2014年普通高等学校招生全国统一考试数学理试题(陕西卷)
- 格式:doc
- 大小:536.50 KB
- 文档页数:4
2014年普通高等学校招生全国统一考试(陕西卷)理科数学试题一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.【2014年陕西卷(理01)】已知集合2{|0},{|1,}M x x N x x x R =≥=<∈,则M N =( ).[0,1]A .[0,1)B .(0,1]C .(0,1)D【答案】 B【解析】B N M N M 选,).1,0[),11-(),,0[=∩∴=+∞=【2014年陕西卷(理02)】函数()cos(2)6f x x π=-的最小正周期是( ).2A π.B π.2C π.4D π【答案】 B 【解析】B T 选∴,π2π2||π2===ω 【2014年陕西卷(理03)】定积分1(2)xx edx +⎰的值为( ).2Ae +.1B e +.C e .1D e -【答案】 C 【解析】C e e e e x dx e x x x选∴,-0-1|)()2(11102∫=+=+=+【2014年陕西卷(理04)】根据右边框图,对大于2的整数N ,输出数列的通项公式是( ).2n A a n =.2(1)n B a n =-.2n n C a =1.2n n D a -=【答案】 C【解析】C q a a a a a n 选的等比数列是.2,2∴,8,4,21321=====【2014年陕西卷(理05)】已知底面边长为1,侧棱长为2则正四棱柱的各顶点均在同一个球面上,则该球的体积为( )32.3A π.4B π.2C π4.3D π【答案】 D 【解析】D r r r r 选解得设球的半径为.π3434V ∴,1,4)2(11)2(,32222====++=π【2014年陕西卷(理06)】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A 2.5B 3.5C 4.5D【答案】 C【解析】C p 选反向解题.53C 4C 4-1.2525=== 【2014年陕西卷(理07)】下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )(A )()12f x x = (B )()3f x x = (C )()12xf x ⎛⎫= ⎪⎝⎭(D )()3xf x =【答案】 D 【解析】D y f x f y x f D C y x y x y x 选而言,对不是递增函数只有.333)()(,3)(.++=•=•=+【2014年陕西卷(理08)】原命题为“若12,z z 互为共轭复数,则12z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )(A )真,假,真 (B )假,假,真 (C )真,真,假 (D )假,假,假【答案】 B 【解析】Bz z b a z b a z bi a z bi a z 选选择完成判断逆命题的真假即可逆否名称也为真,不需,原命题为真,则设,逆命题和否命题等价原命题和逆否名称等价.,||||∴,||||,-,.2122222111=+=+==+=【2014年陕西卷(理09)】设样本数据1210,,,x x x 的均值和方差分别为1和4,若i i y x a=+(a 为非零常数, 1,2,,10i =),则12,10,y y y 的均值和方差分别为( )(A )1+,4a (B )1,4a a ++ (C )1,4 (D )1,4+a【答案】 A【解析】A 选变均值也加此数,方差不样本数据加同一个数,. 【2014年陕西卷(理10)】如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降, 已知下降飞行轨迹为某三次函数图像的一部分,则函数的解析式为( )(A )3131255y x x =- (B )3241255y x x =- (C )33125y x x =- (D )3311255y x x =-+【答案】 A 【解析】AA f x f f x f A f x 选符合只有,,而言,对即为极值点且),三次奇函数过点..053-53)5(53-1253x )(2-3-1)5(∴x 53-x 1251)(.0)5(,5,2-5(),0,0(23==′=′====′=第二部分(共100分)二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).【2014年陕西卷(理11)】已知,lg ,24a x a==则x =________. 【答案】 10【解析】.1010,21lg 12a ∴,lg ,224212aa========x a x a x 所以,【2014年陕西卷(理12)】若圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,则圆C 的标准方程为_______.【答案】11-(22=+)y x 【解析】.11-(1),1,0(∴)1,0()0,1(22=+=)的标准方程为半径为圆心为,的对称点关于点y x x y【2014年陕西卷(理13)】设20πθ<<,向量()()sin 2cos cos 1a b θθθ==,,,,若b a//,则=θtan _______.【答案】 21【解析】.21tan θθ,cos θcos θsin 2θcos θ2sin ∴//).1,θ(cos ),θcos ,θ2(sin 22=====解得即,b a b a【2014年陕西卷(理14)】观察分析下表中的数据:多面体 面数(F ) 顶点数(V ) 棱数(E ) 三棱锥 5 6 9 五棱锥 6 6 10 立方体6812猜想一般凸多面体中,E V F ,,所满足的等式是_________.【答案】 2+=+E V F【解析】.2+=+E V F 经观察规律,可得【2014年陕西卷(理15)】(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分).A (不等式选做题)设,,,a b m n R ∈,且225,5a b ma nb +=+=,则22m n +的最小值为.B (几何证明选做题)如图,ABC ∆中,6BC =,以BC 为直径的半圆分别交,AB AC于点,E F ,若2AC AE =,则EF =.C (坐标系与参数方程选做题)在极坐标系中,点(2,)6π到直线s i n ()16πρθ-=的距离是【答案】 A 5 B 3 C 1 【解析】A5.≤5)φθsin(∴5)φθsin(5os θ5θsin 5,os θ5,θsin 5∴,52222222222的最小值为所以,,则设n m n m n m n m c n m nb ma c b a b a ++=++=++=+=+===+B.3,2,6∴Δ=∴===ΔEF AE AC BC CBEFAC AE ACB AEF ,且相似与 C1|1323-3|023-1,3(∴,2-3121os θρ-23θsin ρ)6π-θsin(ρ,1,3()6π,2(=++==+==••=d y x x y c 的距离)到直线点即对应直线)对应直角坐标点极坐标点三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分) 【2014年陕西卷(理16)】 (本小题满分12分)ABC ∆的内角C B A ,,所对的边分别为c b a ,,. (I )若c b a ,,成等差数列,证明:()C A C A +=+sin 2sin sin ; (II )若c b a ,,成等比数列,求B cos 的最小值.(1) a 、b 、c 成等数列,∴a+c=2b. 由正弦定理得sinA+sinC=2sinB.sinB=sin[π-(A+C)]=sin(A+C)=sin(A+C) ∴ sinA+sinC=2sin (A+C ).(II) a,b,c 成等比例,∴ b 2=2c.由余弦定理得cosB=ac ac c a ac b c a 2222222-+=++≥2122=-ac ac ac ,当且仅当a=c 时等号成立.∴ cosB 的最小值为21.【2014年陕西卷(理17)】(本小题满分12分)四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分别交四面体的棱CA DC BD ,,于点H G F ,,.(I )证明:四边形EFGH 是矩形;(II )求直线AB 与平面EFGH 夹角θ的正弦值.解 (I )由该四面体的三视图可知,BD ⊥DC, BD ⊥AD , AD ⊥DC, BD=DC=2,AD = 1.由题设,BC //平面EFGH, 平面EFGH ⋂平面BDC=FG, 平面EFGH ⋂平面ABC=EH,∴ BC// FG, BC//EH, ∴FG//EH. 同理EF//AD,HG//AD, ∴EF//HG, ∴四边形EFGH 是平行四边形。
2013年普通高等学校夏季招生全国统一考试数学理工农医类(陕西卷)第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分).1.(2013陕西,理1)设全集为R ,函数f (x )的定义域为M ,则R M 为( ).A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞) 1)∪(1,+∞).2.(2013陕西,理2)根据下列算法语句,当输入x 为60时,输出y 的值为( ).A .25B .30C .31D .613.(2013陕西,理3)设a ,b 为向量,则“|a·b |=|a ||b |”是“a ∥b ”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 4.(2013陕西,理4)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( ).A .11B .12C .13D .145.(2013陕西,理5)如图,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无.信号的概率是( ). A .π14-B .π12- C .π22-D .π4 6.(2013陕西,理6)设z 1,z 2是复数,则下列命题中的假.命题是( ). A .若|z1-z2|=0,则12z z = B .若12z z =,则12z z =C .若|z1|=|z2|,则1122z z z z⋅=⋅ D .若|z1|=|z2|,则z12=z22 7.(2013陕西,理7)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ).A .锐角三角形B .直角三角形C .钝角三角形D .不确定 8.(2013陕西,理8)设函数f (x )=6100,x x x x ⎧⎛⎫-<⎪ ⎪⎝⎭⎨⎪≥⎩,,则当x >0时,f [f (x )]表达式的展开式中常数项为 A .-20 B .20 C .-15 D .15 9.(2013陕西,理9)在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范围是( ).A .[15,20]B .[12,25]C .[10,30]D .[20,30]10.(2013陕西,理10)设[x]表示不大于x的最大整数,则对任意实数x,y,有( ).A.[-x]=-[x] B.[2x]=2[x]C.[x+y]≤[x]+[y] D.[x-y]≤[x]-[y]第二部分(共100分)二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).11.(2013陕西,理11)双曲线22116x ym-=的离心率为54,则m等于__________.12.(2013陕西,理12)某几何体的三视图如图所示,则其体积为__________.13.(2013陕西,理13)若点(x,y)位于曲线y=|x-1|与y=2所围成的封闭区域,则2x-y的最小值为__________.14.(2013陕西,理14)观察下列等式12=112-22=-312-22+32=612-22+32-42=-10……照此规律,第n个等式可为__________.15.(2013陕西,理15)(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)已知a,b,m,n均为正数,且a+b=1,mn=2,则(am+bn)(bm+an)的最小值为__________.B.(几何证明选做题)如图,弦AB与CD相交于O内一点E,过E作BC的平行线与AD的延长线交于点P,已知PD=2DA=2,则PE=__________.C.(坐标系与参数方程选做题)如图,以过原点的直线的倾斜角θ为参数,则圆x2+y2-x=0的参数方程为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分).16.(2013陕西,理16)(本小题满分12分)已知向量a =1cos ,2x ⎛⎫- ⎪⎝⎭,b =x ,cos 2x ),x ∈R ,设函数f (x )=a·b .(1)求f (x )的最小正周期;(2)求f (x )在π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.17.(2013陕西,理17)(本小题满分12分)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列.18.(2013陕西,理18)(本小题满分12分)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1(1)证明:A1C⊥平面BB1D1D;(2)求平面OCB1与平面BB1D1D的夹角θ的大小.19.(2013陕西,理19)(本小题满分12分)在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X表示3号歌手得到观众甲、乙、丙的票数之和,求X的分布列及数学期望.20.(2013陕西,理20)(本小题满分13分)已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8.