第1部分 颗粒流体力学汇总
- 格式:ppt
- 大小:414.00 KB
- 文档页数:34
流体力学知识点总结流体力学是一门研究流体(包括液体和气体)运动规律以及流体与固体之间相互作用的学科。
它在工程、物理学、气象学、生物学等众多领域都有着广泛的应用。
下面将对流体力学中的一些重要知识点进行总结。
一、流体的性质1、流体的定义流体是一种在微小剪切力作用下就会连续变形的物质。
与固体不同,流体不能承受剪切力而保持固定的形状。
2、密度和重度密度是单位体积流体的质量,用ρ表示,单位通常为 kg/m³。
重度是单位体积流体所受的重力,用γ表示,单位通常为 N/m³,γ =ρg,其中 g 为重力加速度。
3、压缩性和膨胀性压缩性是指流体在压力作用下体积缩小的性质,膨胀性则是指流体在温度变化时体积膨胀的性质。
液体的压缩性和膨胀性通常较小,可视为不可压缩流体;而气体的压缩性和膨胀性较大。
4、粘性粘性是流体内部阻碍其相对运动的一种性质。
粘性力的大小与速度梯度和流体的粘性系数有关。
牛顿内摩擦定律给出了粘性力的表达式:τ =μ(du/dy),其中τ为粘性切应力,μ为动力粘性系数,du/dy 为速度梯度。
二、流体静力学1、静压力静止流体中,单位面积上所受的法向力称为静压力。
静压力的特性包括:方向总是垂直于作用面;静止流体中任意一点的静压力大小与作用面的方向无关。
2、静压强基本方程p = p₀+γh,其中 p 为某点的压强,p₀为液面压强,γ 为流体的重度,h 为该点在液面下的深度。
3、压力体压力体是由受力曲面、液体的自由表面以及两者之间的铅垂面所围成的封闭体积。
通过压力体可以确定流体对物体表面的垂直作用力的方向。
三、流体运动学1、流线和迹线流线是某一瞬时在流场中画出的一条曲线,曲线上各点的切线方向与该点的速度方向相同。
迹线则是某一流体质点在一段时间内的运动轨迹。
2、流管和流束流管是在流场中通过封闭曲线所围成的管状区域,流管内的流体称为流束。
3、连续性方程对于定常流动,质量守恒定律可表示为连续性方程:ρ₁v₁A₁=ρ₂v₂A₂,即流过不同截面的流体质量流量相等。
流体力学中的流体颗粒的运动流体力学是研究流体力学性质和运动规律的学科,其中一个重要的研究对象是流体颗粒的运动。
在流体中存在着大量的微小颗粒,它们的运动对于理解和描述流体的性质起着至关重要的作用。
本文将介绍流体力学中流体颗粒的运动特点,以及一些相关的理论和实验方法。
一、粒子运动轨迹的描述在流体中,流体颗粒的运动轨迹是十分复杂的,这要受到流体介质、颗粒间相互作用以及外力等因素的综合影响。
对于小颗粒来说,其运动可以由牛顿第二定律来描述,即F=ma,其中F为颗粒所受合力,m为颗粒的质量,a为颗粒的加速度。
根据流体力学的基本原理,可以得到颗粒的运动方程。
二、运动方程的解析解和数值解对于一些简单的流体场景,颗粒运动方程可以得到解析解。
例如,在无外力和无相互作用的情况下,颗粒受到的合力只有粘滞阻力,可以使用Stokes定律进行分析。
Stokes定律表明,小颗粒的阻力与其速度成正比,速度与时间的关系可以得到解析解。
然而,在实际情况下,大多数颗粒的运动方程是非线性的,很难通过解析方法求得精确解。
因此,研究者通常使用数值方法来模拟颗粒的运动。
这些数值方法包括有限差分法、有限元法、流体-颗粒耦合法等。
利用计算机技术,可以模拟复杂的流体颗粒运动过程,并得到精确的结果。
三、流体颗粒的行为与运动模式流体颗粒的运动模式主要分为扩散和聚集两种情况。
当颗粒受到高温激发或表面活性剂等因素的影响时,颗粒之间的相互作用变得弱化,颗粒倾向于扩散运动。
这种扩散运动可以通过布朗运动来描述,并可以用输运系数等物理量进行描述。
另一种情况是颗粒的聚集运动,这主要是由于颗粒间的吸引力或群体行为导致的。
例如,液滴在流体中的聚集运动和形成。
这种聚集运动可以通过模型和实验观察来解释,并可以用相关的理论进行描写和预测。
