2017-2018学年高一数学必修5模块综合测评 含答案 精品
- 格式:doc
- 大小:159.56 KB
- 文档页数:9
模块综合检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等比数列,且c=2a ,则cos B 等于( ). A .14B .34C .24D .23答案:B2下列结论正确的是( ).A.若ac>bc ,则a>bB.若a 8>b 8,则a>bC.若a>b ,c<0,则ac<bcD.若a <b ,则a >b答案:C3等差数列{a n }的前n 项和为S n ,若a 2+a 7+a 12=30,则S 13的值是( ).A.130B.65C.70D.75解析:因为a 2+a 7+a 12=(a 2+a 12)+a 7=2a 7+a 7=3a 7=30,所以a 7=10.所以S 13=13(a 1+a 13)2=13(a 7+a 7)2=13a 7=130.答案:A4已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若23cos 2A+cos 2A=0,a=7,c=6,则b 等于( ).A.10B.9C.8D.5解析:由23cos 2A+cos2A=0,得cos 2A =125.∵A ∈A (0,π2),∴cos =15.∵cos A b=).=36+b 2-492×6b ,∴b =5或‒135(舍故选D .答案:D5若在等比数列{a n }中,a 4=7,a 6=21,则a 8等于( ).A.35B.63C.213D .±213答案:B6若在△ABC 中,a=4,b=43,A =30°,则角B 的度数等于( ).A.30°B.30°或150°C.60°D.60°或120°答案:D7在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,则角B 的取值范围是( ).A .(0,π3]B .[π3,π]C .(0,π6]D .[π6,π)答案:A8某旅行社租用A,B 两种型号的客车安排900名客人旅行,A,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,若旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( ).A.31 200元B.36 000元C.36 800元D.38 400元解析:设需A,B 型车分别为x ,y 辆(x ,y ∈N ),则x ,y 需满z ,则足{36x +60y ≥900,x +y ≤21,y -x ≤7,x ∈N ,y ∈N ,设租金为z=1600x+2400y ,画出可行域如图中阴影所示,根据线性规划中截距问题,可求得最优解为x=5,y=12,此时z 最小等于36800.故选C.答案:C9若x>0,y>0,且xy-(x+y )=1,则( ).A.x+y ≥2(2+1)B .xy ≤2+1C.x+y ≤≥2(2+1)2D .xy (2+1)解析:∵xy=1+(x+y )≤(x +y 2)2,∴(x+y )2-4(x+y )-4≥0,∴x+y ≥2(2+1),当且仅当x=y .=2+1时等号成立答案:A10若数列{a n }满足a 1=0,a n+1∈N *),则a 20等于( ).=a n -33a n +1(n A.0B.‒3C .3D .1解析:由a 1=0,a n+1∈N *),=a n -33a n +1(n 得a 2={a n }是周期数列,周期为3,所以a 20=a 2=‒3,a 3=3,a 4=0,…由此可知数列‒ 3.答案:B 11若在R 上定义运算☉:a ☉b=ab+2a+b ,则满足x ☉(x-2)<0的实数x 的取值范围为( ).A.(0,2)B.(-2,1)C.(-∞,-2)∪(1,+∞)D.(-1,2)解析:由题意,得x (x-2)+2x+(x-2)<0,即x 2+x-2<0,解得-2<x<1.答案:B12已知集合A={t|t 2-4≤0},对于满足集合A 的所有实数t ,关于x 的不等式x 2+tx-t>2x-1恒成立,则x 的取值范围是( ).A.(-∞,-1)∪(3,+∞)B.(-∞,1)∪(3,+∞)C.(-∞,-1)D.(3,+∞)解析:由题意知A={t|-2≤t ≤2},设f (t )=(x-1)t+x 2-2x+1,由条件知f (t )在区间[-2,2]上恒为正值.于是有{f (-2)>0,f (2)>0,即{x 2-4x +3>0,x 2-1>0.解得x>3或x<-1.答案:A二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上)13某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于 .解析:由题意知每天植树的棵数组成一个以2为首项,2为公比的等比数列,所以S n≥100.所以2n ≥51,n ≥6.=2(1-2n )1-2=2(‒1+2n )答案:614已知点P (x ,y )的坐标满足条件{x +y ≤4,y ≥x ,x ≥1,点O 为坐标原点,则|PO |的最小值等于 ,最大值等于 .答案:2 1015在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c.若C=120°,c =2a ,则a 与b 的大小关系是 .解析:由余弦定理得c 2=a 2+b 2-2ab cos120°.∵c =2a ,∴2a 2=a 2+b 2+ab ,即a 2=b 2+ab ,a 2-b 2=ab>0.∴a 2>b 2,即a>b.答案:a>b16已知数列{a n }满足a 1=t ,a n+1-a n +2=0(t ∈N *,n ∈N *).记数列{a n }的前n 项和的最大值为f (t ),则f (t )= .答案:{t 2+2t 4,t 为偶数,(1+t 2)2,t 为奇数三、解答题(本大题共6小题,共74分.解答时应写出文字说明、证明过程或演算步骤)17(12分)设等差数列{a n }满足a 3=5,a 10=-9.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值.解(1)由a n =a 1+(n-1)d 及a 3=5,a 10=-9,得{a 1+2d =5,a 1+9d =-9,解得{a 1=9,d =-2,所以数列{a n }的通项公式为a n =11-2n.(2)由(1)知,S n =na 1+n (n -1)2d =10n ‒n 2.因为S n =-(n-5)2+25,所以当n=5时,S n 取得最大值.18(12分)海面上相距10海里的A ,B 两船,B 船在A 船的北偏东45°方向上.两船同时接到指令同时驶向C 岛,C 岛在B 船的南偏东75°方向上,行驶了80分钟后两船同时到达C 岛,经测算,A 船行驶了107海里,求B 船的速度.解如图所示,在△ABC 中,AB=10,AC=1∠ABC=120°.07,由余弦定理,得AC 2=BA 2+BC 2-2BA ·BC ·cos120°,即700=100+BC 2+10BC ,得BC=20.设B 船速度为v ,行驶时间),路程为BC=20海里,则有v /时),即B 船为8060=43(小时=2043=15(海里的速度为15海里/时.19(12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足2c -b a =cosB cosA .(1)求角A 的大小;(2)若a=2,求△ABC 面积的最大值.5解(1)因=,所以(2c-b )cos A=a cos B.为2c ‒b a cosBcosA 由正弦定理,得(2sin C-sin B )cos A=sin A cos B ,整理得2sin C cos A-sin B cos A=sin A cos B.所以2sin C cos A=sin (A+B )=sin C.在△ABC 中,0<C<π,所以sin C ≠0.所以cos A=.又0<A<π,故A=.12π3(2)由(1)得A=,又a=2,π35则cos A==,整理得b 2+c 2=bc+20.b 2+c 2‒a 22bc 12由基本不等式,得b 2+c 2≥2bc ,则bc+20≥2bc ,所以bc ≤20,当且仅当b=c 时,等号成立,故三角形的面积S=bc sin A=bc sin =bc ≤×20=5.1212π334343所以△ABC 面积的最大值为5.320(12分)已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列的前n 项和.{a n2n ‒1}解(1)设等差数列{a n }的公差为d ,由已知条件可得{a 1+d =0,2a 1+12d =‒10,解得{a 1=1,d =‒1.故数列{a n }的通项公式为a n =2-n.(2)设数n 项和为S n,列{a n2n ‒1}的前即S n =a 1++…+,a 22a n2n ‒1则S 1=a 1=1,=++…+.S n 2a 12a 24a n 2n ∵当n>1时,=a 1++…+-S n 2a 2‒a 12a n ‒a n ‒12n ‒1a n 2n =1--(12+14+…+12n ‒1)2‒n 2n =1--=,(1‒12n ‒1)2‒n 2n n 2n∴S n =.n2n ‒1当n=1时,S 1=1也符合该公式.综上可知,数n 项和S n =.列{a n 2n ‒1}的前n2n ‒121(12分)电视台为某个广告公司特约播放两套片集,其中片集甲播映时间为20分钟,广告时间为1分钟,收视观众为60万;片集乙播映时间为10分钟,广告时间为1分钟,收视观众为20万.广告公司规定每周至少有6分钟广告,而电视台每周只能为该公司提供不多于86分钟的节目时间.电视台每周应播映两套片集各多少次,才能获得最高的收视率?解设片集甲播放x 集,片集乙播放y 集,则有{x +y ≥6,21x +11y ≤86,x ≥0,x ∈N ,y ≥0,y ∈N .要使收视率最高,则只要z=60x+20y 最大即可.M (2,4).由{21x +11y =86,x +y =6,得由图可知,当x=2,y=4时,z=60x+20y 取得最大值200万.故电视台每周片集甲和片集乙各播映2集和4集,其收视率最高.22(14分)已知各项均不相等的等差数列{a n }的前4项和S 4=14,且a 1,a 3,a 7成等比数列.(1)求数列{a n }的通项公式;(2)设T n 为数列的前n 项和,若T n ≤λa n+1对任意n ∈N *恒成立,求实数λ的最小值.{1a n a n +1}解(1)设等差数列{a n }的公差为d ,由已知d=1或d=0(舍去),得{4a 1+6d =14,(a 1+2d )2=a 1(a 1+6d ),解得因此a 1=2.故a n =n+1.(2)∵由(1)可==-,知1a n a n +11(n +1)(n +2)1n +11n +2∴T n =-+-+…+-=.121313141n ‒11n +2n2(n +2)∵T n ≤λa n+1对任意n ∈N *恒成立,∴≤λ(n+2),n2(n +2)即λ≥n ∈N *恒成立.n2(n +2)2对任意==,又n2(n +2)2n 2(n 2+4n +4)12(n +4n +4)≤116当且仅当n=2时,取“=”.∴λ的最小值.为116。
(时间:120分钟;满分:150分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N 等于( ) A .{x |x <-2} B .{x |x >3} C .{x |-1<x <2} D .{x |2<x <3}解析:选C.M ={x |-2<x <2},N ={x |-1<x <3},故M ∩N ={x |-1<x <2}. 2.已知△ABC 中,AB =3,AC =1且B =30°,则△ABC 的面积等于( )A.32B.34C.32或 3 D.34或32 答案:D3.在不等边△ABC 中,a 为最大边,如果a 2<b 2+c 2,则A 的取值范围是( ) A .90°<A <180° B .45°<A <90° C .60°<A <90° D .0°<A <90°解析:选C.由b 2+c 2-a 2>0得cos A >0,故A <90°,又A 为不等边三角形中的最大角,故A >60°.4.若两个等差数列{a n }、{b n }前n 项和分别为A n 、B n ,满足A n B n =7n +14n +27(n ∈N +),则a 11b 11的值为( )A.74B.32C.43D.7871解析:选C.a 11b 11=2a 112b 11=a 1+a 21b 1+b 21=n a 1+a 212n b 1+b 212=A 21B 21=7×21+14×21+27=43.5.数列{a n }满足a 1=1,a 2=2,2a n +1=a n +a n +2,若b n =1a n a n +1,则数列{b n }的前5项和等于( )A .1B.56 C.16D.130解析:选B.由2a n +1=a n +a n +2,得{a n }为等差数列,公差d =a 2-a 1=1, ∴a n =a 1+(n -1)×1=n ,∴b n =1a n a n +1=1n n +=1n -1n +1,∴{b n }的前5项和为S 5=1-12+12-13+13-14+14-15+15-16=1-16=56.6.设x ,y ∈R ,a >1,b >1,若a x =b y=3,a +b =2 3.则1x +1y的最大值为( )A .2B.32 C .1 D.12解析:选C.x =log a 3,y =log b 3, 则1x +1y =1log a 3+1log b 3=log 3a +log 3b =log 3ab ≤log 3(a +b 2)2=1,当且仅当a =b =3时取等号,所以1x +1y的最大值为1.7.若关于x 的不等式(1+k 2)x ≤k 4+4的解集是M ,则对任意实常数k ,总有( ) A .2∈M,0∈M B .2∉M,0∈M C .2∈M,0∉M D .2∉M,0∉M解析:选A.M ={x |x ≤k 4+4k 2+1},∵k 4+4k 2+1=k 4-1+5k 2+1=k 2-1+5k 2+1=k 2+1+5k 2+1-2≥25-2>2.∴2∈M,0∈M .8.设等差数列{a n }的公差为2,前n 项和为S n ,则下列结论中正确的是( ) A .S n =na n -3n (n -1) B .S n =na n +3n (n -1) C .S n =na n -n (n -1) D .S n =na n +n (n -1) 解析:选C.因为a n =a 1+(n -1)d , 所以a 1=a n -2(n -1),所以S n =n a 1+a n 2=2a n -n -2×n=na n -n (n -1).9.若一个等差数列前三项的和为34,最后三项的和为146,且所有项的和为390,则这个数列有( )A .13项B .12项C .11项D .10项 解析:选A.设此数列为{a n },则a 1+a 2+a 3=34,a n +a n -1+a n -2=146, ∴3(a 1+a n )=180,∴a 1+a n =60.又S n =n a 1+a n 2,∴390=60n 2,解得n =13.10.(2018年高考江西卷)公差不为零的等差数列{a n }的前n 项和为S n ,若a 4是a 3与a 7的等比中项,S 8=32,则S 10等于( )A .18B .24C .60D .90解析:选C.由a 24=a 3·a 7,∴(a 1+3d )2=(a 1+2d )(a 1+6d ). ∵d ≠0,∴2a 1+3d =0.①∵S 8=32,∴a 1+a 8=8,∴2a 1+7d =8.②由①②得⎩⎪⎨⎪⎧a 1=-3,d =2,∴S 10=-3×10+10×92×2=60.11.在△ABC 中,若三边a ,b ,c 的倒数成等差数列,则边b 所对的角为( ) A .锐角 B .直角 C .钝角 D .不能确定解析:选A.设公差为d .当d =0时,1a =1b =1c ,∴a =b =c ,B =60°.当d >0时,1a <1b<1c,∴c <b <a ,B 为锐角,当d <0时,1a >1b >1c,∴a <b <c ,B 为锐角.∴B 为锐角.12.若△ABC 的三边长为a ,b ,c ,且f (x )=b 2x 2+(b 2+c 2-a 2)x +c 2,则f (x )的图象是( )A .在x 轴的上方B .在x 轴的下方C .与x 轴相切D .与x 轴交于两点解析:选A.由Δ=(b 2+c 2-a 2)2-4b 2c 2=4b 2c 2cos 2A -4b 2c 2=-4b 2c 2sin 2A <0,故f (x )图象与x 轴无交点,又b 2>0则图象在x 轴上方.二、填空题(本大题共4小题,把答案填写在题中横线上)13.等比数列{a n }中,a 2=2,a 5=16,那么数列{a n }的前6项和S 6=________.解析:设公比为q ,则⎩⎪⎨⎪⎧a 1q =2a 1q 4=16,解得⎩⎪⎨⎪⎧a 1=1q =2,∴S 6=-261-2=63.答案:6314.(2018年高考北京卷)若实数x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0x ≤4y ≤5,则s =y -x 的最小值为________.解析:如图画出可行域知,当直线过(4,-2)点时s min =-6.答案:-615.已知△ABC 中,三个内角A 、B 、C 的对边分别是a 、b 、c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C 的值为________.解析:依题意,得ab sin C =a 2+b 2-c 2+2ab .由余弦定理知:a 2+b 2-c 2=2ab cos C .∴ab sin C =2ab (1+cos C ),即sin C =2(1+cos C ).∵sin C 2cos C2=2cos 2C2,又0°<C <180°,∴cos C 2≠0,∴sin C 2=2cos C2,即tan C2=2.∴tan C =2tanC21-tan 2C 2=41-4=-43.答案:-4316.设集合A ={x |x 2-2x -3>0},B ={x |x 2+ax +b ≤0},若A ∪B =R ,A ∩B =(3,4],则a +b =________.解析:A ={x |x <-1或x >3},又A ∪B =R ,A ∩B =(3,4],所以B ={x |-1≤x ≤4},即-1,4是关于x 的方程x 2+ax +b =0的两个根,由此得a =-3,b =-4,故a +b =-7.答案:-7三、解答题(本大题共6小题,解答应写出文字说明,证明过程或演算步骤)17.在△ABC 中,角A 、B 、C 所对的三边长分别为a 、b 、c ,若a 3+b 3-c 3a +b -c=c 2,a =43,B =45°,求△ABC 的面积.解:因为a 3+b 3-c 3a +b -c=c 2,所以变形得(a +b )(a 2+b 2-c 2-ab )=0.因为a +b ≠0,所以a 2+b 2-c 2-ab =0,即a 2+b 2-c 2=ab .根据余弦定理的推论得cos C =a 2+b 2-c 22ab =ab 2ab =12.又因为0°<C <180°,所以C =60°. 因为B =45°,A +B +C =180°,所以A =180°-(60°+45°)=75°.根据正弦定理得a sin A =bsin B, 所以b =a sin Bsin A =43×226+24=12-4 3. 根据三角形的面积公式得S △ABC =12ab sin C =12×43×(12-43)×32=36-12 3.18.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+4x -5<0的解集为B . (1)求A ∪B ;(2)若不等式x 2+ax +b <0的解集是A ∪B ,求ax 2+x +b <0的解集.解:(1)解不等式x 2-2x -3<0,得A ={x |-1<x <3}解不等式x 2+4x -5<0, 得B ={x |-5<x <1}, ∴A ∪B ={x |-5<x <3}.(2)由x 2+ax +b <0的解集是(-5,3), ∴⎩⎪⎨⎪⎧ 25-5a +b =09+3a +b =0,解得⎩⎪⎨⎪⎧a =2b =-15, ∴2x 2+x -15<0,求得解集为{x |-3<x <52}.19.△ABC 中角A ,B ,C 的对边分别为a ,b ,c ,且a (1+cos C )+c (1+cos A )=3b . (1)求证:a ,b ,c 成等差数列; (2)求cos B 的最小值.解:(1)证明:由正弦定理得sin A (1+cos C )+sin C (1+cos A )=3sin B⇒sin A +sin C +sin A cos C +cos A sin C =3sin B ⇒sin A +sin C +sin(A +C )=3sin B ⇒sin A +sin C =2sin B . 由正弦定理知a +c =2b , 所以a ,b ,c 成等差数列.(2)cos B =a 2+c 2-b22ac =a 2+c 2-a +c 222ac=3a 2+3c 2-2ac 8ac =38·a 2+c 2ac -14≥34-14=12, 所以当a =c 时,(cos B )min =12.20.如图所示,a 是海面上一条南北方向的海防警戒线.