古典概型与几何概型
- 格式:docx
- 大小:239.45 KB
- 文档页数:11
古典概型与几何概型的异同点一、背景和定义1. 古典概型:基于等可能性的最直观概率模型。
若一个试验只有有限个基本事件,且每个基本事件发生的可能性相同,则该试验称为古典概型。
2. 几何概型:当试验的可能结果不是有限可数时,或者每个结果发生的可能性不都是相等的,这时候就需要用到几何概型。
它是基于长度、面积、体积等几何量与概率的结合。
二、相同点1. 两者都是概率模型,用于描述随机试验中各种结果出现的可能性。
2. 在每种模型下,每个基本事件(或样本点)的概率都是非负的,并且它们的和都等于1。
三、不同点1. 试验的基本事件数量:古典概型是有限可数的,而几何概型则可能无限不可数。
2. 概率的定义方式:在古典概型中,概率是基于等可能的假设来定义的。
而在几何概型中,概率是通过与某个几何量(如长度、面积、体积等)的关联来定义的。
3. 概率的计算方法:在古典概型中,概率通常是直接计算基本事件的数量来得到。
而在几何概型中,概率的计算可能需要使用几何知识,如长度、面积或体积等。
4. 适用范围:古典概型适用于具有有限个等可能结果的情况,例如掷骰子、抽签等。
而几何概型适用于试验结果连续且无限的情况,例如在一定范围内的随机落点、随机选择一条线段上的点等。
5. 公平性:古典概型假定每个基本事件的发生是公平的,即每个基本事件的概率都是相等的。
而几何概型中,公平性的概念可能不那么直观,因为基本事件的发生可能与空间的分布有关。
6. 概率的取值:在古典概型中,概率的取值是离散的,通常是0或1。
而在几何概型中,概率的取值是连续的,可以在0到1之间任意取值。
7. 问题的复杂性:对于一些复杂的问题,如复杂的多因素决策问题,可能需要考虑更复杂的概率模型,而不仅仅是古典概型或几何概型。
四、例子1. 古典概型例子:抛掷一枚硬币,正面朝上或反面朝上的概率都是0.5;从一副扑克牌中抽取一张牌,每种花色的概率都是1/4。
这些例子都是基于等可能的假设,每个基本事件的发生概率都是相等的。
古典概型与几何概型古典概型和几何概型是概率论中的两个重要概念,它们被广泛应用于统计学、数学和其他科学领域。
本文将从古典概型和几何概型的定义、特点和应用等方面进行阐述,以帮助读者更好地理解和应用这两个概念。
1. 古典概型古典概型是指在确定试验中,每个基本事件发生的概率相等的情况。
简单来说,就是试验的结果可以列举出来,并且每个结果发生的可能性相同。
比如,投掷一个均匀的骰子,每个点数出现的概率都是1/6,这就是一个典型的古典概型。
古典概型的特点是简单明确,适用于具有确定结果的试验。
它可以用于求解事件的概率、计算期望值等问题。
古典概型在实际应用中有着广泛的应用,比如扑克牌、硬币、骰子等常见的游戏和赌博问题都可以用古典概型进行分析和计算。
2. 几何概型几何概型是指试验的结果在几何空间中的分布情况。
与古典概型不同的是,几何概型中的基本事件并不一定具有相等的概率。
几何概型常用于描述连续型随机变量的分布情况,比如长度、面积、体积等。
几何概型的特点是可以用几何图形来表示,更加直观直观形象。
在几何概型中,我们可以通过计算几何形状的面积、体积等来求解概率和期望值。
几何概型在实际应用中有着广泛的应用,比如连续型随机变量的概率密度函数和分布函数的计算等。
3. 古典概型与几何概型的联系与区别古典概型和几何概型都是概率论中常用的概念,它们都可以用于描述试验结果的概率分布情况。
但是古典概型强调的是试验结果具有相等的概率,而几何概型则不一定具有相等的概率。
古典概型适用于离散型随机变量的分析,一般用于计算排列组合、事件概率等问题。
而几何概型适用于连续型随机变量的分析,一般用于计算几何空间的面积、体积等问题。
古典概型和几何概型在实际应用中常常结合使用。
例如,在计算连续型随机变量的概率时,可以先用几何概型计算几何形状的面积或体积,然后再根据总体积或面积计算概率。
4. 古典概型与几何概型的应用举例古典概型和几何概型在实际应用中有着广泛的应用。
古典概型与几何概型知识归纳1.古典概型(1)定义:如果某类概率模型具有以下两个特点:①试验中所有可能出现的基本事件只有______;②每个基本事件出现的______均等。
我们将具有这两个特点的概率模型称为古典概率模型,简称为古典概型。
(2)古典概型的特点:①有限性:试验中所有可能出现的基本事件只有______;②等可能性:每个基本事件出现的______均等。
(3)古典概型的概率计算公式:mPn=,其中m表示_________________,n表示_________________2.几何概型(1)如果某个事件发生的概率只与构成该事件的区域A的几何度量(长度、面积或体积)成正比,而与A的位置和形状无关,则称这样的概率模型为几何概率模型。
(2)几何概型的特点:①无限性:在一次试验中,可能出现的结果是无限的;②等可能性:每个结果的发生的机会均等。
(3)几何概型的概率计算公式:_______________.p=3.几何概型与古典概型的区别:4.解答概率题的步骤:(1)弄清试验是什么,找出基本事件的构成。
(2)判断概率类型。
(3)找出所求事件,同时弄清所求事迹的构成,并用符号表示。
(4)求概率。
巩固基础1.下列试验是古典概型的是()。
A 任意抛掷两枚骰子,所得点数之和作为基本事件;B为求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件;C从甲地到乙地共条路线,求某人正好选中最短路线的概率;D抛掷一枚均匀的硬币到首次出现正面为止。
2.一部三册的小说,任意排放在书架的同一层上,则各册的排放次序共有的种数()。
A 3B 4C 6D 123.将一枚均匀硬币先后抛两次,恰好出现一次正面的概率是()。
A 12B14C34D134.在区间(1,3)内的所有实数中,随机取一个实数x,则这个实数是不等式250x-<的解的概率为()。
A 34B12C13D235.在半径为2的球O内任取上点P,则||1OP≤的概率为()。
古典概型与几何概型【知识点梳理】一、古典概型1.基本事件:一次试验连同其中可能出现的每一个结果,称为一个基本事件。
基本事件是试验中不能再分的最简单的随机事件。
基本事件有以下两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。
2.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,这种事件叫等可能性事件3.古典概型:具有以下两个特征的随机试验的概率模型称为古典概型。
(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。
4.古典概型的概率计算公式: 对于古典概型,若试验的所有基本事件数为n ,随机事件A包含的基本事件数为m ,那么事件A 的概率定义为()m P A n=。