(1)求动圆圆心的轨迹C的方程;(2)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明直线l过定点.21.(2013陕西,理21)(本小题满分14分)已知函数f (x )=e x,x ∈R . (1)若直线y =kx +1与f (x )的反函数的图像相切,求实数k 的值;(2)设x >0,讨论曲线y =f (x )与曲线y =mx 2(m >0)公共点的个数; (3)设a <b ,比较2f a f b ()+()与f b f a b a()-()-的大小,并说明理由.2013年普通高等学校夏季招生全国统一考试数学理工农医类(陕西卷)第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分). 1. 答案:D解析:要使函数f (x )1-x 2≥0,解得-1≤x ≤1,则M =[-1,1],RM =(-∞,-1)∪(1,+∞). 2. 答案:C解析:由算法语句可知0.5,50,250.650,50,x x y x x ≤⎧=⎨+(-)>⎩所以当x =60时,y =25+0.6×(60-50)=25+6=31.3. 答案:C解析:若a 与b 中有一个为零向量,则“|a ·b |=|a ||b |”是“a ∥b ”的充分必要条件;若a 与b 都不为零向量,设a 与b 的夹角为θ,则a ·b =|a ||b |cos θ,由|a ·b |=|a ||b |得|cos θ|=1,则两向量的夹角为0或π,所以a ∥b .若a ∥b ,则a 与b 同向或反向,故两向量的夹角为0或π,则|cos θ|=1,所以|a ·b |=|a ||b |,故“|a ·b |=|a ||b |”是“a ∥b ”的充分必要条件. 4. 答案:B解析:840÷42=20,把1,2,…,840分成42段,不妨设第1段抽取的号码为l ,则第k 段抽取的号码为l +(k -1)·20,1≤l ≤20,1≤k ≤42.令481≤l +(k -1)·20≤720,得25+120l -≤k ≤37-20l.由1≤l ≤20,则25≤k ≤36.满足条件的k 共有12个. 5. 答案:A解析:S 矩形ABCD =1×2=2,S 扇形ADE =S 扇形CBF =π4.由几何概型可知该地点无信号的概率为 P =π2π2124FABCD ADE CB ABCDS S S S ---==-矩形扇形扇形矩形. 6.答案:D解析:对于选项A ,若|z 1-z 2|=0,则z 1=z 2,故12z z =,正确;对于选项B ,若12z z =,则122z z z ==,正确;对于选项C ,z 1·1z =|z 1|2,z 2·z 2=|z 2|2,若|z 1|=|z 2|,则1122z z z z ⋅=⋅,正确;对于选项D ,如令z 1=i +1,z 2=1-i ,满足|z 1|=|z 2|,而z 12=2i ,z 22=-2i ,故不正确. 7. 答案:B解析:∵b cos C +c cos B =a sin A ,由正弦定理得sin B cos C +sin C cos B =sin 2A ,∴sin(B +C )=sin 2A ,即sin A =sin 2A .又sin A >0,∴sin A =1,∴π2A =,故△ABC 为直角三角形. 8. 答案:A解析:当x >0时,f (x )=0,则f [f (x )]=66⎛= ⎝.663221666C (1)C (1)C rr rr r r r r r r r T x x x ----+⎛=⋅=-⋅=- ⎝.令3-r =0,得r =3,此时T 4=(-1)336C =-20.9. 答案:C解析:设矩形另一边长为y ,如图所示.404040x y -=,则x =40-y ,y =40-x .由xy ≥300,即x (40-x )≥300,解得10≤x ≤30,故选C .10.答案:D解析:对于选项A ,取x =-1.1,则[-x ]=[1.1]=1,而-[x ]=-[-1.1]=-(-2)=2,故不正确;对于选项B ,令x =1.5,则[2x ]=[3]=3,2[x ]=2[1.5]=2,故不正确;对于选项C ,令x =-1.5,y =-2.5,则[x +y ]=[-4]=-4,[x ]=-2,[y ]=-3,[x ]+[y ]=-5,故不正确;对于选项D ,由题意可设x =[x ]+β1,0≤β1<1,y =[y ]+β2,0≤β2<1,则x -y =[x ]-[y ]+β1-β2,由0≤β1<1,-1<-β2≤0,可得-1<β1-β2<1.若0≤β1-β2<1,则[x -y ]=[[x ]-[y ]+β1-β2]=[x ]-[y ];若-1<β1-β2<0,则0<1+β1-β2<1,[x -y ]=[[x ]-[y ]+β1-β2]=[[x ]-[y ]-1+1+β1-β2]=[x ]-[y ]-1<[x ]-[y ],故选项D 正确.第二部分(共100分)二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).11.答案:9解析:由双曲线方程知a =4.又54c e a ==,解得c =5,故16+m =25,m =9. 12. 答案:π3解析:由三视图可知该几何体是如图所示的半个圆锥,底面半圆的半径r =1,高SO =2,则V 几何体=1π2π323⨯⨯=.13.答案:-4解析:由y =|x -1|=1,1,1,1x x x x -≥⎧⎨-+<⎩及y =2画出可行域如图阴影部分所示.令2x -y =z ,则y =2x -z ,画直线l 0:y =2x 并平移到过点A (-1,2)的直线l ,此时-z 最大,即z 最小=2×(-1)-2=-4. 14.答案:12-22+32-42+…+(-1)n +1n 2=(-1)n +1·12n n (+)解析:第n 个等式的左边第n 项应是(-1)n +1n 2,右边数的绝对值为1+2+3+…+n =12n n (+),故有12-22+32-42+…+(-1)n +1n 2=(-1)n +112n n (+). 15.(2013陕西,理15)(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A .答案:2解析:(am +bn )(bm +an )=abm 2+(a 2+b 2)mn +abn 2=ab (m 2+n 2)+2(a 2+b 2)≥2abmn +2(a 2+b 2)=4ab +2(a 2+b 2)=2(a 2+2ab +b 2)=2(a +b )2=2(当且仅当m =n ).B .解析:∠C 与∠A 在同一个O 中,所对的弧都是BD ,则∠C =∠A .又PE ∥BC ,∴∠C =∠PED .∴∠A=∠PED .又∠P =∠P ,∴△PED ∽△PAE ,则PE PD PA PE=,∴PE 2=PA ·PD .又PD =2DA =2,∴PA =PD +DA=3,∴PE 2=3×2=6,∴PE C .答案:2cos ,sin cos x y θθθ⎧=⎨=⎩(θ为参数)解析:由三角函数定义知y x=tan θ(x ≠0),y =x tan θ,由x 2+y 2-x =0得,x 2+x 2tan 2θ-x =0,x =211tan θ+=cos 2θ,则y =x tan θ=cos 2θtan θ=sin θcos θ,又π2θ=时,x =0,y =0也适合题意,故参数方程为2cos ,sin cos x y θθθ⎧=⎨=⎩(θ为参数).三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分).16.解:f (x )=1cos ,2x ⎛⎫- ⎪⎝⎭x ,cos 2x )x sin x -12cos 2xx -12cos 2x=ππcos sin 2sin cos 266x x -=πsin 26x ⎛⎫- ⎪⎝⎭.(1)f (x )的最小正周期为2π2ππ2T ω===, 即函数f (x )的最小正周期为π. (2)∵0≤x ≤π2, ∴ππ5π2666x -≤-≤.由正弦函数的性质,当ππ262x -=,即π3x =时,f (x )取得最大值1.当ππ266x -=-,即x =0时,f (0)=12-,当π52π66x -=,即π2x =时,π122f ⎛⎫= ⎪⎝⎭,∴f (x )的最小值为12-.因此,f (x )在π0,2⎡⎤⎢⎥⎣⎦上最大值是1,最小值是12-.17.(1)解:设{a n }的前n 项和为S n ,当q =1时,S n =a 1+a 1+…+a 1=na 1;当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,① qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n,∴111nn a q S q (-)=-,∴11,1,1, 1.1n n na q S a q q q=⎧⎪=(-)⎨≠⎪-⎩(2)证明:假设{a n +1}是等比数列,则对任意的k ∈N +,(a k +1+1)2=(a k +1)(a k +2+1),21k a ++2a k +1+1=a k a k +2+a k +a k +2+1,a 12q 2k +2a 1q k =a 1q k -1·a 1q k +1+a 1q k -1+a 1q k +1,∵a 1≠0,∴2q k =q k -1+q k +1.∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与已知矛盾,∴假设不成立,故{a n +1}不是等比数列.18.(1)证法一:由题设易知OA ,OB ,OA 1两两垂直,以O 为原点建立直角坐标系,如图.∵AB =AA 1∴OA =OB =OA 1=1,∴A (1,0,0),B (0,1,0),C (-1,0,0),D (0,-1,0),A 1(0,0,1). 由11A B =AB ,易得B 1(-1,1,1).∵1AC =(-1,0,-1),BD =(0,-2,0),1BB =(-1,0,1),∴1AC ·BD =0,1AC ·1BB =0,∴A 1C ⊥BD ,A 1C ⊥BB 1, ∴A 1C ⊥平面BB 1D 1D .证法二:∵A 1O ⊥平面ABCD ,∴A 1O ⊥BD .又∵ABCD 是正方形,∴BD ⊥AC ,∴BD ⊥平面A 1OC ,∴BD ⊥A 1C .又∵OA 1是AC 的中垂线,∴A 1A =A 1CAC =2,∴AC 2=AA 12+A 1C 2,∴△AA 1C 是直角三角形,∴AA 1⊥A 1C .又BB 1∥AA 1,∴A 1C ⊥BB 1,∴A 1C ⊥平面BB 1D 1D . (2)解:设平面OCB 1的法向量n =(x ,y ,z ),∵OC =(-1,0,0),1OB =(-1,1,1),∴10,0,OC x OB x y z ⎧⋅=-=⎪⎨⋅=-++=⎪⎩n n ∴0,.x y z =⎧⎨=-⎩取n =(0,1,-1),由(1)知,1AC =(-1,0,-1)是平面BB 1D 1D 的法向量, ∴cos θ=|cos 〈n ,1AC 〉|12=.又∵0≤θ≤π2,∴π3θ=.19.解:(1)设A 表示事件“观众甲选中3号歌手”,B 表示事件“观众乙选中3号歌手”,则P (A )=1223C 2C 3=,P (B )=2435C 3C 5=.∵事件A 与B 相互独立,∴观众甲选中3号歌手且观众乙未选中3号歌手的概率为P (A B )=P (A )·P (B )=P (A )·[1-P (B )]=2243515⨯=.13242335C C 4.C C 15P AB ⎛⎫⋅()== ⎪⋅⎝⎭或(2)设C 表示事件“观众丙选中3号歌手”,则P (C )=2435C 3C 5=,∵X 可能的取值为0,1,2,3,且取这些值的概率分别为P (X =0)=1224()35575P ABC =⨯⨯=,P (X =1)=()()()P ABC P ABC P ABC ++ =2221321232035535535575⨯⨯+⨯⨯+⨯⨯=, P (X =2)=P (AB C )+P (A B C )+P (A BC )=2322231333335535535575⨯⨯+⨯⨯+⨯⨯=,P (X =3)=P (ABC )=2331835575⨯⨯=,∴X 的分布列为∴X 的数学期望40123757575757515EX ⨯+⨯+⨯+⨯===. 20.(1)解:如图,设动圆圆心O 1(x ,y ),由题意,|O 1A |=|O 1M|,当O 1不在y 轴上时,过O 1作O 1H ⊥MN 交MN 于H ,则H 是MN 的中点, ∴1||O M =1||O A =,=化简得y 2=8x (x ≠0).又当O 1在y 轴上时,O 1与O 重合,点O 1的坐标(0,0)也满足方程y 2=8x ,∴动圆圆心的轨迹C 的方程为y 2=8x .(2)证明:由题意,设直线l 的方程为y =kx +b (k ≠0),P (x 1,y 1),Q (x 2,y 2),将y=kx +b 代入y 2=8x 中,得k 2x 2+(2bk -8)x +b 2=0, 其中Δ=-32kb +64>0. 由求根公式得,x 1+x 2=282bkk -,① x 1x 2=22b k,②因为x 轴是∠PBQ 的角平分线,所以121211y yx x =-++, 即y 1(x 2+1)+y 2(x 1+1)=0,(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0, 2kx 1x 2+(b +k )(x 1+x 2)+2b =0,③将①,②代入③得2kb 2+(k +b )(8-2bk )+2k 2b =0, ∴k =-b ,此时Δ>0,∴直线l 的方程为y =k (x -1), 即直线l 过定点(1,0). 21.解:(1)f (x )的反函数为g (x )=ln x .设直线y =kx +1与g (x )=ln x 的图像在P (x 0,y 0)处相切, 则有y 0=kx 0+1=ln x 0,k =g ′(x 0)=01x , 解得x 0=e 2,21ek =. (2)曲线y =e x与y =mx 2的公共点个数等于曲线2e xy x=与y =m 的公共点个数.令()2e x x xϕ=,则3e 2()x x x x ϕ(-)'=, ∴φ′(2)=0.