在a 上点A 处有一个水声监测点,另两个监测点B 、C 分别在A 的正东方20 km 处和54 km 处.某时刻,监测点B 收到发自静止目标P 的一个声波,8 s 后监测点A,20 s 后监测点C 相继收到这一信号,在当时气象条件下,声波在水中的传播速率是1.5 km/s.(1)设A 到P 的距离为x km ,用x 表示B 、C 到P 的距离,并求x 的值; (2)求静止目标P 到海防警戒线a 的距离(精确到0.01 km). 解:(1)依题意,PA -PB =1.5×8=12(km), PC -PB =1.5×20=30(km),∴PB =(x -12) km ,PC =(x +18) km.在△PAB 中,AB =20 km ,由余弦定理,得cos ∠PAB =PA 2+AB 2-PB 22PA ·AB=x 2+202-x -22x ·20=3x +325x.同理cos ∠PAC =72-x3x.由于cos ∠PAB =cos ∠PAC , 即3x +325x =72-x 3x ,解得x =1327km.(2)作PD ⊥a ,垂足为D ,在Rt△PDA 中, PD =PA cos ∠APD =PA cos ∠PAB=x ·3x +325x≈17.71(km).所以,静止目标P 到海防警戒线a 的距离约为 17.71 km.21.在数列{a n }中,a 1=1,a n +1=(1+1n )a n +n +12n .(1)设b n =a n n,求数列{b n }的通项公式; (2)求数列{a n }的前n 项和S n .解:(1)由已知得b 1=a 1=1且a n +1n +1=a n n +12n,即b n +1=b n +12n ,从而b 2=b 1+12,b 3=b 2+122,…b n =b n -1+12n -1(n ≥2),于是b n =b 1+12+122+…+12n -1,=2-12n -1(n ≥2),又b 1=1,∴{b n }的通项公式b n =2-12n -1.(2)由(1)知a n =n ·b n =2n -n2n -1,令T n =120+221+322+…+n 2n -1,则2T n =2+220+32+…+n2n -2,作差得:T n =2+(120+121+…+12n -2)-n 2n -1=4-n +22n -1,∴S n =(2+4+6+…+2n )-T n=n (n +1)+n +22n -1-4.22.设不等式组⎩⎪⎨⎪⎧x >0y >0y ≤-nx +3n所表示的平面区域为D n ,记D n 内的整点个数为a n (n∈N +).(1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和为S n ,且T n =S n3·2n -1,若对一切的正整数n ,总有T n ≤m ,求实数m 的取值范围.解:(1)由x >0,y >0,y =3n -nx >0,得0<x <3.所以x =1或x =2,即D n 内的整点在直线x =1和x =2上.记直线y =-nx +3n 为l ,l 与x =1,x =2的交点的纵坐标分别为y 1,y 2,则y 1=2n ,y 2=n ,所以a n =3n (n ∈N +).(2)因为S n =3(1+2+…+n )=3n n +2,所以T n =n n +2n.又T n +1T n =n +22n, 所以当n ≥3时,T n >T n +1,且T 1=1<T 2=T 3=32.所以实数m 的取值范围为[32,+∞).。
(新课标)2017-2018学年北师大版高中数学必修五模块检测(时间:120分钟 满分:150分)一、选择题(本大题共10小题,每小题5分,共50分) 1.已知数列{a n }的前n 项和S n =n 3,则a 5+a 6的值为( ). A .91 B .152 C .218 D .279 解析 a 5+a 6=S 6-S 4=63-43=152. 答案 B2.在△ABC 中,sin A ∶sin B ∶sin C =4∶3∶2,则cos A 的值是( ). A .-14B.14C .-23 D.23解析 由正弦定理得a ∶b ∶c =4∶3∶2,设a =4k ,b =3k ,c =2k ,则cos A = 9k 2+4k 2-16k 22×3k ×2k =-14.答案 A3.在正项等比数列{a n }中,a 1和a 19为方程x 2-10x +16=0的两根,则a 8·a 10·a 12等于( ).A .16B .32C .64D .256解析 ∵{a n }是等比数列且由题意得a 1·a 19=16=a 102(a n >0),∴a 8·a 10·a 12=a 103=64. 答案 C4.等差数列{a n }满足a 42+a 72+2a 4a 7=9,则其前10项之和为( ). A .-9 B .-15 C .15 D .±15解析 a 42+a 72+2a 4a 7=(a 4+a 7)2=9.∴a 4+a 7=±3, ∴a 1+a 10=±3,∴S 10=10(a 1+a 10)2=±15.答案 D5.在坐标平面上,不等式组⎩⎪⎨⎪⎧y ≥x -1,y ≤-3|x|+1所表示的平面区域的面积为( ).A. 2B.32C.322D .2解析 |CD|=1+1=2,⎩⎨⎧y =x -1,y =-3x +1,∴x A =12.⎩⎪⎨⎪⎧y =x -1,y =3x +1,∴x B =-1,∴S △CDA =12×2×12=12,S △CDB =12×2×1=1.故所求区域面积为32.答案 B6.如果不等式2x 2+2mx +m4x 2+6x +3<1对一切实数x 均成立,则实数m 的取值范围是( ).A .(1,3)B .(-∞,3)C .(-∞,1)∪(2,+∞)D .(-∞,+∞)解析 ∵4x 2+6x +3=⎝ ⎛⎭⎪⎫2x +322+34>0,∴原不等式⇔2x 2+2mx +m <4x 2+6x +3⇔2x 2+(6-2m)x +(3-m)>0,x ∈R 恒成立⇔Δ=(6-2m)2-8(3-m)<0,∴1<m <3. 答案 A7.△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且cos 2B +3cos(A +C)+2=0,b =3,则c ∶sin C 等于( ). A .3∶1 B.3∶1 C.2∶1 D .2∶1解析 cos 2B +3cos(A +C)+2=2cos 2B -3cos B +1=0, ∴cos B =12或cos B =1(舍).∴B =π3.∴c sin C =b sin B =332=2. 答案 D8.已知各项都为正数的等比数列{a n }的公比不为1,则a n +a n +3与a n +1+a n +2的大小关系是( ).A .a n +a n +3<a n +1+a n +2B .a n +a n +3=a n +1+a n +2C .a n +a n +3>a n +1+a n +2D .不确定的,与公比有关 解析 因为a n +a n +3=a n (1+q 3), a n +1+a n +2=a n (q +q 2),a n +a n +3-(a n +1+a n +2)=a n (1+q 3-q -q 2)= a n (1-q)(1-q 2)=a n (1-q)2(1+q)>0. 答案 C9.已知公差不为0的等差数列的第4,7,16项恰好分别是某等比数列的第4,6,8项,则该等比数列的公比是( ). A. 3 B.2C .±3D .± 2解析 等差数列记作{a n },等比数列记作{b n }, 则q 2=b 8b 6=b 6b 4=b 8-b 6b 6-b 4=a 16-a 7a 7-a 4=9d3d =3,∴q =± 3.答案 C10.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -my +1≥0,且x +y 的最大值为9,则实数m 等于( ).A .-2B .-1C .1D .2 解析 如图,作出可行域,由⎩⎪⎨⎪⎧x -my +1=0,2x -y -3=0,得A ⎝⎛⎭⎪⎫1+3m -1+2m ,5-1+2m ,平移y =-x ,当其经过点A 时,x +y 取得最大值,即1+3m -1+2m +5-1+2m=9,解得m= 1. 答案 C二、填空题(本大题共5小题,每小题5分,共25分)11.正项等比数列{a n }满足a 2a 4=1,S 3=13,b n =log 3a n ,则数列{b n }的前10项和是________.解析 ∵{a n }成等比数列,a n >0,∴a 2a 4=a 32=1. ∴a 3=1,∴a 1q 2=1.①∵S 3=a 1+a 2+1=13,∴a 1(1+q)+1=13.② 由①②得,a 1=9,q =13,a n =33-n .∴b n =3-n.∴S 10=-25. 答案 -2512.如图所示,为测一树的高度,在地面上选取A 、B 两点,从A 、B 两点分别测得树尖的仰角为30°,45°,且A 、B 两点之间的距离为60 m ,则树高的高度为________.解析 ∵∠A =30°,∠ABP =45°,∴∠APB =15°,AB sin ∠APB =PA sin ∠PBA ,60sin 15°=PAsin 135°,∴PA =60(3+1),PQ =PA ·sin ∠A =60(3+1)·sin 30°=30(3+1).答案 (30+303)m13.设,x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +2≥0,8x -y -4≤0,x ≥0,y ≥0,若目标函数z =abx +y(a >0,b >0)的最大值为8,则a +b 的最小值为________.解析 如图所示,线性约束条件表示的区域为图中的阴影部分,A(0,2),B ⎝ ⎛⎭⎪⎫12,0,C(1,4),当直线l :y =-abx+z 过点C 时,z 取最大值8,即8=ab +4, ∴ab =4.又∵a >0,b >0,∴a +b ≥2ab =24=4(a =b =2时取等号).答案 414.在△ABC 中,D 为BC 边上一点,BC =3BD ,AD =2,∠ADB =135°,若AC =2AB ,则BD =________. 解析 如图,设AB =k , 则AC =2k ,再设BD =x , 则DC =2x.在△ABD 中,由余弦定理得 k 2=x 2+2-2·x ·2·⎝ ⎛⎭⎪⎫-22=x 2+2+2x ,① 在△ADC 中,由余弦定理得 2k 2=4x 2+2-2·2x ·2·22=4x 2+2-4x , ∴k 2=2x 2+1-2x.② 由①②得x 2-4x -1=0, 解得x =2+5(负值舍去). 答案 2+ 515.设x ,y ∈R ,a >1,b >1,若a x =b y =3,a +b =23,则1x +1y 的最大值为________.解析 因为a >1,b >1,a x =b y =3,a +b =23, 所以x =log a 3,y =log b 3.1x +1y =1log a 3+1log b 3=log 3a +log 3b =log 3ab ≤ log 3⎝⎛⎭⎪⎫a +b 22=log 3⎝ ⎛⎭⎪⎫2322=1,当且仅当a =b 时,等号成立.答案 1三、解答题(本大题共6小题,共75分)16.(12分)已知{a n }是首项为19,公差为-2的等差数列,S n 为{a n }的前n 项和. (1)求通项a n 及S n ;(2)设{b n -a n }是首项为1,公比为3的等比数列,求数列{b n }的通项公式及前n 项和T n .解 (1)∵{a n }是首项为a 1=19,公差为d =-2的等差数列,∴a n =19-2(n -1)=21-2n ,S n =19n +12n(n -1)×(-2)=20n -n 2.(2)由题意得b n -a n =3n -1,即b n =a n +3n -1,∴b n =3n -1-2n +21, ∴T n =S n +(1+3+…+3n -1)=-n 2+20n +3n -12.17.(12分)已知不等式ax 2-3x +6>4的解集为{x|x <1或x>b}, (1)求a ,b ;(2)解不等式ax 2-(ac +b)x +bc <0.解 (1)因为不等式ax 2-3x +6>4的解集为{x|x <1或x >b},所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,且b >1.由根与系数的关系,得⎩⎪⎨⎪⎧1+b =3a,1×b =2a.解得⎩⎪⎨⎪⎧a =1,b =2.所以a =1,b =2.(2)所以不等式ax 2-(ac +b)x +bc <0, 即x 2-(2+c)x +2c <0,即(x -2)(x -c)<0.当c >2时,不等式(x -2)(x -c)<0的解集为{x|2<x <c}; 当c <2时,不等式(x -2)(x -c)<0的解集为{x|c <x <2}; 当c =2时,不等式(x -2)(x -c)<0的解集为∅,综上,当c >2时,不等式ax 2-(ac +b)x +bc <0的解集为{x|2<x <c}; 当c <2时,不等式ax 2-(ac +b)x +bc <0的解集为{x|c <x <2}; 当c =2时,不等式ax 2-(ac +b)x +bc <0的解集为∅.18.(12分)在△ABC 中,a 比b 长2,b 比c 长2,且最大角的正弦值是32,求△ABC 的面积.解 据题意知a -b =2,b -c =2,∴边长a 最大,∴sin A =32, ∴cos A =±1-sin 2A =±12.∵a 最大,∴cos A =-12.又a =b +2,c =b -2,∴cos A =b 2+c 2-a 22bc =b 2+(b -2)2-(b +2)22b (b -2)=-12,解得b =5,∴a =7,c =3,∴S △ABC =12bcsin A =12×5×3×32=1534.19.(12分)已知某地今年年初拥有居民住房的总面积为a(单位:m 2),其中有部分旧住房需要拆除.当地有关部门决定每年以当年年初住房面积的10%建设新住房,同时也拆除面积为b(单位:m 2)的旧住房.(1)分别写出第一年末和第二年末的实际住房面积的表达式.(2)如果第五年末该地的住房面积正好比今年年初的住房面积增加了30%,则每年拆除的旧住房面积b 是多少?(计算时取1.15=1.6) 解 (1)第一年末的住房面积为 a ·1110-b =(1.1a -b)(m 2). 第二年末的住房面积为⎝ ⎛⎭⎪⎫a ·1110-b ·1110-b=a ·⎝⎛⎭⎪⎫11102-b ⎝ ⎛⎭⎪⎫1+1110=(1.21a -2.1b)(m 2).(2)第三年末的住房面积为⎣⎢⎡⎦⎥⎤a ·⎝ ⎛⎭⎪⎫11102-b ⎝ ⎛⎭⎪⎫1+1110·1110-b =a ·⎝⎛⎭⎪⎫11103-b ⎣⎢⎡⎦⎥⎤1+1110+⎝ ⎛⎭⎪⎫11102,第四年末的住房面积为 a ·⎝⎛⎭⎪⎫11104-b ⎣⎢⎡⎦⎥⎤1+1110+⎝ ⎛⎭⎪⎫11102+⎝ ⎛⎭⎪⎫11103,第五年末的住房面积为 a ·⎝⎛⎭⎪⎫11105-b ⎣⎢⎡⎦⎥⎤1+1110+⎝ ⎛⎭⎪⎫11102+⎝ ⎛⎭⎪⎫11103+⎝ ⎛⎭⎪⎫11104=1.15a -1-1.151-1.1b =1.6a -6b.依题意可知1.6a -6b =1.3a ,解得b =a 20,所以每年拆除的旧住房面积为a20 m 2.20.(13分)已知1≤x +y ≤5,-1≤x -y ≤3,求2x -3y 的取值范围.解 法一 作出一元二次方程组⎩⎪⎨⎪⎧1≤x +y ≤5-1≤x -y ≤3所表示的平面区域(如图)即可行域.考虑 z =2x -3y ,把它变形为y =23x -13z ,得到斜率为23,且随z 变化的一组平行直线,-13z 是直线在y 轴上的截距,当直线截距最大且满足约束条件时目标函数z =2x -3y 取得最小值;当直线截距最小且满足约束条件时目标函数z =2x -3y 取得最大值.由图可知,当直线z =2x -3y 经过可行域上的点A 时,截距最大,即z 最小.解方程组⎩⎪⎨⎪⎧x -y =-1,x +y =5,得A 的坐标为(2,3).所以z min =2x -3y =2×2-3×3=-5.解方程组⎩⎪⎨⎪⎧x -y =3,x +y =1,得B 的坐标为(2,-1),所以z max =2x -3y =2×2-3×(-1)=7. ∴2x -3y 的取值范围是[-5,7].法二 设2x -3y =m(x +y)+n(x -y)=mx +my +nx -ny =(m +n)x +(m -n)y则⎩⎪⎨⎪⎧m +n =2,m -n =-3,⇒⎩⎪⎨⎪⎧m =-12,n =52.则2x -3y =-12(x +y)+52(x -y)∵1≤x +y ≤5,-1≤x -y ≤3,∴-52≤-12(x +y)≤-12,-52≤52(x -y)≤152,∴-5≤2x -3y ≤7. 即2x -3y 的取值范围为[-5,7].21.(14分)某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值.解 (1)若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向.如图所示,设小艇与轮船在C 处相遇.在Rt △OAC 中,OC =20cos 30°=103,AC =20sin 30°=10.又AC =30t ,OC =vt.此时,轮船航行时间t =1030=13,v =10313=303,即小艇以303海里/时的速度航行,相遇时小艇的航行距离最小.(2)如图所示,设小艇与轮船在B 处相遇.由题意,可得(vt)2=202+(30t)2-2·20·30t ·cos(90°-30°),化简,得v 2=400t 2-600t+900=400⎝ ⎛⎭⎪⎫1t -342+675.由于0<t ≤12,即1t≥2,所以当1t=2时,v 取得最小值1013,即小艇航行速度的最小值为1013海里/时.。
模块综合检测(B)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则ba=( ) A .23 B .2 2 C . 3D . 2解析: 由正弦定理,得sin 2A sin B +sin B cos 2A =2sin A , 即sin B (sin 2A +cos 2A )=2sin A . 故sin B =2sin A ,所以ba = 2.答案: D2.等比数列公比为2,且前4项之和为1,则前8项之和为( ) A .15 B .17 C .19D .21解析: 由S 8-S 4S 4=q 4得S 8=17.答案: B3.如果a ,b ,c 满足c <b <a 且ac <0,那么下列选项中不一定成立的是( ) A .cb 2<ab 2 B .c (b -a )>0 C .ab <acD .ac (a -c )<0 解析: 若b =0,则cb 2=ab 2,∴A 不一定成立. 答案: A4.数列{a n }的通项公式为a n =1n +1+n,已知它的前n 项和S n =6,则项数n 等于( )A .6B .7C .48D .49解析: 将通项公式变形得: a n =1n +1+n=n +1-n(n +1+n )(n +1-n )=n +1-n ,则S n =(2-1)+(3-2)+(4-3)+…+(n +1-n )=n +1-1,由S n =6,则有n +1-1=6,∴n =48. 答案: C5.在△ABC 中,b =a sin C ,c =a cos B ,则△ABC 一定是( ) A .等腰三角形但不是直角三角形 B .直角三角形但不是等腰三角形 C .等边三角形 D .等腰直角三角形解析: 由c =a cos B 得,c =a ×a 2+c 2-b 22ac ,∴a 2=b 2+c 2,∴△ABC 为直角三角形, ∴b =a sin C =a ×ca =c ,∴△ABC 是等腰直角三角形. 答案: D6.不等式2x 2-x -1>0的解集是( ) A .⎝⎛⎭⎫-12,1 B .(1,+∞)C .(-∞,1)∪(2,+∞)D .⎝⎛⎭⎫-∞,-12∪(1,+∞) 解析: ∵Δ=1+8=9>0,∴方程2x 2-x -1=0有两个不相等的实数根, 解得x 1=-12,x 2=1.∴2x 2-x -1>0的解集为⎝⎛⎭⎫-∞,-12∪(1,+∞). 答案: D7.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥0,x -y +1≥0,x +y -3≤0,则z =2x +y 的最大值为( )A .-2B .4C .6D .8解析: 作出可行域,如图阴影部分所示,易求得A (-1,0),B (3,0),C (1,2),由可行域可知,z =2x +y 过点B (3,0)时,z 有最大值,且z max =6.答案: C8.在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( )A.32B .22C .12D .-12解析: 利用余弦定理求解. ∵cos C =a 2+b 2-c 22ab =c 22ab ,又∵a 2+b 2≥2ab ,∴2ab ≤2c 2, ∴cos C ≥12.答案: C9.当点(x ,y )在直线x +3y =2上移动时,z =3x +27y +1的最小值是( ) A .339 B .7 C .1+2 2D .6解析: z =3x +27y +1≥23x ·27y +1=7.当且仅当3x =27y ,即x =1,y =13时,等号成立.故选B.答案: B10.在△ABC 中,b 2-bc -2c 2=0,a =6,cos A =78,则△ABC 的面积S 为( )A.152B .15C .2D .3解析: ∵b 2-bc -2c 2=0, ∴(b -2c )(b +c )=0.