CAN通信网络拓扑图和设计方案
- 格式:docx
- 大小:215.72 KB
- 文档页数:2
CAN总线工程布线规范
1.CAN总线简介
CAN总线采用一对差分电缆作为传输介质,所有节点均直接连接到这一对公共传输介质上并行排列,接收或发送数据信息。
在总线两端,分别加入终端电阻予以终结,以防止节点在网络上发送的信号在到达电缆末端时反射,常见的CAN总线网络拓扑结构如图1所示。
图1 CAN总线网络拓扑结构
2. 理论安装布线
理论安装布线示意图如图2所示。
监控器和监控主机上均有对应的通讯端口CANH和CANL,工程布线安装时,从监控主机引出通讯线,所有监控器挂接到这两根通讯线缆上,通讯线最远端连接120Ω终端电阻。
CANH和CANL有极性之分,不可接反。
图2 理论安装布线示意图
注意,监控主机内部包含120Ω终端电阻,所以正常连接后,两根总线间阻值为60Ω左右,从主机端断开信号线,线间电阻为120Ω,通过测量阻值即可判别布线安装是否正确。
3.特殊分支布线
工程布线时,推荐按照理论安装方式布线,可保证通讯稳定性最佳,但实际应用时可能布线比较繁琐,增加成本。
如CAD图3所示,工程包含三栋建筑,每栋建筑六层,每层三个节点。
右下角为监控主机,通讯线首先分支进入最近的A栋建筑,而后分支进入B栋建筑,最后主干线进入最远的C栋建筑,每层亦可分支连接各个监控器,主干线在C栋建筑顶层最远的监控器处终结,连接120欧电阻盒。
工程若只有一栋建筑,可参照C栋连接方式布线。
注意,特殊分支布线方式通讯易不稳定,所以应尽量少用,且分支线越短越好,连接的节点越少越好。
如果某栋建筑的某一层有很多节点,最好采用理论安装方式布线,其他层节点较少,则可使用特殊分支方式布线。
图3 特殊分支布线。
一提到总线,就很容易让我们联想到错综复杂的计算机电线,可是这些总线总能起着十分重要的作用,今天我们就来认识下CAN 总线协议。
CAN 控制器局域网总线是一种实施应用的串行通讯协议总线,它可以使用双绞线来传输信号,是世界上应用最广泛的现场总线之一。
最常用的领域是汽车。
CAN 协议用于汽车中各种不同元件之间的通信,以此取代昂贵而笨重的配线线束。
【特点】1.CAN 是目前位置唯一有国际标准的现场总线2.CAN 为多主方式工作,网络上任一节点均可在任意时刻主动地向网络上其他节点发送信息,而且部分主从3.在报文标识符上,CAN 上的节点分成不同的优先级,可满足不同的实时要求4.CAN 采用非破坏总线仲裁技术5.CAN 节点只需通过对报文的标识符滤波即可实现点对点、一点对多点及全局广播几种方式接收数据6.CAN 上的节点数主要取决于总线驱动电路7.报文采用短帧结构,传输时间段,受干扰概率低,数据出错率极低8.CAN 的每帧信息都有CRC 校验及其他检错措施,具有极好的检错效果9.CAN 的通信介质可为双绞线、同轴电缆或光纤,选择灵活10.CAN 节点在错误严重的情况下具有自动关闭输出功能,已使总线上其他节点的操作不受影响11.CAN 总线具有较高的性能价格比【总线拓扑图】CAN 控制器根据两根线上的电位差来判断总线电平。
总线电平分为显性电平和隐性电平,二者必居其一。
发送方通过使总线电平发生变化,将消息发送给接收方,如图。
【错误状态种类】1.主动错误状态 主动错误状态是可以正常参加总线通信的状态。
处于主动错误状态的单元检测出错误时,输出主动错误标识。
2.被动错误状态 被动错误状态是易引起错误的状态。
处于被动错误状态的单元虽能参加总线通信,但为不妨碍其他单元通信,接收时不能积极地发送错误通知。
处于被动错误状态的单元即使检测出错误,而其他处于主动错误状态的单元如果没有发现错误,整个总线也被认为是没有错误的。
1.适用范围本文档说明实际建立一个CAN-bus网络时,对网络布线和CAN接口的设计,对通讯电缆和连接器的选择,以及一些保障通讯可靠、提高抗干扰能力的经验措施。
2.网络布线2.1接线盒布线CAN-bus总线中的短线(总线到CAN节点之间的距离)小于0.3米时,可以直接采用接线盒布线,如下图所示:注:图中未画出屏蔽信号线CAN_GND。
2.2三通布线CAN-bus总线中的短线(总线到CAN节点之间的距离)大于0.3米时,可以采用三通布线,使总线至CAN节点的距离小于0.3m,从而保证可靠通讯。
如下图:注:图中未画出信号地CAN_GND和屏蔽地SHIELD。
2.3接线盒和三通布线CAN-bus总线中的短线(总线到CAN节点之间的距离)大于0.3米时,为了布线方便,可以同时选用接线盒和三通布线,如下图:注:图中未画出屏蔽信号线CAN_GND。
