哈工大概率论小论文
- 格式:doc
- 大小:29.00 KB
- 文档页数:7
2024年哈工大概率论与数理统计学习心得学完《概率论与数理统计》这门课程,了解掌握了一些相关的基础知识与方法,并对该学科有了更加深刻的认识,实在是获益匪浅。
本文围绕概率论发展、对本课程学习的一些想法、个人感悟与收获等方面对本课程学习过程中的一些心得体会进行了简单的总结。
一、概率论与数理统计发展简史概率是与人们的日常生产生活联系十分紧密的一门学科。
因此自人类文明发端以来,概率这个概念就已被人们有意无意地渗透到了日常生活中。
人们常说估计如何如何,这里的“估计”包含着概率的含义,只不过在大多数人那里“概率”没有形成独立的知识体系,人们只是根据生活经验对他进行简单地应用而已。
随着技术革____带来的科技的飞速发展,概率论才逐渐形成一套完备的知识体系。
数理统计是在概率论的基础上发展起来的,因此发展时间也稍微晚些。
顾名思义,概率论是一门研究事情发生的可能性大小的学问。
对概率论的研究始于意大利的文艺复兴的____中人们要求找到掷骰子决定胜负的规则。
随着18、____世纪科学的进步,游戏起源的概率论被应用到这些领域中,这也极大推动了概率论本身的发展。
后来,瑞士数学家伯努利建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。
这标志着概率论成为了数学的一个分支。
随后法国数学家棣莫弗和拉普拉斯又导出了中心极限定理的原始形式。
之后,拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。
____世纪末,俄国数学家切比雪夫、马尔可夫、李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了____实际中遇到的许多随机变量近似服从正态分布。
____世纪初在物理学的刺激下,人们开始研究随机过程。
这方面柯尔莫哥洛夫、马尔可夫、辛钦、莱维及费勒等人作了杰出的贡献。
数理统计是伴随着概率论的发展而发展起来的一个数学分支,其发展大致可分为古典时期、近代时期和现代时期三个阶段。
[概率论与数理统计结业论文]专业:[自动化]班级:[04101]学生姓名:[王旭东]完成时间:2015年12月16日概率论与数理统计在经济生活中的应用摘要:在市场经济条件下,商业企业不仅要面对确定性事件,还将更多地面对随机现象,需要处理大量数据、信息,以便进行决策,这就不可避免地要用到概率论与数理统计知识。
本文重点介绍了概率论与数理统计分析方法及其在商业企业经营过程中的应用。
本文以举例方式,应用概率论与数理统计原理,通过确定各投资项目盈亏的概率分布,计算期望报酬率,标准差,及应用置信概率与置信区间原理对投资“风险报酬”的有关问题进行定量分析,为投资决策提供依据。
从中可以看出概率方法与数理统计的思想在解决问题中的高效性简捷性和实用性。
关键字:统计、风险、概率论、数理统计、商业企业、概率统计思想及其应用、一:概率论分析方法及其在商业企业中的应用1.概率论的研究对象在实际生活中,我们经常面对和处理随机现象,比如,明天是否会下雨?某种股票明天的价格是多少?电视机的价格是否近期下调?这些问题往往事先得不到明确的答案,却与我们的切身利益密切相关。
概率论是以随机现象为研究对象,主要研究随机现象的规律性的数学学科。
2.概率论包括的主要内容一个随机事件发生的可能性大小的度量,称为随机事件的概率。
为了对随机现象的有关问题做出明确的数学描述,和其他学科一样,概率论具有自己严格的概念体系和严密的逻辑结构。
概率论包括的主要内容有:随机事件和随机事件的概率定义、古典概率的计算、几何概型的计算、乘法公式、全概率与贝叶斯公式以及事件的独立性。
这些内容是概率论的基础。