当x ∈(0,2)时,φ′(x )<0,φ(x )在(0,2)上单调递减;当x ∈(2,+∞)时,φ′(x )>0,φ(x )在(2,+∞)上单调递增,∴φ(x )在(0,+∞)上的最小值为2e (2)4ϕ=.当0<m <2e 4时,曲线2e xy x =与y =m 无公共点;当2e 4m =时,曲线2e xy x =与y =m 恰有一个公共点;当2e 4m >时,在区间(0,2)内存在1x =,使得φ(x 1)>m ,在(2,+∞)内存在x 2=m e 2,使得φ(x 2)>m .由φ(x )的单调性知,曲线2e xy x=与y =m 在(0,+∞)上恰有两个公共点.综上所述,当x >0时,若0<m <2e 4,曲线y =f (x )与y =mx 2没有公共点;若2e 4m =,曲线y =f (x )与y =mx 2有一个公共点;若2e 4m >,曲线y =f (x )与y =mx 2有两个公共点.(3)解法一:可以证明2f a f b f b f a b a()+()()-()>-.事实上,2f a f b f b f a b a ()+()()-()>-⇔e e e e 2a b b ab a+->-⇔e e 2e e b a b a b a -->+⇔2e 12e eab a b a ->-+⇔212e 1b a b a -->-+(b >a ).(*) 令2()12e 1xx x ψ=+-+(x ≥0), 则2222212e e 14e e 1()02e 12e 12e 1x x x x x x x x ψ(+)-(-)'=-==≥(+)(+)(+)(仅当x =0时等号成立),∴ψ(x )在[0,+∞)上单调递增,∴x >0时,ψ(x )>ψ(0)=0.令x =b -a ,即得(*)式,结论得证.解法二:e e e e 22b a b af a f b f b f a b a b a()+()()-()+--=---=e e e e 2e 2e 2b a b a b a b b a a b a +---+(-)=e 2a b a (-)[(b -a )e b -a +(b -a )-2e b -a+2], 设函数u (x )=x e x+x -2e x+2(x ≥0),则u ′(x )=e x +x e x +1-2e x,令h (x )=u ′(x ),则h ′(x )=e x +e x +x e x -2e x =x e x≥0(仅当x =0时等号成立), ∴u ′(x )单调递增,∴当x >0时,u ′(x )>u ′(0)=0, ∴u (x )单调递增.当x >0时,u (x )>u (0)=0.令x =b -a ,则得(b -a )e b -a +(b -a )-2e b -a+2>0,∴e e e e >02b a b ab a+---, 因此,2f a f b f b f a b a()+()()-()>-.2014年普通高等学校招生全国统一考试(陕西)卷数学(理科)一.选择题(本大题共10小题,每小题5分,共50分。
2014年普通高等学校招生全国统一考试(新课标1) 理科数学解析版2014年普通高等学校招生全国统一考试(课标I 卷)数学(理科)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}22|,032|22.=-+23)1()1(i i ()A. i +1 B. i -1 C. i +-1 D. i --13.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是()A .)()(x g x f 是偶函数B .)(|)(|x g x f 是奇函数C..|)(|)(x g x f 是奇函数D .|)()(|x g x f 是奇函数【答案】C 【解析】试题分析:设()()()H x f x g x =,则()()()H x f x g x -=--,因为)(x f 是奇函数,)(x g是偶函数,故()()()()H x f x g x H x -=-=-,即|)(|)(x g x f 是奇函数,选C .【考点定位】函数的奇偶性.4.已知F 为双曲线C :)0(322>=-m m my x 的一个焦点,则点F 到C 的一条渐近线的距离为() A.3 B. 3 C. m 3 D. m 35.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为() A .81 B .83 C .85 D .876.如图,图O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数)(x f ,则],0[)(π在x f y =的图像大致为()【答案】C 【解析】7.执行右面的程序框图,若输入的k b a ,,分别为1,2,3,则输出的M=() A. 320 B.27 C.516 D.815【答案】D 【解析】试题分析:程序在执行过程中,1,2,3a b k ===,1n =;1331,2,b ,2222M a n =+====;28382,,b ,33323M a n =+====;3315815,,b ,428838M a n =+====,程序结束,输出158M =.【考点定位】程序框图.8.设(0, ),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=则()(A )32παβ-= (B )32παβ+=(C )22παβ-=(D )22παβ+=【答案】C 【解析】9.不等式组1,24,x y x y +≥??-≤?的解集为D,有下面四个命题:1:(x,y)D,x 2y 2p ?∈+≥-,2:(x ,y )D ,x 2y 2 p ?∈+≥,3:(x,y)D,x 2y 3p ?∈+≤ 4:(x ,y ) D ,x 2y 1p ?∈+≤-,其中的真命题是()A .23,p pB .12,p pC .13,p pD .14,p p10.已知抛物线C :x y 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 得一个焦点,若FQ PF 4=,则=QF () A.27 B. 3 C. 25D. 2 【答案】B【答案】C 【解析】试题分析:当0a =时,2()31f x x =-+,函数()f x 有两个零点3和3-,不满足题意,舍去;当0a >时,'2()36f x ax x =-,令'()0f x =,得0x =或2x a=.(,0)x ∈-∞时,'()0f x >;2(0,)x a ∈时,'()0f x ∈+∞时,'()0f x >,且(0)0f >,此时在(,0)x ∈-∞必有零点,故不满足题意,舍去;当0a ∈-∞时,'()0f x 2(,0)x a∈时,'()0f x >;(0,)x ∈+∞时,'()0f x ,要使得()f x 存在唯一的零点0x ,且00x >,只需2()0f a>,即24a >,则2a 考点:1、函数的零点;2、利用导数求函数的极值;3、利用导数判断函数的单调性.12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()(A )(B )6 (C )(D )4【考点定位】三视图.第II 卷二、填空题:本大题共4小题,每小题5分13.()()8x y x y -+的展开式中27x y 的系数为________.(用数字填写答案)【答案】20-【解析】试题分析:由题意,8()x y +展开式通项为8k k18C y k k T x -+=,08k ≤≤.当7k =时,777888T C xy xy ==;当6k =时,626267828T C x y x y ==,故()()8x y x y -+的展开式中27x y 项为726278(y)2820x xy x y x y ?+-?=-,系数为20-.【考点定位】二项式定理.14.甲、乙、丙三位同学被问到是否去过C B A ,,三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市. 丙说:我们三个去过同一城市. 由此可判断乙去过的城市为__________【解析】试题分析:由2=a ,且()C b c B A b s i n )()s i n (s i n 2-=-+,故(ab )(s i n A s +-=-,又根据正弦定理,得(a b)()(c b)a b c +-=-,化简得,22b c a bc +-=,故222b c a 1cosA 2bc 2+-==,所以0A 60=,又22b c 4bc bc +-=≥,故1S bcsinA 2BAC ?=≤ 【考点定位】1、正弦定理和余弦定理;2、三角形的面积公式.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知数列{}n a 的前n 项和为n S ,11a =,0n a ≠,11n n n a a S λ+=-,其中λ为常数,(I )证明:2n n a a λ+-=;(II )是否存在λ,使得{}n a 为等差数列?并说明理由.所以21n a n =-,12n n a a +-=.因此存在4λ=,使得{}n a 为等差数列.【考点定位】1、递推公式;2、数列的通项公式;3、等差数列.(18)(本小题满分12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:。
2014年高招全国课标1(理科数学解析版)第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【答案】:A【解析】:∵A={x |2230x x --≥}={}13x x x ≤-≥或,B={}22x x -≤<,∴A B ⋂={}21x x -≤≤,选A..2.32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --【答案】:D【解析】:∵32(1)(1)i i +-=2(1)12i i i i +=---,选D..3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数【答案】:C【解析】:设()()()F x f x g x =,则()()()F x f x g x -=--,∵()f x 是奇函数,()g x 是偶函数,∴()()()()F x f x g x F x -=-=-,()F x 为奇函数,选C.4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m【答案】:A【解析】:由C :223(0)x my m m -=>,得22133x y m -=,233,c m c =+设)F,一条渐近线y x =,即0x =,则点F 到C 的一条渐近线的距离d =A. .5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18 B .38 C .58 D .78【答案】:D【解析】:4位同学各自在周六、周日两天中任选一天参加公益活动共有4216=种,周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有11428C A =种;②每天2人有246C =种,则周六、周日都有同学参加公益活动的概率为867168+=;或间接解法:4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为1627168-=;选D.6.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为【答案】:B【解析】:如图:过M 作MD ⊥OP 于D,则 PM=sin x ,OM=cos x ,在Rt OMP ∆中,MD=cos sin 1x xOM PM OP =cos sin x x =1sin 22x =,∴()f x 1sin 2(0)2x x π=≤≤,选B. .7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .158【答案】:D【解析】:输入1,2,3a b k ===;1n =时:1331,2,222M a b =+===; 2n =时:28382,,3323M a b =+===;3n =时:3315815,,28838M a b =+===;4n =时:输出158M = . 选D.8.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【答案】:B【解析】:∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=,选B9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P【答案】:C【解析】:作出可行域如图:设2x y z +=,即122zy x =-+,当直线过()2,1A -时,min 220z =-+=,∴0z ≥,∴命题1p 、2p 真命题,选C.10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72 B .52C .3D .2 【答案】:C【解析】:过Q 作QM ⊥直线L 于M ,∵4FP FQ = ∴34PQPF =,又344QM PQ PF ==,∴3QM =,由抛物线定义知3Q F Q M== 选C11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)【答案】:B【解析1】:由已知0a ≠,2()36f x ax x '=-,令()0f x '=,得0x =或2x a=, 当0a >时,()22,0,()0;0,,()0;,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞>∈<∈+∞> ⎪ ⎪⎝⎭⎝⎭; 且(0)10f =>,()f x 有小于零的零点,不符合题意。
2014高考数学(理科)陕西卷真题答案解析
举国瞩目的2014高考已结束,新东方在线高考名师团队联合西安新东方高考名师第一时间对2014高考北京物理真题进行了点评,希望能对考生、家长有所帮助,也希望对2015高考考生提供借鉴。
以下是西安新东方高考数学名师对2014陕西高考数学(理科)真题的解析和点评。
[0,1N =考察解不等式及集合的交并补关系
tanθ=1
;
.
