二次函数第三课时
- 格式:doc
- 大小:44.50 KB
- 文档页数:2
二次函数的图象与性质(3)学习目标:会画出2)(h x a y -=这类函数的图象,通过比较,了解这类函数的性质. 学习重难点:探究形如2)(h x a y -=这类函数的图象特点和相对应的函数性质 学习过程:我们已经了解到,函数k ax y +=2的图象,可以由函数2ax y =的图象上下平移所得,那么函数2)2(21-=x y 的图象,是否也可以由函数221x y =平移而得呢?画图试一试,你能从中发现什么规律吗?[实践与探索]例1.在同一直角坐标系中,画出下列函数的图象.221x y =,2)2(21+=x y ,2)2(21-=x y ,并指出它们的开口方向、对称轴和顶点坐标.描点、连线,画出这三个函数的图象,如图26.2.5所示.它们的开口方向都向上;对称轴分别是y 轴、直线x= -2和直线x=2;顶点坐标分别是 (0,0),(-2,0),(2,0). 回顾与反思 对于抛物线2)2(21+=x y ,当x 时,函数值y 随x 的增大而减小;当x 时,函数值y 随x 的增大而增大;当x 时,函数取得最 值,最 值y= . 探索 抛物线2)2(21+=x y 和抛物线2)2(21-=x y 分别是由抛物线221x y =向左、向右平移两个单位得到的.如果要得到抛物线2)4(21-=x y ,应将抛物线221x y =作怎样的平移?例2.不画出图象,你能说明抛物线23x y -=与2)2(3+-=x y 之间的关系吗?解 抛物线23x y -=的顶点坐标为(0,0);抛物线2)2(3+-=x y 的顶点坐标为(-2,0). 因此,抛物线23x y -=与2)2(3+-=x y 形状相同,开口方向都向下,对称轴分别是y 轴和直线2-=x .抛物线2)2(3+-=x y 是由23x y -=向左平移2个单位而得的.回顾与反思 2)(h x a y -=(a 、h 是常数,a ≠0)的图象的开口方向、对称轴、顶点坐标[当堂课内练习]1.画图填空:抛物线2)1(-=x y 的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线2x y =向 平移 个单位得到的. 2.在同一直角坐标系中,画出下列函数的图象.22x y -=,2)3(2--=x y ,2)3(2+-=x y ,并指出它们的开口方向、对称轴和顶点坐标.[本课课外作业]A 组1.已知函数221x y -=,2)1(21+-=x y , 2)1(21--=x y .(1)在同一直角坐标系中画出它们的图象;(2)分别说出各个函数图象的开口方向、对称轴和顶点坐标; (3)分别讨论各个函数的性质.2.根据上题的结果,试说明:分别通过怎样的平移,可以由抛物线221x y -=得到抛物线2)1(21+-=x y 和2)1(21--=x y ?3.函数2)1(3+-=x y ,当x 时,函数值y 随x 的增大而减小.当x 时,函数取得最 值,最 值y= .4.不画出图象,请你说明抛物线25x y =与2)4(5-=x y 之间的关系.B 组5.将抛物线2ax y =向左平移后所得新抛物线的顶点横坐标为 -2,且新抛物线经过点 (1,3),求a 的值. 课后反思:今天学习的知识相对于昨天学习的有一点难度,学生可能容易混淆,就是上节课是图像沿y 轴上下平移,且移动方向与我们的正常学习相辅,加向上平移,减向下平移。
中学“自导式”育人设计方案(四)老师公布并讲解上面2题。
(五)小组讨论完成下面表格;(六)老师公布答案并答疑。
(七)小组内结对2人理解记忆上表格内容。
(八)探究练习:填写下列抛物线的开口方向、对称轴、顶点坐标以及最值.抛物线 开口方向 对称轴 顶点坐标 最值y =2x 2+2y =-5x 2-3y =15x 2+1y =-12x 2-4(九)课堂小结:1二次函数y =ax 2+k 的性质2. 二次函数y =ax 2与y =ax 2+k 的平移规律:()022>+=→=k k ax y k ax y 个单位向上平移 ()022>-=→=k k ax y k ax y 个单位向下平移口决:上加下减四、课后拓展练习:(见复习巩固单)抛物线 开口方向对称轴顶点坐标最大(小)值 增减性 平移规律a>0 a<0 a>0 a<0 a>0 a<0y=ax 2y=ax 2+k课后作业 课后反思一、预学检测单1.在同一直角坐标系中,画出二次函数y =2x 2+1,y =2x 2-1,y =2x 2的图象.二、探究练习单1.画一画:在同一坐标系中画出函数y=-2x、y =-x 2+1、y= y =-x 2-2的图像3、小组内讨论完成下表;三、复习巩固单1.二次函数y =x 2+1的图象大致是( )2.下列关于抛物线y =-x 2+2的说法正确的是( ) A .抛物线开口向上B .顶点坐标为(-1,2)C .在对称轴的右侧,y 随x 的增大而增大D .