另外还有离散型随机变量、连续型随机变量的分布与随机变量的数字特征(期望和方差),大数定理与中心极限定理等。
3.概率论分析方法在商业企业中的应用在市场经济条件下,商业企业的经营和销售情况一般不是由经营者主观愿望所决定,完全是个随机过程。
它包括很多不可控的具体问题:如在某单位时间(如天)内有多少位顾客光顾该商场;在已经进入该商场的顾客中又有多少人真正实施购物行为;每位顾客在这次购物活动中总共购买多少货币的商品等问题,需要用概率论分析方法来解决。
浅谈概率论姓名航天学院电子信息科学与技术学号【摘要】:概率论与数理统计课程是工科大学的一门应用性很强的必修基础课程。
通过近一个学期的学习,我对概率论也有了一些粗浅的认识,本文将从概率论的历史和发展讲起,接着对二项分布、泊松分布和正态分布之间的关系进行一个简单的论述,然后将概率论的一些概念与以往学过的概念进行类比,最后对概率论在工科数学分析中的几个巧用进行说明,并附加了几个实例。
【关键词】:二项分布;泊松分布;正态分布;类比;级数;广义积分1 概率论的起源和发展概率论不仅是当代科学的重要数学基础之一,而且还是当代社会和人类日常生活最必需的知识之一。
正如十九世纪法国著名数学家拉普拉斯所说:“对于生活中的大部分, 最重要的问题实际上只是概率问题。
你可以说几乎我们所掌握的所有知识都是不确定的, 只有一小部分我们能确定地了解。
甚至数学科学本身, 归纳法、类推法和发现真理的首要手段都是建立在概率论的基础之上的。
因此,整个的人类知识系统是与这一理论相联系的。
”然而, 饶有趣味的是, 这门被拉普拉斯称为“人类知识的最重要的一部分”的数学却直接地起源于一种相当独特的人类行为的探索: 人们对于机会性游戏的研究思考。
所谓机会性游戏就是靠运气取胜一些游戏, 如赌博等。
这种游戏不是哪一个民族的单独发明, 它几乎出现在世界各地的许多地方, 如埃及、印度、中国等。
著名的希腊历史学家希罗多德在他的巨著《历史》中写道: 早在公元前1500年, 埃及人为了忘却饥饿的困扰, 经常聚集在一起掷骰子和紫云英,这是一种叫做“猎犬与胡狼”的游戏, 照一定规则,根据掷出各种不同的紫云英而移动筹码。
大约从公元前1200年起, 人们把纯天然的骨骼(如脚上的距骨) 改进成了立方体的骰子。
[1]二十世纪以来, 概率论逐渐渗入到自然科学、社会科学、以及人们的日常生活等几乎无所不在的领域中去.无论在研究领域, 还是教育领域, 它愈来愈成为一门当今最重要的学科之一。
哈尔滨工业大学计算机科学与技术学院结课论文课程名称:概率论与数理统计课程类型:必修项目名称:长尾分布、幂律分布的原理与应用概况目录目录 (2)摘要 (3)1 引言 (3)2 长尾分布与幂律分布 (4)2.1 长尾分布 (4)2.2 幂律分布 (4)2.3 两种分布的联系 (4)3 西蒙模型:幂律分布最基本的产生机制 (5)3.1 西蒙模型简介 (5)3.2 西蒙模型的主要缺陷 (6)4 长尾分布与幂律分布的典型应用 (7)4.1 人类行为时间统计特性研究 (7)4.2 小世界现象的动力学模型与验证 (8)4.3 金融资产收益率的研究 (9)5 小结 (9)6 参考文献 (9)7 致谢 (9)摘要长尾分布是涉及流行性问题的一种常见分布,与之密切相关的还有幂律分布。
这两种分布在物理学、生物学、经济学、计算机科学、统计学、社会学等诸多领域得到了广泛应用。
本文试图简要介绍长尾分布的概念,同时介绍与之密切相关的幂律分布,展示目前存在的理论模型及其优缺点,最后介绍这两种分布在各种领域的应用。
1 引言在概率论与数理统计的课程中,我们先后接触了多种分布;其中正态分布(高斯分布)、Х2分布、t分布和F分布在生产生活中有着较多的应用。
然而仔细观察这些分布,不难发现其研究的对象是同质的1;但很多时候,我们更需要的却是针对异质对象的一些特殊指标的分布。