∵b +c ≠0,∴b -2c =0.∴b =2c , ∴6=c 2+4c 2-2c ·2c ×78,∴c =2,b =4.∴S =12bc sin A =12×2×4×1-4964=152. 答案: A11.某学生用一不准确的天平(两臂不等长)称10 g 药品,他先将5 g 的砝码放在左盘,将药品放在右盘使之平衡;然后又将5 g 的砝码放在右盘,将药品放在左盘使之平衡,则此学生实际所得药品( )A .小于10 gB .大于10 gC .大于等于10 gD .小于等于10 g解析: 设左、右臂长分别为t 1,t 2,第一次称的药品为x 1 g ,第二次称的药品为x 2 g ,则有5t 1=x 1t 2,x 2t 1=5t 2,所以x 1+x 2=5⎝⎛⎭⎫t 1t 2+t 2t 1>5×2=10(g),即大于10 g.答案: B12.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意实数x 恒成立,则( )A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <12解析: 因为(x -a )⊗(x +a )=(x -a )(1-x -a ),又不等式(x -a )⊗(x +a )<1对任意实数x 恒成立,所以(x -a )(1-x -a )<1对任意实数x 恒成立,即x 2-x -a 2+a +1>0对任意实数x 恒成立,所以相应方程的Δ=(-1)2-4(-a 2+a +1)<0,解得-12<a <32.故选C.答案: C二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上) 13.已知△ABC 的三边长成公比为2的等比数列,则其最大角的余弦值为________. 解析: 利用三边长是公比为2的等比数列,可把三边长表示为a ,2a,2a ,再利用余弦定理求解.设三角形的三边长从小到大依次为a ,b ,c , 由题意得b =2a ,c =2a .在△ABC 中,由余弦定理得cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22×a ×2a =-24.答案: -2414.设z =x +y ,其中x ,y 满足⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k ,若z 的最大值为6,则z 的最小值为________.解析: 如图,x +y =6过点A (k ,k ),k =3,z =x +y 在点B 处取得最小值,B 点在直线x +2y =0上,∴B (-6,3), ∴z min =-6+3=-3. 答案: -315.已知△ABC 中三边a ,b ,c 成等差数列,a ,b ,c 也成等差数列,则△ABC 的形状为________.解析: 由a ,b ,c 成等差数列得a +c =2b , ① 由a ,b ,c 成等差数列得a +c =2b , ②②2-①得2ac =2b ,即b 2=ac ,①平方得a 2+2ac +c 2=4b 2, 将b 2=ac 代入得a 2+2ac +c 2=4ac , 即(a -c )2=0,∴a =c . 又∵a +c =2b ,∴2a =2b , ∴a =b ,∴a =b =c . 答案: 等边三角形16.已知log 2(x +y )=log 2 x +log 2 y ,则xy 的取值范围是____________. 解析: 由已知得x +y =xy ,又x >0,y >0, ∴xy =x +y ≥2xy ,∴xy ≥4. 答案: [4,+∞)三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知{a n }是首项为19,公差为-2的等差数列,S n 为{a n }的前n 项和.(1)求通项a n 及S n ;(2)设{b n -a n }是首项为1,公比为3的等比数列,求数列{b n }的通项公式及前n 项和T n . 解析: (1)∵{a n }是首项为a 1=19,公差为d =-2的等差数列,∴a n =19-2(n -1)=21-2n ,S n =19n +12n (n -1)×(-2)=20n -n 2.(2)由题意得b n -a n =3n -1,即b n =a n +3n -1,∴b n =3n -1-2n +21,∴T n =S n +(1+3+…+3n -1)=-n 2+20n +3n -12.18.(本小题满分12分)(2012·江西高考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知3cos(B -C )-1=6cos B cos C .(1)求cos A ;(2)若a =3,△ABC 的面积为22,求b ,c . 解析: (1)由3cos(B -C )-1=6cos B cos C , 得3(cos B cos C -sin B sin C )=-1,即cos(B +C )=-13,从而cos A =-cos(B +C )=13.(2)由于0<A <π,cos A =13,所以sin A =223.又S △ABC =22,即12bc sin A =22,解得bc =6.由余弦定理a 2=b 2+c 2-2bc cos A ,得b 2+c 2=13,解方程组⎩⎪⎨⎪⎧ bc =6,b 2+c 2=13,得⎩⎪⎨⎪⎧ b =2,c =3或⎩⎪⎨⎪⎧b =3,c =2.19.(本小题满分12分)已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }, (1)求a ,b ;(2)解不等式ax 2-(ac +b )x +bc <0.解析: (1)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b },所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,且b >1.由根与系数的关系,得⎩⎨⎧1+b =3a,1×b =2a.解得⎩⎪⎨⎪⎧a =1,b =2.所以a =1,b =2.(2)不等式ax 2-(ac +b )x +bc <0,即x 2-(2+c )x +2c <0, 即(x -2)(x -c )<0.当c >2时,不等式(x -2)(x -c )<0的解集为{x |2<x <c }; 当c <2时,不等式(x -2)(x -c )<0的解集为{x |c <x <2}; 当c =2时,不等式(x -2)(x -c )<0的解集为∅.综上,当c >2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |2<x <c };当c <2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |c <x <2}; 当c =2时,不等式ax 2-(ac +b )x +bc <0的解集为∅.20.(本小题满分12分)设S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列.(1)求a 2a 1的值;(2)若a 5=9,求a n 及S n 的表达式. 解析: (1)设等差数列{a n }的公差是d . ∵S 1,S 2,S 4成等比数列,∴S 22=S 1S 4, 即(2a 1+d )2=a 1(4a 1+6d ), 化简得d 2=2a 1d ,注意到d ≠0, ∴d =2a 1.∴a 2a 1=a 1+d a 1=3a 1a 1=3.(2)a 5=a 1+4d =9a 1=9,∴a 1=1,d =2. ∴a n =a 1+(n -1)d =2n -1,S n =n (a 1+a n )2=n 2.21.(本小题满分13分)如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度; (2)求sin α的值.解析: (1)依题意,∠BAC =120°,AB =12,AC =10×2=20,∠BCA =α.在△ABC 中,由余弦定理,得 BC 2=AB 2+AC 2-2AB ×AC ×cos ∠BAC =122+202-2×12×20×cos 120°=784. 解得BC =28.所以渔船甲的速度为BC2=14海里/时.答:渔船甲的速度为14海里/时.(2)方法一:在△ABC 中,因为AB =12,∠BAC =120°,BC =28,∠BCA =α, 由正弦定理,得AB sin α=BC sin 120°.即sin α=AB sin 120°BC =12×3228=3314.答:sin α的值为3314.方法二:在△ABC 中,因为AB =12,AC =20,BC =28,∠BCA =α, 由余弦定理,得cos α=AC 2+BC 2-AB 22AC ×BC ,即cos α=202+282-1222×20×28=1314.因为α为锐角, 所以sin α=1-cos 2α=1-⎝⎛⎭⎫13142=3314.答:sin α的值为3314.22.(本小题满分13分)热心支持教育事业的李先生虽然并不富裕,但每年都要为山区小学捐款.今年打算用2 000元购买单价为50元的桌子和20元的椅子,希望桌椅的数量之和尽可能多,但椅子数不能少于桌子数,且不多于桌子数的1.5倍,问桌子、椅子各买多少才合适?解析: 设桌子、椅子各买x 张和y 张, 则所买桌椅的总数为z =x +y . 依题意得不等式组⎩⎪⎨⎪⎧x ≤y ,y ≤1.5x ,50x +20y ≤2 000,其中x ,y ∈N *.由⎩⎪⎨⎪⎧ y =x ,50x +20y =2 000,解得⎩⎨⎧x =2007,y =2007.由⎩⎪⎨⎪⎧y =1.5x ,50x +20y =2 000,解得⎩⎪⎨⎪⎧x =25,y =752.设点A 的坐标为⎝⎛⎭⎫2007,2007. 点B 的坐标为⎝⎛⎭⎫25,752,则前面的不等式组所表示的平面区域是以A ⎝⎛⎭⎫2007,2007,B ⎝⎛⎭⎫25,752,O (0,0)为顶点的△AOB 的边界及其内部(如图中阴影所示).令z =0,得x +y =0,即y =-x .作直线l 0:y =-x .由图形可知,把直线l 0平移至过点B ⎝⎛⎭⎫25,752时,亦即x =25,y =752时,z 取最大值.因为x ,y ∈N *,所以x =25,y =37时,z 取最大值. 故买桌子25张,椅子37张较为合适.。
模块综合检测(时间120分钟满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a〈1,b〉1,那么下列命题中正确的是( )A。
错误!〉错误! B.错误!〉1C.a2<b2D.ab〈a+b解析:选D 利用特值法,令a=-2,b=2。
则错误!〈错误!,A 错;错误!<0,B错;a2=b2,C错,ab<a+b,D正确.2.已知数列{a n}的前n项和S n=n3,则a5+a6的值为( )A.91 B.152C.218 D.279解析:选B a5+a6=S6-S4=63-43=152.3.不等式组错误!表示的平面区域是()A.矩形B.三角形C.直角梯形D.等腰梯形解析:选D 作出可行域如图中阴影部分所示,所以不等式组错误!表示的平面区域是等腰梯形.4.在正项等比数列{a n}中,a1和a19为方程x2-10x+16=0的两根,则a8·a10·a12等于()A.16 B.32C.64 D.256解析:选C ∵{a n}是等比数列且由题意得a1·a19=16=a错误!(a n >0),∴a8·a10·a12=a错误!=64。
5.在△ABC中,a,b,c分别是角A,B,C的对边,若A=错误!,b=1,△ABC的面积为错误!,则a的值为( )A.1 B.2C.错误!D.错误!解析:选D 根据S=错误!bc sin A=错误!,可得c=2,由余弦定理得a2=b2+c2-2bc cos A=3,故a=错误!。
6.若AB―→·BC―→+AB―→2=0,则△ABC是( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰直角三角形解析:选A 由AB―→·BC―→+AB―→2=0,得c2=-ac·cos (π-B),∴cos B=错误!,根据余弦定理得错误!=错误!,整理得a2=c2+b2,所以该三角形为直角三角形.7.等比数列{a n}是递增数列,若a5-a1=60,a4-a2=24,则公比q为()A.错误!B.2C。
章末综合测评(一)(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填在题中的横线上)1.在△ABC 中,AB =6,A =75°,B =45°,则AC = .【导学号:92862026】【解析】 C =180°-75°-45°=60°,由正弦定理得AB sin C =AC sin B ,即6sin 60°=AC sin 45°,解得AC =2.【答案】 22.在△ABC 中,已知c =6,a =4,B =120°,则b = . 【解析】 由b 2=16+36-2×4×6cos 120°, 得b =219. 【答案】 2193.在△ABC 中,a =4,b =43,A =30°,则B = . 【解析】 sin B =b sin A a =43sin 30°4=32.又a <b ,故B >A ,∴B =60°或120°. 【答案】 60°或120°4.在△ABC 中,化简b cos C +c cos B = .【解析】 利用余弦定理,得b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =a .【答案】 a5.在△ABC 中,若sin A ∶sin B ∶sin C =2∶3∶4,则cos C = . 【解析】 ∵sin A ∶sin B ∶sin C =a ∶b ∶c , ∴a ∶b ∶c =2∶3∶4. 设a =2k ,b =3k ,c =4k ,则 cos C =4k 2+9k 2-16k 22×2k ×3k=-14.【答案】 -146.在△ABC 中,若A =60°,b =16,S △ABC =2203,则a = . 【解析】 由12bc sin A =2203,可知c =55. 又a 2=b 2+c 2-2bc cos A =2 401, ∴a =49. 【答案】 497.在△ABC 中,若sin A =34,a =10,则边长c 的取值范围是 . 【解析】 ∵c sin C =a sin A =403, ∴c =403sin C ,∴0<c ≤403. 【答案】 ⎝ ⎛⎦⎥⎤0,4038.根据下列情况,判断三角形解的情况,其中正确的是 .(填序号)【导学号:92862027】(1)a =8,b =16,A =30°,有两解; (2)b =18,c =20,B =60°,有一解; (3)a =5,c =2,A =90°,无解; (4)a =30,b =25,A =150°,有一解. 【解析】 (1)中,∵a sin A =bsin B , ∴sin B =16×sin 30°8=1,∴B =90°,即只有一解; (2)中,sin C =20sin 60°18=539,且c >b ,∴C >B ,故有两解;(3)中,∵A =90°,a =5,c =2,∴b =a 2-c 2=25-4=21,即有解,故(1)(2)(3)都不正确.所以答案为(4).【答案】 (4)9.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b = .【解析】 化简23cos 2A +cos 2A =0,得23cos 2A +2cos 2A -1=0,解得cos A =15.由余弦定理,知a 2=b 2+c 2-2bc cos A ,代入数据解方程,得b =5.【答案】 5 10.在△ABC 中,若acos A 2=b cos B 2=c cos C 2,那么△ABC 是 三角形. 【解析】 由正弦定理得,sin A cos A 2=sin B cos B 2=sin Ccos C 2, ∴sin A 2=sin B 2=sin C 2.∵0<A 2,B 2,C 2<π2,∴A 2=B 2=C2,即A =B =C ,∴△ABC 是等边三角形. 【答案】 等边11.如图1所示,在△ABC 中,∠ACB 的平分线CD 交AB 于D ,AC →的模为2,BC →的模为3,AD →的模为1,那么DB →的模为 .图1【解析】 由三角形内角平分线的性质得 |AC →|∶|BC →|=|AD →|∶|DB →|, 故|DB →|=32. 【答案】 3212.如图2所示,在山底测得山顶仰角∠CAB =45°,沿倾斜角为30°的斜坡走1 000 m 至S 点,又测得山顶仰角∠DSB =75°,则山高BC 为 m.图2【解析】 由题可知,∠SAB =45°-30°=15°,又∠SBD =15°,∴∠ABS =45°-15°=30°,AS =1 000.由正弦定理可知BS sin 15°=1 000sin 30°,∴BS =2 000sin 15°,∴BD =BS ·sin 75°=2 000sin 15°cos 15°=1 000sin 30°=500,且DC =1 000sin 30°=500,∴BC =DC +BD =1 000 m.【答案】 1 00013.已知角A ,B ,C 是三角形ABC 的内角,a ,b ,c 分别是其对边长,向量m =⎝ ⎛⎭⎪⎫23sin A 2,cos 2A 2,n =⎝ ⎛⎭⎪⎫cos A 2,-2,m ⊥n ,且a =2,cos B =33,则b= .【解析】 ∵m·n =0,∴23sin A 2cos A 2-2cos 2A 2=0,∵cos A2≠0,∴tan A 2=33,∴A2=30°,∴A =60°, ∵a sin A =bsin B ,sin B =1-⎝ ⎛⎭⎪⎫332=63, ∴b =a sin B sin A =2×6332=43 2.【答案】 43 214.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b a +ab =6cos C ,则tan C tan A +tan Ctan B 的值是 .【解析】 ∵b a +ab =6cos C ,∴a 2+b 2ab =6·a 2+b 2-c 22ab , 即a 2+b 2=32c 2, ∴tan C tan A +tan C tan B =tan C ⎝ ⎛⎭⎪⎫cos A sin A +cos B sin B=sin 2Ccos C sin A sin B =2c 2a 2+b 2-c 2=4. 【答案】 4二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知b 2=ac ,且a 2-c 2=ac -bc ,求角A 的大小及b sin Bc .【解】 由b 2=ac 及a 2-c 2=ac -bc ,得b 2+c 2-a 2=bc . 在△ABC 中,cos A =b 2+c 2-a 22bc =12. ∵0°<A <180°,∴A =60°. 在△ABC 中,由正弦定理得sin B =b sin A a .又∵b 2=ac ,A =60°, ∴b sin B c =b 2sin A ac =sin 60°=32.16.(本小题满分14分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,cos B =35.(1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值. 【解】 (1)∵cos B =35>0,且0<B <π,∴sin B =1-cos 2B =45.由正弦定理得a sin A =bsin B ,sin A =a sin Bb =2×454=25.(2)∵S △ABC =12ac sin B =4, ∴12×2×c ×45=4,∴c =5.由余弦定理得b 2=a 2+c 2-2ac cos B =22+52-2×2×5×35=17,∴b =17. 17.(本小题满分14分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B=2c -a b .(1)求sin Csin A 的值;(2)若cos B =14,△ABC 的周长为5,求b 的长. 【解】 (1)由正弦定理,设a sin A =b sin B =csin C =k , 则2c -a b =2k sin C -k sin A k sin B=2sin C -sin Asin B,所以cos A -2cos C cos B =2sin C -sin Asin B,即(cos A -2cos C )sin B =(2sin C -sin A )cos B ,化简可得sin(A +B )=2sin(B +C ). 又A +B +C =π,所以sin C =2sin A . 因此sin Csin A =2.(2)由sin Csin A =2,得c =2a ,由余弦定理及cos B =14得b 2=a 2+c 2-2ac cos B =a 2+4a 2-4a 2×14=4a 2, 所以b =2a .又a +b +c =5,从而a =1, 因此b =2.18.(本小题满分16分)在△ABC 中a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.【导学号:92862028】【解】 (1)由2a sin A =(2b +c )sin B +(2c +b )sin C ,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc , ∴b 2+c 2-a 2=-bc , ∴2bc cos A =-bc ,∴cos A =-12,又A ∈(0,π), ∴A =2π3.