5 ; 225a b +=;(a 2222
5
55
ma nb m n a b ++≥
=
=+ ABC ∆,
)
3,1,
平面平面由题设,可知,)由该四面体的三视图解(EH
FG EH BC FG BC EFGH EFGH BC BD ∴∴////,//,//1(2)(0,0,1)(2,2,0)(2,0,1)n z 0
D DA BC BA DA →
→
→
→
→
→
==-=-∴⋅==⎧⎨解法一:如图,以为坐标原点建立空间直角坐标系,则得
线面平行、垂直性质应用;建立空间坐标系,利用法向量求线面夹角理科18
在直角坐标
m n y x -=-两式相减,得
令y x t -=,由图知,当直线y x t =+过点1,故m n - 的最大值为1.
向量坐标运算;线性规划
的方程.
更多相关高考考试指导,请登陆新东方在线官方网站:。
2014年普通高等学校招生全国统一考试全国课标1理科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效. 3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效. 4. 考试结束,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1. 已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2) 2. 32(1)(1)i i +-=A .1i +B .1i -C .1i -+D .1i --3. 设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4. 已知F 是双曲线C :223(0)x m y m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m5. 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .786. 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线O A ,终边为射线O P ,过点P 作直线O A 的垂线,垂足为M ,将点M 到直线O P 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7. 执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203B .165C .72D .1588. 设(0,)2πα∈,(0,)2πβ∈,且1s in ta n c o s βαβ+=,则A .32παβ-=B .22παβ-= C .32παβ+=D .22παβ+=9. 不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P10. 已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线P F 与C 的一个焦点,若4F P F Q =,则||Q F =A .72B .52C .3D .211. 已知函数()f x =3231a x x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1) 12. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .B .C .6D .4第Ⅱ卷本卷包括必考题和选考题两个部分。
2014·陕西卷(理科数学)1.[2014·陕西卷] 设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N =( )A .[0,1]B .[0,1)C .(0,1]D .(0,1) 1.B [解析]由M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R }={x |-1<x <1,x ∈R },得M ∩N =[0,1).2.[2014·陕西卷] 函数f (x )=cos ⎝⎛⎭⎫2x -π6的最小正周期是( )A.π2B .πC .2πD .4π 2.B [解析]已知函数y =A cos(ωx +φ)(A >0,ω>0)的周期为T =2πω,故函数f (x )的最小正周期T =2π2=π.3.[2014·陕西卷] 定积分⎠⎛01(2x +e x )d x 的值为( )A .e +2B .e +1C .eD .e -13.C [解析]⎠⎛01(2x +e x )d x =(x 2+e x )10=(12+e 1)-(02+e 0)=e .图1-1 4.[2014·陕西卷] 根据如图1-1所示的框图,对大于2的整数N ,输出的数列的通项公式是( )A .a n =2nB .a n =2(n -1)C .a n =2nD .a n =2n -14.C [解析]阅读题中所给的程序框图可知,对大于2的整数N ,输出数列:2,2×2=22,2×22=23,2×23=24,…,2×2N -1=2N ,故其通项公式为a n =2n .5.[2014·陕西卷] 已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.32π3B .4πC .2πD.4π35.D [解析]设该球的半径为R ,根据正四棱柱的外接球的直径长为正四棱柱的体对角线长,可得(2R )2=(2)2+12+12,解得R =1,所以该球的体积为V =43πR 3=43π.6.[2014·陕西卷] 从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于...该正方形边长的概率为 ( ) A.15B.25C.35D.456.C [解析]利用古典概型的特点可知从5个点中选取2个点的全部情况有C 25=10(种),选取的2个点的距离不小于该正方形边长的情况有:选取的2个点的连线为正方形的4条边长和2条对角线长,共有6种.故所求概率P =610=35.7.[2014·陕西卷] 下列函数中,满足“f (x +y )=f (x )·f (y )”的单调递增函数是( ) A .f (x )=x 12B .f (x )=x 3C .f (x )=⎝⎛⎭⎫12xD .f (x )=3x7.B [解析]由于f (x +y )=f (x )f (y ),故排除选项A ,C.又f (x )=⎝⎛⎭⎫12x为单调递减函数,所以排除选项D. 8.[2014·陕西卷] 原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,假,真B .假,假,真C .真,真,假D .假,假,假 8.B [解析]设z 1=a +b i ,z 2=a -b i ,且a ,b ∈R ,则|z 1|=|z 2|=a 2+b 2,故原命题为真,所以其否命题为假,逆否命题为真.当z 1=2+i ,z 2=-2+i 时,满足|z 1|=|z 2|,此时z 1,z 2不是共轭复数,故原命题的逆命题为假.9.[2014·陕西卷] 设样本数据x 1,x 2,…,x 10的均值和方差分别为1和4,若y i =x i +a (a 为非零常数,i =1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为( )A .1+a ,4B .1+a ,4+aC .1,4D .1,4+a9.A [解析]由题意可知x 1+x 2+x 3+…+x 1010=1,故y -=(x 1+x 2+x 3+…+x 10)+10a10=1+a .数据x 1,x 2,…,x 10同时增加一个定值,方差不变.故选A.10.[2014·陕西卷] 如图1-2,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图像的一部分,则该函数的解析式为 ( )图1-2A .y =1125x 3-35xB .y =2125x 3-45xC .y =3125x 3-xD .y =-3125x 3+15x10.A [解析]设该三次函数的解析式为y =ax 3+bx 2+cx +d .因为函数的图像经过点(0,0),所以d =0,所以y =ax 3+bx 2+cx .又函数过点(-5,2),(5,-2),则该函数是奇函数,故b =0,所以y =ax 3+cx ,代入点(-5,2)得-125a -5c =2.又由该函数的图像在点(-5,2)处的切线平行于x 轴,y ′=3ax 2+c ,得当x =-5时,y ′=75a +c =0.联立⎩⎪⎨⎪⎧-125a -5c =2,75a +c =0,解得⎩⎨⎧a =1125,c =-35.故该三次函数的解析式为y =1125x 3-35x .11.[2014·陕西卷] 已知4a =2,lg x =a ,则x =________.11.10 [解析]由4a =2,得a =12,代入lg x =a ,得lg x =12,那么x =1012=10.12.[2014·陕西卷] 若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C的标准方程为________.12.x 2+(y -1)2=1 [解析]由圆C 的圆心与点(1,0)关于直线y =x 对称,得圆C 的圆心为(0,1).又因为圆C 的半径为1,所以圆C 的标准方程为x 2+(y -1)2=1.13.[2014·陕西卷] 设0<θ<π2,向量a =(sin2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.13.12 [解析]因为向量a ∥b ,所以sin2θ-cos θ·cos θ=0,又cos θ≠0,所以2sin θ=cos θ,故tan θ=12.14.猜想一般凸多面体中F ,V ,E 所满足的等式是________.14.F +V -E =2 [解析]由题中所给的三组数据,可得5+6-9=2,6+6-10=2,6+8-12=2,由此可以猜想出一般凸多面体的顶点数V 、面数F 及棱数E 所满足的等式是F +V -E =2.15.[2014·陕西卷] A .(不等式选做题)设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则m 2+n 2的最小值为________.图1-3 B .(几何证明选做题)如图1-3,△ABC 中,BC =6,以BC 为直径的半圆分别交AB ,AC 于点E ,F ,若AC =2AE ,则EF =________.C .(坐标系与参数方程选做题)在极坐标系中,点⎝⎛⎭⎫2,π6到直线ρsin ⎝⎛⎭⎫θ-π6=1的距离是________.15.A.5 B .3 C .1 [解析]A .由柯西不等式可知(a 2+b 2)(m 2+n 2)≥(ma +nb )2,代入数据,得m 2+n 2≥5,当且仅当an =bm 时,等号成立,故m 2+n 2的最小值为 5.B .由题意,可知∠AEF =∠ACB ,又∠A =∠A ,所以△AEF ∽ACB ,所以AE AC =EFBC .因为AC =2AE ,BC =6,所以EF =3.C .点⎝⎛⎭⎫2,π6的极坐标可化为x =ρcos θ=2cos π6=3,y =ρsin θ=2sin π6=1,即点⎝⎛⎭⎫2,π6在平面直角坐标系中的坐标为(3,1).直线ρsin ⎝⎛⎭⎫θ-π6=ρsin θcos π6-ρcos θsinπ6=1,即该直线在直角坐标系中的方程为x -3y +2=0,由点到直线的距离公式得所求距离为d =|3-3+2|12+(-3)2=1.16.,,[2014·陕西卷] △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,求cos B 的最小值. 16.解:(1)∵a ,b ,c 成等差数列,∴a +c =2b . 由正弦定理得sin A +sin C =2sin B .∵sin B =sin[π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ).(2)∵a ,b ,c 成等比数列,∴b 2=ac . 由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时等号成立, ∴cos B 的最小值为12.17.[2014·陕西卷] 四面体ABCD 及其三视图如图1-4所示,过棱AB 的中点E 作平行于AD ,BC 的平面分别交四面体的棱BD ,DC ,CA 于点F ,G ,H .(1)证明:四边形EFGH 是矩形;(2)求直线AB 与平面EFGH 夹角θ的正弦值.图1-417.解:(1)证明:由该四面体的三视图可知, BD ⊥DC ,BD ⊥AD ,AD ⊥DC , BD =DC =2,AD =1.由题设,BC ∥平面EFGH , 平面EFGH ∩平面BDC =FG , 平面EFGH ∩平面ABC =EH , ∴BC ∥FG ,BC ∥EH ,∴FG ∥EH . 同理EF ∥AD ,HG ∥AD ,∴EF ∥HG . ∴四边形EFGH 是平行四边形.又∵AD ⊥DC ,AD ⊥BD ,∴AD ⊥平面BDC , ∴AD ⊥BC ,∴EF ⊥FG , ∴四边形EFGH 是矩形.(2)方法一:如图,以D D (0,0,0),A (0,0,1),B (2,0,0),C (0,2,0),DA =(0,0,1),BC =(-2,2,0), BA =(-2,0,1).设平面EFGH 的法向量n =(x ,y ,z ), ∵EF ∥AD ,FG ∥BC , ∴n ·DA =0,n ·BC =0,得⎩⎪⎨⎪⎧z =0,-2x +2y =0,取n =(1,1,0), ∴sin θ=|cos 〈BA →,n 〉|=⎪⎪⎪⎪BA ·n |BA ||n |=25×2=105.