此外,这些分布所涉及的基本事件,彼此也是独立的;但我们看到的世界并非如此。
太阳升起又落下,落下又升起,可是人们却已经经历了欢笑和痛苦,会做出不一样的选择;人们的选择改变着自己,但自己同时也是他人的环境的一部分;于是人们改变了自我的同时也改变了环境,不同的环境下自然不会有重复的条件,不可能有同样的分布。
最著名的反面案例也许是马太2效应:贫者愈贫,富者愈富,而不会随机地发生逆转,游戏不会回归到初始状态。
体现上述两点的最典型的过程,便是与流行度有关的过程。
以网站音乐的排行榜为例,把曲目按照下载量排序,可近似地得到一条递减曲线。
授课教师:⺩王勇概率论与数理统计2014年12⽉月16⽇日从递推概率问题到概率型动态规划计算机科学与技术学院 1336101班杨志⻜飞学号:1130310217在《概率论与数理统计》课上,曾讲过这样⼀一道考试题:在x 轴上有⼀一个质点可以在整个数轴的整数点上游动,记X n 表⽰示时刻n 时质点的位置。
该质点移动的规则是:每隔单位时间,分别以概率p 及概率q =1 -p (0 < p < 1) 向正的及负的⽅方向移动⼀一个单位。
假设质点在时刻t = 0时,位于a,即X0= a (a > 0),⽽而在0和a + b (b > 0)处各有⼀一个吸收壁(即质点移动到0和a + b时,将不能再移动)。
求质点的初始位置为a⽽而最终在a +b被吸收的概率u a .(提⽰示: u n = pu n+1 + qu n-1, n = 1,2,…,a + b - 1. u0 = 0, u a+b = 1)这是⼀一道递推求解的概率问题。
其解法,是写出u n、u n+1和u n-1的关系式(提⽰示中已经给出),利⽤用p + q =1,将u n写成(p + q)u n,推出p(u n+1 - u n)= q(u n - u n-1)。
然后,分别讨论p = q = 1/2和p ≠ q两种情况下的表达式,从⽽而求得u a 。
因为这道题是⼀一道概率论课程的期末考试题,重点在于由给定的递推关系解出要求的概率,所以在“提⽰示”中直接给出了递推⽅方程。
但是实际上,还有很多看起来⽐比较类似的递推概率问题,其递推⽅方程并不是那么容易推导出来的,⽽而且就算推导出来,想要的结果也不是仅凭数学推导就能计算出来的。
好在我们有⽅方法可以⽤用计算机来解决⼀一部分这样的递推式概率问题。
当问题包含重叠⼦子问题并且⽆无后效性时,就可以利⽤用动态规划的⽅方法,通过计算机编程来解决。
从计算机科学中算法设计与分析的⾓角度来看,解决这类问题的重点和难点,其实就是如何列出递推⽅方程并确定边界值了。
2024年哈工大概率论与数理统计学习心得学习概率论与数理统计是作为一个工科学生, 在大学时期必修的一门课程。
在2024年, 我有幸能够在哈尔滨工业大学学习这门课程, 并且取得了一定的收获。
下面, 我将分享我在学习概率论与数理统计方面的一些心得体会。
首先, 在学习概率论方面, 我深刻体会到了概率的重要性和应用广泛性。
概率论主要研究随机事件的概率、随机变量及其概率分布等内容, 是计算机、统计学、金融等领域的基础。
通过学习概率论, 我了解到概率不仅仅是一个理论概念, 更是一种描述不确定性的工具。
在现实生活中, 我们所面临的很多问题都存在不确定性, 如天气预报、股市走势等。
通过概率论的学习, 我可以更准确地评估可能发生的事件, 并且能够采取合适的措施来降低风险。
其次, 在学习数理统计方面, 我学到了如何通过样本推断总体的特征。
数理统计主要研究如何收集数据、如何通过数据推断总体的特征并进行决策等。
在学习过程中, 我提高了数据分析能力, 掌握了抽样调查的原理和方法, 并学会了对数据进行描述、总结和分析。
通过统计数据, 我可以用合理的方法推断总体的特征, 并对未来的情况作出预测。
这对于很多实际问题的解决具有非常重要的意义, 如市场调查、产品质量控制等。