四、应用领域流体颗粒运动的研究在许多领域都有重要的应用价值。
例如,在环境科学中,研究颗粒的运动可以用于模拟气溶胶在大气中的扩散和传播过程,为空气质量调控提供依据。
第一节流体绕过颗粒及颗粒床层的流动1.1颗粒、颗粒群及颗粒床层的特性一、单个颗粒的性质形状规则(球形)的颗粒:大小:用颗粒的某一个或某几个特征尺寸表示,如球形颗粒的大小用直径d p表示。
比表面积:单位体积颗粒所具有的表面积,其单位为m2/m3,对球形颗粒为:形状不规则(非球形)的颗粒:(1)颗粒的形状系数:表示颗粒的形状,最常用的形状系数是球形度Φs,它的定义式为:相同体积的不同形状颗粒中,球形颗粒的表面积最小,所以对非球形颗粒而言,总有Φs<1。
当然,对于球形颗粒,Φ=1。
(2) 颗粒的当量直径:a.等体积当量直径d evb.等比表面积当量直径d ea对于非球形颗粒,若体积当量直径为d e:二、颗粒群的特性粒度分布(Particle size distributions)粒度分布测定方法(筛分分析):常用筛分法,再求其相应的平均特性参数。
---泰勒(Tyler)标准筛(表3-1)颗粒粒度(Particle size)对于工业上常见的中等大小的混合颗粒,一般采用一套标准筛进行测量,这种方法称为筛分。
用表格表示:筛孔尺寸——颗粒质量;用图表示:颗粒尺寸——质量分率分布函数:质量分数w i(<d pi)与d pi频率函数:质量分数w i(d pi)与颗粒群的平均特性参数:颗粒群的平均粒径有不同的表示法,常用等比表面积当量直径来表示颗粒的平均直径,则混合颗粒的平均比表面积αm为:由此可得颗粒群的比表面积平均当量直径d m为:三、颗粒床层的特性(1)床层的空隙率:单位体积颗粒床层中空隙的体积(ε),即:ε是颗粒床层的一个重要特性,它反映了床层中颗粒堆集的紧密程度,其大小与颗粒的形状、粒度分布、装填方法、床层直径、所处的位置等有关。
一般颗粒床层的空隙率为0.47~0.7。
(2)床层的比表面积单位体积床层中颗粒的表面积称为床层的比表面积。
(忽略颗粒间的接触面积)影响αb的主要因素:颗粒尺寸。
一般颗粒尺寸越小,αb越大。
颗粒物质的流体力学和传输规律在城市中,我们经常遇到雾霾天气,它带来的不仅仅是影响心情的灰蒙蒙的天空,还有严重的空气污染问题。
颗粒物质是这些污染物之一,它们对人体健康和环境造成的影响不可忽视。
在研究颗粒物质传输规律时,涉及到颗粒物质的流体力学,本文就来探讨一下颗粒物质的流体力学和传输规律。
一、颗粒物质的定义和特性颗粒物质在环境科学和空气质量领域指的是归纳体积直径小于等于10微米(简写PM10)和2.5微米(简写PM2.5)的固体或液滴物质,主要来源于人类活动、自然过程和火山喷发等。
颗粒物质通常有不同的化学成分、空气动力学特性、生物学特性等,它们的污染难以治理。
二、颗粒物质的流体力学颗粒物质在流体力学中属于颗粒物,由于颗粒物质之间互相碰撞、摩擦,颗粒物质的运动规律十分复杂,受到多个因素的影响。
1、间隙率:颗粒物质之间的间隙率是指它们的体积减去颗粒物质的体积与颗粒物质充满空间的体积之比。
当颗粒物质之间的间隙率减小时,颗粒物质之间的摩擦力和抗力增强,运动速度降低,流动性减弱。
2、颗粒物质浓度:颗粒物质的浓度影响着颗粒物质的运动和传输,当浓度增加时,颗粒物质之间的摩擦力和抗力增大,运动速度降低,流动性降低。
3、气流速度:气流速度是影响颗粒物质运动的重要因素,气流速度越大,颗粒物质受到的阻力越大,受到的摩擦力越小,颗粒物质运动速度也越大。
当气流速度较低,颗粒物质则会受到沉降作用而落地。
4、转向板和摩擦板等设施:通常地,转向板和摩擦板等设施,会对颗粒物质的运动速度和方向产生影响,转向板通常会使颗粒物质偏向相应的方向,摩擦板则会使颗粒物质停留在其上。
三、颗粒物质的传输规律颗粒物质的传输规律是颗粒物质研究的重要组成部分,它对于颗粒物质的治理至关重要。
颗粒物质的传输规律可以分为水平传输和垂直传输两个方面。