方法二:如图,以D 为坐标原点建立空间直角坐标系,则D (0,0,0),A (0,0,1),B (2,0,0),C (0,2,0),∵E 是AB 的中点,∴F ,G 分别为BD ,DC 的中点,得E ⎝⎛⎫1,0,12,F (1,0,0),G (0,1,0).∴FE →=⎝⎛⎭⎫0,0,12,FG =(-1,1,0), BA =(-2,0,1).设平面EFGH 的法向量n =(x ,y ,z ), 则n ·FE =0,n ·FG =0,得⎩⎪⎨⎪⎧12z =0,-x +y =0,取n =(1,1,0),∴sin θ=|cos 〈BA →,n 〉|=⎪⎪⎪⎪⎪⎪BA ·n |BA →||n |=25×2=105.18.,[2014·陕西卷] 在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上.(1)若P A →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R ),用x ,y 表示m -n ,并求m -n 的最大值. 18.解:(1)方法一:∵P A →+PB →+PC →=0,又P A →+PB →+PC →=(1-x ,1-y )+(2-x ,3-y )+(3-x ,2-y )=(6-3x ,6-3y ),∴⎩⎪⎨⎪⎧6-3x =0,6-3y =0,解得⎩⎪⎨⎪⎧x =2,y =2, 即OP →=(2,2),故|OP →|=2 2. 方法二:∵P A →+PB →+PC →=0,则(OA →-OP →)+(OB →-OP →)+(OC →-OP →)=0, ∴OP →=13(OA →+OB →+OC →)=(2,2),∴|OP →|=2 2.(2)∵OP →=mAB →+nAC →, ∴(x ,y )=(m +2n ,2m +n ),∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减得,m -n =y -x ,令y -x =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.19.,[2014·陕西卷] 在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于...2000元的概率.19.解:(1)设A表示事件“作物产量为300kg”,B表示事件“作物市场价格为6元/kg”,由题设知P(A)=0.5,P(B)=0.4,∵利润=产量×市场价格-成本,∴X所有可能的取值为500×10-1000=4000,500×6-1000=2000,300×10-1000=2000,300×6-1000=800.P(X=4000)=P(A)P(B)=(1-0.5)×(1-0.4)=0.3,P(X=2000)=P(A)P(B)+P(A)P(B)=(1-0.5)×0.4+0.5×(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,所以X的分布列为(2)设C i表示事件“第i季利润不少于2000元”(i=1,2,3),由题意知C1,C2,C3相互独立,由(1)知,P(C i)=P(X=4000)+P(X=2000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2000元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季利润不少于2000元的概率为P(C1C2C3)+P(C1C2C3)+P(C1C2C3)=3×0.82×0.2=0.384,所以,这3季中至少有2季的利润不少于2000元的概率为0.512+0.384=0.896.20.,,[2014·陕西卷] 如图1-5所示,曲线C由上半椭圆C1:y2a2+x2b2=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为3 2.(1)求a,b的值;(2)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l 的方程.图1-520.解:(1)在C1,C2的方程中,令y=0,可得b=1,且A(-1,0),B(1,0)是上半椭圆C1的左、右顶点.设C1的半焦距为c,由ca=32及a2-c2=b2=1得a=2,∴a=2,b=1.(2)方法一:由(1)知,上半椭圆C 1的方程为y 24+x 2=1(y ≥0).易知,直线l 与x 轴不重合也不垂直,设其方程为y =k (x -1)(k ≠0), 代入C 1的方程,整理得(k 2+4)x 2-2k 2x +k 2-4=0.(*) 设点P 的坐标为(x P ,y P ),∵直线l 过点B ,∴x =1是方程(*)的一个根. 由求根公式,得x P =k 2-4k 2+4,从而y P =-8kk 2+4,∴点P 的坐标为⎝ ⎛⎭⎪⎫k 2-4k 2+4,-8k k 2+4. 同理,由⎩⎪⎨⎪⎧y =k (x -1)(k ≠0),y =-x 2+1(y ≤0), 得点Q 的坐标为(-k -1,-k 2-2k ). ∴AP →=2k k 2+4(k ,-4),AQ →=-k (1,k +2).∵AP ⊥AQ ,∴AP ·AQ =0,即-2k 2k 2+4[k -4(k +2)]=0,∵k ≠0,∴k -4(k +2)=0,解得k =-83.经检验,k =-83符合题意,故直线l 的方程为y =-83(x -1).方法二:若设直线l 的方程为x =my +1(m ≠0),比照方法一给分. 21.,,,[2014·陕西卷] 设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数.(1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N +,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N +,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明.21.解:由题设得,g (x )=x1+x (x ≥0).(1)由已知,g 1(x )=x 1+x, g 2(x )=g (g 1(x ))=x 1+x 1+x 1+x =x1+2x ,g 3(x )=x 1+3x ,…,可得g n (x )=x 1+nx. 下面用数学归纳法证明.①当n =1时,g 1(x )=x1+x ,结论成立.②假设n =k 时结论成立,即g k (x )=x1+kx.那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x 1+kx 1+x 1+kx =x1+(k +1)x ,即结论成立.由①②可知,结论对n ∈N +成立.(2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax1+x恒成立. 设φ(x )=ln(1+x )-ax1+x (x ≥0),则φ′(x )=11+x -a(1+x )2=x +1-a (1+x )2, 当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立), ∴φ(x )在[0,+∞)上单调递增,又φ(0)=0, ∴φ(x )≥0在[0,+∞)上恒成立,∴a ≤1时,ln(1+x )≥ax1+x 恒成立(仅当x =0时等号成立).当a >1时,对x ∈(0,a -1]有φ′(x )<0, ∴φ(x )在(0,a -1]上单调递减, ∴φ(a -1)<φ(0)=0.即a >1时,存在x >0,使φ(x )<0, 故知ln(1+x )≥ax1+x不恒成立. 综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+nn +1,比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1).证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x,x >0. 令x =1n ,n ∈N +,则1n +1<ln n +1n .下面用数学归纳法证明. ①当n =1时,12<ln2,结论成立.②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1).那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k+2),即结论成立.由①②可知,结论对n ∈N +成立.方法二:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x,x >0. 令x =1n ,n ∈N +,则ln n +1n >1n +1.故有ln2-ln1>12,ln3-ln2>13,……ln(n +1)-ln n >1n +1,上述各式相加可得ln(n +1)>12+13+…+1n +1,结论得证.方法三:如图,⎠⎛0n x x +1d x 是由曲线y =xx +1,x =n 及x 轴所围成的曲边梯形的面积,而12+23+…+nn +1是图中所示各矩形的面积和,∴12+23+…+n n +1>⎠⎛0n x x +1d x = ⎠⎛0n ⎝⎛⎭⎫1-1x +1d x =n -ln (n +1), 结论得证.。
2014年普通高等学校招生全国统一考试(辽宁卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B =U ( ) A .{|0}x x ≥ B .{|1}x x ≤ C .{|01}x x ≤≤ D .{|01}x x <<2.设复数z 满足(2)(2)5z i i --=,则z =( ) A .23i + B .23i - C .32i + D .32i -3.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥5.设,,a b c r r r是非零向量,学科 网已知命题P :若0a b •=r r ,0b c •=r r ,则0a c •=r r ;命题q :若//,//a b b c r r r r,则//a c r r ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( ) A .144 B .120 C .72 D .247.某几何体三视图如图所示,则该几何体的体积为( ) A .82π- B .8π- C .82π-D .84π-8.设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d > 9.将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减B .在区间7[,]1212ππ上单调递增C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 10.已知点(2,3)A -在抛物线C :22y px =的准线上,学 科网过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12 B .23 C .34 D .4311.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( ) A .[5,3]-- B .9[6,]8-- C .[6,2]-- D .[4,3]-- 12.已知定义在[0,1]上的函数()f x 满足: ①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-. 若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为( ) A .12 B .14C .12πD .18第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.执行右侧的程序框图,若输入9x =,则输出y = .14.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是 .15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16.对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC •=u u u r u u u r ,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值. 18. (本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X .19. (本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 分别为AC 、DC 的中点. (1)求证:EF BC ⊥;(2)求二面角E BF C --的正弦值.20. (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线22122:1x y C a b-=过点P 且离心率为3.(1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.21. (本小题满分12分)已知函数8()(cos )(2)(sin 1)3f x x x x x π=-+-+,2()3()cos 4(1sin )ln(3)xg x x x x x π=--+-.