此外, 概率论与数理统计的学习还培养了我批判性思维和解决问题的能力。
在学习过程中, 我需要理解和运用各种概率模型和统计方法来解决现实生活中的问题。
这要求我们具备批判性思维, 能够对所学知识进行深入分析和理解, 并灵活运用于实际情况中。
同时, 我还需要通过编程和数学求解等方式, 对问题进行建模和求解。
通过这样的学习过程, 我逐渐培养了解决实际问题的能力, 提高了自己的综合素质。
在学习过程中, 我还发现了一些困难和挑战。
首先, 概率论和数理统计是一门比较抽象的学科, 其中涉及到的概念和理论较多, 需要我们进行艰苦的钻研和思考。
其次, 统计方法的运用需要借助计算机编程进行实现, 这要求我们具备一定的编程能力和统计软件的使用能力。
《概率论与数理统计》课程总结混沌中的统一——概率中的维度观及在与微观粒子中的应用摘要众所周知,宇宙是一个无序的混沌空间,其间的粒子似乎在无规则的运动,人们并不知道它下一个时刻会运动到哪一个位置。
但事实上,粒子运动往往遵循某种分布规律,人们可以通过观察粒子在某处出现的频率来大致推知粒子在某一时刻出现的区域,这就是概率。
而在生活中,每个事件的发生都代表着一种可能,每个事件的无数种可能就构成了更高一层的空间,这就是维度。
不同的空间,不同的维度,概率论都在其中扮演着不可或缺的重要角色。
关键词:分布规律;频率;概率;可能;维度。
第一部分概率论与微观粒子的运动规律引言:长久以来,人们对于事物的认知都处于机械论科学思维的指导下,认为一切事物的规律都是固定可预测的。
严格决定论是机械论科学思维方式的主要特点。
这种思维方式把组成物质的最终实体作为自己的考察对象,而科学所要解决的基本上是带有两个变量的问题, 确定为数不多的客体之间的因果序列。
在严格决定性理论中,所有的概念和联系都被认为是属于同一层次中的东西,都可以精确表述它们之间的关系。
大自然的规律是数学规律,上帝是几何学家。
[1]控制论创始人维纳(N orbert Wiener)认为人类科学和认知的历史历程中,严格决定论的科学思维方式早在古巴比伦时期最古老的天文学中就已经出现了。
那是的人们在这种思维的指引下,认为日食、月食等自然天象都是在可预测的周期中出现的,太阳系中的一切事件的模型,都像是轮子在转动,周而复始的出现或发生。
这在托勒密的本轮说和哥白尼的轨道说中都是如此。
天体的音乐顺唱和倒唱都是一样的。
除了初始位置和方向外, 顺转和逆转的两个太阳仪之间的运动没有任何差别, 它们都是被严格决定了的。
最后, 这一切被牛顿归结为一组抽象公设并推演出一门严格的力学。
于是,宇宙被牛顿和他的力学描写为一台结构严密,按照某种定律精确地发生的机器,未来是由过去严格决定的。
但随着人们对自然科学的认识的不断深入,人们渐渐察觉到,万物都不是永恒的,牛顿力学很大程度上只是宇宙的某一种状态。
《概率论论文》概率论论文(一):《概率论与数理统计》论文摘要概率论的发展具有很长的历史,多位数学家对概率论的构成做出了巨大贡献。
纵观其发展史,在实际生活中具有很强的应用好处。
正是有了前人的努力,才有了现代的概率论体系。
本文将从概率论的研究好处、定义,以及发展历程进行叙述。
概率论的发展与起源1.1概率论的定义概率论是研究随机现象数量规律的数学分支。
随机现象是相对于决定性现象而言的,随机现象是指在基本条件不变的状况下,一系列或观察会得到不同结果的现象。
每一次实验或观察前,不能肯定会出现哪种结果,呈现出偶然性。
例如,抛一枚硬币,可能会出现正面或者反面;在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。
随机现象的实现和对它的观察称为随机试验。
随机试验的每一可能结果称为一个基本事件,一个或者一组基本事件统称为随机事件,或者简称为事件。
事件的概率则是衡量该事件发生的可能性的量度。
虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下超多重复的随机实验却往往呈现出明显的数量规律。
例如,连续多次抛一枚硬币,出现正面的频率随着抛次数的增加逐渐趋近于1/2;犹如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且测量值大多落在此常数的附近,其分布状况呈现中间多,两头少及某种程度的对称性。
大数定律和中心极限定律就是描述和论证这些规律的。
在实际生活中,人们往往还需要研究某一特定随机现象的演变状况。
例如,微小粒子在液体中受周围分子的随机碰撞而构成不规则的运动,即布朗运动,这就是随机过程。
随机过程的统计特征、计算与随机过程有关的某些事件的概率,个性是研究与随机过程样本轨道(及过程的一次实现)有关的问题,是现代概率论的主要课题。
在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和统计理论两大部分的广义概率论已经成为一门应用十分广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。
2024年哈工大概率论与数理统计学习心得____年哈工大概率论与数理统计学习心得在____年,我作为一个学生,有幸能够参加哈尔滨工业大学的概率论与数理统计课程学习。
这门课程对于我来说是一门非常重要的学科,它不仅是我大学数学专业的基础,也是我未来职业道路中必不可少的一部分。
在这门课程的学习过程中,我经历了许多挑战和困惑,但也积累了很多宝贵的知识和经验。
在这篇学习心得中,我将总结自己在学习概率论与数理统计过程中的体会和心得。
首先,概率论与数理统计是一门非常重要的基础学科。
它研究的是不确定性现象和随机事件的规律性,对于我们理解和分析现实生活中的各种现象和问题具有重要的意义。
在课程的学习中,我对概率论和数理统计的概念和原理有了更深入的了解,也学会了运用数学模型和方法来处理和解决实际问题。
通过学习概率论与数理统计,我认识到数学不仅仅是一门抽象的学科,更是一种思维工具和解决问题的方法。
其次,概率论与数理统计的学习需要扎实的数学基础和逻辑思维能力。
在学习过程中,我发现数学的基础知识对于理解和掌握概率论与数理统计的知识非常重要。
尤其是对于概率论来说,掌握好集合论、数列极限、数列级数和极限、微积分等数学基础知识是非常有帮助的。
另外,概率论与数理统计的推理和证明也需要具备良好的逻辑思维能力。
通过学习,我逐渐提高了自己的数学基础和逻辑思维能力,也更加明白了数学的重要性和美妙之处。
再次,概率论与数理统计的学习需要灵活运用数学知识和方法。
在学习过程中,我发现概率论与数理统计的知识不仅仅是机械的记忆和应用,更需要我们具备创新和灵活运用的能力。
在解决问题时,往往需要我们结合具体情况,灵活选择合适的数学模型和方法。
此外,概率论与数理统计的学习还需要我们具备良好的数学建模能力,能够将实际问题抽象成数学模型,并通过分析和计算得出有效的结论。
通过反复练习和实践,我逐渐培养了自己的数学思维和创新能力,也提高了自己的数学建模和解决问题的能力。
概率知识与生活实践摘要:概率作为数学的一个重要部分,在生活中的应用越来越广,同样也在发挥着越来越广泛的用处。
加强数学的应用性,让学生用数学知识和数学的思维方法去看待,分析,解决实际生活问题,在数学活动中获得生活经验。
概率论是指导人们从事物表象看到其本质的一门科学,本文由现实生活中的部分现象探讨了概率知识的广泛应用。
关键词:生活实践,概率,应用分析一,概率在中奖问题中的应用例:集市上有一个人在设摊“摸彩”,只见他手拿一个黑色的袋子,内装大小、形状、质量完全相同的白球20只,且每一个球上都写有号码<1—20号)和1只红球,规定:每次只摸一只球。
