∠1和∠2是同位角B.∠1和∠4是内错角C.∠2和∠3是同旁内角D.∠3和∠4是对顶角例2.(2019·商水县期末)如图所示,同位角有a对,内错角有b对,同旁内角有c对,则a+b-c的值是____________例3.(2021·河南周口期末)如图,找出标注角中的同位角、内错角和同旁内角.【变式1】.(2020·黑龙江哈尔滨期末)如图,1∠和2∠不是同旁内角的是( ) A .B .C .D .【变式2】.(2019·河南洛阳期中)如图,1∠和2∠是同位角的有( )A .∠∠B .∠∠C .∠∠D .∠∠【变式3】.(2020·河南周口期中)如图,直线AB ,CD 被直线EF 所截,与AB ,CD 分别交于点E,F,下列描述:∠∠1和∠2互为同位角∠∠3和∠4互为内错角∠∠1=∠4 ∠∠4+∠5=180°其中,正确的是()A.∠∠B.∠∠C.∠∠D.∠∠【变式4】(2020·湖北武汉月考)如图所示的图形中,同位角有_____对考点四:平行线例1.(2021·江苏宿迁期末)下列说法错误的是()A.平面内过一点有且只有一条直线与已知直线平行B.平面内过一点有且只有一条直线与已知直线垂直C.两点之间的所有连线中,线段最短D.对顶角相等例2.(2020·四川师范大学附属中学期中)下列说法中不正确的个数为().∠在同一平面内,两条直线的位置关系只有两种:相交和垂直.∠有且只有一条直线垂直于已知直线.∠如果两条直线都与第三条直线平行,那么这两条直线也互相平行.∠从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.∠过一点,有且只有一条直线与已知直线平行.A.2个B.3个C.4个D.5个【变式1】.(2021·陕西宝鸡期末)下列说法中正确的个数为()∠不相交的两条直线叫做平行线;∠平面内,过一点有且只有一条直线与已知直线垂直;∠平行于同一条直线的两条直线互相平行;∠在同一平面内,两条直线不是平行就是相交.A.1个B.2个C.3个D.4个【变式2】.(2020·江苏苏州期中)下列说法中:∠对顶角相等;∠同位角相等;∠平行于同一条直线的两条直线平行;∠垂直于同一条直线的两条直线垂直;其中正确的有()A.1 个B.2 个C.3 个D.4 个内部有一点M,过点M画OA的平行线,这样【变式3】.(2019·山西月考)已知AOB的直线( )A .有且只有一条B .有两条C .有三条D .有无数条考点五:平行线的判定例1. (2020·浙江杭州期中)如图,下列四个图中12∠=∠,不能判断不能判定//a b 的是( ) A . B .C .D .例2.(2021·河南开封期末)如图,下列条件能判断//AD CB 的是( )A .180D DAB ∠+∠=︒ B .12∠=∠C .34∠=∠D .45∠=∠例3.(2021·福建三明期末)如图是利用直尺和三角板过直线l外一点P作直线l的平行线的方法,这样做的依据是()A.同位角相等,两直线平行B.两直线平行,同位角相等C.两直线平行,内错角相等D.内错角相等,两直线平行例4.(2021·浙江绍兴期末)如图,已知CD∠DA,DA∠AB,∠1=∠4.试说明DF∠AE.请你完成下列填空,把证明过程补充完整.证明:∠_________(___________)∠∠CDA=90°,∠DAB=90°(_________).∠∠4+∠3=90°,∠2+∠1=90°.又∠∠1=∠4,∠_____(_____),∠DF∠AE(______).例5.(2020·甘肃张掖期末)已知:如图,1C ∠=∠,2∠和D ∠互余,1∠和D ∠互余,求证://AB CD .例6.(2020·渠县月考)已知:如图,,,,AC AB BD AB CAE DBF ⊥⊥∠=∠且请猜想直线AE 与BF 的位置关系,并说明理由.【变式1】(2020·洛阳市月考)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容,则回答正确的是( )A .∠代表∠FECB .□代表同位角C .▲代表∠EFCD .∠代表AB【变式2】(2020·浙江金华期末)下列说法中:(1)不相交的两条直线叫做平行线;(2)经过一点,有且只有一条直线与已知直线平行;(3)垂直于同一条直线的两直线平行;(4)直线//a b ,//b c ,则//a c ;(5)两条直线被第三条直线所截,同位角相等.其中正确的是________.【变式3】(2019·山西期末)如图1,在探索“如何过直线外一点作已知直线的平行线”时,小颖利用两块完全相同的三角尺进行如下操作:如图 2 所示,(1)用第一块三角尺的一条边贴住直线 l ,第二块三角尺的一条边紧靠第一块三角尺;(2)将第二块三角尺沿第一块三角尺移动,使其另一边经过点 A ,沿这边作出直线 AB ,直线 AB 即为所求,则小颖的作图依据是________.【变式4】(2020·江西宜春期末)如图,已知点E 在直线DC 上,射线EF 平分∠AED ,过E 点作EB ∠EF ,G 为射线EC 上一点,连结BG ,且90EBG BEG ︒∠+∠=.(1)求证:DEF EBG ∠=∠;(2)若EBG A ∠=∠,试判断AB 与EF 的位置关系,并说明理由.考点六:平行线的性质题型一、求度数例1-1.(2020·浙江杭州期中)如图,//AB CD ,AD AC ⊥,32ADC ︒∠=,则CAB ∠的度数是( )A .120度B .121度C .122度D .123度例1-2.(2021·山东潍坊期末)一把直尺与30°的直角三角板如图所示,150∠=︒,则2∠=( )A .50°B .60°C .70°D .80°【变式1-1】(2020·浙江金华期中)如图所示,已知AD 与BC 相交于点O ,////CD OE AB .