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;(2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22. (本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F. (1)求证:AB 为圆的直径; (2)若AC=BD ,求证:AB=ED.23. (本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程. 24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N. (1)求M ;(2)当x M N ∈I 时,证明:221()[()]4x f x x f x +≤.2014年陕西高考数学试题(理)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|0},{|1,}M x x N x x x R =≥=<∈,则M N =I ( ).[0,1]A .[0,1)B .(0,1]C .(0,1)D【答案】 B 【解析】B N M N M 选,).1,0[),11-(),,0[=∩∴=+∞=Θ2.函数()cos(2)6f x x π=-的最小正周期是( ).2A π .B π .2C π .4D π【答案】 B 【解析】B T 选∴,π2π2||π2===ωΘ 3.定积分1(2)xx edx +⎰的值为( ).2Ae + .1B e + .C e .1De -【答案】 C 【解析】C e e e e x dx e x x x 选∴,-0-1|)()2(1001102∫=+=+=+Θ4.根据右边框图,对大于2的整数N ,输出数列的通项公式是( ).2n A a n = .2(1)n B a n =- .2n n C a = 1.2n n D a -=【答案】 C 【解析】C q a a a a a n 选的等比数列是.2,2∴,8,4,21321=====Θ5.已知底面边长为12则正四棱柱的各顶点均在同一个球面上,则该球的体积为( )32.3A π .4B π .2C π 4.3D π【答案】 D 【解析】D r r r r 选解得设球的半径为.π3434V ∴,1,4)2(11)2(,32222====++=πΘ6.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A2.5B3.5C 4.5D 【答案】 C 【解析】C p 选反向解题.53C 4C 4-1.2525=== 7.下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )(A )()12f x x = (B )()3f x x = (C )()12xf x ⎛⎫= ⎪⎝⎭(D )()3xf x =【答案】 D 【解析】D y f x f y x f D C y x y x y x 选而言,对不是递增函数只有.333)()(,3)(.++=•=•=+8.原命题为“若12,z z 互为共轭复数,则12zz =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )(A )真,假,真 (B )假,假,真 (C )真,真,假 (D )假,假,假 【答案】 B 【解析】Bz z b a z b a z bi a z bi a z 选选择完成判断逆命题的真假即可逆否名称也为真,不需,原命题为真,则设,逆命题和否命题等价原命题和逆否名称等价.,||||∴,||||,-,.2122222111=+=+==+=设样本数据1210,,,x x x L 的均值和方差分别为1和4,若i i y x a =+(a 为非零常数, 1,2,,10i =L ),则12,10,y y y L 的均值和方差分别为( ) (A )1+,4a (B )1,4a a ++ (C )1,4 (D )1,4+a【答案】 A 【解析】A 选变均值也加此数,方差不样本数据加同一个数,.10.如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降, 已知下降飞行轨迹为某三次函数图像的一部分,则函数的解析式为( )(A )3131255y x x =- (B )3241255y x x =-(C )33125y x x =- (D )3311255y x x =-+ 【答案】 A【解析】AA f x f f x f A f x 选符合只有,,而言,对即为极值点且),三次奇函数过点..053-53)5(53-1253x )(2-3-1)5(∴x 53-x 1251)(.0)5(,5,2-5(),0,0(23==′=′====′=Θ第二部分(共100分)二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).11.已知,lg ,24a x a==则x =________. 【答案】 10【解析】.1010,21lg 12a ∴,lg ,224212a a========x a x a x 所以,Θ12.若圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,则圆C 的标准方程为_______.【答案】11-(22=+)y x 【解析】.11-(1),1,0(∴)1,0()0,1(22=+=)的标准方程为半径为圆心为,的对称点关于点y x x y Θ设20πθ<<,向量()()sin 2cos cos 1a b θθθ==r r ,,,,若b a ρρ//,则=θtan _______.【答案】 21【解析】.21tan θθ,cos θcos θsin 2θcos θ2sin ∴//).1,θ(cos ),θcos ,θ2(sin 22=====解得即Θ14.猜想一般凸多面体中,E V F ,,所满足的等式是_________.【答案】 2+=+E V F 【解析】.2+=+E V F 经观察规律,可得15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分).A (不等式选做题)设,,,a b m n R ∈,且225,5a b ma nb +=+=,则22m n +的最小值为.B (几何证明选做题)如图,ABC ∆中,6BC =,以BC 为直径的半圆分别交,AB AC于点,E F ,若2AC AE =,则EF =.C (坐标系与参数方程选做题)在极坐标系中,点(2,)6π到直线sin()16πρθ-=的距离是 【答案】 A 5 B 3 C 1【解析】A5.≤5)φθsin(∴5)φθsin(5os θ5θsin 5,os θ5,θsin 5∴,52222222222的最小值为所以,,则设n m n m n m n m c n m nb ma c b a b a ++=++=++=+=+===+ΘB.3,2,6∴Δ=∴===ΔEF AE AC BC CBEFAC AE ACB AEF ,且相似与Θ C1|1323-3|023-1,3(∴,2-3121os θρ-23θsin ρ)6π-θsin(ρ,1,3()6π,2(=++==+==••=d y x x y c 的距离)到直线点即对应直线)对应直角坐标点极坐标点Θ三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分) 16. (本小题满分12分)ABC ∆的内角C B A ,,所对的边分别为c b a ,,. (I )若c b a ,,成等差数列,证明:()C A C A +=+sin 2sin sin ; (II )若c b a ,,成等比数列,求B cos 的最小值.【答案】 (1) 省略 (2)21【解析】 (1)C)sin(A sinC sinA .∴C),sin(A sinB sinC.sinA 2sinB c,a b 2∴,,+=++=+=+=ΘΘ即成等差,c b a(2).,21cosB 212ac ac -2ac 2ac b -2ac ≥2ac b -c a cosB ac.b ∴,,22222这时三角形为正三角形取最小值时,仅当又成等比,b c a c b a ====+==Θ17. (本小题满分12分)四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分 别交四面体的棱CA DC BD ,,于点H G F ,,.(I )证明:四边形EFGH 是矩形;(II )求直线AB 与平面EFGH 夹角θ的正弦值.【答案】 (1) 省略 (2)510【解析】 (1).FG.⊥BCD ⊥,//∴,,AD//HG AD//EF,∴ADHG ADEF EFGH ⊂HG EF,EFGH,AD//HC AH EH//BC,∴EHBC EFGH,⊂EH EFGH,//B BCD⊥AD DC,⊥BD Δ,Δ为矩形所以,四边形,即面,且且共面和,面面同理且共面面面面且为等腰由题知,EHGF EF EF HG EF HG EF GC DG FB DF C RT BCD ====ΘΘ(2)510|,cos |sin 510252||||,cos ),0,1,1(0),,,()0,1-1(),2100(),1-20()0,0,1(),211,0(),0,1,0(),020(),100(,,DA ,DB ,DC (1)=><==<∴=======∴n AB n AB z y x EHGF G E F B A z y x θ所以,,解得一个则法向量,设面,,,,,,,,,,轴建系,则为知,分别以由18.(本小题满分12分)在直角坐标系xOy 中,已知点)2,3(),3,2(),1,1(C B A ,点),(y x P 在ABC ∆三边围成的 区域(含边界)上(1)若=++,;(2)设),(R n m n m ∈+=,用y x ,表示n m -,并求n m -的最大值.【答案】 (1) 22 (2)m-n=y-x, 1【解析】 (1)22|OP |22|OP |,2,2,0-2-3-1,0-3-2-1(0,0))-2,-3()-3,-2()-1,-1(PC PB PA ∴),,(),2,3(),3,2(),11(22==+=∴===++=++∴=++=++所以,解得,y x y x y y y x x x y x y x y x y x P C B A Θ(2)1---.1-)3,2(.,,-.--.2,2),1,2()2,1(y)x ,(∴,最大值为,所以,取最大值时,经计算在三个顶点求线性规划问题,可以代含边界内的最大值,属在三角形即求解得即n m x y n m x y B C B A ABC x y x y n m n m y n m x n m n m ==+=+=+=+=Θ19.(本小题满分12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上 的产量具有随机性,且互不影响,其具体情况如下表:(1)设X 表示在这块地上种植1季此作物的利润,求X 的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于...2000元 的概率.【答案】 (1)(800,0.2)(2000,0.5)(4000,0.3) (2) 0.896【解析】 (1)3.06.0*5.0)4000(,5.04.0*5.06.0*5.0)2000(,2.04.0*5.0)800(.4000,2000,80040001000-10*50020001000-6*50020001000-10*3008001000-6*300.-*====+==========X p X p X p X X 三个,即,,,可以取考虑产量和价格,利润成本价格产量利润X 800 2000 4000 P0.20.50.3896.020*******.08.02.0*8.0*3)-1()-1(200023.8.03.05.02000)1(8001000-6*300.-*32333223的概率是季的利润不少于季中至少有所以,的概率季的利润不少于季中至少有则的概率知,一季利润不少于由,可以取考虑产量和价格,利润成本价格产量利润=+=+==+===p p C p p C P p X X20.(本小题满分13分)如图,曲线C 由上半椭圆22122:1(0,0)y x C a b y a b+=>>≥和部分抛物线22:1(0)C y x y =-+≤连接而成,12,C C 的公共点为,A B ,其中1C 的离心率为32. (1)求,a b 的值;(2)过点B 的直线l 与12,C C 分别交于,P Q (均异于点,A B ),若AP AQ ⊥,求直线l的方程.【答案】 (1) a=2,b=1 (2) )1-(38-x y =【解析】 (1)14,3,1,2∴,23.1∴)0,1(),0,1-(1-2222222=+===+===+=x y c b a c b a a c b x y 椭圆方程为联立解得又,交于点抛物线ΘΘ(2))1-(38-.38-,0)2(4-)2,1)(4-,(,0)2k -k - -k,()4k8- 1,44-(,0∴⊥),0,1-()2k --k ,1--k (,2k --k )1-(,1--k 0,1-k -:1-)4k8-,44-(,4k 8-)1-(,44-04-2-)4(,44)12x -(14),,(),,(),1-()0,1(222222222222222112212222222222211x y k k k k k k k k AQ AP AQ AP A Q x k y x kx x x y k k k P k x k y k k x k x k x k x x k x y y x Q y x P x k y B ===+=+=•+++=•====++=+++==+==++=++=+=所以,所求直线方程为解得即即即由韦达定理得联立得与即由韦达定理得,即联立得与的直线方程为设过Θ21.