在对称轴的左侧,y 随x 的增大而增大3.与抛物线y =-45x 2-1顶点相同,形状也相同,而开口方向相反的抛物线所对应的函数解析式是( )A .y =-45x 2-1B .y =45x 2-1C .y =-45x 2+1D .y =45x 2+14.抛物线y =2x 2-1在y 轴右侧的部分是 (填“上升”或“下降”)的.5.二次函数y =3x 2-3的图象开口向上,顶点坐标为 对称轴为 轴,当x>0时,y 随x 的增大而 ;当x<0时,y 随x 的增大而 .因为a =3>0,所以y 有最 值,当x = 时,y 的最小值是6.抛物线y =ax 2-1(a >0)上有两点A (1,y 1),B (3,y 2),则y 1 y 2.(填“>”“<”或“=”)7.函数y =13x 2+1与y =13x 2的图象的不同之处是( )A .对称轴B .开口方向C .顶点D .形状8.如果将抛物线y =-3x 2向上平移2个单位长度,那么得到的新抛物线的解析式为9.在同一平面直角坐标系中画出二次函数y =-2x 2,y =-2x 2+3的图象. (1)分别指出它们的开口方向、对称轴以及顶点坐标;(2)抛物线y =-2x 2+3可由抛物线y =-2x 2向 平移 个单位长度得到. 易错点 求函数值的范围时忽视顶点处的取值10.对于二次函数y =-2x 2+4,当-2<x≤1时,y 的取值范围是 中档题11.已知点(x 1,y 1),(x 2,y 2)均在抛物线y =x 2-1上,下列说法中正确的是( ) A .若y 1=y 2,则x 1=x 2 B .若x 1=-x 2,则y 1=-y 2 C .若0<x 1<x 2,则y 1>y 2 D .若x 1<x 2<0,则y 1>y 2 12.【数形结合思想】一次函数y =ax +b (a≠0,b≠0)的图象如图所示,则二次函数y =bx 2+a 的大致图象是( )13、已知y =ax 2+k 的图象上有三点A (-3,y 1),B (1,y 2),C (2,y 3),且y 2<y 3<y 1,则a的取值范围是()A.a>0 B.a<0C.a≥0 D.a≤014.已知二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等.当x取x1+x2时,函数值为()A.a+c B.a-cC.-c D.c。
第三课时 27.2 二次函数的图象与性质(2)(第3课时)一、衔接知识回顾:1.一次函数x y 2=的图象 移动 单位,可得12+=x y 的图象。
2.你能由此推测二次函数2x y =与12+=x y 的图象之间的关系吗? ,那么2x y =与22-=x y 的图象之间又有何关系?1.会画二次函数y =ax 2+k 的图象;2.掌握二次函数y =ax 2+k 的性质,并会应用; 3.知道二次函数y =ax 2与y =的ax 2+k 的联系. 二、新知自习探究:(学生先独立完成下列题目)例1.在同一直角坐标系中,画出函数22x y =与222+=x y 的图象. 解列表.描点、连线,画出这两个函数的图象.反思 1. 当自变量x 取同一数值时,这两个函数的函数值之间有什么关系?2.反映在图象上,相应的两个点之间的位置又有什么关系? 探索 1.观察这两个函数,它们的开口方向、对称轴和顶点坐标有那些是相同的?又有哪些不同?2.你能由此说出函数22x y =与222-=x y 的图象之间的关系吗? 例2、在同一直角坐标系中,画出二次函数y =x 2+1,y =x 2-1的图象. 解:先列表x … -3 -2 -1 0 1 23 … y =x 2+1 … … y =x 2-1 ……描点并画图x... -3 -2 -1 0 1 2 3 (2)2x y =... 18 8 2 0 2 8 18 (2)22+=x y…20104241020…观察图象得:1.开口方向顶点对称轴有最高(低)点最值y=x2y=x2-1y=x2+12.可以发现,把抛物线y=x2向______平移______个单位,就得到抛物线y=x2+1;把抛物线y=x2向_______平移______个单位,就得到抛物线y=x2-1.3.抛物线y=x2,y=x2-1与y=x2+1的形状_____________.三、理一理知识点1.y=ax2y=ax2+k开口方向顶点对称轴有最高(低)点最值a>0时,当x=______时,y有最____值为________;a<0时,当x=______时,y有最____值为________.增减性2.抛物线y=2x2向上平移3个单位,就得到抛物线__________________;抛物线y=2x2向下平移4个单位,就得到抛物线__________________.因此,把抛物线y=ax2向上平移k(k>0)个单位,就得到抛物线_______________;把抛物线y=ax2向下平移m(m>0)个单位,就得到抛物线_______________.3.