古典概型与几何概型的区别
- 格式:doc
- 大小:34.00 KB
- 文档页数:6
古典概型与几何概型的异同点一、背景和定义1. 古典概型:基于等可能性的最直观概率模型。
若一个试验只有有限个基本事件,且每个基本事件发生的可能性相同,则该试验称为古典概型。
2. 几何概型:当试验的可能结果不是有限可数时,或者每个结果发生的可能性不都是相等的,这时候就需要用到几何概型。
它是基于长度、面积、体积等几何量与概率的结合。
二、相同点1. 两者都是概率模型,用于描述随机试验中各种结果出现的可能性。
2. 在每种模型下,每个基本事件(或样本点)的概率都是非负的,并且它们的和都等于1。
三、不同点1. 试验的基本事件数量:古典概型是有限可数的,而几何概型则可能无限不可数。
2. 概率的定义方式:在古典概型中,概率是基于等可能的假设来定义的。
而在几何概型中,概率是通过与某个几何量(如长度、面积、体积等)的关联来定义的。
3. 概率的计算方法:在古典概型中,概率通常是直接计算基本事件的数量来得到。
而在几何概型中,概率的计算可能需要使用几何知识,如长度、面积或体积等。
4. 适用范围:古典概型适用于具有有限个等可能结果的情况,例如掷骰子、抽签等。
而几何概型适用于试验结果连续且无限的情况,例如在一定范围内的随机落点、随机选择一条线段上的点等。
5. 公平性:古典概型假定每个基本事件的发生是公平的,即每个基本事件的概率都是相等的。
而几何概型中,公平性的概念可能不那么直观,因为基本事件的发生可能与空间的分布有关。
6. 概率的取值:在古典概型中,概率的取值是离散的,通常是0或1。
而在几何概型中,概率的取值是连续的,可以在0到1之间任意取值。
7. 问题的复杂性:对于一些复杂的问题,如复杂的多因素决策问题,可能需要考虑更复杂的概率模型,而不仅仅是古典概型或几何概型。
四、例子1. 古典概型例子:抛掷一枚硬币,正面朝上或反面朝上的概率都是0.5;从一副扑克牌中抽取一张牌,每种花色的概率都是1/4。
这些例子都是基于等可能的假设,每个基本事件的发生概率都是相等的。
古典概型与几何概型古典概型和几何概型是概率论中的两个重要概念,它们被广泛应用于统计学、数学和其他科学领域。
本文将从古典概型和几何概型的定义、特点和应用等方面进行阐述,以帮助读者更好地理解和应用这两个概念。
1. 古典概型古典概型是指在确定试验中,每个基本事件发生的概率相等的情况。
简单来说,就是试验的结果可以列举出来,并且每个结果发生的可能性相同。
比如,投掷一个均匀的骰子,每个点数出现的概率都是1/6,这就是一个典型的古典概型。
古典概型的特点是简单明确,适用于具有确定结果的试验。
它可以用于求解事件的概率、计算期望值等问题。
古典概型在实际应用中有着广泛的应用,比如扑克牌、硬币、骰子等常见的游戏和赌博问题都可以用古典概型进行分析和计算。
2. 几何概型几何概型是指试验的结果在几何空间中的分布情况。
与古典概型不同的是,几何概型中的基本事件并不一定具有相等的概率。
几何概型常用于描述连续型随机变量的分布情况,比如长度、面积、体积等。
几何概型的特点是可以用几何图形来表示,更加直观直观形象。
在几何概型中,我们可以通过计算几何形状的面积、体积等来求解概率和期望值。
几何概型在实际应用中有着广泛的应用,比如连续型随机变量的概率密度函数和分布函数的计算等。
3. 古典概型与几何概型的联系与区别古典概型和几何概型都是概率论中常用的概念,它们都可以用于描述试验结果的概率分布情况。
但是古典概型强调的是试验结果具有相等的概率,而几何概型则不一定具有相等的概率。
古典概型适用于离散型随机变量的分析,一般用于计算排列组合、事件概率等问题。
而几何概型适用于连续型随机变量的分析,一般用于计算几何空间的面积、体积等问题。
古典概型和几何概型在实际应用中常常结合使用。
例如,在计算连续型随机变量的概率时,可以先用几何概型计算几何形状的面积或体积,然后再根据总体积或面积计算概率。
4. 古典概型与几何概型的应用举例古典概型和几何概型在实际应用中有着广泛的应用。
古典概型和几何概型的意义和主要区别在初中阶段的教学过程中,作为教师,理解古典概型和几何概型的意义和主要区别,有利于从事相应的教学。
几何概型是在学习了古典概型之后,将等可能事件的概念从有限向无限的延伸,这两种概型,在初中阶段都呈现了出来,作为教师,理解古典概型和几何概型的意义和主要区别,有利于培养学生的建模能力、逻辑推理能力和空间观念,下面我就两种概型的意义、两种概型的主要区别以及怎样应用它们发展学生的诸多能力加以简单介绍。