(本小题满分14分) 设函数()ln(1),()'(),0f x x g x xf x x =+=≥,其中'()f x 是()f x 的导函数.(1)11()(),()(()),n n g x g x g x g g x n N ++==∈,求()n g x 的表达式;(2)若()()f x ag x ≥恒成立,求实数a 的取值范围;(3)设n N +∈,比较(1)(2)()g g g n +++L与()n f n -的大小,并加以证明.【答案】 (1) nx x x g n +=1)((2),1](-∞ (3) 前式 > 后式【解析】 (1)+++++=++=+=++=+++=+==+=+++=+===+=+=′′=+=N n nx xx g xk xx g k n x k x kxx kx xx g kx x x g k n x xxx x xx g x x x g x g g x g x g x g xx x g x x f x x f x x g x x f n k k k n n ∈,1)(,.)1(1)(1∴)1(1111)(.1)(1≥21111)(1)(∴))(()()()(1)(,11)(∴,0≥),()(),1ln()(112111综上也成立时,当则时,假设当,,,ΘΘ (2),1](-a 1.a 0.≥-1),0[∈∃0≥(x)h ,0),,0[∈∃∴0≥0≥h(x),0h(0))1(-1)1()-1(-11(x)h ,0.≥,1-)1ln(h(x)0.≥,≥1-)1ln(∴1)(),(≥)(22∞∈≤+′>=++=+++=′++=+++=所以,解得,即使上恒成立在则令a x t x t t x x x ax x x x a x x x ax x x x axx x x x g x ag x f ΘΘ(3)2014年普通高等学校招生全国统一考试(四川卷)理科数学一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
2014年普通高等学校招生全国统一考试(新课标Ⅰ卷)数学试题卷(理工类)注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效. 3.回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效. 4.考试结束,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.已知集合A={x |2230x x --≥},B={x |-2≤x <2﹜,则A B ⋂=A .[2,1]--B .[1,2)-C .[1,1]-D .[1,2)2.32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A .3B .3C .3mD .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A .18B .38C .58D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点, 角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M .将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为M OPA7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M=A .203 B .165 C .72 D .1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .32παβ+= C .22παβ-=D .22παβ+=9.不等式组⎩⎨⎧≤-≥+42,1y x y x 的解集记为D ,有下面四个命题:1p :(,),22x y D x y ∀∈+≥-;2p :(,),22x y D x y ∃∈+≥;3p :(,),23x y D x y ∀∈+≤;4p :(,),21x y D x y ∃∈+≤-.其中的真命题是A .2p ,3pB .1p ,2pC .1p ,4pD .1p ,3p10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72 B .3 C .52D .2 11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(1,+∞)C .(,2)-∞-D .(,1)-∞-12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多 面体的三视图,则该多面体的六条棱中,最长的棱的长度为A .62B .42C .6D .4开始 结束ba M 1+← n←n+1是n ≤k输出M 否n ←1 输入a ,b,k a ←b b ←M OAx y 1 π OBx y1π OCx y1π ODxy1π第Ⅱ卷本卷包括必考题和选考题两个部分.第13题-第21题为必考题,每个考生都必须作答.第22题-第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.8()()x y x y -+的展开式中72y x 的系数为 .(用数字填写答案) 14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为 . 15.已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 . 16.已知a ,b ,c 分别为ABC ∆的三个内角A ,B ,C 的对边,a =2,且(2)(s i n s i n )(b A B c b C +-=-,则ABC ∆面积的最大值为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知数列{n a }的前n 项和为n S ,1a =1,0n a ≠,11n n n a a S λ+=-,其中λ为常数.(Ⅰ)证明:2n n a a λ+-=;(Ⅱ)是否存在λ,使得{n a }为等差数列?并说明理由.18.(本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s .(i )利用该正态分布,求(187.8212.2)P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间)2.212,8.187(的产品件数,利用(i )的结果,求EX .附:150≈12.2.若Z ~2(,)N μδ,则()P Z μδμδ-<<+=0.6826,(22)P Z μδμδ-<<+=0.9544.19.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥. (Ⅰ)证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o160CBB ∠=,AB =BC ,求二面角111A A B C --的余弦值.AA 1C 1B 1CB0.008 165 175 185 195 205 215 225 235 0.009 0.0220.024 0.033 质量指标值频率组距0.00220.(本小题满分12分)已知点(0,2)A -,椭圆E :22221(0)x y a b a b +=>>的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当OPQ ∆的面积最大时,求l 的方程.21.(本小题满分12分)设函数()xbe x ae x f x x1ln -+=,曲线()y f x =在点(1,(1)f )处的切线方程为(1)2y e x =-+. (Ⅰ)求a ,b ; (Ⅱ)证明:()1f x >.请考生从第22、23、24题中任选一题作答,如果多做,则按所做的第一个题计分.作答时请写清题号. 22.(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD 是⊙O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB =CE . (Ⅰ)证明:∠D =∠E ;(Ⅱ)设AD 不是⊙O 的直径,AD 的中点为M ,且MB =MC ,证明:△ADE 为等边三角形.23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C :22149x y +=,直线l :⎩⎨⎧-=+=ty t x 22,2(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值.24.(本小题满分10分)选修4-5:不等式选讲 若0,0a b >>,且11ab a b+=. (Ⅰ)求33b a +的最小值;(Ⅱ)是否存在a ,b ,使得632=+b a ?并说明理由.AB EC DMO2014年普通高等学校招生全国统一考试(课标卷Ⅰ卷)数学(理科)参考答案一、选择题1.A 解析:{}{}223013A x x x x x x =--≥=≤-≥或,又{}22B x x =-≤<,AB =[]2,1--,故选A .2.D 解析:()()()()()()3222111211211i i i i i i i i i ⋅===---++++--,故选D . 3.C 解析:()f x 是奇函数,()g x 是偶函数,则()()f x g x 是奇函数,排除A .()f x 是奇函数,()f x 是偶函数,()g x 是偶函数,则()()f x g x 是偶函数,排除B . ()f x 是奇函数,()g x 是偶函数,则()()f x g x 是奇函数,C 正确.()f x 是奇函数,()g x 是偶函数,()()f x g x 是奇函数,则()()f x g x 是偶函数,排除D .4.A 解析:双曲线的焦点到渐近线的距离为虚半轴长b ,故距离为3,选A .5.D 解析:周六没有同学的方法数为1,周日没有同学的方法数为1,所以周六、周日都有同学参加公益活动的概率为4422728P -==,故选D . 6.C 解析:由已知1,sin ,cos OP PM x OM x ===.又()1122f x OP OM MP ⋅=, 所以()1sin cos sin 22f x x x x ==,故选C . 7.D 解析:当1n =时,1331,2,222M a b =+===;当2n =时,28382,,3323M a b =+===;当3n =时,3315815,,28838M a b =+===;当4n =时,结束,故158M =,选D . 8.C 解析:由1sin tan cos βαβ+=得sin 1sin ,sin cos cos cos sin ,cos cos αβαβααβαβ+=∴=+ 即()sin cos αβα-=,所以()sin sin 2παβα⎛⎫-=-⎪⎝⎭. 由已知0,,0,,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭所以,02222ππππαβα-<-<<-<, sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦上单调递增,所以,222ππαβααβ-=--=,故选C .9.B 解析:令()()()()222x y m x y n x y m n x m n y +=++-=++-,所以1,22,m n m n +=⎧⎨-=⎩解得4,31,3m n ⎧=⎪⎪⎨⎪=-⎪⎩所以()()4122033x y x y x y +=+--≥,因而可以判断12,p p 为真,故选B .10.B 解析:由已知2,2,P F x x =-=又4FP FQ =,则()442Q x -=-,1Q x ∴=. 过Q 作QD 垂直于l ,垂足为D ,所以3QF QD ==,故选B .11.C 解析:'()3(2)f x x ax =-.当0a =时,2()13f x x =-,不合题意; 当0a >时,()f x 在(,0)-∞上是增函数,且(0)1f =,不合题意;当0a <时,()f x 在2(,)a -∞上是减函数,2(,0)a上是增函数,(0,)+∞是减函数,且(0)1f =,故只需2()0f a>,24a >,2a <-.选C .12.B 解析:几何体为如图所示的一个三棱锥P ABC -,底面ABC 为等腰三角形,,4,AB BC AC ==顶点B 到AC 的距离为4,面PAC ABC ⊥面,且三角形PAC 为以A 为直角的等腰直角三角形,所以棱PB 最长,长度为6,故选B .ACPB二、填空题13.20- 解析:888()()()()x y x y x x y y x y -+=+-+,故展开式中72y x 的系数为128882820C C -=-=-.14.A 解析:乙没去过C 城市,甲没去过B 城市,但去过的城市比乙多,所以甲去过A ,C ,三人都去过同一个城市,一定是A ,所以填A . 