抛物线y=-3x2与y=-3x2+1是通过平移得到的,从而它们的形状__________,由此可得二次函数y =ax 2与y =ax 2+k 的形状__________________.四、课堂巩固训练1.填表函数草图开口方向 顶点对称轴 最值对称轴右侧的增减性y =3x 2y =-3x 2+1y =-4x 2-52.将二次函数y =5x 2-3向上平移7个单位后所得到的抛物线解析式为_________________.3.写出一个顶点坐标为(0,-3),开口方向与抛物线y =-x 2的方向相反,形状相同的抛物线解析式____________________________. 五.方法归纳:k axy +=2(a 、k 是常数,a≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:k axy +=2开口方向对称轴顶点坐标>a<a六、作业:A1.填表函数开口方向顶点 对称轴最值 对称轴左侧的增减性y =-5x 2+3 y =7x 2-12.抛物线y =-13 x 2-2可由抛物线y =-13x 2+3向___________平移_________个单位得到的.3.抛物线y =-x 2+h 的顶点坐标为(0,2),则h =_______________.4.抛物线y =4x 2-1与y 轴的交点坐标为_____________,与x 轴的交点坐标为_________. 5.抛物线9412-=x y 的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线241x y =向 平移 个单位得到的.6.函数332+-=x y ,当x 时,函数值y 随x 的增大而减小.当x 时,函数取得最 值,最 值y= .7.已知抛物线y=mx 2+n 向下平移2个单位后得到的函数图像是y=3x 2-1,求m,n 的值. B 、1.在同一直角坐标系中b ax y +=2与)0,0(≠≠+=b a b ax y 的图象的大致位置是( )2.已知二次函数7)1(82-+--=k x k x y ,当k 为何值时,此二次函数以y 轴为对称轴?写出其函数关系式.3.二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 。
冶金中学九年级数学导学案(26.3 二次函数)
课型:新授课 主备: 吕戟英 备课组长审核:_______ 教研组长审核________使用:_________ 日期:___年____月 ____日 班级:_____ 姓名:______ 一、提解目标:
1.会画二次函数y =ax 2+k 的图象;
2.掌握二次函数y =ax 2+k 的性质,并会应用; 3.知道二次函数y =ax 2与y =的ax 2+k 的联系. 二、预习交流:
在同一直角坐标系中,画出二次函数y =x 2+1,y =x 2-1的图象.
观察图象得:
2.可以发现,把抛物线y =x 2向______平移______个单位,就得到抛物线y =x 2+1;把抛物线y =x 2向_______平移______个单位,就得到抛物线y =x 2-1.
3.抛物线y =x 2
,y =x 2-1与y =x 2+1的形状_____________. 三、点拨提升 1.
2.抛物线y =2x 2向上平移3个单位,就得到抛物线__________________;
抛物线y =2x 2向下平移4个单位,就得到抛物线__________________.
因此,把抛物线y =ax 2向上平移k (k >0)个单位,就得到抛物线_______________; 把抛物线y =ax 2向下平移m (m >0)个单位,就得到抛物线_______________.
3.抛物线y =-3x 2与y =-3x 2+1是通过平移得到的,从而它们的形状__________,由此可得二次函数y =ax 2与y =ax 2+k 的形状__________________.
四、课堂反馈
2.将二次函数y =5x 2-3向上平移7个单位后所得到的抛物线解析式为_________________. 3.写出一个顶点坐标为(0,-3),开口方向与抛物线y =-x 2的方向相反,形状相同的抛 物线解析式____________________________.
4.抛物线y =4x 2+1关于x 轴对称的抛物线解析式为______________________. 五、达标检测1.填表
2.抛物线y =-13 x 2-2可由抛物线y =-1
3 x 2+3向___________平移_________个单位得到的.
3.抛物线y =-x 2+h 的顶点坐标为(0,2),则h =_______________.
4.抛物线y =4x 2-1与y 轴的交点坐标为_____________,与x 轴的交点坐标为_________.。