实际布线中,可以将接线盒与CAN节点之间的线缆和连接器(三通)进行标准化设计,然后作为布线施工中的标准化配件。
如下图:注:图中未画出信号地CAN_GND和屏蔽地SHIELD。
CAN总线发展控制器局域网CAN(Controller Area Network)属于现场总线的范畴,是一种有效支持分布式控制系统的串行通信网络。
是由德国博世公司在20世纪80年代专门为汽车行业开发的一种串行通信总线。
由于其高性能、高可靠性以及独特的设计而越来越受到人们的重视,被广泛应用于诸多领域。
而且能够检测出产生的任何错误。
当信号传输距离达到10km时,CAN仍可提供高达50kbit/s的数据传输速率。
由于CAN总线具有很高的实时性能和应用范围,从位速率最高可达1Mbps的高速网络到低成本多线路的50Kbps网络都可以任意搭配。
因此,CAN己经在汽车业、航空业、工业控制、安全防护等领域中得到了广泛应用。
随着CAN总线在各个行业和领域的广泛应用,对其的通信格式标准化也提出了更严格的要求。
1991年CAN总线技术规范(Version2.0)制定并发布。
整车CAN通讯协议的基本拓扑结构详解电动汽车,以电池和(电机)系统取代了内燃机汽车的发动机系统,使得汽车上主要的结构和(电气)件发生了很大变化。
在传统汽车上已经比较成熟的(CAN)(总线技术),电动汽车仍然需要作出必要调整才能够使用。
1 电动汽车的CAN协议常用车辆CAN总线通讯协议,大多直接采用SAE-J1939的形式制定。
电动汽车首先遇到了电池系统、电机系统等新加入电器需要重新设定PGN码等问题。
CAN协议始终处在诸侯割据的状态。
在过去的几年中,国家及相关机构也一直在对电动汽车的CAN通讯协议进行研究,希望形成统一的协议体系。
统一的CAN协议,首先是零部件供应商的福音。
当前主流主机厂,每家都有自己的整车通讯协议,各个供应商,需要根据整车厂的定义,修改零部件的CAN协议。
制定电动汽车的CAN协议,基本的思路是在SAE-J1939的基础上,根据自身电动汽车的需求,做出必要的调整。
1.1 原则常用的CAN总线协议标准SAE-J1939中,标准给OSI(开放系统互联参考模型)定义成七层:物理层,数据链路层,(网络)层,传输层,会话层,表示层,应用层。
其中物理层和数据链路层是最基础的两层,在标准ISO 11898中进行定义,并且不可变更。
而SAE-J1939定义了应用层的相关会话规则,所谓通讯协议。
因此我国的CAN (通信)协议的制定主要包括物理层和应用层协议两个方面,其中最主要的工作还是集中在应用层上。
1.2 物理层物理层对一系列(硬件)参数进行了规定,包含总线供电电压、接入系统设备数目、允许的连接器类型、线缆长度以及波特率等。
我们的物理层特性基本完全继承J1939物理层规范,相应的,参数基本与J1939保持一致。
比如CAN2.0B,接入系统的设备数目,最多30个;终端电阻阻值120欧姆,波特率250kbits,线束建议采用双绞线、同轴电缆等等。
1.3 应用层应用层主要规定的内容包括:标识符的分配,报文的发送和接收规则,系统内节点的优先级分配等等。
can总线解决方案
《Can总线解决方案》
Can总线是一种广泛应用于汽车、工业控制和其他领域的串行
通信协议,它具有高可靠性、低成本和实时性强的特点。
随着现代汽车和工业控制系统对通信效率和可靠性要求的提高,Can总线技术也不断得到改进和完善。
为了解决Can总线在实际应用中可能遇到的问题,人们提出了各种解决方案。
首先,Can总线解决方案的关键之一是网络拓扑结构的设计。
不同的应用场景需要不同的网络拓扑结构,如星型、环型、总线型等。
合理的网络拓扑结构可以提高系统的稳定性和可靠性,降低通信延迟。
其次,Can总线解决方案还包括通信协议的优化。
Can总线通
信协议本身具有一定的帧格式和传输速率,但在实际应用中可能需要额外的协议或协议栈来满足特定要求。
例如,对于高速高精度的工业控制系统,可能需要使用Canopen或DeviceNet
等协议来实现更复杂的通信功能。
此外,Can总线解决方案还涉及硬件和软件方面的优化。
在硬
件设计上,可以采用抗干扰性能更好的芯片和模块,增强系统的抗干扰能力;在软件开发上,可以采用更高效的通信协议栈和驱动程序,提高数据传输的速度和稳定性。
总之,Can总线解决方案是一个综合性的工程问题,需要考虑
硬件、软件、通信协议等多个方面的因素。
只有在这些方面都
得到合理的设计和优化,才能实现Can总线系统的高效、稳定和可靠运行。
CAN总线拓扑结构方案简介CAN(Controller Area Network)总线是一种常用于现代汽车、工业控制和其它应用的串行通信协议。