一、古典概型和几何概型的意义(一).几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.1.几何概型的特点:(1)试验中所有可能出现的基本事件有无限多个.(2)每个基本事件出现的可能性相等.2.几何概型求事件A的概率公式:P(A)=构成事件A的区域长度(面积或体积)/ 实验的全部结果所构成的区域长度(面积或体积)(二)古典概型的意义大家都很熟知,此处不在介绍1. 古典概型的特点:(1)试验中所有可能出现的基本事件只有有限个.(2)每个基本事件出现的可能性相等.2. 古典概型求事件A的概率公式:P(A)=事件A可能发生的结果数/实验发生的所有等可能的结果数二. 古典概型与几何概型的主要区别几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子。
三.利用不同概率模型,培养学生的建模能力及实际应用能力(一)结合实例进行建模题组一:情境1、抛掷两颗骰子,求出现两个“6点”的概率情景2、1号口袋中装有两只红球一只白球,2号口袋中装有一只红球一只白球,这些球处颜色不同外,其他都相同,小明从两个袋各摸一球,问摸出的两球异色的概率是多少?情景3、一口袋中装有3只红球2只白球,小明从口袋里摸出一球放回去,摇匀后,在摸出一球,问两次摸出的球为异色的概率是多少?情景4、一口袋中装有3只红球2只白球,小明从口袋里一次摸出2球,问两球异色的概率是多少?说明:第一组题是古典概型,(1)通过解题让学生从多角度理解古典概型的特征;(2)通过作树状图,让学生领略各题之间存在的不同;(3)体会应用古典概型解决实际问题时应注意的事项(如:元素是否重复利用、元素间有无顺序;实验出现的结果确保等可能性)。
一、 古典概型1)基本事件:一次试验中所有可能的结果都是随机事件,这类随机事件称为基本事件. 2)基本事件的特点:① 任何两个基本事件是互斥的;② 任何事件(除不可能事件)都可以表示成基本事件的和. 3)我们将具有这两个特点的概率模型称为古典概率模型,其特征是: ① 有限性:即在一次试验中所有可能出现的基本事件只有有限个.② 等可能性:每个基本事件发生的可能性是均等的;称这样的试验为古典概型. 4)基本事件的探索方法:① 列举法:此法适用于较简单的实验.② 树状图法:这是一种常用的方法,适用于较为复杂问题中的基本事件探索.5)在古典概型中涉及两种不通的抽取放方法,下列举例来说明:设袋中有n 个不同的球,现从中一次模球,每次摸一只,则有两种摸球的方法: ① 有放回的抽样每次摸出一只后,任放回袋中,然后再摸一只,这种模球的方法称为有放回的抽样,显然对于有放回的抽样,依次抽得球可以重复,且摸球可以无限地进行下去. ② 无放回的抽样每次摸球后,不放回原袋中,在剩下的球中再摸一只,这种模球方法称为五放回抽样,每次摸的球不会重复出现,且摸球只能进行有限次. 二、 古典概型计算公式1)如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n; 2)如果某个事件A 包括的结果有m 个,那么事件A 的概率()m P A n=. 3)事件A 与事件B 是互斥事件()()()P AB P A P B =+4)事件A 与事件B 可以是互斥事件,也可以不是互斥事件()()()()P A B P A P B P A B =+-.古典概型注意:① 列举法:适合于较简单的试验.② 树状图法:适合于较为复杂的问题中的基本事件的探求.另外在确定基本事件时,(),x y 可以看成是有序的,如()1,2与()2,1不同;有时也可以看成是无序的,如()1,2与()2,1相同.三、几何概型事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,满足此条件的试验称为几何概型. 四、几何概型的计算1)几何概型中,事件A 的概率定义为()AP A μμΩ=,其中μΩ表示区域Ω的几何度量,A μ表示区域A 的几何度量. 2)两种类型线型几何概型:当基本事件只受一个连续的变量控制时.面型几何概型:当基本事件受两个连续的变量控制时,一般是把两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决. 