二、几何概型1. 几何概型的概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成正比,则称这样的概率模型为几何概型。
2. 几何概型试验的两个基本特征:(1)无限性:指在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性。
3. 几何概型事件的概率计算公式:积)的区域长度(面积或体实验的全部结果所构成积)的区域长度(面积或体构成事件A A P =)(【典型例题分析】题型一、古典概型的概率求法例1.单选题是标准化考试中常用的题型,一般是从A ,B ,C ,D 四个选项中选择一个正确答案。
如果考生掌握了考查的内容,他可以选择唯一正确的答案。
假设考生不会做,他随机地选择一个答案,问他答对的概率是_________.例2.在6瓶饮料中,有2瓶已过了保质期。
从中任取2瓶,取到已过保质期的饮料的概率是_______.例3. 将一枚质地均匀的硬币连掷三次,观察落地后的情形(1)写出这个试验的所有的基本事件;(2)“出现一枚正面朝上,两枚反面朝上”这一事件包含了哪几个基本事件?(3)求事件“出现一枚正面朝上,两枚反面朝上”的概率。
一、古典概型1)基本事件:一次试验中所有可能得结果都就是随机事件,这类随机事件称为基本事件.2)基本事件得特点:①任何两个基本事件就是互斥得;②任何事件(除不可能事件)都可以表示成基本事件得与.3)我们将具有这两个特点得概率模型称为古典概率模型,其特征就是:①有限性:即在一次试验中所有可能出现得基本事件只有有限个。
②等可能性:每个基本事件发生得可能性就是均等得;称这样得试验为古典概型.4)基本事件得探索方法:①列举法:此法适用于较简单得实验.②树状图法:这就是一种常用得方法,适用于较为复杂问题中得基本事件探索。
5)在古典概型中涉及两种不通得抽取放方法,下列举例来说明:设袋中有个不同得球,现从中一次模球,每次摸一只,则有两种摸球得方法:①有放回得抽样每次摸出一只后,任放回袋中,然后再摸一只,这种模球得方法称为有放回得抽样,显然对于有放回得抽样,依次抽得球可以重复,且摸球可以无限地进行下去.②无放回得抽样每次摸球后,不放回原袋中,在剩下得球中再摸一只,这种模球方法称为五放回抽样,每次摸得球不会重复出现,且摸球只能进行有限次.二、古典概型计算公式1)如果一次试验中可能出现得结果有个,而且所有结果出现得可能性都相等,那么每一个基本事件得概率都就是;2)如果某个事件包括得结果有个,那么事件得概率.3)事件与事件就是互斥事件4)事件与事件可以就是互斥事件,也可以不就是互斥事件。
古典概型注意:①列举法:适合于较简单得试验。
②树状图法:适合于较为复杂得问题中得基本事件得探求、另外在确定基本事件时,可以瞧成就是有序得,如与不同;有时也可以瞧成就是无序得,如与相同、三、几何概型事件理解为区域得某一子区域,得概率只与子区域得几何度量(长度、面积或体积)成正比,而与得位置与形状无关,满足此条件得试验称为几何概型.四、几何概型得计算1)几何概型中,事件得概率定义为,其中表示区域得几何度量,表示区域得几何度量。
2)两种类型线型几何概型:当基本事件只受一个连续得变量控制时。
古典概型与几何概型知识点总结古典概型和几何概型是概率论中最基础的概率模型,它们分别适用于简单事件和几何事件的计算。
以下是古典概型和几何概型的知识点总结:一、古典概型:1.古典概型是指事件的样本空间具有有限个数的元素,样本点的概率相等。
2.样本空间是指实验中所有可能的结果的集合,例如掷一枚骰子的样本空间为{1,2,3,4,5,6}。
3.事件是样本空间的子集,例如“掷一枚骰子,出现的点数为偶数”的事件为{2,4,6}。
4.古典概型的概率计算公式为:P(A)=n(A)/n(S),其中P(A)为事件A发生的概率,n(A)为事件A包含的样本点个数,n(S)为样本空间的样本点个数。
5.古典概型的概率计算要求样本点的概率相等,且样本点的个数有限。
二、几何概型:1.几何概型是指事件的样本空间是一个几何图形,而不是有限个元素。
2.在几何概型中,事件的概率等于事件所占的几何图形的面积或体积与样本空间所占的几何图形的面积或体积的比值。
3.几何概型的概率计算需要使用几何图形的面积或体积的计算方法,例如计算矩形的面积为长乘以宽,计算圆的面积为π乘以半径的平方。
4.几何概型可以应用于连续变量的概率计算,例如计算一些范围内的事件发生的概率。
5.几何概型的概率计算要求事件与样本空间之间存在其中一种几何关系,例如事件发生的可能性与事件所占的几何图形的面积或体积成正比。
综上所述,古典概型适用于简单事件且样本空间的样本点个数有限的情况,其概率计算公式为P(A)=n(A)/n(S);几何概型适用于事件的样本空间是一个几何图形的情况,概率等于事件所占的几何图形的面积或体积与样本空间所占的几何图形的面积或体积的比值。
掌握古典概型和几何概型的知识点,能够帮助我们更好地理解和计算事件的概率,为概率论的进一步学习奠定基础。
古典概型与几何概型知识点总结古典概型和几何概型是概率论中的两种常见概型,它们分别基于不同的概率空间的划分方式。
下面将对古典概型和几何概型的知识点进行总结。
古典概型(Classical Probability Model)是指概率实验基本样本点是有限个的概率模型。
在古典概型中,样本空间中的每一个样本点发生的机会相同,且样本空间中所有的样本点构成一个有限集合。
在古典概型中,我们通常会利用排列组合的方法来计算事件的概率。
以下是古典概型的一些重要知识点:1.样本空间和事件:样本空间是指一个概率实验中所有可能结果的集合,用Ω表示。
事件是样本空间的一个子集,表示我们感兴趣的结果。
2.事件的概率:在古典概型中,事件A的概率P(A)等于A中的样本点数目除以样本空间中的样本点总数。
即P(A)=,A,/,Ω。
3.加法法则:如果A和B是两个互不相容的事件(即A∩B=Ø),那么两个事件的并事件A∪B的概率等于事件A和事件B的概率之和。
即P(A∪B)=P(A)+P(B)。
4.乘法法则:如果A和B是两个独立事件,即事件A的发生与事件B的发生无关,那么两个事件的交事件A∩B的概率等于事件A的概率乘以事件B的概率。
即P(A∩B)=P(A)*P(B)。
几何概型(Geometric Probability Model)是指概率实验的样本空间是由几何构造组成的。
在几何概型中,样本空间通常是一个几何形状,概率的计算涉及到几何图形的面积或长度。
以下是几何概型的一些重要知识点:1.区间概率:对于一些连续型随机变量,概率可以通过计算指定区间的长度、面积或体积来求解。
这种类型的概率常常与几何图形的几何属性相关。
例如,对于均匀分布的连续随机变量,一个给定区间[a,b]内事件发生的概率等于区间长度除以总长。
2. 概率密度函数:对于连续型随机变量,其概率密度函数(Probability Density Function,PDF)描述了随机变量的可能取值的相对可能性。