它的主要特点是高可靠性、实时性和高带宽,被广泛应用于车载电子系统和工业领域。
在CAN总线系统中,拓扑结构方案的设计起着至关重要的作用。
本文将介绍几种常见的CAN总线拓扑结构方案,并对各种方案的特点、优缺点进行比较和分析。
单总线拓扑结构单总线拓扑结构是最简单的拓扑结构方案,也是最常用的方案之一。
在单总线拓扑结构中,所有节点都直接连接到同一根总线上。
节点之间通过总线共享数据和通信。
特点•简单、容易实现和维护。
•总线长度可以较长,适合中大型系统的应用。
•总线上只有一个主节点,其他节点均为从节点。
优点•简化硬件设计,减少成本。
•节省总线线缆和器件的使用。
缺点•对于大型系统,总线长度过长会导致信号衰减和反射现象。
•节点数过多时,总线的负载会过重,影响总线性能。
星型拓扑结构星型拓扑结构是另一种常见的拓扑结构方案。
在星型拓扑结构中,所有节点都通过独立的连线连接到主节点(集线器或交换机)。
特点•易于添加或移除节点,不影响其他节点的通信。
•可以通过改变主节点的位置来改变系统的结构。
优点•总线长度可以更长,较少信号衰减和反射问题。
•每个节点之间的通信不会影响其他节点的通信。
缺点•需要更多的线缆。
•需要额外的集线器或交换机等设备。
环型拓扑结构环型拓扑结构是一种将所有节点构成环形的拓扑结构方案。
在环型拓扑结构中,每个节点都与相邻的节点连接,形成一个闭环。
特点•每个节点之间可以直接通信,无需通过中间节点。
•所有节点都能接收到通过总线传输的数据。
优点•可以实现较高的传输速率。
•可以实现实时性较高的通信。
缺点•每个节点都需要两个接口,增加成本。
•添加或移除节点需要重新布线。
混合拓扑结构混合拓扑结构是将多种拓扑结构方案结合在一起的方案。
在混合拓扑结构中,可以同时使用单总线、星型、环型等多种拓扑结构。
利用LPC2194的4路CAN网桥设计kingmacth 发表于嵌入式分类,标签: 嵌入式ARM06三月2010CAN总线以其设计独特、成本低、可靠性高、实时性和抗干扰能力强等特点,在汽车工业、机械工业、纺织工业、机器人、数控机床、医疗器械等领域得到了广泛的应用。
从高速网络到低速的多路接线网络都可以使用CAN总线,其最高传输速率可以达到1 Mbps,最远传输距离可达10 km(传输速率在5 kbps以下时)。
但是当要求传输速率较高且传输距离较远时,单条总线就无法完成;而且在大型的网络中,经常需要多条总线的接入。
这就需要同时有中继与路由功能的CAN网桥来实现以上功能。
本文设计的4路CAN网桥可以延长CAN传输距离,扩展CAN通信网络;同时具有路由功能,可实现不同CAN网络之间的不同路由、不同通信速率的转换,能够在大型CAN网络中起到关键作用。
1 4路CAN网桥的设计方案1.1 CAN网桥的优点使用4路CAN网桥对网络性能的改善有着很大的帮助,在大型网络的组网中有以下优点:①可以延长网络的传输距离,特别是经过几个CAN网桥的中继之后,可以极大地延长传输距离,能够达到几千米甚至几十千米。
②可以增大CAN网络的规模,4路CAN网桥有4个CAN支路,每条支路又可以增加新的CAN网桥,因此可以组成大规模的CAN网络。
③可以实现不同网络之间不同路由的选择,增强了CAN网络的可靠性。
1.2 设计方案CAN网桥的设计方案一般分为单MCU和多MCU两种。
单MCU速度较慢,不适用于高速网络;多MCU 方案结构复杂,稳定性较差。
针对以上情况,本设计采用了自带4路CAN控制器的ARM微控制器LPC2194,同时避免了MCU速度慢和多MCU网络复杂的情况。
LPC2194的特点如下:①具有32位的ARM7微控制器,带有256 KB的嵌入式高速Flash存储器。
32位代码能够在最高时钟频率下运行,且功耗极低,处理速度极快。
②自带4路互联的CAN控制器,完全支持CAN2.0B和ISO1198-1的标准,每个CAN控制器均可以实现1Mbps的速率。
CAN通信网络试题设计要求
(1)通信拓扑图
利用CAN分析仪,完成控制中心与列控中心之间的CAN数据通信。
绘制CAN分析仪、列控中心、控制中心的无线通信网络拓扑图,划线时无粗细和箭头要求,但要在信号线上标注好CAN通信总线接口定义。
将此拓扑图截图,命名为“图2-12-CAN通信网络拓扑”,并将图片粘贴至U盘根目录“提交资料\竞赛答题卡.doc”指定位置。
(2)设计方案
在U盘根目录“提交资料\竞赛答题卡.doc”指定位置填写以下表格,完成CAN分析仪、列控中心、控制中心的通信方案设计,从而实现列控中心与控制中心间的数据透传。