(2)由(1)得sin 2A =sin 2B +sin 2C +sin B sin C , 又sin B +sin C =1,得sin B =sin C =12. 又B ,C ∈⎝ ⎛⎭⎪⎫0,π2,故B =C .所以△ABC 是等腰三角形.19.(本小题满分16分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos(A -B )cos B -sin(A -B )sin(A +C )=-35.(1)求sin A 的值;(2)若a =42,b =5,求向量BA→在BC →方向上的投影.【解】 (1)由cos(A -B )cos B -sin(A -B )sin(A +C )=-35,得cos(A -B )cos B-sin(A -B )sin B =-35,则cos(A -B +B )=-35,即cos A =-35. 又0<A <π,则sin A =45.(2)由正弦定理,有a sin A =bsin B , 所以sin B =b sin A a =22.由题知a >b ,则A >B ,故B =π4.根据余弦定理,有(42)2=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35,解得c =1或c =-7(负值舍去).故向量BA →在BC →方向上的投影为|BA →|cos B =22.20.(本小题满分16分)如图3,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运行的速度为130 m/min ,山路AC 长为1 260 m ,经测量,cos A =1213,cos C =35.图3(1)求索道AB 的长;(2)问乙出发多少min 后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3 min ,乙步行的速度应控制在什么范围内?【解】 (1)在△ABC 中,因为cos A =1213,cos C =35, 所以sin A =513,sin C =45. 从而sin B =sin []π-(A +C ) =sin(A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365. 由AB sin C =ACsin B ,得AB =AC sin B ×sin C =1 2606365×45=1 040(m).所以索道AB 的长为1 040 m.(2)设乙出发t min 后,甲、乙两游客距离为d m ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50), 因0≤t ≤1 040130,即0≤t ≤8,故当t =3537 min 时,甲、乙两游客距离最短.(3)由BC sin A =AC sin B ,得BC =AC sin B ×sin A =1 2606365×513=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3 min ,乙步行的速度应控制在⎣⎢⎡⎦⎥⎤1 25043,62514(单位:m/min)范围内.。
章末综合测评(三)不等式(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a<b<0,则()A.1a<1b B.0<ab<1C.ab>b2 D.ba>ab【解析】∵a<b<0,∴两边同乘以b得ab>b2,故选C.【答案】 C2.设m=(x+5)(x+7),n=(x+6)2,则m、n的大小关系是()A.m≤n B.m>nC.m<n D.m≥n【解析】∵m=(x+5)(x+7)=x2+12x+35,n=(x+6)2=x2+12x+36,∴m-n=-1<0,∴m<n.【答案】 C3.若a<0,则关于x的不等式x2-4ax-5a2>0的解是()A.x>5a或x<-a B.x>-a或x<5aC.5a<x<-a D.-a<x<5a【解析】不等式化为:(x+a)(x-5a)>0,相应方程的两根x1=-a,x2=5a.∵a<0,∴x1>x2,∴不等式的解为x<5a或x>-a.【答案】 B4.若a,b∈R,则下列恒成立的不等式是() 【导学号:47172135】A.|a+b|2≥|ab| B.ba+ab≥2C.a2+b22≥⎝⎛⎭⎪⎫a+b22D.(a+b)⎝⎛⎭⎪⎫1a+1b≥4【解析】 ⎝ ⎛⎭⎪⎫a +b 22=a 2+b 2+2ab 4≤a 2+b 2+a 2+b 24=a 2+b22,当且仅当a =b时取等号,∴a 2+b 22≥⎝⎛⎭⎪⎫a +b 22. 【答案】 C5.如果函数y =ax 2+bx +a 的图像与x 轴有两个交点,则点(a ,b )在aOb 平面上的区域(不含边界)为( )【解析】 由题意知Δ=b 2-4a 2>0, ∴(b -2a )(b +2a )>0,∴⎩⎨⎧ b -2a >0,b +2a >0,或⎩⎨⎧b -2a <0,b +2a <0,画图知选C. 【答案】 C6.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )【导学号:47172136】A.72 B .4 C.92D .5【解析】 ∵a +b =2,∴a 2+b 2=1,∴y =1a +4b =⎝ ⎛⎭⎪⎫1a +4b ⎝ ⎛⎭⎪⎫a 2+b 2=52+2a b +b2a ,∵a >0,b >0,∴2a b +b2a ≥22a b ·b 2a =2,当且仅当2a b =b 2a ,且a +b =2,即a =23,b =43时取得等号, ∴y 的最小值是92,选C. 【答案】 CA.12 B.14 C.16D.18【解析】 设m =x -2y ,则y =12x -m2,作出不等式组对应的平面区域如图,平移直线y =12x -m 2,由图可知当直线y =12x -m 2过点A 时,直线y =12x -m2的截距最大,此时m 最小,由⎩⎨⎧ x +y -4=0,x -3y +4=0解得⎩⎨⎧x =2,y =2,即A (2,2),此时m 最小,为2-2×2=-2,则z =2x -2y的最小值为2-2=14,故选B.【答案】 B8.若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值范围是( )【导学号:47172086】A .(-∞,2]B .(-2,2)C .(-2,2]D .(-∞,-2)【解析】 当a -2=0,即a =2时,原不等式化为-4<0对一切x ∈R 恒成立.当a -2≠0时,即a ≠2时,由题意,得⎩⎨⎧a -2<0,Δ=4(a -2)2+16(a -2)<0,解得-2<a <2.综上所述,a 的取值范围为-2<a ≤2,故选C. 【答案】 C>0)的最大值为12,则2a +3b 的最小值为( ) 【导学号:47172137】A.256B.83C.113D .4【解析】 不等式组表示的平面区域为如图所示的阴影部分(含边界).当直线ax +by =z (a >0,b >0)过直线x -y +2=0与直线3x -y -6=0的交点(4,6)时,目标函数z =ax +by (a >0,b >0)取得最大值12,即4a +6b =12,即2a +3b =6,而2a +3b =⎝ ⎛⎭⎪⎫2a +3b ·2a +3b 6=136+⎝ ⎛⎭⎪⎫b a +a b ≥136+2=256(当且仅当a =b =65时取等号).【答案】 A10.已知O 是坐标原点,点P (-1,1),若点M (x ,y )为平面区域⎩⎨⎧x +y ≥2,x ≤1 ,y ≤2,上的一个动点,则OP →·OM→的取值范围是( )A .[-1,0]B .[0,1]C .[0,2]D .[-1,2]【解析】 OP →·OM →=(-1,1)·(x ,y )=y -x ,画出线性约束条件⎩⎨⎧x +y ≥2,x ≤1,y ≤2,表示的平面区域如图所示.可以看出当z =y -x 过点A (1,1)时有最小值0,过点C (0,2)时有最大值2,则OP →·OM→的取值范围是[0,2],故选C. 【答案】 C11.已知实数x ,y 满足2x +y -5=0,那么x 2+y 2的最小值为( ) A. 5 B.10 C .2 5D .210【解析】 ∵y =5-2x ,∴x 2+y 2=x 2+(5-2x )2=5x 2-20x +25=5(x -2)2+5,∴当x =2时,x 2+y 2的最小值为 5. 【答案】 A12.若直线y =kx +1与圆x 2+y 2+kx +my -4=0交于M 、N 两点,且M 、N 关于直线x -y =0对称,动点P (a ,b )在不等式组⎩⎨⎧kx -y +2≥0,kx -my ≤0,y ≥0,表示的平面区域内部及边界上运动,则ω=b -2a -1的取值范围是( ) 【导学号:47172138】A .[2,+∞)B .(-∞,-2]C .[-2,2]D .(-∞,-2]∪[2,+∞)【解析】 由题意分析直线y =kx +1与直线x -y =0垂直,所以k =-1,即直线y =-x +1.又圆心C ⎝ ⎛⎭⎪⎫-k2,-m 2在直线x -y =0上,可求得m =-1.则不等式组为⎩⎨⎧-x -y +2≥0,-x +y ≤0,y ≥0,所表示的平面区域如图,ω=b -2a -1的几何意义是点Q (1,2)与平面区域上点P (a ,b )连线斜率的取值范围.k OQ =2,k AQ =-2,故ω的取值范围为(-∞,-2]∪[2,+∞). 【答案】 D二、填空题(本大题共4个小题,每小题5分,共20分.将答案填在题中的横线上)13.若关于x 的不等式m (x -1)>x 2-x 的解集为{x |1<x <2},则实数m 的值为________.【解析】 法一:由m (x -1)>x 2-x 整理得(x -1)(m -x )>0,即(x -1)(x -m )<0,又m (x -1)>x 2-x 的解集为{x |1<x <2},所以m =2.法二:由条件知,x =2是方程m (x -1)=x 2-x 的根, ∴m =2. 【答案】 2 14.函数y =16-x -x2的定义域是________. 【导学号:47172139】 【解析】 要使函数有意义,只需6-x -x 2>0,即x 2+x -6<0.∵Δ=1+24=25>0,∴方程x 2+x -6=0有两个不相等的实数根分别为-3,2.∴不等式x 2+x -6<0的解为-3<x <2, ∴函数的定义域为{x |-3<x <2}. 【答案】 {x |-3<x <2}15.已知z =2x -y ,式中变量x ,y 满足约束条件⎩⎨⎧y ≤x ,x +y ≥1,x ≤2,则z 的最大值为________.【解析】由⎩⎨⎧y ≤x ,x +y ≥1,x ≤2,作出可行域如图.由图可知,目标函数z =2x -y 在点A (2,-1)处取最大值z =2×2+1=5. 【答案】 516.若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是________. 【解析】 由x 2+y 2+xy =1得1=(x +y )2-xy , ∴(x +y )2=1+xy ≤1+⎝⎛⎭⎪⎫x +y 22,解得 -233≤x +y ≤233, ∴x +y 的最大值为233. 【答案】233三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)解不等式组⎩⎨⎧3x -2x -6≤1,2x 2-x -1>0.【解】3x -2x -6≤1⇒2x +4x -6≤0⇒x ∈[-2,6), 2x 2-x -1>0⇒(2x +1)(x -1)>0⇒x ∈⎝ ⎛⎭⎪⎫-∞,-12∪(1+∞),所以,原不等式组的解集为x ∈⎣⎢⎡⎭⎪⎫-2,-12∪(1,6).18.(本小题满分12分)已知关于x 的不等式(a 2-4)x 2+(a +2)x -1≥0的解集是空集,求实数a 的取值范围. 【导学号:47172140】【解】 当a 2-4=0,即a =±2.若a =2时,原不等式化为4x -1≥0,∴x ≥14. 此时,原不等式的解集不是空集.若a =-2时,原不等式化为-1≥0,无解. 此时,原不等式的解集为空集. 当a 2-4≠0时,由题意,得⎩⎨⎧a 2-4<0,Δ=(a +2)2-4(a 2-4)×(-1)<0,∴-2<a <65.综上所述,a 的取值范围为-2≤a <65. 19.(本小题满分12分)已知x ,y 都是正数. (1)若3x +2y =12,求xy 的最大值; (2)若x +2y =3,求1x +1y 的最小值. 【解】 (1)xy =16·3x ·2y ≤16⎝⎛⎭⎪⎫3x +2y 22=6. 当且仅当⎩⎨⎧ 3x =2y ,3x +2y =12, 即⎩⎨⎧x =2,y =3,时取“=”号.所以当x =2,y =3时,xy 取得最大值6. (2)1x +1y =13(x +2y )⎝ ⎛⎭⎪⎫1x +1y=13⎝ ⎛⎭⎪⎫3+x y +2y x ≥13⎝ ⎛⎭⎪⎫3+2x y ·2y x =1+223. 当且仅当⎩⎪⎨⎪⎧x y =2y x,x +2y =3,即⎩⎪⎨⎪⎧x =-3+32,y =3-322时,取“=”号.所以,当x =-3+32,y =3-322时,1x +1y 取得最小值1+223.20.(本小题满分12分)某公司计划2016年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.假定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?【解】 设公司在甲电视台和乙电视台做广告的时间分别为x 分钟和y 分钟,总收益为z 元,由题意得⎩⎨⎧x +y ≤300,500x +200y ≤90 000,x ≥0,y ≥0,目标函数z =3 000x +2 000y ,二元一次不等式组等价于⎩⎨⎧x +y ≤300,5x +2y ≤900,x ≥0,y ≥0.作出二元一次不等式组所表示的平面区域,即可行域,如图阴影部分所示.作直线l :3 000x +2 000y =0, 即3x +2y =0.平移直线l ,从图中可知,当直线l 过M 点时,目标函数取得最大值. 联立⎩⎨⎧x +y =300,5x +2y =900,解得⎩⎨⎧x =100,y =200,∴点M 的坐标为(100,200),∴z max =3 000x +2 000y =700 000(元).∴该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大的收益是70万元.21.(本小题满分12分)已知函数f (x )=x 2ax +b (a 、b 为常数),且方程f (x )-x+12=0有两个实根为x 1=3,x 2=4.(1)求函数f (x )的解析式;(2)设k >1,解关于x 的不等式f (x )<(k +1)x -k2-x.【解】 (1)将x 1=3,x 2=4分别代入方程x 2ax +b -x +12=0,得⎩⎪⎨⎪⎧93a +b =-9,164a +b =-8,解得⎩⎨⎧a =-1,b =2,∴f (x )=x 22-x(x ≠2).(2)原不等式即为x 22-x <(k +1)x -k 2-x ,可化为x 2-(k +1)x +k 2-x <0,即(x -2)(x -1)(x -k )>0.①当1<k <2时,1<x <k 或x >2; ②当k =2时,x >1且x ≠2; ③当k >2时,1<x <2或x >k .综上所述,当1<k <2时,原不等式的解集为{x |1<x <k 或x >2}; 当k =2时,原不等式的解集为{x |x >1且x ≠2}; 当k >2时,原不等式的解集为{x |1<x <2或x >k }.22.(本小题满分12分)国际上钻石的重量计量单位为克拉.已知某种钻石的价值(美元)与其重量(克拉)的平方成正比,且一颗重为3克拉的钻石的价值为54 000美元.(1)写出钻石的价值y关于钻石重量x的函数关系式;(2)把一颗钻石切割成两颗钻石,若两颗钻石的重量分别为m克拉和n克拉,试证明:当m=n时,价值损失的百分率最大.(注:价值损失的百分率=原有价值-现有价值原有价值×100%;在切割过程中的重量损耗忽略不计) 【导学号:47172141】【解】(1)由题意可设价值与重量的关系式为:y=kx2,∵3克拉的价值是54 000美元,∴54 000=k·32,解得:k=6 000,∴y=6 000x2,即此钻石的价值与重量的函数关系式为y=6 000x2.(2)证明:若两颗钻石的重量为m、n克拉,则原有价值是6 000(m+n)2,现有价值是6 000m2+6 000n2,价值损失的百分率=6 000(m+n)2-6 000m2-6 000n26 000(m+n)2×100%=2mn(m+n)2×100%≤2×⎝⎛⎭⎪⎫m+n22(m+n)2=12,当且仅当m=n时取等号.即当m=n时,价值损失的百分率最大.。
模块综合评价(二)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题中正确的是( )A.若a,b,c是等差数列,则log2a,log2b,log2c是等比数列B.若a,b,c是等比数列,则log2a,log2b,log2c是等差数列C.若a,b,c是等差数列,则2a,2b,2c是等比数列D.若a,b,c是等比数列,则2a,2b,2c是等差数列解析:错误!=2b-a,错误!=2c-b,因为a,b,c成等差数列,所以c-b=b-a,所以2b-a=2c-b,即错误!=错误!。
答案:C2.在△ABC中,A=135°,C=30°,c=20,则边a的长为() A.10错误!B.20错误!C.20错误!D。
错误!解析:由正弦定理:asin A=错误!,所以a=错误!=错误!=20错误!。
答案:B3.不等式2x2+mx+n〉0的解集是{x|x〉3或x〈-2},则m,n的值分别是( )A.2,12 B.2,-2C.2,-12 D.-2,-12解析:由题意知-2,3是方程2x2+mx+n=0的两个根,所以-2+3=-错误!,-2×3=错误!,所以m=-2,n=-12.答案:D4.在等差数列{a n}中,首项a1=0,公差d≠0,若a m=a1+a2+…+a9,则m的值为( )A.37 B.36 C.20 D.19解析:由a m=a1+a2+…+a9得(m-1)d=9a5=36d⇒m=37.答案:A5.不等式(x-2y+1)(x+y-3)〈0表示的区域为()A BC D解析:利用点(4,0)判断不等式(x-2y+1)·(x+y-3)<0,故排除选项A、B、D.答案:C6.若三条线段的长分别为3、5、7,则用这三条线段()A.能组成直角三角形 B.能组成锐角三角形C.能组成钝角三角形 D.不能组成三角形解析:由余弦定理:设最大角为A,则cos A=错误!=-错误!<0,所以A为钝角.答案:C7.对于实数x,规定表示不大于x的最大整数,那么不等式42-36+45<0成立的x的取值范围是( )A。
模块综合测试卷班级__________ 姓名__________ 考号__________ 分数__________本试卷满分100分,考试时间90分钟.一、选择题:本大题共10题,每题4分,共40分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.已知{a n }是等比数列,a 2=2,a 5=14,则公比q =( ) A .-12 B .-2 C .2 D.122.设a ,b ,c ,d ∈R ,且a >b ,c >d ,则下列结论正确的是( )A. a +c >b +dB. a -c >b -dC. ac >bdD. a d >b c3.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若A =45°,B =60°,a =6,则b 等于( ) A. 3 6 B. 3 2 C. 3 3 D. 2 6 4.设变量x ,y 满足⎩⎪⎨⎪⎧ x +y ≤1,x -y ≤1,x ≥0,则x +2y 的最大值和最小值分别为( )A .1,-1B .2,-2C .1,-2D .2,-15.已知数列{a n }是等比数列,且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5=( )A. 5B. 10C. 15D. 206.设a ,b ∈R ,a 2+2b 2=6,则a +b 的最小值是( )A .-2 2B .-533C .-3D .-727.在R 上定义运算 :x y =x (1-y ),若不等式(x -a ) (x +a )<1对任意实数x 成立,则( )A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <128.已知0<x <1,则x (3-3x )取最大值时x 的值为( )A.13B.12C.34D.239.在△ABC 中,已知a 4+b 4+c 4=2c 2(a 2+b 2),则C 等于( )A .30° B.60° C.45°或135° D.120°10.设{a n }是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是( )A .X +Z =2YB .Y (Y -X )=Z (Z -X )C .Y 2=XZ D .Y (Y -X )=X (Z -X )二、填空题:本大题共3小题,每小题4分,共12分.把答案填在题中横线上.11.112+214+318+…+101210=________. 12.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万,要使一年的总运费与总存储费用之和最小,则x =________吨.13.已知△ABC 的面积为12,sin A =14,则1b +2c的最小值是________. 三、解答题:本大题共5小题,共48分,其中第14小题8分,第15~18小题各10分.解答应写出文字说明、证明过程或演算步骤.14.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,cos B =35. (1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值.15.某企业拟用集装箱托运甲、乙两种产品,甲种产品每件体积为5 m 2,重量为2吨,运出后,可获利润10万元;乙种产品每件体积为4 m 3,重量为5吨,运出后,可获利润20万元.集装箱的容积为24 m 3,最多载重13吨.求用该集装箱托运甲、乙两种产品能获得的最大利润.16.已知数列{a n }是等差数列,且a 1=2,a 1+a 2+a 3=12.(1)求数列{a n }的通项公式;(2)令b n =a n ²3n ,求数列{b n }的前n 项和的公式.17.若a 、b 、c 是不全相等的正数,求证:lga +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c .18.同学们对正弦定理的探索与研究中,得到a sin A =b sin B =csin C=2R (R 为△ABC 外接圆的半径).请利用该结论,解决下列问题:(1)现有一个破损的圆块如图1,只给出一把带有刻度的直尺和一个量角器,请你设计一种方案,求出这个圆块的直径的长度.(2)如图2,已知△ABC 三个角满足(sin∠CBA )2+(sin∠ACB )2-(sin∠CAB )2=sin∠CBA ²sin∠ACB ,AD 是△ABC 外接圆直径,CD =2,BD =3,求∠CAB 和直径的长.。