高考数学考点归纳之古典概型与几何概型一、基础知识1•古典概型(1) 古典概型的特征:①有限性:在一次试验中,可能出现的结果是有限的,即只有有限个不同的基本事件;②等可能性:每个基本事件出现的可能性是相等的一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征一一有限性和等可能性•(2) 古典概型的概率计算的基本步骤:①判断本次试验的结果是否是等可能的,设出所求的事件为A;②分别计算基本事件的总数n和所求的事件A所包含的基本事件个数m;③利用古典概型的概率公式P(A) = m,求出事件A的概率•(3) 频率的计算公式与古典概型的概率计算公式的异同(1)概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型(2 )几何概型的基本特点:①试验中所有可能出现的结果(基本事件)有无限多个;②每个基本事件出现的可能性相等•(3)计算公式:构成事件A的区域长度面积或体积_________P(A)=试验的全部结果所构成的区域长度面积或体积•几何概型应用中的关注点1关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率• 2确定基本事件时一定要选准度量,注意基本事件的等可能性A. 3_ 10 考点一古典概型[典例精析](1)(2018全国卷n )我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果•哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”, 如30 = 7 + 23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()C.15(2)(2019武汉调研)将一枚质地均匀的骰子投掷两次, 得到的点数依次记为 a 和b ,贝U 方程ax 2 + bx + 1 = 0有实数解的概率是()7 1 A.36 B.2 19 5 C — D — C.36D.18[解析]⑴不超过30的所有素数为2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个 不同的数,共有 C 1o = 45种情况,而和为30的有7+ 23,11+ 19,13 + 17这3种情况,所以所 求概率P =45=1_ *1 < a <6, a € N ,⑵投掷骰子两次,所得的点数a 和b 满足的关系为1 w b < 6, b € N *,组合有36种.若方程ax 2 + bx + 1 = 0有实数解, 贝U △= b 2— 4a > 0,所以 b 2> 4a.当b = 1时,没有a 符合条件;当 b = 2时,a 可取1;当b = 3时,a 可取1,2 ;当b = 4 时,a 可取 1,2,3,4 ;当 b = 5 时,a 可取 1,2,3,4,5,6 ;当 b = 6 时,a 可取 1,2,3,4,5,6.满足条件的组合有1919种,则方程ax 2 + bx + 1 = 0有实数解的概率 P =--.36[答案](1)C (2)C[题组训练]1. (2019 益阳、湘潭调研)已知 a € { — 2,0,1,2,3}, b € {3,5},则函数 f(x) = (a 2— 2)e x + b 为 减函数的概率是()所以a 和b 的3 21解析:选 C 若函数 f(x) = (a 2— 2)e x + b 为减函数,则 a 2— 2v 0,又 a € { — 2,0,1,2,3},故只有a = 0, a = 1满足题意,又b € {3,5},所以函数f(x)= (a 2 — 2)e x + b 为减函数的概率是2•从分别标有1,2,…,9的9张卡片中不放回地随机抽取 2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( )5 4 A — B —A.18B .93•将A , B , C , D 这4名同学从左至右随机地排成一排,则“A 与B 相邻且A 与C 之间恰好有1名同学”的概率是 ( )1 A .2 1 B.4 C 1 C • 61解析:选B A , B , C ,D 4名同学排成一排有 A 4= 24种排法.当A , C 之间是B 时,4 + 2 1有2X 2=4种排法,当A , C 之间是D 时,有2种排法,所以所求概率P =-24-=4.考点二几何概型类型(一)与长度有关的几何概型[例1] (2019濮阳模拟)在[— 6,9]内任取一个实数 m ,设f(x) = — x 2 + mx + m ,则函数f(x) 的图象与x 轴有公共点的概率等于()27A B A.15 B .153 11C5 D.亦[解析]•/ f(x)=— x 2+ mx + m 的图象与 x 轴有公共点,二 △= m 2+ 4m > 0,. m < — 4 或m > 0,.••在 [—6,9]内取一个实 数m ,函数f(x)的图象 与x 轴有公共点的概 率P =[—4— — 6 ] + 9— 0 = 9——6 — [答案]D解析:选C 由题意得,所求概率5X 4X 2 9X 859. 11狗,故选D . 15类型(二)与面积有关的几何概型[例2](1)(2018潍坊模拟)如图,六边形ABCDEF 是一个正六边形,(2)由题意知圆O 的面积为n 3,正弦曲线y = sin x , x € [- n, n ] x 轴围成的区域记为 M ,根据图形的对称性得区域 M 的面积S = 2 / o sin xdx =- 2COS x|o = 4,由几何概型的概 率计算公式可得,随机往圆 O 内投一个点A ,则点A 落在区域M 内的概率P =刍.n[答案](1)C (2)B类型(三)与体积有关的几何概型[例3] 已知在四棱锥 P-ABCD 中,PA 丄底面 ABCD ,底面ABCD 是正方形,PA = AB = 22,现在该四棱锥内部或表面任取一点O ,则四棱锥 O -ABCD 的体积不小于3的概率为2[解析]当四棱锥O -ABCD 的体积为3时,设O 到平面ABCD 的距离为 12 1h ,则 3x 22x h = 3,解得 h = 1 如图所示,在四棱锥 P-ABCD 内作平面EFGH 平行于底面 ABCD ,且1平面EFGH 与底面ABCD 的距离为2.PH 3因为PA 丄底面ABCD ,且FA = 2,所以pA = 4,若在正六边形内任取一点,则该点恰好在图中阴影部分的概率是A.4B.12 C.3(2)(2019洛阳联考)如图,圆O : x 轴围成的区域记为 M (图中阴影部分 A 落在区域M 内的概率是()4 ArB. nD.[解析] ⑴设正六边形的中心为点 O,BD 与AC 交于点G,BC = 1,则BG = CG , Z BGC =120°在厶BCG 中,由余弦定理得1= BG 2+ BG 2- 2BG 2COS 120°得BG =彳,所以&BCG=2 x BG x BG x sin 120 °= 2 xf x 33 x 学=器,因为1S 六边形 ABCDEF = S A BOC x 6 = ~ x 1 x 1 x Sin 60°x 6= 乎,所以该点恰好在图中阴影部分的概率P = 1-6G BCG S 六边形ABCDEF23.