1、水平传输:水平传输是指颗粒物质在键合气流中向不同方向进行的传输。
水平传输的可能受到气流流速、风向、气象因素等诸多因素的影响,这需要研究颗粒物质的平流和较大气流的综合作用。
第一章流体力学基本知识物质在自然界中通常按其存在状态的不同分为固体(固相)、液体(液相)和气体(气相)。
液体和气体因具有较大的流动性,被统称为流体,第一节流体的主要物理性质一、流体的密度和容重对于均质流体,单位体积的质量,称为流体的密度,即:ρ=m/V对于均质流体,单位体积的流体所受的重力称为流体的重力密度,简称重度,即:γ=G/V由牛顿第二定律得:G=m g。
因此,γ=G/V=mg/V=ρg流体的密度和重度随其温度和所受压力的变化而变化,在实际工程中,液体的密度和重度随温度和压力的变化而变化的数值不大,可视为一固定值;而气体的密度和重度随温度和压力的变化而变化的数值较大,设计计算中通常不能视为一固定值。
常用流体的密度和重度如下:水在标准大气压,温度为4°C时密度和重度分别为:ρ=1000kg/m3,γ=9.807kN/m3水银在标准大气压,温度为0℃时其密度和重度是水的13.6倍。
干空气在标准大气压,温度为20°C时密度和重度分别为:ρ=1.2kg/m3,γ=11.82N/m3二、流体的粘滞性流体在运动时,由于内摩擦力的作用,使流体具有抵抗相对变形(运动)的性质,称为流体的粘滞性。
对于静止流体,由于各流层间没有相对运动,粘滞性不显示。
流体粘滞性的大小,通常用动力粘滞性系数μ和运动粘滞性系数v来反映,实验证明,水的粘滞性随温度的增高而减小,而空气的粘滞性却随温度的增高而增大。
内摩擦力的大小可用下式表示:T=μAdu/dy式中T一一流体的内摩擦力;μ——流体的动力粘性系数;A——层与层的接触面积;du/dy——流体的速度梯度。
三、流体的压缩性和热胀性流体的压强增大,体积缩小,密度增大的性质,称为流体的压缩性。
流体温度升高,体积增大,密度减小的性质,称为流体的热胀性。
在很多工程技术领域中,可以把液体的压缩性和热胀性忽略不计。
但在研究有压管路中水击现象和热水供热系统时,就要分别考虑水的压缩性和热胀性。
流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。
2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。
3 流体力学的研究方法:理论、数值、实验。
4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。
作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。
(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。
质量越大,惯性越大,运动状态越难改变。
常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。
B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。
即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。
由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。
动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。
运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。
2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。
无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。