五、几何概型具备以下两个特征:1)无限性:即每次试验的结果(基本事件)有无限多个,且全体结果可用一个有度量的几何区域来表示;2)等可能性:即每次试验的各种结果(基本事件)发生的概率都相等.一、古典概型古典概型是基本事件个数有限,每个基本事件发生的概率相等的一种概率模型,其概率等于随机事件所包含的基本事件的个数与基本事件的总个数的比值.【题干】甲、乙、丙、丁4个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这4个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为( ) A .16B .14C .13D .12【答案】D.【解析】甲、乙在同一组:113P =.甲、乙不在同一组,但相遇的概率:2111362P =+=.【点评】【题干】有十张卡片,分别写有A 、B 、C 、D 、E 和a 、b 、c 、d 、,(1)从中任意抽取一张,①求抽出的一张是大写字母的概率;②求抽出的一张是或的概率;e A a(2)若从中抽出两张,③求抽出的两张都是大写字母的概率;④求抽出的两张不是同一个字母的概率; 【答案】 【解析】 【点评】【题干】袋子中装有编号为,a b 的2个黑球和编号为,,c d e 的3个红球,从中任意摸出2个球.(1)写出所有不同的结果;(2)求恰好摸出1个黑球和1个红球的概率; (3)求至少摸出1个黑球的概率.【答案】(1),,,,,,,,,ab ac ad ae bc bd be cd ce de ;(2)0.6;(3)0.7. 【解析】(1),,,,,,,,,ab ac ad ae bc bd be cd ce de .(2)由题意知本题是一个古典概型,试验发生包含了上一问列举的所有结果,记“恰好摸出1个黑球和1红球”为事件A ,则事件A 包含的基本事件为,,,,,ac ad ae bc bd be ,共6个基本事件,所以()60.610P A ==. (3)试验发生包含的事件共有10个,记“至少摸出1个黑球”为事件B ,则B 包含的基本事件为,,,,,,ab ac ad ae bc bd be ,共7个基本事件,所以()70.710P B ==. 【点评】步骤:用列举法求出基本事件的总数n ,求出具体时间包含的基本事件数m ,根据古典概型求出概率.二、一维情形的几何概型(长度)将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解. 【题干】在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个数x ,cos x 的值介于0到12之间的概率为( ) A .13 B . 2πC . 12D . 23 【答案】A【解析】∵0cos x <<12,∴52,233x k k ππππ⎛⎫∈++ ⎪⎝⎭.当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,,,2332x ππππ⎛⎫⎛⎫∈-- ⎪ ⎪⎝⎭⎝⎭ .在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个数x ,cos x 的值介于0到12之间的概率133P ππ==.【点评】【题干】平面上有一组平行线,且相邻平行线间的距离为3cm ,把一枚半径为1cm 的硬币任意投掷在这个平面上,则硬币不与任何一条平行线相碰的概率是( ) A.14B .13 C . 12D .23【答案】B【解析】为了确定硬币的位置,由硬币中心O 向靠的最近的平行线引垂线OM ,垂足为M ;线段OM 长度的取值范围就是30,2⎡⎤⎢⎥⎣⎦,只有当132OM <≤时,硬币不与平行线相碰,所以所求事件的概率33110223P ⎛⎫⎛⎫=-÷-= ⎪ ⎪⎝⎭⎝⎭. 【点评】【题干】在区间[010],中任意取一个数,则它与4之和大于10的概率是______. 【答案】25【解析】在区间[010],中,任意取一个数x ,则它与4之和大于10的x 满足4x +>10, 解得610x <≤,所以,概率为1062105-=. 【点评】【题干】在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于362cm 与812cm 之间的概率为( ) A .56B .12C .13D .16【答案】D.【解析】由题意可得此概率是几何概率模型.