又四棱锥P-ABCD与四棱锥P-EFGH相似,所以四棱锥 O -ABCD 的体积不小于2的概率P = V 四棱锥P -EFGH3 V 四棱锥P-ABCD “亠 27[答案1 64类型(四)与角度有关的几何概型[例4]如图,四边形 ABCD 为矩形,AB = 3,BC = 1,以A 为 圆心,1为半径作四分之一个圆弧 斥「,在/ DAB 内任作射线 AP ,则 射线AP 与线段BC 有公共点的概率为 _____________________ .[解析]连接AC ,如图, 因为tan / CAB =器二彳,所以/ CAB =才,满足条件的事件是直线AP 在/ CAB 内,且AP 与AC 相交时,即直线n/ CAB 61AP 与线段BC 有公共点,所以射线 AP 与线段BC 有公共点的概率 P =/DAB =n=勺2 (1)[答案1 3[题组训练]1.(2019豫东名校联考)一个多面体的直观图和三视图如图所示,点 M 是AB 的中点,一只蝴蝶在几何体 ADF -BCE 内自由飞翔,则它飞入几何体: F-AMCD 内的概率为()';A.|1所以它飞入几何体 F-AMCD 内的概率P = — = 2.I 3 2 2a2•在区间[0, n ]随机取一个数x ,则事件“ sin x + cos ”发生的概率为解析:1 1 1选 D 由题图可知 V F -AMCD = 3 X S 四边形 AMCD X DF = 4a 3, V ADF -BCE =尹3,C.3 PH 3 = 3 3= 27 PA 4 64.1sin x + cos x >解析:由题意可得20< x < n解得2. (2019漳州一模)甲、乙、丙、丁、戊 5名同学参加"《论语》知识大赛”,决出第 1 名到第5名的名次•甲、乙两名参赛者去询问成绩,回答者对甲说“虽然你的成绩比乙好,故所求的概率为 12_ 77 12答案:右3. (2018唐山模拟)向圆(x — 2)2+ (y — ,3)2= 4内随机投掷一点,则该点落在x 轴下方的概率为 _________ .解析:如图,连接CA , CB ,依题意,圆心 C 到x 轴的距离为 3,所1 2 1 以弦AB 的长为2.又圆的半径为2,所以弓形 ADB 的面积为2x 2 nX 2 —1 2X 2 X 3 = ^n — . 3,所以向圆(x — 2)2+ (y — . 3)2= 4内随机投掷一点,则该点落在x 轴下方的概率P =1-1 答案:16 [课时跟踪检测]1.(2019衡水联考)2017年8月1日是中国人民解放军建军 90周年, 中国人民银行为此发行了以此为主题的金银纪念币•如图所示是一枚 8克圆形金质纪念币,直径 22 mm ,面额100元•为了测算图中军旗部分的面 积,现用1粒芝麻向硬币内投掷 100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是 ()A. 363 n 10 2mm 2 363 n B.2 mm 2C.726 n 2 mm 2 D.3;20_n mm 2解析:选A向硬币内投掷100次,恰有30次落在军旗内,所以可估计军旗的面积大约是 S = 1°0X nx 112 =现采用分层抽样的方法从中抽取 7名同学去某敬老院参加献爱心活动但是你俩都没得到第一名”; 对乙说“你当然不会是最差的”, 从上述回答分析, 丙是第名的概率是( ) 1 A.51 B.31 C.4 1D.6 解析:选B 由于甲和乙都不可能是第一名,所以第一名只可能是丙、丁或戊 •又因为 所有的限制条件对丙、丁或戊都没有影响,所以这三个人获得第一名是等可能事件, 所以丙 1 是第一名的概率是I 3.(2019郑州模拟)现有5人参加抽奖活动,每人依次从装有 5张奖票(其中 3张中奖票都被抽出时活动结束,则活动恰好在 3张为中奖 票)的箱子中不放回地随机抽取一张,直到第4人抽完结束的概率为( ) 1 B.1 2D.5 解析:选C 将5张奖票不放回地依次取出共有A 5= 120(种)不同的取法,若活动恰好 在第四次抽奖结束,则前三次共抽到2张中奖票,第四次抽到最后一张中奖票, 共有C 2C 1A =36(种)取法,所以P =蛊=鲁. 4.(2019长沙模拟)如图是一个边长为 8的正方形苗圃图案,中间黑色 大圆与正方形的内切圆共圆心, 圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的 2倍.若在正方形图案上随机取一点,则该点取自 黑色区域的概率为( ) n A.8nC.1—n解析:选C 正方形的面积为82,正方形的内切圆半径为4,中间黑色大圆的半径为2,黑 色小圆的半径为1,所以白色区域的面积为 nX 42—nX 22-4 XnX 12= 8 n,所以黑色区域的面积 82 — 8 n n 为82— 8 n 在正方形图案上随机取一点,则该点取自黑色区域的概率为 P == 1—刁 82 5.(2019郑州模拟)已知圆C : x 2+ y 2= 1,直线I : y = k (x + 2),在[—1,1]上随机选取一个数k ,则事件“直线I 与圆C 相离”发生的概率为( ) 2— ,2 B.2 A.1 C 3-V3 C. 32 — ,3 D. 2解析:选C 圆C : x 2+ y 2= 1的圆心C(0,0),半径r = 1,圆心到直线I : y = k(x + 2)的距离d = |0; 0+ 2F=-^L ,直线|与圆C 相离时d > r ,即丁鉴> 1,解得k v —申或 \jk + — 1 yj k + 1 yj k + 134 1(3,7), (4,6)中任选3组,有C 4= 4种选法,故这7个数的平均数是5的概率P = 36 = 了7•一个三位数的百位,十位,个位上的数字依次为 a , b , c ,当且仅当有两个数字的和等于第三个数字时称这个三位数为“好数”(如213,134),若a , b , c € {1,2,3,4},且a , b ,c 互不相同,则这个三位数为“好数”的概率是 ____________ .解析:从1,2,3,4中任选3个互不相同的数并进行全排列,共组成A 4= 24个三位数,而“好数”的三个位置上的数字为 1,2,3或1,3,4,所以共组成2A 3 = 12个“好数”,故所求概8•太极图是以黑白两个鱼形纹组成的圆形图案,展现了一种相互转化, 相对统一的形式美•按照太极图的构图方法,在如图所示的平面直角坐标n系中,圆0被函数y = 3s“6x 的图象分割为两个对称的鱼形图案,其中小 圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为解析:根据题意,大圆的直径为函数y = 3si^ 的最小正周期 T ,又T = 3= 12,所以6 n612大圆的面积 S = n •- 2= 36n, 一个小圆的面积 S ' = n*2= n,故在大圆内随机取一点,此点取自阴影部分的概率 P =%=令=补.S 36 n 181答案:18 9.