模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138B.135C.95 D.23【解析】由a2+a4=4,a3+a5=10得a1=-4,d=3,所以S10=10×(2a1+9d)2=10×(-8+27)2=5×19=95.【答案】 C2.在△ABC中,已知a、b和锐角A,要使三角形有两解,则应该满足的条件是()A.a=b sin A B.b sin A>aC.b sin A<b<a D.b sin A<a<b【解析】当a=b sin A时,有一解,当b sin A<a<b时,有两解,当a>b 时有一解.【答案】 D3.已知不等式x2+ax+4<0的解集为空集,则a的取值范围是()A.-4≤a≤4 B.-4<a<4C.a≤-4或a≥4 D.a<-4或a>4【解析】欲使不等式x2+ax+4<0的解集为空集,则Δ=a2-16≤0,∴-4≤a≤4.【答案】 A4.已知等差数列的前n项和为18,若S3=1,a n+a n-1+a n-2=3,则n的值为()A.9 B.21C.27 D.36【解析】 ∵S 3=a 1+a 2+a 3=1, 又a 1+a n =a 2+a n -1=a 3+a n -2, ∴3(a 1+a n )=1+3,∴a 1+a n =43.又S n =n (a 1+a n )2=23n =18,∴n =27,故选C.【答案】 C5.关于x 的不等式ax -b >0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( )A .(-∞,-1)∪(3,+∞)B .(-1,3)C .(1,3)D .(-∞,1)∪(3,+∞) 【解析】 (ax +b )(x -3)>0等价于 ⎩⎨⎧ ax +b >0,x -3>0或⎩⎨⎧ax +b <0,x -3<0, ∴⎩⎨⎧x >-1,x >3或⎩⎨⎧x <-1,x <3. ∴x ∈(-∞,-1)∪(3,+∞). 【答案】 A6.“神七”飞天,举国欢庆,据科学计算,运载“神舟七号”飞船的“长征2号”系列火箭,点火1分钟内通过的路程为2 km ,以后每分钟通过的路程比前一分钟增加2 km ,在到达离地面240 km 的高度时,火箭与飞船分离,则这一过程大约需要的时间是( )A .10分钟B .13分钟C .15分钟D .20分钟【解析】 由题设条件知,火箭每分钟通过的路程构成以a 1=2为首项,公差d =2的等差数列,∴n 分钟内通过的路程为S n =2n +n (n -1)2×2=n 2+n =n (n +1).检验选项知,n =15时,S 15=240 km.故选C.【答案】 C7.在△ABC 中,内角A 、B 、C 满足6sin A =4sin B =3sin C ,则cos B =( ) A.154 B.34 C.31510D.1116【解析】 由6sin A =4sin B =3sin C 得sin A ∶sin B ∶sin C =2∶3∶4,设△ABC 中角A 、B 、C 的对边分别为a ,b ,c ,则由正弦定理知a ∶b ∶c =2∶3∶4.不妨设a =2k ,b =3k ,c =4k (k >0), 则cos B =a 2+c 2-b 22ac =(22+42-32)k 22×2k ×4k =1116.【答案】 D8.设变量x ,y 满足约束条件⎩⎨⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0,则目标函数z =2x +5y 的最小值为( )【导学号:47172142】A .-4B .6C .10D .17【解析】 由约束条件作出可行域如图所示,目标函数可化为y =-25x +15z ,在图中画出直线y =-25x ,平移该直线,易知经过点A 时z 最小. 又知点A 的坐标为(3,0), ∴z min =2×3+5×0=6.故选B. 【答案】 B9.y =3+x +x 21+x(x >0)的最小值是( )A .2 3B .-1+2 3C .1+2 3D .-2+2 3【解析】 y =3+x +x 21+x =31+x +x =31+x +x +1-1≥23-1,当且仅当31+x =1+x ,即x =3-1时取等号,故y 有最小值23-1.【答案】 B10.对于每个自然数n ,抛物线y =(n 2+n )x 2-(2n +1)x +1与x 轴交于A n ,B n 两点,以|A n B n |表示该两点间的距离,则|A 1B 1|+|A 2B 2|+…+|A 2 015B 2 015|的值是( )A.2 0142 015 B.2 0162 015 C.2 0152 014D.2 0152 016【解析】 |A n B n |=|x 1-x 2|=⎝ ⎛⎭⎪⎫2n +1n 2+n 2-4n 2+n =1n 2+n =1n ·(n +1)=1n -1n +1, ∴|A 1B 1|+|A 2B 2|+…+|A 2 015B 2 015|=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫12 015-12 016=2 0152 016.【答案】 D11.设f (x )=3ax -2a +1,若存在x 0∈(-1,1)使f (x 0)=0,则实数a 的取值范围是( )A .-1<a <15 B .a <-1 C .a <-1或a >15D .a >15 【解析】 由于f (x )=3ax -2a +1,故f (x )一定是一条直线,又由题意,存在x 0∈(-1,1),使得f (x 0)=0,故直线y =3ax -2a +1在x =-1和x =1时的函数值异号,即f (-1)f (1)<0,得(1-5a )(a +1)<0,解得a <-1或a >15.【答案】 C12.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎨⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( ) 【导学号:47172143】A .5B .29C .37D .49【解析】 作出可行域,如图,由题意知,圆心为C (a ,b ),半径r =1,且圆C 与x 轴相切,所以b =1.而直线y =1与可行域的交点为A (6,1),B (-2,1),目标函数z =a 2+b 2表示点C 到原点距离的平方,所以当点C 与点A 重合时,z 取到最大值,z max =37.【答案】 C二、填空题(本大题共4个小题,每小题5分,共20分.将答案填在题中的横线上)13.已知二次函数f (x )=ax 2-3x +2,不等式f (x )>0的解集为{x |x <1或x >b },则b =________.【解析】 由题意知1,b 是方程ax 2-3x +2=0的两根, 由根与系数的关系得⎩⎪⎨⎪⎧1+b =3a ,1×b =2a ,∴⎩⎨⎧a =1,b =2.【答案】 214.在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________.【导学号:47172144】【解析】 设AB =c ,BC =a ,AC =b ,由余弦定理b 2=a 2+c 2-2ac cos B ,得49=a 2+25-2×5a ⎝ ⎛⎭⎪⎫-12,解得a =3,∴S △ABC =12ac sin B =12×3×5×sin120°=1534. 【答案】 153415.若x ,y 满足约束条件⎩⎨⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.【解析】 画出可行域如图所示.由⎩⎨⎧x -2y =0,x +2y -2=0, 得⎩⎪⎨⎪⎧x =1,y =12.∴A ⎝ ⎛⎭⎪⎫1,12. 由z =x +y ,得y =-x +z ,平移直线l 0:x +y =0. 当直线过点A 时,z 最大,z max =1+12=32. 【答案】 3216.若a >0,b >0,且a 2+14b 2=1,则a 1+b 2的最大值为________.【解析】 a 1+b 2=12·2a 1+b 2≤4a 2+1+b 24=54,当且仅当⎩⎨⎧4a 2=1+b 2,4a 2+b 2=4时等号成立, 即a =104,b =62时成立.【答案】 54三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知△ABC 的周长为2+1,且sin A +sin B =2sin C . (1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求C 的度数. 【解】 (1)由题意△ABC 的周长为2+1, ∴AB +BC +AC =2+1.由正弦定理,得 BC +AC =2AB ,∴AB =1.(2)由△ABC 的面积为12BC ·AC ·sin C =16sin C ,得BC ·AC =13.由(1)知BC +AC =2,由余弦定理,得cos C =AC 2+BC 2-AB 22AC ·BC =12,∴C =60°.18.(本小题满分12分)已知等比数列{a n }中,a 2=2,a 5=128,若b n =log 2a n ,数列{b n }前n 项的和为S n .(1)若S n =35,求n 的值; (2)求不等式S n <2b n 的解集.【导学号:47172145】【解】 (1)由a 2=a 1q =2,a 5=a 1q 4=128得q 3=64, ∴q =4,a 1=12,∴a n =a 1q n -1=12·4n -1=22n -3, ∴b n =log 2a n =log 222n -3=2n -3. ∵b n +1-b n =[2(n +1)-3]-(2n -3)=2,∴{b 1}是以b 1=-1为首项,2为公差的等差数列, ∴S n =(-1+2n -3)n 2=35,n 2-2n -35=0,(n -7)(n +5)=0,即n =7.(2)∵S n -2b n =n 2-2n -2(2n -3)=n 2-6n +6<0, ∴3-3<n <3+3, ∵n ∈N +,∴n =2,3,4,即所求不等式的解集为{2,3,4}.19.(本小题满分12分)如图1,矩形ABCD 是机器人踢球的场地,AB =170 cm ,AD =80 cm ,机器人先从AD 中点E 进入场地到点F 处,EF =40 cm ,EF ⊥AD .场地内有一小球从点B 向点A 运动,机器人从点F 出发去截小球.现机器人和小球同时出发,它们均作匀速直线运动,并且小球运动的速度是机器人行走速度的2倍.若忽略机器人原地旋转所需的时间,则机器人最快可在何处截住小球?图1【解】 设该机器人最快可在点G 处截住小球,点G 在线段AB 上.连接FG .设FG =x cm.根据题意,得BG =2x cm.则AG =AB -BG =(170-2x )cm.连接AF ,在△AEF 中,EF =AE =40 cm ,EF ⊥AD , 所以∠EAF =45°,AF =402cm , 于是∠F AG =45°.在△AFG 中,由余弦定理,得 FG 2=AF 2+AG 2-2AF ·AG cos ∠F AG ,所以x 2=(402)2+(170-2x )2-2×402×(170-2x )×cos 45°, 解得x 1=50,x 2=3703.所以AG =170-2x =70 cm 或AG =-2303cm(不合题意,舍去). 即该机器人最快可在线段AB 上离A 点70 cm 处截住小球.20.(本小题满分12分)解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).【导学号:47172146】【解】 原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0. (1)当a =0时,原不等式化为x +1≤0⇒x ≤-1. (2)当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0⇒x ≥2a 或x ≤-1; (3)当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.①当2a >-1,即a <-2时,原不等式的解集为-1≤x ≤2a ; ②当2a =-1,即a =-2时,原不等式的解集为x =-1; ③当2a <-1,即-2<a <0时,原不等式的解集为2a ≤x ≤-1. 综上所述,当a <-2时,原不等式的解集为⎣⎢⎡⎦⎥⎤-1,2a ;当a =-2时,原不等式的解集为{-1}; 当-2<a <0时,原不等式的解集为⎣⎢⎡⎦⎥⎤2a ,-1;当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫2a ,+∞.21.(本小题满分12分)某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车运营的总利润y (单位:十万元)与运营年数x 满足二次函数的关系:y =-a (x -6)2+11,且该二次函数图像过点(4,7).问每辆客车运营多少年,运营的年平均利润最大?最大值为多少?(年平均利润=总利润年数) 【解】 设年平均利润为z 十万元,依题意, ∵二次函数y =-a (x -6)2+11的图像过点(4,7), ∴7=-a (4-6)2+11, ∴a =1,∴y =-(x -6)2+11,z =y x =-(x -6)2+11x=-x 2+12x -25x =-x -25x +12=-⎝ ⎛⎭⎪⎫x +25x +12.∵x >0,∴x +25x ≥10, ∴-⎝ ⎛⎭⎪⎫x +25x ≤-10,∴-⎝ ⎛⎭⎪⎫x +25x +12≤2,∴z ≤2,当且仅当x =25x 即x =5时,z 有最大值为2十万元.即每辆客车运营5年,运营的年平均利润最大,最大值为2十万元. 22.(本小题满分12分)已知数列{a n }是首项为a 1=14,公比q =14的等比数列,设b n +2=3log 14a n (n ∈N +),数列{c n }满足c n =a n ·b n .(1)求证:{b n }是等差数列; (2)求数列{c n }的前n 项和S n ;(3)若c n ≤14m 2+m -1对一切正整数n 恒成立,求实数m 的取值范围.【导学号:47172147】【解】 (1)证明:由题意知,a n =⎝ ⎛⎭⎪⎫14n (n ∈N +),∵b n =3log 14a n -2,b 1=3log 14a 1-2=1,∴b n +1-b n =3log 14a n +1-3log 14a n =3log 14a n +1a n =3log 14q =3,∴数列{b n }是首项b 1=1,公差d =3的等差数列. (2)由(1)知,a n =⎝ ⎛⎭⎪⎫14n ,b n =3n -2(n ∈N +),∴c n =(3n -2)×⎝ ⎛⎭⎪⎫14n (n ∈N +),∴S n =1×14+4×⎝ ⎛⎭⎪⎫142+7×⎝ ⎛⎭⎪⎫143+…+(3n -5)×⎝ ⎛⎭⎪⎫14n -1+(3n -2)×⎝ ⎛⎭⎪⎫14n ;于是14S n =1×⎝ ⎛⎭⎪⎫142+4×⎝ ⎛⎭⎪⎫143+7×⎝ ⎛⎭⎪⎫144+…+(3n -5)×⎝ ⎛⎭⎪⎫14n +(3n -2)×⎝ ⎛⎭⎪⎫14n +1,两式相减得34S n =14+3⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫142+⎝ ⎛⎭⎪⎫143+…+⎝ ⎛⎭⎪⎫14n -(3n -2)×⎝ ⎛⎭⎪⎫14n +1=12-(3n +2)×⎝ ⎛⎭⎪⎫14n +1. ∴S n =23-12n +83×⎝ ⎛⎭⎪⎫14n +1(n ∈N +). (3)∵c n +1-c n =(3n +1)·⎝ ⎛⎭⎪⎫14n +1-(3n -2)·⎝ ⎛⎭⎪⎫14n =9(1-n )·⎝ ⎛⎭⎪⎫14n +1(n ∈N +), ∴当n =1时,c 2=c 1=14, 当n ≥2时,c n +1<c n ,即c 1=c 2>c 3>c 4>…>c n ,∴当n =1或2时,c n 取得最大值是14.又c n ≤14m 2+m -1对一切正整数n 恒成立,∴14m 2+m -1≥14,即m 2+4m -5≥0,解得m ≥1或m ≤-5.故实数m 的取值范围为{m |m ≥1或m ≤-5}.。
模块综合检测(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x )与g (x )的大小关系为( ) A .f (x )>g (x ) B .f (x )=g (x ) C .f (x )<g (x )D .随x 值变化而变化解析:选A 因为f (x )-g (x )=(3x 2-x +1)-(2x 2+x -1)=x 2-2x +2=(x -1)2+1>0,所以f (x )>g (x ).2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =3,B =60°,那么角A 等于( )A .135°B .90°C .45°D .30°解析:选C 由正弦定理知a sin A =bsin B, ∴sin A =a sin Bb =2sin 60°3=22. 又a <b ,B =60°,∴A <60°,∴A =45°. 3.若a 1=1,a n +1=a n3a n +1,则给出的数列{a n }的第4项是( ) A.116 B.117 C.110D.125解析:选C a 2=a 13a 1+1=13+1=14,a 3=a 23a 2+1=1434+1=17,a 4=a 33a 3+1=1737+1=110. 4.若关于x 的不等式x 2-3ax +2>0的解集为(-∞,1)∪(m ,+∞),则a +m =( ) A .-1 B .1 C .2D .3解析:选D 由题意,知1,m 是方程x 2-3ax +2=0的两个根,则由根与系数的关系,得⎩⎪⎨⎪⎧1+m =3a ,1×m =2,解得⎩⎪⎨⎪⎧a =1,m =2,所以a +m =3,故选D.5.已知x >0,y >0,且x +y =8,则(1+x )(1+y )的最大值为( ) A .16 B .25 C .9D .36解析:选B (1+x )(1+y )≤⎣⎢⎡⎦⎥⎤+x++y22=⎣⎢⎡⎦⎥⎤2+x +y 22=⎝ ⎛⎭⎪⎫2+822=25,因此当且仅当1+x =1+y 即x =y =4时,(1+x )(1+y )取最大值25,故选B.6.已知数列{a n }为等差数列,且a 1=2,a 2+a 3=13,则a 4+a 5+a 6等于( ) A .40 B .42 C .43D .45解析:选B 设等差数列{a n }的公差为d , 则2a 1+3d =13,∴d =3,故a 4+a 5+a 6=3a 1+12d =3×2+12×3=42.7.钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2D .1 解析:选B ∵S △ABC =12AB ·BC sin B =12×1×2sin B =12,∴sin B =22,∴B =45°或135°,若B =45°,则由余弦定理得AC =1,∴△ABC 为直角三角形,不符合题意,因此B =135°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B =1+2-2×1×2×⎝ ⎛⎭⎪⎫-22=5,∴AC =5,此时△ABC 为钝角三角形,符合题意.故选B.8.