摸前交1元钱且在1—20内写一个号码,摸到红球奖5元,摸到号码数与你写的号码相同奖10元。
b5E2RGbCAP<1)你认为该游戏对“摸彩”者有利吗?说明你的理由。
<2)若一个“摸彩”者多次摸奖后,他平均每次将获利或损失多少元?分析:小红摸到红球与摸到同号球的概率均为是。
那么可能得到得到是收益分别为:或。
那么他平均每次将获利为<)。
解:<1)P<摸到红球)=P<摸到同号球);故没有利<2)每次的平均收益为故每次平均损失元二,概率与选购方案的综合应用例:某电脑公司现有A,B,C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.p1EanqFDPw(1> 写出所有选购方案(利用树状图或列表方法表示);(2> 如果(1>中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?(3> 现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示>,恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几台.DXDiTa9E3d解:(1> 树状图如下:列表:有6种可能结果:(A,D>,<A,E),<B,D),<B,E),<C,D),<C,E).(2> 因为选中A型号电脑有2种方案,即(A,D><A,E),所以A型号电脑被选中的概率是(3> 由(2>可知,当选用方案<A,D)时,设购买A型号、D型号电脑分别为x,y台,根据题意,得解得经检验不符合题意,舍去;当选用方案<A,E)时,设购买A型号、E型号电脑分别为x,y台,根据题意,得解得所以希望中学购买了7台A型号电脑.三,在求解最大经济利润问题中的应用如何获得最大利润是商界永远追求的目标,随机变量函数期望的应用为此问题的解决提供了新的思路。
《概率论与数理统计》课程总结院系专业姓名学号浅谈概率论与数理统计在经济学中的应用【摘要】概率论与数理统计是研究随机现象及其规律性的一门数学学科,至今已有300余年的历史。
它起源于十七世纪中叶,当时数学家们首先思考概率论的问题却是来自赌博。
德梅雷、费尔马等人首先对这个问题进行了研究,后来伯努利提出了大数定律,高斯和泊松做了进一步的推理论证。
发展到今天,概率论和以其为基础的数理统计学科一起在自然科学、社会科学、军事科学、工程技术等诸多领域起着不可替代的作用。
【1】作为经济数学的三大支柱之一,概率统计知识在当今信息社会里越来越重要。
在经济和管理活动中,怎样使利润最大、风险最小,怎样由不确定因素得出相对可靠的结论等问题,运用概率统计的知识才能更好地解决。
本文将通过实例来展示概率统计知识在经济学中的具体应用。
【关键词】概率论;经济学;应用;发展【正文】一、概率论的起源对于概率论而言,两个最重要的概念就是独立性和随机性。
概率论是研究大量随机现象统计规律的数学分科,但直接导致概率论产生的却是赌博。
1651年,赌徒梅尔与保罗赌钱,他们事先每人拿出6枚金币,然后玩般子,约定谁先胜3局谁就得到12枚金币。
比赛开始,保罗胜了一局,梅尔胜了两局,这时一件意外的事中断了他们的赌博。
于是,他们俩商量着这12块金币应该怎样合理地分配。
保罗认为,根据胜的局数,他自己应该得总数的1/3,即4枚金币,梅尔得总数2/3,即8枚金币。
可是梅尔却认为这样子是不公平的,他认为若再继续赌下去,他赢的可能性要比保罗大,他应该得12枚金币。
由于他们俩不能达成一致的协议,于是,他们请教于当时的数学家帕斯卡和费尔马。
两位数学家一致决定:保罗分3块金币,梅尔得9块金币。
帕斯卡是这样解决的:如果再玩一局,他们两个人均有可能获胜,若两人各胜两局,应各得金币的一半(记为1/2);若梅尔胜,那么他胜了3局,可得全部金币(记为1),保罗不得金币(记为0)。