(2018天津高k >f,故所求的概率 3P =2- f1——13 —3_6•从1〜9这9个自然数中任取 7个不同的数,则这7个数的平均数是 5的概率为解析:从1〜9这9个自然数中任取7个不同的数的取法共有C 7= 36 种,从(1,9), (2,8),24 12.考)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动(1) 应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?⑵设抽出的7名同学分别用 A ,B , C ,D ,E , F ,G 表示,现从中随机抽取 2名同学 承担敬老院的卫生工作•① 试用所给字母列举出所有可能的抽取结果;② 设M 为事件“抽取的2名同学来自同一年级”,求事件 M 发生的概率. 解:(1)因为甲、乙、丙三个年级的学生志愿者人数之比为3 : 2 : 2,由于采用分层抽样的方法从中抽取7名同学,所以应从甲、乙、丙三个年级的学生志愿者中分别抽取 3人,2人,2人.⑵①从抽取的7名同学中随机抽取 2名同学的所有可能结果为{A , B}, {A , C} , {A ,D} , {A , E} , {A , F}, {A , G} , {B , C} , {B , D} , {B , E} , {B , F} , {B , G} , {C , D}, {C , E}, {C , F}, {C , G}, {D , E}, {D , F} , {D , G} , {E , F} , {E , G} , {F , G},共 21种.②由①,不妨设抽出的7名同学中,来自甲年级的是 A , B , C ,来自乙年级的是 D , E , 来自丙年级的是 F , G ,则从抽出的7名同学中随机抽取的 2名同学来自同一年级的所有可 能结果为{A , B} , {A , C} , {B , C} , {D , E}, {F , G},共 5 种.5所以事件M 发生的概率P(M =—. 10.在某大型活动中,甲、乙等五名志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者•(1)求甲、乙两人同时参加 A 岗位服务的概率; (2) 求甲、乙两人不在同一个岗位服务的概率; (3)求五名志愿者中仅有一人参加 A 岗位服务的概率A 41⑵记“甲、乙两人同时参加同一岗位服务 ”为事件E ,那么P(E) =10,所以甲、9乙两人不在同一岗位服务的概率是P( E ) = 1 — P(E) =后.1.(2019太原联考)甲、乙二人约定 7: 10在某处会面,甲在 7: 00〜7: 20内某一时刻4解:(1)记“甲、乙两人同时参加A 岗位服务为事件E A ,那么P(E A ) =A * * 3 __1 C 5A L 40 ,即甲、乙两人同时参加 A 岗位服务的概率是140.1=4所以仅有一人参加A 岗位服2B1答案:——> > ------ >P B + P C + 2 PA = 0,现将一粒黄豆随机撒在随机到达,乙在7: 05〜7:20内某一时刻随机到达,则甲至少需等待乙 5分钟的概率是() 1 A.81 B.4 3 C.8 5 D.8 解析:选C 建立平面直角坐标系如图, x , y 分别表示甲、乙二人 到达的时刻,则坐标系中每个点 (x , y )可对应甲、乙二人到达时刻的可能 y — x > 5, 性,则甲至少等待乙5分钟应满足的条件是 0W x w 20, 其构成的区域 5< y < 20, 为如图阴影部分,则所求的概率1X 15X 15-2 3 P = =— 20 X 15 8' 2.(2019开封模拟)如图,某建筑工地搭建的脚手架局部类似于一个 2X 2X 3的长方体框架,一个建筑工人欲从 A 处沿脚手架攀登至 B 处,则其 最近的行走路线中不连续向上攀登的概率为 ( ) 解析:选B 根据题意,最近路线就是不能走回头路,不能走重复的路,•••一共要走 3 次向上,2次向右,2次向前,共7次,.••最近的行走路线共有 A 7= 5 040(种).•••不能连续向 上,.••先把不向上的次数排列起来,也就是 2次向右和2次向前全排列为 A 4.接下来,就是 把3次向上插到4次不向上之间的空当中, 5个位置排3个元素,也就是 A 5,则最近的行 走路线中不连续向上攀登的路线共有 A 4A 5= 1 440(种),•其最近的行走路线中不连续向上 1 440 2 攀登的概率p =両r 7.故选B. 3•已知等腰直角厶 ABC 中,/ C = 90°在/ CAB 内作射线 AM ,则使/ CAM V 30°的概 率为 解析:如图,在/ CAB 内作射线AM 0, 使/ CAM 0= 30° 于是有 P(/ CAM / CAM 0 30 V 30 )=TCAB"— 245一3.△ ABC 内,则黄豆落在△ PBC 内的概率是(1A]4•已知 P 是厶ABC 所在平面内一点,且1根据几何概型的概率计算公式2 3解析:选C 以PB, PC为邻边作平行四边形PBDC,连接PD交BC于点0,则再B + R6 = _PD .--- B ---- B ------ B•/ PB + PC + 2 PA = 0,二-6+_P CT=- 2-,即可6= - 2"P A ,由此可得,P是BC边上的中线A0的中点,点P到BC的距离等于点A到BC的距离,,1 1 S^PBC 的2, •••S APBC=2S S BC,.・.将一粒黄豆随机撒在△ ABC内,黄豆落在△ PBC内的概率P =王;二12.5.点集Q = {(x, y)|0w x w e, 0< y w e}, A= {(x, y)|y>e x, (x, y) € Q},在点集Q 中任取一个元素a,则a€ A的概率为()1A.—eB.4e—1C.-ee2-1 D.—2 e解析:选B 如图,根据题意可知Q表示的平面区域为正方形BCDO , 面积为e2, A表示的区域为图中阴影部分,面积为/ 0 (e- e x)dx= (ex-1e x)|0= (e- e)-(—1) = 1,根据几何概型可知 a € A的概率P=二.故选B.e n a/ C1L 电*6.如图,来自古希腊数学家希波克拉底所研究的几何图形个半圆构成,三个半圆的直径分别为直角三角形边AB, AC A ABC的三边所围成的区域记为I,黑色部分记为H,其余.此图由三ABC的斜边BC,直角P1, P2, P3,则部分记为川.在整个图形中随机取一点,此点取自I ,n,川的概率分别记为C.p2= p3D.p1 = p2+ p3解析:选A不妨设△ ABC为等腰直角三角形,AB= AC = 2, 则BC = 2 2,A. p1 = p2B.p1= p3所以区域I的面积即△ ABC的面积,1为S1 = X 2X 2= 2,区域H的面积S2= T X 12—nX22- 2 = 2,区域川的面积S3=nX2"-2 =n- 2.得 P1=p2=dk ,P3=n 2,所以 P 1M p 3,卩2工P 3, P 1工P 2 + P 3, 故选 A.X 2 3 V 27.