因为正方形的面积介于362m 与812m 之间,座椅正方形的边长介于6cm 到9cm 之间,即线段AM 介于6cm 到9cm 之间,所以AM 的活动范围长度为:3.由几何概型的概率公式可得31186=.【点评】【题干】某人向一个半径为6的圆形标靶射击,假设他每次射击必定会中靶,且射中靶内各点是随机的,则此人射击中靶点与靶心的距离小于2的概率为( ) A .113 B. 19 C . 14 D . 12【答案】B【解析】整个靶子是如图所示的大圆,而距离靶心距离小于2用图中的小圆所示:故此人射击中靶点与靶心的距离小于2的概率226129P ππ==.【点评】【题干】两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为( ) A.12B .13C .14D .23【答案】13. 【解析】设事件A 为“灯与两端距离都大于2m ”,根据题意,事件A 对应的长度为2m 的部分,因此,事件A 发生的概率()2163P A ==. 【点评】三、二维情形的几何概型(面积)数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,利用公式可求.【题干】如图,60AOB ∠=°,2OA =,5OB =,在线段OB 上任取一点C ,试求: (1)AOC ∆为钝角三角形的概率;(2)AOC ∆为锐角三角形的概率.【答案】(1)0.4(2)0.6【解析】如图,由平面几何知识:当AD OB ⊥时,1OD =;当OA AE ⊥时,4OE =,1BE =.(1)当且仅当点C 在线段OD 或BE 上时,AOC ∆为钝角三角形,记“AOC ∆为钝角三角形”为事件M ,则()110.45OD EB P M OB ++===,即AOC ∆为钝角三角形的概率为0.4.(2)当且仅当点C 在线段DE 上时,AOC ∆为锐角三角形,记“AOC ∆为锐角三角形”为事件N ,则()30.65DE P N OB ===,即AOC ∆为锐角三角形的概率为0.6. 【点评】AOC ∆为直角三角形的概率等于0,但直角三角形AOC ∆是存在的,因此概率为0的事件不一定是不可能事件.【题干】已知如图所示的矩形,长为12,宽为5,在矩形内随机地投掷1000粒黄豆,数得落在阴影部分的黄豆数为600粒,则可以估计出阴影部分的面积约为________.【答案】36【解析】设图中阴影部分的面积为S ,由题意可得6001251000S =⨯,解得36S =. 【点评】【题干】小明的爸爸下班驾车经过小明学校门口,时间是下午6:00到6:30,小明放学后到学校门口的候车点候车,能乘上公交车的时间为5:50到6:10,如果小明的爸爸到学校门口时,小明还没乘上车,就正好坐他爸爸的车回家,问小明能乘到他爸的车的概率. 【答案】 【解析】 【点评】CE DBOA【题干】在平面直角坐标系xOy 中,平面区域W 中的点的坐标(),x y 满足225x y +≤,从区域W 中随机取点(),M x y .(1)若x ∈Z ,y ∈Z ,求点M 位于第四象限的概率;(2)已知直线():0l y x b b =-+>与圆22:5O x y +=求y x b ≥-+的概率. 【答案】(1)17;(2.【解析】(1)若x Z ∈,y Z ∈,则点M 的个数共有21个,列举如下:()2,1--,()2,0-,()2,1-,()1,2--,()1,1--,()1,0-,()1,1-,()1,2-,()0,2-,()0,1-,()0,0,()0,1,()0,2,()1,2-,()1,1-,()1,0,()1,1,()1,2,()2,1-,()2,0,()2,1时,点M 位于第四象限.当点M 的坐标为()1,2-,()1,1-,()2,1-时,点M 位于第四象限.故点M 位于第四象限的概率为17. (2)由已知可知区域W 的面积是5π.因为直线:l y x b =-+与圆22:5O x y +=的弦长为,如图,可求得扇形的圆心角为23π,所以扇形的面积为125233S ππ=⨯=,则满足y x b≥-+的点构成的区域的面积为122sin 233S ππ=⨯=,所以y x b≥-+的概率为20125ππ- .【点评】【题干】如图,60AOB ︒∠=,2OA =,5OB =,在线段OB 上任取一点C ,试求:(1)AOC ∆为钝角三角形的概率; (2)AOC ∆为锐角三角形的概率. 【答案】(1)0.4 ;(2)0.6 .【解析】如图,由平面几何知识:当AD OB ⊥时,1OD =;当OA AE ⊥时,4OE =,1BE =.