由于这一局两人胜的可能性相等,因此保罗所得金币应是两种可能性大小的一半(1/4),即1/4×12=3枚。
同样梅尔也是两种可能性大小的一半(3/4),即3/4×12=9枚。
而费尔马是这样考虑的:如果玩两局,则完全可决出胜负。
其两局会出现四种结果:(保罗胜、保罗胜);(保罗胜、梅尔胜);(梅尔胜、保罗胜);(梅尔胜、梅尔胜)。
只有出现第一种结果保罗才能最终获胜,其它3种结果均为梅尔最终获胜。
所以保罗最终获胜的可能性为1/4梅尔最终获胜的可能性为3/4。
因此,保罗得到3枚金币,梅尔得到9枚金币。
这件事引起了帕斯卡、费尔马等数学家的兴趣,从而继续研究了有关这类随机事件的更一般的规律,由此开始了概率论的早期工作。
【2】二、概率论与经济学结合的原因经济学的数学化已经成为不可否认的事实,而数学化的趋势愈演愈烈。
特别是近十几年来,由于金融学、保险学等经济学分支学科越来越普遍的应用,研究随机事件的概率论在经济学中得到越来越快的发展,而且近几年诺贝尔奖也授予在经济学的随机处理方面做出突出贡献的学者,同时由于概率论考虑了样本与总体之间的关系的这一特性,对实证经济学特别是经济计量学可以说起到了非常大的推动作用。
甚至可以说,当代实证经济学的发展就是概率统计知识在经济模型中的实际应用。
如果考虑在实证经济学领域的诺贝尔获奖者,那概率论对经济学的影响就更大了,包括第一届诺贝尔奖获得者丁博根、第二届诺贝尔获奖者萨谬尔森等在内,前后约有20名经济学家研究和应用概率论在经济学中的作用,【3】因此概率论在经济学巾有十分广泛的作用。
从理论研究角度看,借助概率论方法研究经济问题至少有三个优势:其一是前提假定用概率论语言描述得一清二楚,概率论强调事物处于不可能事件和必然事件之间,即事物出现的概率在(0,1)之间,这符合经济现象的现实。
经济学强调经济现象要用数学来描述,由于概率论引进概率的概念,使得数学描述成为概率论描述的一个特例,因此概率论能够穷尽各种可能,能够更加清楚地描述经济现象;其二是逻辑推理严密精确,可以防止漏洞和谬误。
通过内生化经济现象出现的概率,同时依据概牢论的严密逻辑,推导经济运行的各种轨迹。
再结合现有的经济理论,查看概率论的逻辑是否符合经济的行为规律,使得概率论与经济学达到共同解释问题的目的;其三是可以应用已有的概率论模型或概率论定理推导新的结果,得到仅凭直觉无法或不易得出的结论,传统的经济学假定经济现象或者经济行为在确定性的条件下发生,因此运用现有的经济理论能够清楚阐述经济现象的本质,概率论的引进使得经济学能够研究在不确定性条件下的行为,扩大了经济学的视野,得出的结论也更加具有概括性。
运用概率论方法讨论经济问题,学术争议便可以建立在这样的基础上:或不同意对方前提假设;或找出对方论证错误;或是发现修改原模型假设会得出不同的结论。
因此,运用概率论方法做经济学的理论研究可以减少尤用争论,并且让后人较容易在已有的研究工作上继续开拓,也使得在深层次上发现似乎不相关的结构之间的关联变成可能。
总而言之,概率论在经济学中的应用使得经济学成为一门更加规范的科学、更加符合经济行为规则的科学,这和马克思所说相吻合:一种科学只有在成功地运用数学时,才算达到了真正完善的地步。
【4】概率论在经济学中的应用使得经济学更加完善。
三、概率论在经济学中的应用(一)概率论在保险学中的应用金融经济学中用到随机变量的数学期望、方差、协方差等概念,要通过基本概率论的概念才能来理解随机游走、布朗运动、随机积分、伊藤公式等概念。
概率论中的随机游走概念积域的概念在有效市场理论中起本质作用。
布莱克一肖尔斯期权定价理论需要概率论中的中心极限定理,它的证明涉及随机变量的特征函数等概念,还涉及随即序列、鞅等概念。
又例如切比雪夫大数法则的结论运用可以说明,在承保标的数量足够大时,被保险人所交纳的纯保险费与其所能获得赔款的期望值相等。