已知S n 为正项等比数列{a n }的前n 项和,S 3=3a 1+2a 2,且a 2-12,a 4,a 5成等差数列,则a 1=( )A .2 B.12C.14D .4解析:选C 设数列{a n }的公比为q (q >0),则由S 3=3a 1+2a 2可得q 2-q -2=0,解得q =2或q =-1(舍去),又a 2-12,a 4,a 5成等差数列,所以2a 4=a 2-12+a 5,即a 2=12,所以a 1=14.9.在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( ) A.32 B.332 C.3+62D.3+394解析:选B 由余弦定理得AB 2+4-2·AB ×2×cos 60°=7,解得AB =3或AB =-1(舍去),设BC 边上的高为x ,由三角形面积关系得12·BC ·x =12AB ·BC ·sin 60°,解得x =332,故选B.10.某汽车公司有两家装配厂,生产甲、乙两种不同型的汽车,若A 厂每小时可完成1辆甲型车和2辆乙型车;B 厂每小时可完成3辆甲型车和1辆乙型车.今欲制造40辆甲型车和40辆乙型车,若要使所费的总工作时数最少,那么这两家工厂工作的时间分别为( )A .16,8B .15,9C .17,7D .14,10解析:选A 设A 工厂工作x 小时,B 工厂工作y 小时,总工作时数为z ,则目标函数为z =x +y ,约束条件为⎩⎪⎨⎪⎧x +3y ≥40,2x +y ≥40,x ≥0,y ≥0作出可行域如图所示,由图知当直线l :y =-x +z过Q点时,z 最小,解方程组⎩⎪⎨⎪⎧x +3y =40,2x +y =40,得Q (16,8),故A 厂工作16小时,B 厂工作8小时,可使所费的总工作时数最少.11.若log 4(3x +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3 B .7+2 3 C .6+4 3D .7+4 3解析:选D 由log 4(3a +4b )=log 2ab ,得12log 2(3a +4b )=12log 2(ab ),所以3a +4b =ab ,即3b +4a=1.所以a +b =(a +b )⎝ ⎛⎭⎪⎫3b +4a =3a b +4ba +7≥43+7,当且仅当3ab =4b a,即a =23+4,b =3+23时取等号,故选D.12.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0.若z =ax +y 的最大值为4,则a =( )A .3B .2C .-2D .-3解析:选B 画出不等式组表示的平面区域如图阴影部分所示,若z =ax +y 的最大值为4,则最优解为x =1,y =1或x =2,y =0,经检验x =2,y =0符合题意,∴2a +0=4,此时a =2,故选B.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________. 解析:因为实数x ,y 满足xy =1,所以x 2+2y 2≥2x 2·2y 2=2xy2=22,并且仅当x 2=2y 2且xy =1,即x 2=2y 2=2时等号成立,故x 2+2y 2的最小值为2 2.答案:2 214.已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC 的面积为________.解析:由于三边长构成公差为4的等差数列, 故可设三边长分别为x -4,x ,x +4.由一个内角为120°,知其必是最长边x +4所对的角. 由余弦定理得,(x +4)2=x 2+(x -4)2-2x (x -4)·cos 120°, ∴2x 2-20x =0,∴x =0(舍去)或x =10, ∴S △ABC =12×(10-4)×10×sin 120°=15 3.答案:15 315.设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________. 解析:∵a n +1=S n +1-S n ,a n +1=S n S n +1, ∴S n +1-S n =S n S n +1.∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列.∴1S n=-1+(n -1)×(-1)=-n ,∴S n =-1n.答案:-1n16.若a >0,b >0,a +b =2,则下列不等式①ab ≤1;②a +b ≤2;③a 2+b 2≥2;④1a+1b≥2,对满足条件的a ,b 恒成立的是________.(填序号)解析:因为ab ≤⎝⎛⎭⎪⎫a +b 22=1,所以①正确;因为(a +b )2=a +b +2ab =2+2ab ≤2+a +b =4,故②不正确;a 2+b 2≥a +b22=2,所以③正确;1a +1b =a +b ab =2ab≥2,所以④正确.答案:①③④三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(10分)等差数列{a n }的前n 项和记为S n ,已知a 10=30,a 20=50. (1)求通项a n ; (2)若S n =242,求n .解:(1)设{a n }的首项为a 1,公差为d ,则⎩⎪⎨⎪⎧a 1+9d =30,a 1+19d =50.解得⎩⎪⎨⎪⎧a 1=12,d =2.∴通项a n =a 1+(n -1)d =10+2n . (2)由S n =na 1+n n -2d =242,得12n +n n -2×2=242,解得n =11,或n =-22(舍去).故n =11.18.(12分)已知f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5). (1)求f (x )的解析式;(2)若对于任意的x ∈[-1,1],不等式f (x )+t ≤2恒成立,求t 的取值范围. 解:(1)因为f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5), 所以2x 2+bx +c <0的解集是(0,5), 所以0和5是方程2x 2+bx +c =0的两个根, 由根与系数的关系,知-b 2=5,c2=0, 所以b =-10,c =0,所以f (x )=2x 2-10x .(2)对任意的x ∈[-1,1],f (x )+t ≤2恒成立等价于对任意的x ∈[-1,1],2x 2-10x +t-2≤0恒成立.设g (x )=2x 2-10x +t -2,则由二次函数的图象可知g (x )=2x 2-10x +t -2在区间[-1,1]上为减函数,所以g (x )max =g (-1)=10+t ,所以10+t ≤0,即t ≤-10,所以t 的取值范围为 (-∞,-10].19.(12分)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (1)求{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和.解:(1)设{a n }的公差为d ,则S n =na 1+n n -2d .由已知可得⎩⎪⎨⎪⎧3a 1+3d =0,5a 1+10d =-5.解得a 1=1,d =-1.故{a n }的通项公式为a n =2-n . (2)由(1)知1a 2n -1a 2n +1=1-2n-2n=12⎝ ⎛⎭⎪⎫12n -3-12n -1,从而数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和为12( 1-1-11+11-13+…+12n -3-12n -1 )=n1-2n. 20.(12分)某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:在C 处进行该仪器的垂直弹射,观察点A ,B 两地相距100 m ,∠BAC =60°,在A 地听到弹射声音的时间比B 地晚217s .A 地测得该仪器在C 处时的俯角为15°,A 地测得最高点H 的仰角为30°,求该仪器的垂直弹射高度CH .(声音的传播速度为340 m/s)解:由题意,设AC =x m , 则BC =x -217×340=(x -40)m ,在△ABC 内,由余弦定理:BC 2=BA 2+CA 2-2·BA ·CA ·cos∠BAC , 即(x -40)2=1002+x 2-100x ,解得x =420.在△ACH 中,AC =420 m ,∠CAH =30°+15°=45°,∠CHA =90°-30°=60°, 由正弦定理:CH sin ∠CAH =ACsin ∠AHC ,可得CH =AC ·sin∠CAHsin ∠AHC=1406(m).即该仪器的垂直弹射高度CH 为140 6 m.21.(12分)在△ABC 中,BC =6,点D 在BC 边上,且(2AC -AB )cos A =BC cos C . (1)求角A 的大小;(2)若AD 为△ABC 的中线,且AC =23,求AD 的长;(3)若AD 为△ABC 的高,且AD =33,求证:△ABC 为等边三角形.解:(1)由(2AC -AB )cos A =BC cos C 及正弦定理,有(2sin B -sin C )cos A =sin A cosC ,得2sin B cos A =sin C cos A +sin A cos C =sin(A +C )=sin B ,所以cos A =12.因为0°<A <180°,所以A =60°. (2)由正弦定理BC sin A =ACsin B,得sin B =AC sin A BC =12. 因为A +B <180°,所以B =30°,所以C =90°. 因为D 是BC 的中点,所以DC =3, 由勾股定理,得AD =AC 2+DC 2=21.(3)证明:因为12AD ·BC =12AB ·AC sin A ,且AD =33,BC =6,sin A =32,所以AB ·AC=36.因为BC 2=AB 2+AC 2-2AB ·AC cos A , 所以AB 2+AC 2=72,所以AB =AC =6=BC , 所以△ABC 为等边三角形.22.(12分)已知数列{a n }的前n 项和S n 和通项a n 满足2S n +a n =1,数列{b n }中,b 1=1,b 2=12,2b n +1=1b n +1b n +2(n ∈N +).(1)求数列{a n },{b n }的通项公式;(2)数列{c n }满足c n =a n b n ,求证:c 1+c 2+c 3+…+c n <34.解:(1)由2S n +a n =1,得S n =12(1-a n ).当n ≥2时,a n =S n -S n -1=12(1-a n )-12(1-a n -1)=-12a n +12a n -1,即2a n =-a n +a n -1,∴a n a n -1=13(由题意可知a n -1≠0). ∴{a n }是公比为13的等比数列,而S 1=a 1=12(1-a 1),∴a 1=13,∴a n =13×⎝ ⎛⎭⎪⎫13n -1=⎝ ⎛⎭⎪⎫13n.由2b n +1=1b n +1b n +2,1b 1=1,1b 2=2,得d =1b 2-1b 1=1⎝ ⎛⎭⎪⎫d 为等差数列⎩⎨⎧⎭⎬⎫1b n 的公差, ∴1b n =n ,∴b n =1n.(2)证明:c n =a n b n =n ⎝ ⎛⎭⎪⎫13n,设T n =c 1+c 2+…+c n ,则T n =1×⎝ ⎛⎭⎪⎫131+2×⎝ ⎛⎭⎪⎫132+3×⎝ ⎛⎭⎪⎫133+…+n ×⎝ ⎛⎭⎪⎫13n ,13T n =1×⎝ ⎛⎭⎪⎫132+2×⎝ ⎛⎭⎪⎫133+…+(n -1)×⎝ ⎛⎭⎪⎫13n +n ×⎝ ⎛⎭⎪⎫13n +1,由错位相减,得23T n =13+⎝ ⎛⎭⎪⎫132+…+⎝ ⎛⎭⎪⎫13n -n ×⎝ ⎛⎭⎪⎫13n +1=13⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 1-13-n ×⎝ ⎛⎭⎪⎫13n +1=12-12×⎝ ⎛⎭⎪⎫13n-n ×⎝ ⎛⎭⎪⎫13n +1,所以T n =34-34×⎝ ⎛⎭⎪⎫13n -12n ×⎝ ⎛⎭⎪⎫13n =34-2n +34×13n <34.。
2017-2018学年高中数学必修5模块综合检测题2018.1.23本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)⎛⎤112.定义符号函数sgn x =⎩⎪⎨⎪⎧0,x =0,-1,x <0,则当x ∈R 时,不等式x +2>(2x -1)sgn x的解集是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-3+334<x <-3+334 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >-3+334 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-3+334[Z|X D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-3+334<x <3第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.若函数f (x )=(2-a 2)x +a 在区间[0,1]上恒为正,则实数a 的取值范围是________. 14.在R 上定义运算⊗,a ⊗b =ab +2a +b ,则满足x ⊗(x -2)<0的实数x 的取值范围为________.必修5模块综合检测题参考答案【第1题解析】由9x 2+6x +1≤0,得(3x +1)2≤0,可求得其解为x =-31.故选D.【第2题解析】利用线性规划知识,求解目标函数的取值范围.如下图.根据题意得C (1+,2).作直线-x +y =0,并平移,过点B (1,3)和C (1+,2)时,z =-x +y 分别取最大值和最小值,则-(1+)+2<z <-1+3,∴z =-x +y 的取值范围是(1-,2).故选A.【第5题解析】∵不等式x +a x +1<2的解集为P ,且1∉P ,∴1+a 1+1≥2,即a +12a≤0,∴-1<a ≤0.故选D.【第6题解析】∵x >1,y >1,且xy =16,∴log 2x >0,log 2y >0且log 2x +log 2y =log 216=4.∴log 2x ·log 2y ≤2log2x +log2y 2=4(当且仅当x =y =4时取等号).故选D.【第7题解析】由图象知抛物线顶点坐标为(6,11),且过点(4, 7).设y =a (x -6)2+11,将点(4,7)代入,得7=a (4-6)2+11,∴a =-1.∴y =-(x -6)2+11=-x 2+12x -25.∴年平均利润为x y =-x -x 25+12=12-x 25.∵x +x 25≥10,即x =5时,取等号25,∴当x =5时,x y有最大值2.故选C.【第8题解析】∵不等式x 2+ax +1≥0对一切x ∈21成立,∴对一切x ∈21,ax ≥-x 2-1,即a ≥-x x2+1成立.令g (x )=-x x2+1=-x 1.易知g (x )=-x 1在21内为增函数.∴当x =21时,g (x )max =-25.∴a 的取值范围是a ≥-25,即a 的最小值是-25.故选C.【第9题解析】“求(1-a i x )2<1(i =1,2,3)都成立的x 的取值范围”实质上是求不等式组2<12<1的解集,由于这几个不等式结构一样,则其中解集“最小”的一个不等式的解集即是不等式组的解集.(1-a i x )2<1即a i 2x2-2a i x <0,a i x (a i x -2)<0.∵a i >0,∴这个不等式可化为x ai 2<0,∴0<x <ai 2.若ai 2取最小值,则a i 应取最大值,因此0<x <a12,故选B.【第11题解析】设租用A 型车x 辆,B 型车y 辆,目标函数为z =1 600x +2 400y ,则约束条件为x ,y ∈N ,y -x≤7,作出可行域,如图中阴影部分所示,可知目标函数过点P (5,12)时,有最小值z min =36 800(元).故选C.【第12题解析】当x >0时,不等式化为x +2>2x -1,解得x <3,即0<x <3;当x =0时,不等式恒成立;当x <0时,不等式化为x +2>(2x -1)-1,即2x 2+3x -3<0,解得-433<x<433,即-433<x <0.综上可知,不等式的解集为<x <333.故选D.【第13题解析】当2-a 2=0时,a =±.由题意知a =时符合题意. 当2-a 2≠0,即a ≠±时,f (x )是一次函数,在[0,1]上是单调的,∴>0,0>0,即-a2+a +2>0.a>0,解得0<a <2且a ≠±.综上可知0<a <2.故填(0,2).【第14题解析】∵x ⊗(x -2)=x ·(x -2)+2x +x -2=x 2+x -2,∴x ⊗(x -2)<0,即x 2+x -2<0,即(x +2)(x -1)<0,∴实数x 的取值范围为-2<x <1.故填(-2,1).【第15题解析】设f (x )=x 2+ax +2b ,由题意可知f (x )的图象如图1所示,则有>0<0,⇔a +b +2>0.a +2b +1<0,图1图2【第16题解析】作出可行域如图所示的阴影部分,平移直线l :ax +by =0,由于a >0,b >0,∴直线l 的斜率为-b a<0,∴当直线l 经过点A 时,z =ax +by 取得最大值6.由x -y +2=0,3x -y -6=0,解得y =6,x =4,∴A (4,6).∴4a +6b =6.∴32a +b =1且a >0,b >0.∴a 1+b 2=b 2a +b 2=38+a b +3b 4a ≥38+23b 4a =33.(当且仅当a b =3b 4a ,即a =23b 时取等号)故填33.【第17题答案】y min =3.【第17题解析】令t =x 2+1,则t ≥1,且x 2=t -1.∴y =x2+1x4+3x2+3=t t -1+3=t t2+t +1=t +t 1+1.∵t ≥1,∴t +t 1≥2t 1=2,当且仅当t =t 1,即t =1时,等号成立.∴当t =1时,t 1min =2,此时x =0,y min =t +t 1+1=3.故当x =0时,函数y 取最小值,y min =3.【第18题答案】x >2或x <-1m ∈,31,问题转化为g (m )在m ∈,31上恒大于0,则>0,>0,解得x >2或x <-1.故填x >2或x <-1.【第19题答案】23【第19题解析】(1)若a =2,则不等式f (x )≥0化为2x 2-5x +3≥0,∴不等式f (x )≥0的解集为或x≤13. (2)∵ax 2-(2a +1)x +a +1=a (x -1)2-(x -1),令g (a )=a (x -1)2-(x -1),则g (a )是关于a 的一次函数,且一次项的系数为(x -1)2≥0,∴当x -1=0时,f (x )=0不合题意;当x ≠1时,g (a )为[-2,2]上的增函数.∵f (x )<0恒成立,∴只要使g (a )的最大值g (2)<0即可,即g (2)=2(x -1)2-(x -1)<0,解得1<x <23. 综上,x 的取值范围是23. 学科*网【第20题答案】(1)f (x )=38-x +10180-5x,x ∈[0,100];(2)分别用20万元和80万元资金投资A ,B 两种金融产品,可以使公司获得最大利润,最大利润为28万元.【第21题答案】存在常数a =41,b =21,c =41满足题意.【第21题解析】由f (-1)=0,得a -b +c =0.①又对x ∈R ,不等式x ≤f (x )≤21(x 2+1)成立,取x =1,有1≤f (1)≤1,∴f (1)=1,故a +b +c =1.②由①②可得b =21,c =21-a ,将其代入x ≤f (x )≤21(x 2+1),得x ≤ax 2+21x +21-a ≤21(x 2+1)对x ∈R 恒成立,即x -a≤0 ④1对x ∈R 恒成立.由③得Δ≤0a>0,⇒a =41.由④得Δ≤0<0,⇒a =41.综合可知,存在常数a =41,b =21,c =41满足题意.【第22题答案】存在实数k ∈[3,+∞)使不等式恒成立.【第22题解析】存在.将不等式4-kx -x 4≤0变形,即-x 4≤kx -4(x >0).可设f 1(x )=-x 4,f 2(x )=kx -4.故f 2(x )中参数k 的几何意义是直线y =kx -4的斜率.由下图知当直线y =kx -4与曲线y =-x 4相切时,关于x 的方程-x 4=kx -4有唯一大于0的解,将方程整理成关于x 的一元二次方程kx 2-4x +4=0.由Δ=(-4)2-4×4×k =0,可得k =3.又直线y =kx -4过定点(0,-4),故要使f 1(x )≤f 2(x )(x >0)恒成立,只需k ≥3即可.综上,存在实数k ∈[3,+∞)使不等式恒成立.。
模块综合检测(时间120分钟满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系为( )A.f(x)〉g(x) B.f(x)=g(x)C.f(x)<g(x) D.随x值变化而变化解析:选A 因为f(x)-g(x)=(3x2-x+1)-(2x2+x-1)=x2-2x+2=(x-1)2+1〉0,所以f(x)〉g(x).2.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=错误!,b=错误!,B=60°,那么角A等于()A.135° B.90°C.45° D.30°解析:选C 由正弦定理知错误!=错误!,∴sin A=错误!=错误!=错误!.又a<b,B=60°,∴A〈60°,∴A=45°。