(1)当且仅当点C 在线段OD 或BE 上时,AOC ∆为钝角三角形,记“AOC∆为钝角三角形”为事件M ,则()110.45OD EB P M OB ++===.(2)当且仅当点C 在线段DE 上时,AOC ∆为锐角三角形,记“AOC ∆为锐角三角形”为事件N ,则()30.65DE P N OB ===. 【点评】【题干】在区间[]1,1-上任取两实数,a b ,求二次方程2220x ax b ++=的两根都为实数的概率. 【答案】()12P A =【解析】方程有实根的条件为22440a b ∆=-≥,即||||a b ≥.在平面直角坐标系中,点(),a b 的取值范围为如图所示,的正方形的区域,随机事件A “方程有实根”的所围成的区域如图所示的阴影部分.易求得()12P A =.【点评】四、三维情形的几何概型(体积)【题干】在Rt ABC ∆中,30A ∠=,过直角顶点C 作射线CM 交线段AB 于M,求使CE DBOAAM AC >的概率.【答案】16. 【解析】设事件D 为“作射线CM ,使AM AC >”.在AB 上取点1C 使1AC AC =,因为1A C C ∆是等腰三角形,所以118030752ACC -∠==,907515A μ=-=,90μΩ=,所以()151906P D ==. 【点评】几何概型的关键是选择“测度”,如本例以角度为“测度”.因为射线CM 落在ACB ∠内的任意位置是等可能的.若以长度为“测度”,就是错误的,因M 在AB 上的落点不是等可能的.【题干】设正四面体ABCD 的体积为V ,P 是正四面体ABCD 的内部的点. (1)设“14P ABC V V -≥”的事件为X ,求概率()P X ; (2)设“14P ABC V V -≥且14P BCD V V -≥”的事件为Y ,求概率()P Y . 【答案】 【解析】 【点评】【题干】一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行.若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是( ) A .18 B .116 C .127 D .38【答案】C ;【解析】容易知道,当蜜蜂在边长为10,各棱平行于玻璃容器的棱的正方体内飞行时是安全的.于是安全飞行的概率为331013027=.【点评】【题干】在棱长为2的正方体1111ABCD A B C D -中,点O 为底面ABCD 的中心,在正方体1111ABCD A B C D -内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 【答案】112π-【解析】点P 到点O 的距离大于1的点位于以O 为球心,以1为半径的半球外.记点P 到点O 的距离大于1为事件A ,则()3331421231212P A ππ-⨯⨯==-. 【点评】【题干】在棱长为a 的正方体1111ABCD A B C D -内任取一点P ,则点P 到点A 的距离小于等于a 的概率为( )A.2 B .2 C. 16D . 16π【答案】C【解析】本题是几何概型问题,与点A 距离等于a 的点的轨迹是一个八分之一个球面, 其体积为:33114836a a V ππ=⨯⨯=,“点P 与点O 距离大于1的概率”事件对应的区域体积为:3314836a a ππ⨯⨯=,则点P 到点A 的距离小于等于a 的概率为:33166a a ππ=.【点评】【题干】设正四面体ABCD 的体积为V ,P 是正四面体ABCD 的内部的点. ①设“14P ABC V V -≥”的事件为X ,求概率()P X ; ②设“14P ABC V V -≥且14P BCD V V -≥”的事件为Y ,求概率()P Y . 【答案】①()2764P X =②18【解析】①分别取,,DA DB DC上的点,,E F G,并3,3,3DE EA DF FB DG GC ===,连结,,EF FG GE ,则平面EFG 平面ABC .当P 在正四面体DEFG 内部运动时(如图),满足14P ABC V V -≥,故()33327464D EFG D ABC V DE P X V DA --⎛⎫⎛⎫====⎪ ⎪⎝⎭⎝⎭.②在AB 上取点H ,使3AH HB =,在AC 上取点I ,使3AI IC =,在AD 上取点J ,使3AJ JD =,P 在正四面体AHIJ 内部运动时,满足14P BCD V V -≥.