这个结论反过来,则说明保险人应如何收取纯保费。
(二)概率论在投资风险中的应用在投资环境日趋复杂的现代社会,几乎所有的投资都是在风险和不确定情况下进行的,一般地说,投资者都讨厌风险并力求回避风险。
期望值是一个概率分布中的所有可能结果以其概率为权数进行加权平均的加权平均数,反映事件的集中趋势。
对于股票投资者来说,投资者也可以检查包括市盈率与红利在内的一系列金融数据,利用各种统计信息来引导投资。
投资者通过将某只个股的数据与股票市场平均数进行比较,就能够判断该只股票的价值是被高估还魁低估了。
例如,道·琼斯30家工业段票平均数的市盈率是20.1。
同一天,莱公司股票的市盈率是14。
因此,关于市盈率的统计信息就表明与道·琼斯30家股票平均数相比较,该公司的股价偏低。
【5】这方面和其他一些有关该公司的信息还将帮助投资者作出买入、卖出还是继续持有该股的建议。
(三)概率在管理决策中的应用正态概率分布是一种最重要的描述连续性随机变量的概率分布。
正态概率分布在经济管理中应用非常广泛。
一旦建立了某个应用问题的概率分布,就可以轻松显迅速地得到有关问题的概率信息。
概率虽不能直接提供决策建议,但是它能提供一些帮助决策者更好理解与问题有关的风险和不确定性等方面的信息。
最终,这些信息可以帮助决策者制定出好的决策。
例如,某公司刚刚研制出一种新式轮胎,这种轮胎将要在全国的连锁商店销售。
由于这种轮胎是一种新产品,所以。
该公司的经理们认为这种新轮胎的行驶里程是保证其被市场接受的一个重要因素。
在这种轮胎在实际公路上的测试中,该公司的工程技术人员们估计平均行驶量程是u=36500英里,标准差是5000英里。
另外,收集到的数据还表明这种轮胎的行驶里程服从正态分布是比较合理的。
那么,如果该公司正在考虑提供一项质量保证,即如果轮胎没有超过指定的行驶里程,公司保证调换轮胎时给予打折。
但该公司希望调换时给予打折的轮胎数不超过10%,则应该保证的行驶里程是多少?这个问题可以用正态分布来解释。
在均值和未知的保证里程之间的概率一定是40%。
查标准正态概率分布表可知,主体部分的0.4000对应的值是1.28,对应于该公司的轮胎正态分布所要求的保证里程。
因此,保证行驶30100英里将会符合要求,即此时大约有10%的轮胎达不到指定的行程里程。
当然公司有了这些信息后,可以将轮胎的保证行驶里程定为30000英里。
【6】四、结语通过以上关于概率论在经济学中的应用的分析,我们可以得到以下结论:第一,现代经济学的发展离不开概率论,概率论的应用使得经济学更加完善,更加科学,这也是经济学成为。
社会科学皇冠上的明珠”的一个重要原因;第二,概率论在经济学数据描述、效用函数、保险、指出组合等诸多领域的应用,使得具有随机性质的经济行为得到更合适的描述,扩大了经济学的视眼,使经济理论得到不断深化和丰富;第三,概率论知识在经济学动态前沿领域的应用,使得经济学经济行为的随机性特征得到更为科学的描述。
在自然界和现实生活中,一些事物都是相互联系和不断发展的,正如一位哲学家所说,“概率是人生中真正的指南”。
随着生产的发展和科学技术水平的提高,概率已渗透到我们生活的各个领域。
同时,概率论作为多种学科专业主干课的专业基础课,对指导学习有重要的意义。
并且日常的工作与生活中会遇到大量的问题,其中不少与概率的知识有关,因此学习好概率论也会对我们的工作与生活带来极大的方便。
参考文献【1】高铁梅.计量经济分析方法与建模.清华大学出版社.2006【2】陈希孺.数理统计学简史.湖南教育出版社.2002【3】茆诗松.概率论与数理统计教程.高等教育出版社.2010【4】盛骤.概率论与数理统计.高等教育出版社.2010【5】段静涵.浅析现实生活中“概率论”的应用.哈尔滨师范大学数学与科学学院.2009【6】郑长波.概率知识在现实生活中的应用.沈阳师范大学学报.第28卷第4期。