双曲线 C :孑一詁=1(a > 0, b > 0),其中 a € {1,2,3,4} , b € {1,2,3,4},且 a , b 取到其 中每个数都是等可能的, 则直线I: y =x 与双曲线C 的左、右支各有一个交点的概率为 ()1 A.1 5 D.5解析:选B 直线I : y = x 与双曲线C 的左、右支各有一个交点,贝U b > 1,总基本事件a 数为 4X 4= 16,满足条件的(a , b)的情况有(1,2), (1,3), (1,4), (2,3), (2,4), (3,4),共 6 个, 故概率为3.818.在区间[0,1]上随机取两个数 a , b ,则函数f(x)= x 2 + ax + 4b 有零点的概率是1解析:函数 f(x)= x 2 + ax + 4b 有零点,则 △= a 2— b > 0,二 b < a 2,「.函数 f(x)= x 2 + ax (3)因为有两人同时参加 A 岗位服务的概率3务的概率P 1= 1 — P 2=;.2 / o a 2da 1 + 4b 有零点的概率 P = 1 % 1 = 3.3 B.3C.2。
古典概型与几何概型一、古典概型 1、定义(1)样本空间的元素只有有限个; (2)每个基本事件发生的可能性相同。
比如:抛掷一枚均匀硬币的试验,抛掷一枚均匀骰子的试验,从一副扑克牌中随机抽取一张。
称具备条件(1)、(2)的实验称为等可能概型,考虑到它在概率论早期发展中的重要地位,又把它叫做古典概型。
2、古典概型中事件概率的计算设{}ωωωn ,,, 21=Ω ,由古典概型的等可能性,得}{}{}{21n P P P ωωω=== 又由于基本事件两两互不相容;所以},{}{}{}{121n P P P P ωωω ++=Ω=.,,2,1,1}{n i n P i ==ω若事件A 包含m 个样本点,即{}ωωωi i i A m,,,21 =, 则有 :中元素个数中元素个数Ω=A P(A)基本事件总数发生的基本事件数使A =n m= 1.(2010佛山一模)已知某射击运动员,每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1,表示没有击中目标,2,3,4,5,6,,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数: 5727 0293 7140 9857 0347 4373 8636 9647 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 6710 4281 据此估计,该射击运动员射击4次至少击中3次的概率为 ( ) A .0.85 B .0.8192 C .0.8 D . 0.752.(2007·广东)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是A .310B .15C .110D .1123.(2009江苏)现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为 .4.(2009·安徽文)从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________。
【知识概述】1古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)试验中所有可能出现的基本事件只有有限个 (2)每个基本事件出现的可能性相等 2•如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每1个基本事件的概率都是1n如果某个事件 A 包括的结果有 m 个,那么事件 A 的概率P(A) =m.nA 包含的基本事件的个数3.古典概型的概率公式P (A)= 基本事件的总数4.几何概型模型为几何概率模型,简称为几何概型亠构成事件A 的区域长度 面积或体积5.几何概型中,事件A 的概率公式 卩(刘=试验的全部结果所构成的区域长度6.要切实理解并掌握几何概型试验的两个基本特点 (1)无限性:在一次试验中,可能出现的结果有无限多个; (2)等可能性:每个结果的发生具有等可能性.7.几何概型的试验中,事件A 的概率P(A)只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关.关键是求得事件所占区域和整个区域Q 的几何度量,然后代入公式即可求解.的元素个数,事件 A 是集合I 的一个包含m 个元素的子集. 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率面积或体积8.求试验中几何概型的概率,9.从集合的角度去看待概率,在一次试验中,等可能出现的全部结果组成一个集合I ,基本事件的个数n 就是集合Im 故P(A)= 10斤=card I n【学前诊断】[难度]易1 1 1L 一个骰子连续投2次,点数和为4的概率为2 33 4在区间[—1,2]上随机取一个数 X ,则x € [0, 1]的概率为如图所示,在一个边长为3 cm 的正方形内部画一个边长为 2 cm 的正方形,向大正方形内随机投点,则所投的点落入小正方形内的概率是2 cm【经典例题】1. 1盒中有3只灯泡,其中2只是正品,1只是次品.(1) 从中取出1只,然后放回,再取 1只,求连续2次取出的都是正品的概率; (2) 从中一次任取出 2只,求2只都是正品的概率.2.现有8名世博会志愿者,其中志愿者 A 1、A 2、A 3通晓日语,B 1、B 2、B 3通晓俄语,C 1、C 2通晓韩语•从中选出通晓日语、俄语和韩语的志愿者各 1名,组成一个小组.(1) 求A 1被选中的概率;(2) 求B 1和C 1不全被选中的概率.3•抛掷两枚骰子,求下列事件的概率:(1) 点数之和是4的倍数; (2) 点数之和大于 5小于10.例4•有一段长为10米的木棍,现要截成两段,每段不小于3米的概率有多大?例5•某公共汽车站每隔 10分钟有一辆汽车到达,乘客到达车站的时刻是任意的,求乘客 候车时间不超过6分钟的概率.1. 1 2011 20122. [难度]中3. [难度]中2. 用列举法把古典概型试验的基本事件一一列出来,然后再求出事件A 中的基本事件,利3. 4. 用公式P(A)= m 求出事件A 的概率.这是一个形象、直观的好方法, 某一顺序做到不重复、不遗漏.要切实理解并掌握几何概型试验的两个基本特点(1) 无限性:在一次试验中,可能出现的结果有无限多个; (2) 等可能性:每个结果的发生具有等可能性. 几何概型的试验中,事件A 的概率P(A)只与子区域 A 的几何度量成正比,而与 A 的位置和形状无关.但列举时必须按照(长度、面积或体积)例7 .甲、乙两人约定在 6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟, 过时即可离去.求两人能会面的概率.