结合①,当P 在正四面体DEFG 的内部及正四面体AHIJ 的内部运动时,亦即P 在正四面体EMNJ 内部运动时(M 是EG 与IJ 的交点,N 是EF 与HJ 的交点),同时满足14P ABC V V -≥且14P BCD V V -≥,于是()331281J EMN D ABC JE D Y V A V P --⎛⎫⎛⎫=== ⎪ ⎪⎝⎭=⎭⎝.【点评】五、高考汇编【题干】(2010年江苏理科 3)盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率________.【答案】【解析】【点评】【题干】(2010年江苏理科4)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[]5,40 中,其频率分布直方图如图所示,则其抽样的100根中,有________根在棉花纤维的长度小于20mm .【答案】【解析】【点评】【题干】(2011江苏5)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是BAB A另一个的两倍的概率是________. 【答案】13【解析】【点评】【题干】(2011江苏6)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差2s =________. 【答案】165【解析】可以先把这组数都减去6再求方差,【点评】【题干】(2012年江苏省5分)某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.【答案】15.【解析】分层抽样又称分类抽样或类型抽样.将总体划分为若干个同质层,再在各层内随机抽样或机械抽样,分层抽样的特点是将科学分组法与抽样法结合在一起,分组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性.因此,由35015334⨯=++知应从高二年级抽取15名学生. 【点评】【题干】(2012年江苏省5分)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________. 【答案】35. 【解析】∵以1为首项,3-为公比的等比数列的10个数为1,3-,9,27-,···其中有5个负数,1个正数1计6个数小于8, ∴从这10个数中随机抽取一个数,它小于8的概率是63105=. 【点评】。
一、古典概型1)基本事件:一次试验中所有可能得结果都就是随机事件,这类随机事件称为基本事件.2)基本事件得特点:①任何两个基本事件就是互斥得;②任何事件(除不可能事件)都可以表示成基本事件得与.3)我们将具有这两个特点得概率模型称为古典概率模型,其特征就是:①有限性:即在一次试验中所有可能出现得基本事件只有有限个。
②等可能性:每个基本事件发生得可能性就是均等得;称这样得试验为古典概型.4)基本事件得探索方法:①列举法:此法适用于较简单得实验.②树状图法:这就是一种常用得方法,适用于较为复杂问题中得基本事件探索。
5)在古典概型中涉及两种不通得抽取放方法,下列举例来说明:设袋中有个不同得球,现从中一次模球,每次摸一只,则有两种摸球得方法:①有放回得抽样每次摸出一只后,任放回袋中,然后再摸一只,这种模球得方法称为有放回得抽样,显然对于有放回得抽样,依次抽得球可以重复,且摸球可以无限地进行下去.②无放回得抽样每次摸球后,不放回原袋中,在剩下得球中再摸一只,这种模球方法称为五放回抽样,每次摸得球不会重复出现,且摸球只能进行有限次.二、古典概型计算公式1)如果一次试验中可能出现得结果有个,而且所有结果出现得可能性都相等,那么每一个基本事件得概率都就是;2)如果某个事件包括得结果有个,那么事件得概率.3)事件与事件就是互斥事件4)事件与事件可以就是互斥事件,也可以不就是互斥事件。
古典概型注意:①列举法:适合于较简单得试验。
②树状图法:适合于较为复杂得问题中得基本事件得探求、另外在确定基本事件时,可以瞧成就是有序得,如与不同;有时也可以瞧成就是无序得,如与相同、三、几何概型事件理解为区域得某一子区域,得概率只与子区域得几何度量(长度、面积或体积)成正比,而与得位置与形状无关,满足此条件得试验称为几何概型.四、几何概型得计算1)几何概型中,事件得概率定义为,其中表示区域得几何度量,表示区域得几何度量。