15.2π 解析:1()2AO AB AC =+,O 为BC 中点,即BC 为直径,所以AB 与AC 的夹角为2π.16.3 解析:222(2)(sin sin )()sin (2)()()b A B c b C b a b c b c a b c bc +-=-⇒+-=-⇒-=-,所以2222221cos 223b c a b c a bc A A bc π+-+-=⇒==⇒=. 又2244b c bc bc +-=⇒≤.所以13sin 324S bc A bc ==≤. 三、解答题17.解:(Ⅰ)由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1, 两式相减得a n +1(a n +2-a n )=λa n +1.因为a n +1≠0,所以a n +2-a n =λ. (Ⅱ)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1.由(Ⅰ)知,a 3=λ+1. 若{a n }为等差数列,则2a 2=a 1+a 3,解得λ=4,故a n +2-a n =4. 由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3; {a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.18.解:(Ⅰ)0.021700.091800.221900.332000.242100.082200.02230200x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=,()()()()()()()222222220.021702000.091802000.221902000.332002000.242102000.082202000.022********.s =⨯-+⨯-+⨯-+⨯-++⨯-+⨯-+⨯-=(Ⅱ)(i )由(Ⅰ)知,2δ=2s =150,所以15012.2δ=≈,(187.8212.2)(20012.220012.2)0.6826P Z P Z <<=-<<+=.(ii )100件产品中质量指标值位于区间(187.8,212.2)的产品件数X 服从二项分布()100,0.6826B ,所以1000.682668.26EX =⨯=.19.解:(Ⅰ)连结1BC ,交1B C 于点O ,连结AO . 侧面11BB C C 为菱形,∴11BC B C ⊥. 又1AB B C ⊥,1ABBC B =,11.B C ABC ∴⊥面1AO ABC ⊂面,1AO B C ∴⊥,又O 为1B C 中点,所以1AC AB =.(Ⅱ)1AC AB ⊥,且O 是B 1C 中点,所以AO =CO .又因为AB =BC ,所以BOA ∆BOC ≅∆,故OA OB ⊥,从而OA ,OB ,OB 1两两垂直. 以O 为坐标原点,OB 的方向为x 轴正方向,|OB |为单位长, 建立如图所示空间直角坐标系O xyz -.因为o 160CBB ∠=,所以1CBB ∆为等边三角形,又AB =BC , 则()13330,0,,1,0,0,0,,0,0,,0333A B B C ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 1330,,33AB ⎛⎫∴=- ⎪ ⎪⎝⎭,1131,0,3A B AB ⎛⎫==- ⎪ ⎪⎝⎭,1131,,03B C BC ⎛⎫==-- ⎪ ⎪⎝⎭.设(),,n x y z =为平面11AA B 的一个法向量,则()111330,0,331,3,30,30,3y z n AB n n A B x z ⎧-=⎪⎧⋅=⎪⎪=⎨⎨⋅=⎪⎪⎩-=⎪⎩即所以可取.设(),,m a b c =为平面111A B C 的一个法向量,则()11110,1,3,30.m B C m m A B ⎧⋅=⎪=-⎨⋅=⎪⎩同理可取. 则1cos ,7n m n m n m⋅<>==,所以二面角111A ABC --的余弦值为17. 20.解:(Ⅰ)由已知得223,2,2143,223,3c a x a E y c c⎧=⎪=⎧⎪⎪∴+=⎨⎨=⎪⎩⎪=⎪⎩解得椭圆的方程.(Ⅱ)当l x ⊥轴时不合题意,故设l :2y kx =-,()()1122,,,.P x y Q x y将2y kx =-代入2214x y +=得()224116120k x kx +-+=, 当()()222164411264480k k k ∆=--⨯+⨯=->,即234k >时, 21,22824341k k x k ±-=+,从而2121||PQ k x x =+-222414341k k k +-=+. AA 1C 1B 1CBOyx z又点O 到直线l 的距离221d k =+,所以OPQ ∆的面积()221443241k S k PQ d k -==+. 设()2430k t t -=>,()244712,424t S k t k t t t ⎛⎫==≤==± ⎪ ⎪+⎝⎭+当且仅当即时取到, 所以,当OPQ ∆的面积最大时,l 的方程为722y x =-或722y x =--. 21.解:(Ⅰ)函数()f x 的定义域为(0,+∞),f ′(x )=a e x ln x +a x e x -b x 2e x -1+b xe x -1. 由题意可得f (1)=2,f ′(1)=e ,故a =1,b =2.(Ⅱ)由(Ⅰ)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e. 设函数g (x )=x ln x ,则g ′(x )=1+ln x ,所以当x ∈⎝⎛⎭⎫0,1e 时,g ′(x )<0;当x ∈⎝⎛⎭⎫1e ,+∞时,g ′(x )>0. 故g (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增. 从而g (x )在(0,+∞)上的最小值为g ⎝⎛⎭⎫1e =-1e. 设函数h (x )=x e -x -2e,则h ′(x )=e -x (1-x ), 所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减.从而h (x )在(0,+∞)上的最大值为h (1)=-1e. 综上,当x >0时,()()g x h x >,即()1f x >.22.解:(Ⅰ)由题设知A ,B ,C ,D 四点共圆,所以D CBE ∠=∠,由已知得CBE E ∠=∠,故.D E ∠=∠(Ⅱ)设BC 的中点为N ,连接MN ,则由MB =MC 知MN BC ⊥,故O 在直线MN 上.又AD 不是⊙O 的直径,M 为AD 的中点,故OM AD ⊥,即.MN AD ⊥所以//AD BC ,故.A CBE ∠=∠又CBE E ∠=∠,故.A E ∠=∠由(Ⅰ)知,D E ∠=∠,所以ADE ∆为等边三角形. A B EC D M O N23.解:(Ⅰ)曲线C 的参数方程为2cos ,3sin .x y θθ=⎧⎨=⎩直线l 的普通方程为260x y +-=; (Ⅱ)令点P 坐标为()2cos ,3sin θθ,点P 到直线l 的距离为d . ()55sin 64cos 3sin 64tan 535d θφθθφ+-+-⎛⎫=== ⎪⎝⎭,||2sin 30d PA d ==︒, 所以()max max max 225||225PA d d ===;()min min min 25||225PA d d ===. 24.解析:(Ⅰ)由112ab a b ab=+≥得2ab ≥,且当2a b ==时等号成立. 故3333242a b a b +≥≥,且当2a b ==时等号成立.所以33a b +的最小值为42.(Ⅱ)由(Ⅰ)知,23264 3.a b ab +≥≥ 由于436>,从而不存在a ,b ,使得236a b +=.。
2014年陕西高考数学试题(理)
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合2{|0},{|1,}M x x N x x x R =≥=<∈,则M N =( )
.[0,1]A .[0,1)B .(0,1]C .(0,1)D 2.函数()cos(2)6
f x x π
=-
的最小正周期是( )
.
2
A π
.B π .2C π .4D π 3.定积分
1
(2)x x e dx +⎰
的值为( )
.2A e + .1B e + .C e .1D e -
4.根据右边框图,对大于2的整数N ,得出数列的通项公式是( ) .2n Aa n = .2(1)n B a n =- .2n n C a = 1.2n n D a -=
5.已知底面边长为1 )
32.
3A π .4B π .2C π 4.3
D π
6.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )
1.5A
2.5B
3.5C
4.5
D 7.下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )
(A )()12
f x x = (B )()3
f x x = (C )()12x
f x ⎛⎫= ⎪⎝⎭
(D )()3x
f x =
8.原命题为“若12,z z 互为共轭复数,则12z z =”,关于逆命题,否命题,逆否命题真假性的判断依
次如下,正确的是( )
(A )真,假,真 (B )假,假,真 (C )真,真,假 (D )假,假,假
9.设样本数据1210,,,x x x 的均值和方差分别为1和4,若i i y x a =+(a 为非零常数,
1,2,
,10i =),则12,
10,y y y 的均值和方差分别为( )
1+,4a (B )1,4a a ++ (C )1,4 (D )1,4+a 10.如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降,
已知
下降飞行轨迹为某三次函数图像的一部分,则函数的解析式为( )
3131255y x x =
- (B )3241255
y x x =-
(C )33125y x x =- (D )3311255y x x =-+ 第二部分(共100分)
填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分). 11.已知,lg ,24a x a ==则x =________.
12.若圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,则圆C 的标准方程为_______. 13. 设2
0π
θ<
<,向量()()1cos cos 2sin ,,,θθθb a
=,若b a //,则=θtan _______.
14.
15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
.A (不等式选做题)设,,,a b m n R ∈,且225,5a b ma nb +=+=的最小值为 .B (几何证明选做题)如图,ABC ∆中,6BC =,以BC 为直径的半圆分别交,AB AC 于点,E F ,若2AC AE =,则EF =
.C (坐标系与参数方程选做题)在极坐标系中,点(2,
)6π
到直线sin()16
π
ρθ-=的距离是 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分)
16. (本小题满分12分)
ABC ∆的内角C B A ,,
所对的边分别为c b a ,,. (I )若c b a ,,
成等差数列,证明:()C A C A +=+sin 2sin sin ; (II )若c b a ,,
成等比数列,求B cos 的最小值. 17.(本小题满分12分)
四面体ABCD 及其三视图如图所示,过被AB 的中点E 作平行于AD ,BC 的平面分
别交四面体的棱CA DC BD ,,
于点H G F ,,.
(I )证明:四边形EFGH 是矩形;
(II )求直线AB 与平面EFGH 夹角θ的正弦值.
18.(本小题满分12分)
在直角坐标系xOy 中,已知点)2,3(),3,2(),1,1(C B A ,点),(y x P 在ABC ∆三边围成的 区域(含边界)上
(1)若=++;
(2)设),(R n m AC n AB m OP ∈+=,用y x ,表示n m -,并求n m -的最大值. 19.(本小题满分12分)
在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上 的产量具有随机性,且互不影响,其具体情况如下表:
(1)设X 表示在这块地上种植1季此作物的利润,求X 的分布列;
(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元 的概率.
20.(本小题满分13分)
如图,曲线C 由上半椭圆22122:1(0,0)y x C a b y a b
+=>>≥和部分抛物线2
2:1(0)
C y x y =-+≤
连接而成,12,C C 的公共点为,A B ,其中1C 的离心率为2
求,a b 的值;
过点B 的直线l 与12,C C 分别交于,P Q (均异于点,A B ),若AP AQ ⊥,求直线l 的方程.
21.(本小题满分14分)
设函数()ln(1),()'(),0f x x g x xf x x =+=
≥,其中'()f x 是()f x 的导函数.
11()(),()(()),n n g x g x g x g g x n N ++==∈,求()n g x 的表达式; 若()()f x ag x ≥恒成立,求实数a 的取值范围;
(3)设n N +∈,比较(1)(2)()g g g n +++与()n f n -的大小,并加以证明.。