例&一只小蜜蜂在一个棱长为 30的正方体玻璃容器内随机飞行,若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于 10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于 10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率 是 .【本课总结】一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征一一有限性和等可能性,只有同时具备这两个特点的概型才是古典概型. 正确的判断试验的类型是解决概率问题的关键.1. 例6.5.古典概型与几何概型的异同点:几何概型是与古典概型最为接近的一种概率模型,两者的共同点是基本事件是等可能的,不同点是基本事件数一个是有限的, 一个是无限的,基本事件可以抽象为点. 对于 几何概型,这些点尽管是无限的,但它们所占据的区域是有限的,根据等可能性,这个点落在区域的概率与该区域的几何度量成正比,而与该区域的位置和形状无关.【活学活用】1.[难度]中一对年轻夫妇和其两岁的孩子做游戏,让孩子把分别写有“ Dream 的四张卡片随机排成一行,若卡片按从左到右的顺序排成Dream ”,则孩子会得到父母的奖励,那么孩子受到奖励的概率为丄Z A. 12 B. 12C.122.[难度]中某人随机地在如右图所示正三角形及其外接圆区域内部投针边界),则针扎到阴影区域(不包括边界)的概率为 ______________3. [难度]中为积极配合大型活动志愿者招募工作,某校拟成立由4名同学组成的志愿者招募宣传队,经过初步选定,2名男同学,4名女同学共6名同学成为候选人,每位候选人当选宣传队 队员的机会是相同的.(1) 求当选的4名同学中恰有1名男同学的概率; (2) 求当选的4名同学中至少有3名女同学的概率.“One”’ “World,” “0ne”’“ One World One( ) 5 D.5(不包括三角形边界及圆的。
古典概型与几何概型1.(2019·全国Ⅰ)我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“——”,如图就是一重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A.516B.1132C.2132D.1116答案 A解析由6个爻组成的重卦种数为26=64,在所有重卦中随机取一重卦,该重卦恰有3个阳爻的种数为C36=6×5×43×2×1=20.根据古典概型的概率计算公式得,所求概率P=2064=516.故选A.2.(2019·黄冈调研)黄冈市的天气预报显示,大别山区在今后的三天中,每一天有强浓雾的概率为40%,现用随机模拟的方法估计这三天中至少有两天有强浓雾的概率:先利用计算器产生0~9之间整数值的随机数,并用0,1,2,3,4,5表示没有强浓雾,用6,7,8,9表示有强浓雾,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数:779 537 113 730 588 506 027 394 357 231683 569 479 812 842 273 925 191 978 520则这三天中至少有两天有强浓雾的概率近似为( )A.14B.25C.310D.15答案 C解析由题意,知模拟这三天中至少有两天有强浓雾的结果,经随机模拟产生了20组随机数,在20组随机数中表示三天中至少有两天有强浓雾的有6组随机数:779,588,683,569,479,978,故所求概率为620=310.3.(2019·九江模拟)河图是上古时代神话传说中伏羲通过黄河中浮出龙马身上的图案,与自己的观察,画出的“八卦”,而龙马身上的图案就叫做“河图”.把一到十分成五组,如图,其口诀:一六共宗,为水居北;二七同道,为火居南;三八为朋,为木居东;四九为友,为金居西;五十同途,为土居中.现从这十个数中随机抽取四个数,则能成为两组的概率是( )A.15B.110C.121D.1252答案 C解析 现从这十个数中随机抽取4个数,基本事件总数n =C 410,能成为两组的基本事件个数m =C 25,则能成为两组的概率是P =m n =C 25C 410=121.4.在长为10 cm 的线段AB 上任取一点C ,再作一个矩形,使其边长分别等于线段AC ,CB 的长,则该矩形面积小于16 cm 2的概率为( ) A.15 B.25 C.35 D.45 答案 B解析 设AC =x ,则BC =10-x ,由题意矩形面积S =x ·()10-x <16,所以x <2或x >8,又0<x <10,所以该矩形面积小于16的概率为410=25.5.(2019·青岛模拟)有一底面半径为1,高为2的圆柱,点O 为圆柱下底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为( ) A.13 B.23 C.34 D.14 答案 B解析 设点P 到点O 的距离小于等于1的概率为P 1,由几何概型,则P 1=V 半球V 圆柱=12×4π3×13π×12×2=13,故点P 到点O 的距离大于1的概率P =1-13=23. 6.(2019·遵义模拟)如图,该茎叶图表示的是甲、乙两人在5次综合测评中的成绩(成绩为整数),其中一个数字被污损,则乙的平均成绩不低于甲的平均成绩的概率为( )A.15B.25C.110D.310答案 A解析 记其中被污损的数字为x .依题意,得甲的5 次综合测评的平均成绩为90,乙的5 次综合测评的平均成绩为15(442+x ),令15(442+x )≥90,由此解得x ≥8,由此乙的平均成绩不低于甲的平均成绩的概率为210=15.7.中国古代数学名著《九章算术》中记载:“圆周与其直径之比被定为3,圆中弓形面积为12a (a +c )(c 为弦长,a 为半径长与圆心到弦的距离之差).”据此计算,已知一个圆中弓形所对应的弦长c =6,a =1,质点M 随机投入此圆中,则质点M 落在该弓形内的概率为( ) A.730 B.175 C.7150 D.350 答案 C解析 由圆中弓形面积为12a (a +c )知弓形的面积S 1=12×1×(6+1)=72.设圆的半径为r ,则r 2=(r -1)2+32,解得r =5,所以圆的面积S 2=3r 2=75,所以质点M 落在弓形内的概率为P=S 1S 2=7275=7150. 8.(2019·汕头达濠华侨中学、东厦中学联考)如图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,据此可估计黑色部分的面积为( )A.11B.10C.9D.8 答案 C解析 设黑色部分的面积为S ,∵边长为4的正方形二维码, 在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点, ∴S4×4=225400,解得S =9, 据此可估计黑色部分的面积为9.9.