2)两种类型线型几何概型:当基本事件只受一个连续得变量控制时。
古典概型与几何概型一、基础知识1.古典概型(1)古典概型的特征:①有限性:在一次试验中,可能出现的结果是有限的,即只有有限个不同的基本事件;,②等可能性:每个基本事件出现的可能性是相等的.一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性.(2)古典概型的概率计算的基本步骤:①判断本次试验的结果是否是等可能的,设出所求的事件为A ;②分别计算基本事件的总数n 和所求的事件A 所包含的基本事件个数m ; ③利用古典概型的概率公式P (A )=mn ,求出事件A 的概率.(3)频率的计算公式与古典概型的概率计算公式的异同(1)概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.(2)几何概型的基本特点:①试验中所有可能出现的结果(基本事件)有无限多个; ②每个基本事件出现的可能性相等. (3)计算公式: P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).几何概型应用中的关注点(1)关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率. (2)确定基本事件时一定要选准度量,注意基本事件的等可能性.考点一 古典概型[典例精析](1)(2018·全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A.112 B.114 C.115D.118(2)(2019·武汉调研)将一枚质地均匀的骰子投掷两次,得到的点数依次记为a 和b ,则方程ax 2+bx +1=0有实数解的概率是( )A.736B.12C.1936D.518[解析] (1)不超过30的所有素数为2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有C 210=45种情况,而和为30的有7+23,11+19,13+17这3种情况,所以所求概率P =345=115.(2)投掷骰子两次,所得的点数a 和b 满足的关系为⎩⎪⎨⎪⎧1≤a ≤6,a ∈N *,1≤b ≤6,b ∈N *,所以a 和b 的组合有36种.若方程ax 2+bx +1=0有实数解, 则Δ=b 2-4a ≥0,所以b 2≥4a .当b =1时,没有a 符合条件;当b =2时,a 可取1;当b =3时,a 可取1,2;当b =4时,a 可取1,2,3,4;当b =5时,a 可取1,2,3,4,5,6;当b =6时,a 可取1,2,3,4,5,6.满足条件的组合有19种,则方程ax 2+bx +1=0有实数解的概率P =1936.[答案] (1)C (2)C[题组训练]1.(2019·益阳、湘潭调研)已知a ∈{-2,0,1,2,3},b ∈{3,5},则函数f (x )=(a 2-2)e x +b 为减函数的概率是( )A.310B.35C.25D.15解析:选C 若函数f (x )=(a 2-2)e x +b 为减函数,则a 2-2<0,又a ∈{-2,0,1,2,3},故只有a =0,a =1满足题意,又b ∈{3,5},所以函数f (x )=(a 2-2)e x +b 为减函数的概率是2×25×2=25. 2.从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( )A.518B.49C.59D.79解析:选C 由题意得,所求概率P =5×4×29×8=59.3.将A ,B ,C ,D 这4名同学从左至右随机地排成一排,则“A 与B 相邻且A 与C 之间恰好有1名同学”的概率是( )A.12 B.14 C.16D.18解析:选B A ,B ,C ,D 4名同学排成一排有A 44=24种排法.当A ,C 之间是B 时,有2×2=4种排法,当A ,C 之间是D 时,有2种排法,所以所求概率P =4+224=14.