3.若a1=1,a n+1=错误!,则给出的数列{a n}的第4项是( )A.错误!B.错误!C。
错误!D。
错误!解析:选C a2=错误!=错误!=错误!,a3=错误!=错误!=错误!,a4=错误!=错误!=错误!。
4.若关于x的不等式x2-3ax+2〉0的解集为(-∞,1)∪(m,+∞),则a+m=( )A.-1 B.1C.2 D.3解析:选D 由题意,知1,m是方程x2-3ax+2=0的两个根,则由根与系数的关系,得错误!解得错误!所以a+m=3,故选D。
5.已知x>0,y>0,且x+y=8,则(1+x)(1+y)的最大值为()A.16 B.25C.9 D.36解析:选B (1+x)(1+y)≤错误!2=错误!2=错误!2=25,因此当且仅当1+x=1+y即x=y=4时,(1+x)(1+y)取最大值25,故选B.6.已知数列{a n}为等差数列,且a1=2,a2+a3=13,则a4+a5+a6等于()A.40 B.42C.43 D.45解析:选B 设等差数列{a n}的公差为d,则2a1+3d=13,∴d=3,故a4+a5+a6=3a1+12d=3×2+12×3=42。
模块综合检测(一) (时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.一个等差数列的第5项a 5=10,且a 1+a 2+a 3=3,则有( ) A .a 1=-2,d =3 B .a 1=2,d =-3 C .a 1=-3,d =2D .a 1=3,d =-2解析:选A ∵a 1+a 2+a 3=3且2a 2=a 1+a 3, ∴a 2=1.又∵a 5=a 2+3d =1+3d =10, ∴d =3,∴a 1=a 2-d =1-3=-2.2.若a <1,b >1,那么下列命题中正确的是( ) A.1a >1bB.b a>1 C .a 2<b 2D .ab <a +b解析:选D 利用特值法,令a =-2,b =2. 则1a <1b ,A 错;b a<0,B 错;a 2=b 2,C 错.3.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +2≥0,x +y ≥0,x ≤1,则z =2x +y 的最小值是( )A .-1B .1C .-2D .2解析:选A 由不等式组作出可行域如图所示,由图可知:当直线y =-2x +z 经过点A (-1,1)时,z 取得最小值为-1.4.已知△ABC 的三个内角之比为A ∶B ∶C =3∶2∶1,那么,对应的三边之比a ∶b ∶c 等于( )A .3∶2∶1 B.3∶2∶1 C.3∶2∶1D .2∶3∶1解析:选D ∵A ∶B ∶C =3∶2∶1,A +B +C =180°, ∴A =90°,B =60°,C =30°.∴a ∶b ∶c =sin 90°∶sin 60°∶sin 30° =1∶32∶12=2∶3∶1. 5.已知△ABC 中,三内角A ,B ,C 依次成等差数列,三边a ,b ,c 成等比数列,则△ABC 是( )A .直角三角形B .等腰直角三角形C .钝角三角形D .等边三角形解析:选D 由题意可得B =60°,再由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac , 又三边a ,b ,c 成等比数列,所以b 2=ac ,上式即为a 2+c 2-2ac =(a -c )2=0, 则a =c ,所以△ABC 是等边三角形.6.等比数列{a n }的前4项和为240,第2项与第4项的和为180,则数列{a n }的首项为( )A .2B .4C .6D .8解析:选C S 4-(a 2+a 4)=60⇒a 1+a 3=60. ∴q =a 2+a 4a 1+a 3=3,a 1=6. 7.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若A =π3,b =1,△ABC 的面积为32,则a 的值为( ) A .1 B .2 C.32D. 3解析:选D 根据S =12bc sin A =32,可得c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =3,故a = 3.8.关于x 的不等式x 2-ax -6a <0的解集是{x |m <x <n },且n -m ≤5,则实数a 的取值范围是( )A .C .(-25,-24)∪(0,1)D .解析:选D 由题意知,方程x 2-ax -6a =0有两根分别为m 和n , 则有⎩⎪⎨⎪⎧Δ=a 2+24a >0⇒a <-24或a >0,m +n =a ,mn =-6a .又0<n -m ≤5,∴(n -m )2=(n +m )2-4nm =a 2+24a ≤25, 即a 2+24a -25≤0,解得-25≤a ≤1. ∴-25≤a <-24或0<a ≤1. 故实数a 的取值范围是.9.实数x ,y 满足⎩⎪⎨⎪⎧x ≥1,y ≤a a,x -y ≤0,若函数z =x +y 的最大值为4,则实数a 的值为( )A .2B .3C .4D.32解析:选A 由不等式组作出可行域,如图所示的阴影部分,当z =x +y 过y =x 和y =a 的交点A (a ,a )时,z 取得最大值,即z max =a +a =4,所以a =2.10.在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,若内角A ,B ,C 依次成等差数列,且不等式-x 2+6x -8>0的解集为{x |a <x <c },则S △ABC 等于( )A. 3 B .2 3 C .3 3D .4 3解析:选B 由于不等式-x 2+6x -8>0的解集为{x |2<x <4}, ∴a =2,c =4.又角A ,B ,C 依次成等差数列,∴B =π3,∴S △ABC =12×2×4×sin π3=2 3.11.一个等比数列前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有( )A .13项B .12项C .11项D .10项解析:选B 设该数列的前三项分别为a 1,a 1q ,a 1q 2,后三项分别为a 1qn -3,a 1qn -2,a 1qn-1.所以前三项之积a 31q 3=2,后三项之积a 31q 3n -6=4,两式相乘,得a 61q3(n -1)=8,即a 21qn -1=2.又a 1·a 1q ·a 1q 2·…·a 1q n -1=64,所以a n1·q n n -12=64,即(a 21qn -1)n=642,即2n=642,所以n =12.12.函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2解析:选A ∵x >1, ∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+x -+3x -1=x -2+x -+3x -1=x -1+3x -1+2≥23+2. 二、填空题(本大题共4小题,每小题5分,共20分,把正确答案填在题中的横线上)13.若规定⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,则1<⎪⎪⎪⎪⎪⎪211x <2的解集是________.解析:由已知可得1<2x -1<2,解得1<x <32,所以所求解集为⎩⎨⎧⎭⎬⎫x 1<x <32.答案:⎩⎨⎧⎭⎬⎫x 1<x <32 14.在数列{a n }中,a 1=2,a n +1-2a n =0(n ∈N *),b n 是a n 和a n +1的等差中项,设S n 为数列{b n }的前n 项和,则S 6=________.解析:由a n +1=2a n ,{a n }为等比数列, ∴a n =2n. ∴2b n =2n+2n +1,即b n =3×2n -1,∴S 6=3×1+3×2+…+3×25=189.答案:18915.已知A船在灯塔C北偏东80°处,且A到C的距离为2 km,B船在灯塔C北偏西40°处,A,B两船的距离为3 km,则B到C的距离为________ km.解析:如图所示,在△ABC中,∠ACB=40°+80°=120°,AB=3 km,AC=2 km.设BC=a km.由余弦定理的推论,得cos 120°=a2+4-94a,解得a=6-1或a=-6-1(舍去),即B到C的距离为(6-1) km.答案:(6-1)16.不等式x2+ax+4<0的解集不是空集,则实数a的取值范围是________.解析:∵不等式x2+ax+4<0的解集不是空集,∴Δ=a2-4×4>0,即a2>16.∴a>4或a<-4.答案:(-∞,-4)∪(4,+∞)三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知△ABC的内角A,B,C所对的边分别为a,b,c,且a=2,cos B=35 .(1)若b=4,求sin A的值;(2)若S△ABC=4,求b,c的值.解:(1)∵cos B=35>0,且0<B<π,∴sin B=1-cos2B=4 5 .由正弦定理asin A =bsin B,得sin A=a sin Bb=2×454=25.(2)∵S △ABC =12ac sin B =4,∴12·2·c ·45=4. ∴c =5.由余弦定理b 2=a 2+c 2-2ac cos B , 得b =a 2+c 2-2ac cos B =22+52-2×2×5×35=17.18.(本小题满分12分)已知函数f (x )=log 3(x 2-4x +m )的图象过点(0,1). (1)求实数m 的值; (2)解不等式:f (x )≤1.解:(1)由已知有f (0)=log 3m =1, ∴m =3.(2)由(1)知f (x )=log 3(x 2-4x +3). 由x 2-4x +3>0,得x <1或x >3,∴函数的定义域为(-∞,1)∪(3,+∞). ∵log 3(x 2-4x +3)≤1且y =log 3x 为增函数, ∴0<x 2-4x +3≤3, ∴0≤x <1或3<x ≤4,∴不等式的解集为{x |0≤x <1或3<x ≤4}.19.(本小题满分12分)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍.(1)求sin Bsin C; (2)若AD =1,DC =22,求BD 和AC 的长. 解:(1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD , 所以AB =2AC .由正弦定理,得sin B sin C =AC AB =12.(2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2.在△ABD 和△ADC 中,由余弦定理,知AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC .故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6. 由(1),知AB =2AC ,所以AC =1.20.(本小题满分12分)设数列{a n }的前n 项和为S n =2n 2,{b n }为等比数列,且a 1=b 1,b 2(a 2-a 1)=b 1.(1)求数列{a n }和{b n }的通项公式; (2)设c n =a n b n,求数列{c n }的前n 项和T n . 解:(1)当n ≥2时,a n =S n -S n -1=2n 2-2(n -1)2=4n -2,当n =1时,a 1=S 1=2满足上式,故{a n }的通项公式为a n =4n -2. 设{b n }的公比为q ,由已知条件a 1=b 1,b 2(a 2-a 1)=b 1知,b 1=2,b 2=12,所以q =14,∴b n =b 1qn -1=2×14n -1,即b n =24n -1.(2)∵c n =a n b n =4n -224n -1=(2n -1)4n -1,∴T n =c 1+c 2+…+c n =1+3×41+5×42+…+ (2n -1)4n -1.4T n =1×4+3×42+5×43+…+(2n -3)4n -1+(2n -1)4n. 两式相减得3T n =-1-2(41+42+43+…+4n -1)+(2n -1)4n=13. ∴T n =19.21.(本小题满分12分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 在AM 上,D 在AN 上,且对角线MN 过C 点,已知AB =3米,AD =2米.(1)要使矩形AMPN 的面积大于32平方米,则AN 的长应在什么范围内? (2)当AN 的长度是多少时,矩形AMPN 的面积最小?请求最小面积.解:(1)设AN =x (x >2)米,则ND =x -2, 因为ND DC =AN AM ,所以x -23=x AM, 所以AM =3xx -2. 所以3xx -2·x >32, 所以3x 2-32x +64>0, 所以(3x -8)(x -8)>0, 所以2<x <83或x >8.即2<AN <83或AN >8.(2)S 矩形AMPN =3x2x -2=x -2+x -+12x -2=3(x -2)+12x -2+12≥236+12=24, 当且仅当x =4时取等号.所以当AN 的长度是4米时,矩形AMPN 的面积最小,最小面积为24平方米.22.(本小题满分12分)设不等式组⎩⎪⎨⎪⎧x >0,y >0,y ≤-nx +3n所表示的平面区域为D n ,记D n 内的整点个数为a n (n ∈N *). (1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和为S n ,且T n =S n3·2n -1,若对一切的正整数n ,总有T n ≤m ,求实数m 的取值范围.解:(1)由x >0,y >0,3n -nx ≥y ,得0<x <3. 则D n 内的整点在直线x =1和x =2上.记y =-nx +3n 为l ,l 与x =1,x =2的交点的纵坐标分别为y 1,y 2, 则y 1=2n ,y 2=n ,∴a n =3n (n ∈N *).(2)∵S n =3(1+2+…+n )=3n n +2,∴T n =n n +2n.令T n +1T n =n +22n>1,解得n <2, ∴当n ≥3时,T n >T n +1,且T 1=1<T 2=T 3=32,即T n 的最大值为32.所以实数m 的取值范围为⎣⎢⎡⎭⎪⎫32,+∞.。
模块综合测评(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填在题中的横线上)1.在△ABC 中,a ,b ,c 所对的角分别为A ,B ,C ,若a =2,A =π4,B =π6,则b 等于________.【解析】 由正弦定理得b =a sin Bsin A =2×1222= 2.【答案】22.已知等比数列{a n }的公比q 为正数,且a 5·a 7=4a 24,a 2=1,则a 1=________. 【解析】 ∵{a n }成等比数列,∴a 5·a 7=a 26, ∴a 26=4a 24,∴q 2=4,∴q =±2. 又q >0,∴q =2. ∴a 1=a 2q =12. 【答案】 123.设x >0,y >0,下列不等式中等号不成立的是________. ①x +y +2xy≥4;②(x +y )⎝ ⎛⎭⎪⎫1x +1y ≥4;③⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫y +1y ≥4;④x 2+3x 2+2≥2. 【解析】 ④中,x 2+3x 2+2=x 2+2+1x 2+2.因为x 2+2≥2,故应用不等式时,等号不成立. 【答案】 ④4.等差数列{a n }满足a 24+a 27+2a 4a 7=9,则其前10项之和为________.【解析】 由a 24+a 27+2a 4a 7=9,可知a 4+a 7=±3. ∴S 10=10(a 1+a 10)2=10(a 4+a 7)2=±15.【答案】 ±155.已知点A (3,-1),B (-1,2)在直线ax +2y -1=0的同侧,则实数a 的取值范围为________.【解析】 由题意可知, (3a -3)(-a +3)>0, 即(a -1)(a -3)<0, ∴1<a <3. 【答案】 (1,3)6.已知2a +1<0,关于x 的不等式x 2-4ax -5a 2>0的解集是________. 【解析】 x 2-4ax -5a 2>0,即(x -5a )(x +a )>0, 而方程(x -5a )(x +a )=0的根为x 1=-a ,x 2=5a .∵2a +1<0,则a <-12,∴-a >5a ,∴原不等式的解集为{x |x <5a 或x >-a }. 【答案】 {x |x <5a 或x >-a }7.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a ,b ,c ,成等比数列,且c =2a ,则cos B =________.【解析】 由已知可知b 2=ac . 又c =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-b 22ac =a 2+4a 2-2a 24a 2=34.【答案】 348.(2016·南通高二检测)已知数列1,a 1,a 2,4等差数列,且实数列1,b 1,b 2,b 3,4成等比数列,则a 1+a 2b 2的值为________.【导学号:91730077】【解析】 ∵a 1+a 2=1+4=5,b 22=1×4=4,但b 2=1×q 2>0,∴b 2=2,故a 1+a 2b 2=52.【答案】 529.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 的正东40 km 处,B 城市处于危险区内持续的时间为________小时.【解析】 设t 小时后,B 市处于危险区内,则由余弦定理得(20t )2+402-2×20t ×40cos 45°≤302.化简得4t 2-82t +7≤0,∴t 1+t 2=22,t 1·t 2=74.从而|t 1-t 2|=(t 1+t 2)2-4t 1t 2=1. 【答案】 110.设x ,y 满足约束条件⎩⎨⎧x +2y ≤4,x -y ≤1,x +2≥0,则目标函数z =3x -y 的最大值为________.【解析】 首先画出线性约束条件⎩⎨⎧x +2y ≤4,x -y ≤1,x +2≥0的可行域(如图阴影部分),是一个三角形,然后在可行域内平行移动目标函数z =3x -y ,当经过x +2y =4与x -y =1的交点(2,1)时,目标函数取得最大值z =3×2-1=5.【答案】 511.已知数列{a n }:12,13+23,14+24+34,15+25+35+45,…,那么数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和为________.【解析】 观察数列{a n }可知,a n =1n +1+2n +1+…+nn +1=1+2+3+…+n n +1=n 2,∴1a n a n +1=4n (n +1)=4⎝ ⎛⎭⎪⎫1n -1n +1, ∴⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和为:4⎝ ⎛⎭⎪⎫1-12+4⎝ ⎛⎭⎪⎫12-13+…+4⎝ ⎛⎭⎪⎫1n -1n +1 =4⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1 =4⎝ ⎛⎭⎪⎫1-1n +1=4n n +1. 【答案】4nn +112.(2016·镇江高二检测)已知二次函数f (x )=ax 2-x +c (x ∈R )的值域为[0,+∞),则c +2a +a +2c 的最小值为________.【导学号:91730078】【解析】 ∵二次函数f (x )=ax 2-x +c (x ∈R )的值域[0,+∞),∴a >0, 且4ac -14a =0, ∴ac =14, ∴c >0,∴c +2a +a +2c =c a +a c +2a +2c ≥2c a ·ac +24ac =2+8=10,当且仅当a =c时取等号.【答案】 1013.(2016·南京高二检测)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.【解析】 ∵a sin A =b sin B =csin C =2R ,a =2,又(2+b )(sin A -sin B )=(c -b )sin C 可化为(a +b )(a -b )=(c -b )·c ,∴a 2-b 2=c 2-bc , ∴b 2+c 2-a 2=bc ,∴b 2+c 2-a 22bc =bc 2bc =12=cos A , ∴A =60°.∵△ABC 中,4=a 2=b 2+c 2-2bc ·cos 60°=b 2+c 2-bc ≥2bc -bc =bc (当且仅当b =c 时取得“=”), ∴S △ABC =12·bc ·sin A ≤12×4×32= 3. 【答案】314.设{a n }是等比数列,公比q =2,S n 为{a n }的前n 项和.记T n =17S n -S 2n a n +1,n ∈N *.设Tn 0为数列{T n }的最大项,则n 0=________.