如果40B ∠=︒,30D ∠=︒,则AOC ∠的大小为( )A .60°B .70°C .80°D .120°【变式1-2】如图,∠1=∠2,AC 平分∠DAB ,且∠D :∠DAB =2:1,则∠D 的度数是( )A .120°B .130°C .140°D .150°题型二、方位角 例2.(2021·甘肃白银期末)一条船停留在海面上,从船上看灯塔位于北偏东60°方向,那么从灯塔看船位于灯塔的 方向( )A .南偏西60°B .西偏南60°C .南偏西30°D .北偏西30°【变式】如图,李强和同事驾驶快艇执行巡逻任务,他们从岛屿A 处向正南方向航行到B 处时,向右转60︒航行到C 处,再向左转80︒继续航行,此时快艇的航行方向为( )A .南偏东20︒B .南偏东80︒C .南偏西20︒D .南偏西80︒题型三、综合题型 例3-1.(2020·浙江杭州期中)已知A ∠的两边与B 的两边分别平行,若A ∠的度数比B 的2倍少30°,则B 的度数是( )A .30°B .50°C .30°或70°D .50°或70°例3-2.如图,已知直线AB 、CD 被直线AC 所截,//AB CD ,E 是直线AC 右边任意一点(点E 不在直线AB ,CD 上),设BAE α∠=,DCE β∠=.下列各式:∠αβ+,∠αβ-,∠βα-,∠360αβ︒--,AEC ∠的度数可能是( )A .∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠∠例3-3.(2021·陕西咸阳期末)如图,360ABC C CDE ∠+∠+∠=︒,直线FG 分别交AB 、DE 于点F 、G .若1110∠=︒,则2∠=___________.例3-4.(2021·陕西西安期末)如图,178∠=︒,2102∠=︒,C D ∠=∠.求证://AC DF .【变式3-1】(2021·山东青岛期末)如图,//AB CD ,点E 在AC 上,110A ∠=︒,15D ∠=︒,则下列结论正确的个数是( )(1)AE EC =;(2)85AED ∠=︒;(3)A CED D ∠=∠+∠;(4)45BED ∠=︒A .1个B .2个C .3个D .4个【变式3-2】(2021·广西贵港期末)如图,直线a ,b ,//a b ,点C 在直线b 上,90DCB ∠=︒,若170∠=︒,则2∠的度数为______.【变式3-3】(2020·浙江金华期中)已知A ∠与B (A ∠,B 都是大于0°且小于180°的角)的两边一边平行,另一边垂直,且227A B ∠-∠=︒,则A ∠的度数为_________.【变式3-4】(2020·黑龙江哈尔滨期末)在同一平面内,A ∠与B 的两边分别平行,若50A ∠=︒,则B 的度数为__________︒.【变式3-5】(2021·河南洛阳期末)直线AB 和CD 被直线MN 所截,如图1,EG 平分MEB ∠,FH 平分DFE ∠,当12∠=∠时,小明证明//AB CD 的过程如下:∠EG 平分MEB ∠,FH 平分DFE ∠(已知),∠21MEB ∠=∠,22DFE ∠=∠(角平分线的定义). ∠12∠=∠,(已知),∠MEB DFE ∠=∠(等量代换).∠//AB CD (同位角相等,两直线平行).请你参考上述证明过程解决下列问题:(1)如图2,EG 平分AEF ∠,FH 平分DFE ∠,1∠与2∠满足什么条件时,//AB CD ?说明理由.(2)如图3,若//AB CD ,EG 平分AEM ∠,FH 平分CFN ∠,则1∠与2∠满足怎样的条件?说明理由.【变式3-6】(2021·四川成都期末)完成下面推理过程,在括号内的横线上填空或填上推理依据.如图,已知://AB EF ,EP EQ ⊥,90EQC APE ∠+∠=︒,求证://AB CD证明://AB EFAPE ∴∠=__________(__________)EP EQ ⊥PEQ ∴∠=_________(___________)即90QEF PEF ∠+∠=︒90APE QEF ∴∠+∠=︒90EQC APE ∠+∠=︒EQC ∠=________//EF ∴_______(__________________)//AB CD ∴(________________)考点七:命题例1. 举反例说明 “互为补角的两个角都是直角”为假命题.例2.(2021·浙江绍兴期末)把“同位角相等”写成“如果…那么…”的形式为:为_____.【变式1】判断下列命题的真假,如果是假命题,请举一个反例,真命题不需要举例. (1)钝角的补角是锐角;(2)一个角的余角小于这个角;(3)如果a b =,那么a b =.【变式2】(2021·山东青岛期末)把命题“锐角小于90°”改写成“如果……那么……”的形式:______.考点八:平移例1. (2020·浙江杭州模拟)如图,将ABC 沿AC 方向平移1cm 得到DEF ,若ABC 的周长为10cm ,则四边形ABEF 的周长为( )A .14cmB .13cmC .12cmD .10cm例2.(2021·上海宝山期末)如图,ABC 经过平移后得到DEF ,下列说法:∠//AB DE∠AD BE =∠ACB DFE ∠=∠∠ABC 和DEF 的面积相等∠四边形ACFD 和四边形BCFE 的面枳相等,其中正确的有( )A .4个B .3个C .2个D .1个【变式1】(2021·北京丰台期末)如图,将ABC ∆沿BC 所在的直线平移得到DEF ∆.如果2GC =, 4.5DF =, 那么AG =____.【变式2】(2021·上海浦东新区期末)如图,已知直角三角形ABC ,90A ∠=︒,4AB =厘米,3AC =厘米,5BC =厘米,将ABC 沿AC 方向平移1.5厘米,线段BC 在平移过程中所形成图形的面积为__________平方厘米.。