(2019·长沙长郡中学模拟)已知A (1,0),B (x ,y )(x ,y ∈R),若|AB →|≤1,则2y -x≥1的概率为( ) A.12+14π B.14+1π C.12-12π D.14-12π答案 D解析 ∵A (1,0),B (x ,y )(x ,y ∈R),|AB →|≤1,∴()x -12+y 2≤1,表示以点(1,0)为圆心,1为半径的圆面(包括边界),∵2y -x≥1,∴y ≥x ,即⎩⎪⎨⎪⎧x -12+y 2≤1,y ≥x .可行域为阴影部分(包括边界),如图所示.由几何概型概率计算公式,得到14π×12-12×12π×12=14-12π. 10.如图,边长为a 的正六边形内有六个半径相同的小圆,这六个小圆分别与正六边形的一边相切于该边的中点,且相邻的两个小圆互相外切,则在正六边形内任取一点,该点恰好取自阴影部分的概率为( )A.9-3π18 B.9-43π18 C.9-3π27D.9-43π27答案 C解析 如图所示,六边形为边长为a 的正六边形,则OA =OB =AB =a ,设正六边形的中心为点O ,小圆的圆心为O ′,则O ′C ⊥AB ,∴OC =32a , ∴O ′C =36a ,OO ′=33a ,∴OD =12a , ∴S 阴影=12×⎣⎢⎡⎦⎥⎤12×36a ·12a -16π·⎝ ⎛⎭⎪⎫36a 2=⎝ ⎛⎭⎪⎫32-π6a 2,S 正六边形=332a 2,∴在正六边形内任取一点,该点恰好取自阴影部分的概率P =S 阴影S 正六边形=32-π6332=9-3π27. 11.用0与1两个数字随机填入如图所示的5个格子里,每个格子填一个数字,并且从左到右数,不管数到哪个格子,总是1的个数不少于0的个数,则这样填法的概率为( )A.532B.516C.1132D.1116 答案 B解析 由题意可知,填写的可能结果共有如下32种: 00000,00001,00010,00011,00100,00101,00110,00111, 01000,01001,01010,01011,01100,01101,01110,01111, 10000,10001,10010,10011,10100,10101,10110,10111, 11000,11001,11010,11011,11100,11101,11110,11111, 其中满足题意的有10种:10101,10110,10111,11001,11010,11011,11100,11101,11110,11111, 由古典概型概率计算公式可得满足题意的概率值P =1032=516. 12.(2019·河南名校联考)如图放置的边长为1的正方形PABC 沿x 轴顺时针滚动一周,设顶点P 的运动轨迹与x 轴所围区域为M ,若在平面区域N =⎩⎨⎧x ,y ⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0≤x ≤4,0≤y ≤2内任意取一点Q ,则所取的点Q 恰好落在区域M 内部的概率为( )A.π16B.π8C.π+18D.π+28 答案 C解析 正方形PABC 沿x 轴顺时针滚动一周,顶点P 的运动轨迹分三部分:前一部分的图象为四分之一圆周,后一部分的图象为四分之一圆周,且半径都是1,此时两部分扇形所占面积之和为12π,中间部分的轨迹为以 2为半径的四分之一圆周,与x 围成的面积为14π×()22+1=π2+1,顶点P 的运动轨迹与x 轴所围区域M 的面积为π2+π2+1=π+1,平面区域N =⎩⎨⎧x ,y ⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0≤x ≤4,0≤y ≤2的面积为4×2=8,所以在平面区域N =⎩⎨⎧x ,y ⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0≤x ≤4,0≤y ≤2内任意取一点Q ,则所取的点Q 恰好落在区域M 内部的概率为π+18. 13.(2019·资阳模拟)从数字1,2,3,4中,随机抽取3个数字(允许重复)组成一个三位数,则各位数字之和等于9的概率为________. 答案532解析 三位数共有4×4×4=64(个),各位数字之和等于9有这样几种情况,第一种:各个数字不同只有一种情况,即取2,3,4这三个数字,这样的三位数有A 33=6(个); 第二种:数字相同的情况,可以取1,4,4,这样的三位数有3个;可以取3,3,3这样的三位数有1个.所以各位数字之和等于9的概率是6+3+164=532.14.(2019·邢台模拟)小周公司的班车早上7点到达A 地,停留15分钟.小周在6:50至7:45之间到达A 地搭乘班车,且到达A 地的时刻是随机的,则他能赶上公司班车的概率为________. 答案511解析 依题意知,从6:50至7:45之间一共有55分钟,其中7:15之前能赶上班车,故能赶上班车的时间有25分钟,由几何概型的概率计算公式,得2555=511,即他能赶上公司班车的概率为511.15.(2019·开封模拟)赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(由以弦为边长得到的正方形组成).类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设DF =2AF ,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是________.答案413解析 由题意,设DF =2AF =2a ,且a >0, ∵∠DFE =π3,∴∠AFC =π-π3=2π3,∴△DEF 的面积为S △DEF =12·2a ·2a ·sin π3=3a 2,△AFC 的面积为S △AFC =12·a ·3a ·sin 2π3=334a 2,∴在大等边三角形中随机取一点,此点取自小等边三角形的概率是P =3a23×334a 2+3a 2=413. 16.(2019·黄山八校联考)一个盒子中装有6张卡片,上面分别写着如下六个定义域为R 的函数:f 1(x )=x 3,f 2(x )=||x ,f 3(x )=sin x, f 4(x )=cos x ,f 5(x )=2x,f 6(x )=1-2x1+2x ,从盒子中任取2张卡片,将卡片上的函数相乘得到一个新函数,所得新函数为奇函数的概率是________. 答案25解析 由题意知本题是一个等可能事件的概率,由函数的奇偶性可得函数f 1(x )=x 3,f 3(x )=sin x ,f 6(x )=1-2x1+2x 为奇函数;函数f 2(x )=||x ,f 4(x )=cos x 为偶函数;f 5(x )=2x为非奇非偶函数,试验发生包含的事件是从6张卡片中抽取2张,共有C 26=15(种)结果,事件A为“任取两张卡片,将卡片上的函数相乘得到的函数是奇函数”,因为一个奇函数与一个偶函数相乘得到的函数是奇函数,所以共有C13C12=6(种)结果,所以P(A)=615=25.。