【解析】 根据等比数列的通项公式 S n =a 1(1-q n )1-q,故T n =17×a 1(1-q n )1-q -a 1(1-q 2n )1-qa 1q n=q 2n -17q n +16(1-q )q n=11-q ⎝⎛⎭⎪⎫q n +16q n -17, 令q n =(2)n =t ,则函数g (t )=t +16t ,当t =4时函数g (t )取得最小值,此时n =4,而11-q =11-2<0,故此时T n 最大,所以n 0=4. 【答案】 4二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .【解】 (1)由a cos C +3a sin C -b -c =0及正弦定理得 sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝ ⎛⎭⎪⎫A -π6=12.又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.16.(本小题满分14分)已知数列{a n }的前n 项和S n 与通项a n 满足S n =12-12a n . (1)求数列{a n }的通项公式;(2)设f (x )=log 3x ,b n =f (a 1)+f (a 2)+…+f (a n ),T n =1b 1+1b 2+…+1b n,求T 2017.【解】 (1)当n =1时,a 1=13.当n ≥2时,a n =S n -S n -1,又S n =12-12a n ,∴a n =13a n -1,即数列{a n }是首项为13,公比为13的等比数列,故a n =⎝ ⎛⎭⎪⎫13n .(2)由已知得f (a n )=log 3⎝ ⎛⎭⎪⎫13n =-n ,∴b n =f (a 1)+f (a 2)+…+f (a n )=-1-2-3-…-n =-n (n +1)2,∴1b n =-2⎝ ⎛⎭⎪⎫1n -1n +1,∴T n =-2⎣⎢⎡⎦⎥⎤1-12+12-13+…+1n -1n +1 =-2⎝ ⎛⎭⎪⎫1-1n +1. ∴T 2 017=-2⎝ ⎛⎭⎪⎫1-12 018=-2 0171 009.17.(本小题满分14分)已知函数f (x )=x 2-2x -8,g (x )=2x 2-4x -16. (1)求不等式g (x )<0的解集;(2)若对一切x >2,均有f (x )≥(m +2)x -m -15成立,求实数m 的取值范围. 【解】 (1)g (x )=2x 2-4x -16<0, ∴(2x +4)(x -4)<0,∴-2<x <4, ∴不等式g (x )<0的解集为{x |-2<x <4}. (2)∵f (x )=x 2-2x -8,当x >2时,f (x )≥(m +2)x -m -15恒成立, ∴x 2-2x -8≥(m +2)x -m -15, 即x 2-4x +7≥m (x -1),∴对一切x >2,均有不等式x 2-4x +7x -1≥m 成立.而x 2-4x +7x -1=(x -1)+4x -1-2≥2(x -1)×4x -1-2=2(当x =3时等号成立). ∴实数m 的取值范围是(-∞,2].18.(本小题满分16分)(2016·苏州高二检测)已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式;(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.【解】 (1)设等差数列{a n }的公差为d ,依题意,2,2+d,2+4d 成等比数列,故有(2+d )2=2(2+4d ),化简得d 2-4d =0, 解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2.(2)当a n =2时,S n =2n .显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立. 当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800, 即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的n ;当a n =4n -2时,存在满足题意的n ,其最小值为41.19.(本小题满分16分)设不等式组⎩⎨⎧x >0,y >0,y ≤-nx +3n所表示的平面区域为D n ,记D n 内的格点(格点即横坐标和纵坐标均为整数的点)的个数为f (n )(n ∈N *).(1)求f (1),f (2)的值及f (n )的表达式; (2)设b n =2n f (n ),S n 为{b n }的前n 项和,求S n . 【解】 (1)f (1)=3,f (2)=6.当x =1时,y =2n ,可取格点2n 个; 当x =2时,y =n ,可取格点n 个, ∴f (n )=3n .(2)由题意得:b n =3n ·2n ,S n =3·21+6·22+9·23+…+3(n -1)·2n -1+3n ·2n , ∴2S n =3·22+6·23+…+3(n -1)·2n +3n ·2n +1, ∴-S n =3·21+3·22+3·23+…+3·2n -3n ·2n +1 =3(2+22+…+2n )-3n ·2n +1 =3·2-2n +11-2-3n ·2n +1=3(2n +1-2)-3n ·2n +1, ∴-S n =(3-3n )2n +1-6, ∴S n =6+(3n -3)2n +1.20.(本小题满分16分)小王在年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为25-x 万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)【解】 (1)设大货车到第x 年年底的运输累计收入与总支出的差为y 万元, 则y =25x -⎣⎢⎡⎦⎥⎤6x +x (x -1)2×2-50(0<x ≤10,x ∈N ), 即y =-x 2+20x -50(0<x ≤10,x ∈N ), 由-x 2+20x -50>0, 解得10-52<x <10+52, 而2<10-52<3,故从第3年开始运输累计收入超过总支出. (2)因为利润=累计收入+销售收入-总支出, 所以销售二手货车后,小王的年平均利润为 y =1x [y +(25-x )] =1x (-x 2+19x -25) =19-⎝ ⎛⎭⎪⎫x +25x ,而19-⎝ ⎛⎭⎪⎫x +25x ≤19-2x ·25x =9,当且仅当x =5时取得等号,即小王应当在第5年底将大货车出售,才能使年平均利润最大.。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
模块质量评估(第一至第三章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.在△ABC中,a=80,b=100,A=45°,则此三角形解的情况是( )A.一解B.两解C.一解或两解D.无解【解析】选B.因为bsinA≈100×0.7<a,且b>a,所以有两解.2.(2016·杭州高二检测)已知△ABC的三个内角之比为A∶B∶C=3∶2∶1,那么,对应的三边之比a∶b∶c等于( )A.3∶2∶1B.错误!未找到引用源。
∶2∶1C.错误!未找到引用源。
∶错误!未找到引用源。
∶1D.2∶错误!未找到引用源。
∶1【解析】选D.因为A∶B∶C=3∶2∶1,A+B+C=180°,所以A=90°,B=60°,C=30°.由正弦定理可知:a∶b∶c=sin90°∶sin60°∶sin30°=1∶错误!未找到引用源。
∶错误!未找到引用源。
=2∶错误!未找到引用源。
∶1.3.不等式错误!未找到引用源。
>0的解集为( )A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
【解析】选A.原不等式化为错误!未找到引用源。
<0,与不等式对应的方程的根为x1=错误!未找到引用源。
,x2=错误!未找到引用源。
,所以不等式的解集为错误!未找到引用源。
.4.(2016·汕头高二检测)已知a<b<0,则下列不等式一定成立的是( )A.a2<abB.错误!未找到引用源。
<错误!未找到引用源。
C.错误!未找到引用源。
>错误!未找到引用源。
模块综合测评(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填在题中的横线上)1.在△ABC 中,a ,b ,c 所对的角分别为A ,B ,C ,若a =2,A =π4,B =π6,则b 等于 .【解析】 由正弦定理得b =a sin Bsin A =2×1222= 2.【答案】22.已知等比数列{a n }的公比q 为正数,且a 5·a 7=4a 24,a 2=1,则a 1= . 【解析】 ∵{a n }成等比数列,∴a 5·a 7=a 26, ∴a 26=4a 24,∴q 2=4,∴q =±2. 又q >0,∴q =2. ∴a 1=a 2q =12. 【答案】 123.设x >0,y >0,下列不等式中等号不成立的是 . ①x +y +2xy≥4; ②(x +y )⎝ ⎛⎭⎪⎫1x +1y ≥4;③⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫y +1y ≥4; ④x 2+3x 2+2≥2.【解析】 ④中,x 2+3x 2+2=x 2+2+1x 2+2.因为x 2+2≥2,故应用不等式时,等号不成立. 【答案】 ④4.等差数列{a n }满足a 24+a 27+2a 4a 7=9,则其前10项之和为 . 【解析】 由a 24+a 27+2a 4a 7=9,可知a 4+a 7=±3.∴S 10=10(a 1+a 10)2=10(a 4+a 7)2=±15.【答案】 ±155.已知点A (3,-1),B (-1,2)在直线ax +2y -1=0的同侧,则实数a 的取值范围为 .【解析】 由题意可知, (3a -3)(-a +3)>0, 即(a -1)(a -3)<0, ∴1<a <3. 【答案】 (1,3)6.已知2a +1<0,关于x 的不等式x 2-4ax -5a 2>0的解集是 . 【解析】 x 2-4ax -5a 2>0,即(x -5a )(x +a )>0, 而方程(x -5a )(x +a )=0的根为x 1=-a ,x 2=5a .∵2a +1<0,则a <-12,∴-a >5a ,∴原不等式的解集为{x |x <5a 或x >-a }. 【答案】 {x |x <5a 或x >-a }7.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a ,b ,c ,成等比数列,且c =2a ,则cos B = .【解析】 由已知可知b 2=ac . 又c =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-b 22ac =a 2+4a 2-2a 24a 2=34.【答案】 348.已知数列1,a 1,a 2,4等差数列,且实数列1,b 1,b 2,b 3,4成等比数列,则a 1+a 2b 2的值为 .【导学号:92862109】【解析】 ∵a 1+a 2=1+4=5,b 22=1×4=4,但b 2=1×q 2>0,∴b 2=2,故a 1+a 2b 2=52.【答案】 529.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 的正东40 km 处,B 城市处于危险区内持续的时间为 小时.【解析】 设t 小时后,B 市处于危险区内,则由余弦定理得(20t )2+402-2×20t ×40cos 45°≤302.化简得4t 2-82t +7≤0,∴t 1+t 2=22,t 1·t 2=74.从而|t 1-t 2|=(t 1+t 2)2-4t 1t 2=1. 【答案】 110.设x ,y满足约束条件⎩⎨⎧x +2y ≤4,x -y ≤1,x +2≥0,则目标函数z =3x -y 的最大值为 .【解析】 首先画出线性约束条件⎩⎨⎧x +2y ≤4,x -y ≤1,x +2≥0的可行域(如图阴影部分),是一个三角形,然后在可行域内平行移动目标函数z =3x -y ,当经过x +2y =4与x -y =1的交点(2,1)时,目标函数取得最大值z =3×2-1=5.【答案】 511.已知数列{a n }:12,13+23,14+24+34,15+25+35+45,…,那么数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和为 .【解析】 观察数列{a n }可知,a n =1n +1+2n +1+…+nn +1=1+2+3+…+n n +1=n 2,∴1a n a n +1=4n (n +1)=4⎝ ⎛⎭⎪⎫1n -1n +1,∴⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和为:4⎝ ⎛⎭⎪⎫1-12+4⎝ ⎛⎭⎪⎫12-13+…+4⎝ ⎛⎭⎪⎫1n -1n +1 =4⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1 =4⎝ ⎛⎭⎪⎫1-1n +1=4n n +1. 【答案】4nn +112.已知二次函数f (x )=ax 2-x +c (x ∈R )的值域为[0,+∞),则c +2a +a +2c 的最小值为 .【导学号:92862110】【解析】 ∵二次函数f (x )=ax 2-x +c (x ∈R )的值域[0,+∞),∴a >0, 且4ac -14a =0, ∴ac =14, ∴c >0,∴c +2a +a +2c =c a +a c +2a +2c ≥2c a ·ac +24ac =2+8=10,当且仅当a =c时取等号.【答案】 1013.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为 .【解析】 ∵a sin A =b sin B =csin C =2R ,a =2,又(2+b )(sin A -sin B )=(c -b )sin C 可化为(a +b )(a -b )=(c -b )·c ,∴a 2-b 2=c 2-bc , ∴b 2+c 2-a 2=bc ,∴b 2+c 2-a 22bc =bc 2bc =12=cos A , ∴A =60°.∵△ABC 中,4=a 2=b 2+c 2-2bc ·cos 60°=b 2+c 2-bc ≥2bc -bc =bc (当且仅当b =c 时取得“=”), ∴S △ABC =12·bc ·sin A ≤12×4×32= 3. 【答案】314.设{a n }是等比数列,公比q =2,S n 为{a n }的前n 项和.记T n =17S n -S 2n a n +1,n ∈N *.设Tn 0为数列{T n }的最大项,则n 0= .【解析】 根据等比数列的通项公式 S n =a 1(1-q n )1-q,故T n =17×a 1(1-q n )1-q -a 1(1-q 2n )1-qa 1q n=q 2n -17q n +16(1-q )q n=11-q ⎝⎛⎭⎪⎫q n +16q n -17, 令q n =(2)n =t ,则函数g (t )=t +16t ,当t =4时函数g (t )取得最小值,此时n =4,而11-q =11-2<0,故此时T n 最大,所以n 0=4.【答案】 4二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .【解】 (1)由a cos C +3a sin C -b -c =0及正弦定理得 sin A cos C +3sin A sin C -sin B -sin C =0.因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝ ⎛⎭⎪⎫A -π6=12.又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4. 而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.16.(本小题满分14分)已知数列{a n }的前n 项和S n 与通项a n 满足S n =12-12a n . (1)求数列{a n }的通项公式;(2)设f (x )=log 3x ,b n =f (a 1)+f (a 2)+…+f (a n ),T n =1b 1+1b 2+…+1b n ,求T 2 017.【解】 (1)当n =1时,a 1=13.当n ≥2时,a n =S n -S n -1,又S n =12-12a n ,∴a n =13a n -1,即数列{a n }是首项为13,公比为13的等比数列,故a n =⎝ ⎛⎭⎪⎫13n.(2)由已知得f (a n )=log 3⎝ ⎛⎭⎪⎫13n=-n ,∴b n =f (a 1)+f (a 2)+…+f (a n )=-1-2-3-…-n =-n (n +1)2,∴1b n =-2⎝ ⎛⎭⎪⎫1n -1n +1,∴T n =-2⎣⎢⎡⎦⎥⎤1-12+12-13+…+1n -1n +1 =-2⎝ ⎛⎭⎪⎫1-1n +1.∴T 2 017=-2⎝ ⎛⎭⎪⎫1-12 018=-2 0171 009.17.(本小题满分14分)已知函数f (x )=x 2-2x -8,g (x )=2x 2-4x -16. (1)求不等式g (x )<0的解集;(2)若对一切x >2,均有f (x )≥(m +2)x -m -15成立,求实数m 的取值范围.【解】 (1)g (x )=2x 2-4x -16<0, ∴(2x +4)(x -4)<0,∴-2<x <4, ∴不等式g (x )<0的解集为{x |-2<x <4}. (2)∵f (x )=x 2-2x -8,当x >2时,f (x )≥(m +2)x -m -15恒成立, ∴x 2-2x -8≥(m +2)x -m -15, 即x 2-4x +7≥m (x -1),∴对一切x >2,均有不等式x 2-4x +7x -1≥m 成立.而x 2-4x +7x -1=(x -1)+4x -1-2≥2(x -1)×4x -1-2=2(当x =3时等号成立). ∴实数m 的取值范围是(-∞,2].18.(本小题满分16分)已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式;(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.【解】 (1)设等差数列{a n }的公差为d ,依题意,2,2+d,2+4d 成等比数列,故有(2+d )2=2(2+4d ),化简得d 2-4d =0, 解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2.(2)当a n =2时,S n =2n .显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立. 当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的n ;当a n =4n -2时,存在满足题意的n ,其最小值为41.19.(本小题满分16分)设不等式组⎩⎨⎧x >0,y >0,y ≤-nx +3n所表示的平面区域为D n ,记D n 内的格点(格点即横坐标和纵坐标均为整数的点)的个数为f (n )(n ∈N *).(1)求f (1),f (2)的值及f (n )的表达式; (2)设b n =2n f (n ),S n 为{b n }的前n 项和,求S n . 【解】 (1)f (1)=3,f (2)=6.当x =1时,y =2n ,可取格点2n 个; 当x =2时,y =n ,可取格点n 个, ∴f (n )=3n .(2)由题意得:b n =3n ·2n ,S n =3·21+6·22+9·23+…+3(n -1)·2n -1+3n ·2n , ∴2S n =3·22+6·23+…+3(n -1)·2n +3n ·2n +1, ∴-S n =3·21+3·22+3·23+…+3·2n -3n ·2n +1 =3(2+22+…+2n )-3n ·2n +1 =3·2-2n +11-2-3n ·2n +1=3(2n +1-2)-3n ·2n +1, ∴-S n =(3-3n )2n +1-6, ∴S n =6+(3n -3)2n +1.20.(本小题满分16分)小王在年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为25-x 万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)【解】 (1)设大货车到第x 年年底的运输累计收入与总支出的差为y 万元, 则y =25x -⎣⎢⎡⎦⎥⎤6x +x (x -1)2×2-50(0<x ≤10,x ∈N ), 即y =-x 2+20x -50(0<x ≤10,x ∈N ), 由-x 2+20x -50>0, 解得10-52<x <10+52, 而2<10-52<3,故从第3年开始运输累计收入超过总支出. (2)因为利润=累计收入+销售收入-总支出, 所以销售二手货车后,小王的年平均利润为 y =1x [y +(25-x )] =1x (-x 2+19x -25) =19-⎝ ⎛⎭⎪⎫x +25x ,而19-⎝ ⎛⎭⎪⎫x +25x ≤19-2x ·25x =9,当且仅当x =5时取得等号,即小王应当在第5年底将大货车出售,才能使年平均利润最大.。