考点二 几何概型类型(一) 与长度有关的几何概型[例1] (2019·濮阳模拟)在[-6,9]内任取一个实数m ,设f (x )=-x 2+mx +m ,则函数f (x )的图象与x 轴有公共点的概率等于( )A.215 B.715 C.35D.1115[解析] ∵f (x )=-x 2+mx +m 的图象与x 轴有公共点,∴Δ=m 2+4m ≥0,∴m ≤-4或m ≥0,∴在[-6,9]内取一个实数m ,函数f (x )的图象与x 轴有公共点的概率P =[-4-(-6)]+(9-0)9-(-6)=1115,故选D. [答案] D类型(二) 与面积有关的几何概型[例2] (1)(2018·潍坊模拟)如图,六边形ABCDEF 是一个正六边形,若在正六边形内任取一点,则该点恰好在图中阴影部分的概率是( )A.14 B.13 C.23D.34(2)(2019·洛阳联考)如图,圆O :x 2+y 2=π2内的正弦曲线y =sin x 与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是( )A.4π2B.4π3C.2π2 D.2π3 [解析] (1)设正六边形的中心为点O ,BD 与AC 交于点G ,BC =1,则BG =CG ,∠BGC =120°,在△BCG 中,由余弦定理得1=BG 2+BG 2-2BG 2cos 120°,得BG =33,所以S △BCG =12×BG ×BG ×sin 120°=12×33×33×32=312,因为S 六边形ABCDEF =S △BOC ×6=12×1×1×sin 60°×6=332,所以该点恰好在图中阴影部分的概率P =1-6S △BCG S 六边形ABCDEF =23.(2)由题意知圆O 的面积为π3,正弦曲线y =sin x ,x ∈[-π,π]与x 轴围成的区域记为M ,根据图形的对称性得区域M 的面积S =2∫π0 sin x d x =-2cos x |π0=4,由几何概型的概率计算公式可得,随机往圆O 内投一个点A ,则点A 落在区域M 内的概率P =4π3.[答案] (1)C (2)B类型(三) 与体积有关的几何概型[例3] 已知在四棱锥P ABCD 中,P A ⊥底面ABCD ,底面ABCD 是正方形,P A =AB =2,现在该四棱锥内部或表面任取一点O ,则四棱锥O ABCD 的体积不小于23的概率为________.[解析] 当四棱锥O ABCD 的体积为23时,设O 到平面ABCD 的距离为h ,则13×22×h =23,解得h =12.如图所示,在四棱锥P ABCD 内作平面EFGH 平行于底面ABCD ,且平面EFGH 与底面ABCD 的距离为12.因为P A ⊥底面ABCD ,且P A =2,所以PH P A =34,又四棱锥P ABCD 与四棱锥P EFGH 相似,所以四棱锥O ABCD 的体积不小于23的概率P =V 四棱锥P EFGH V 四棱锥P ABCD =⎝⎛⎭⎫PH P A 3=⎝⎛⎭⎫343=2764.[答案]2764类型(四) 与角度有关的几何概型[例4] 如图,四边形ABCD 为矩形,AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧,在∠DAB 内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.[解析] 连接AC ,如图, 因为tan ∠CAB =BC AB =33,所以∠CAB =π6,满足条件的事件是直线AP 在∠CAB 内,且AP 与AC 相交时,即直线AP 与线段BC 有公共点,所以射线AP 与线段BC 有公共点的概率P =∠CAB ∠DAB =π6π2=13.[答案] 13[题组训练]1.(2019·豫东名校联考)一个多面体的直观图和三视图如图所示,点M 是AB 的中点,一只蝴蝶在几何体ADF BCE 内自由飞翔,则它飞入几何体F AMCD 内的概率为( )A.34 B.23 C.13D.12解析:选D 由题图可知V F AMCD =13×S 四边形AMCD ×DF =14a 3,V ADF BCE =12a 3,所以它飞入几何体F AMCD 内的概率P =14a 312a 3=12.2.在区间[0,π]上随机取一个数x ,则事件“sin x +cos x ≥22”发生的概率为________.解析:由题意可得⎩⎪⎨⎪⎧sin x +cos x ≥22,0≤x ≤π,即⎩⎪⎨⎪⎧sin ⎝⎛⎭⎫x +π4≥12,0≤x ≤π,解得0≤x ≤7π12,故所求的概率为7π12π=712.答案:7123.(2018·唐山模拟)向圆(x -2)2+(y -3)2=4内随机投掷一点,则该点落在x 轴下方的概率为________.解析:如图,连接CA ,CB ,依题意,圆心C 到x 轴的距离为3,所以弦AB 的长为2.又圆的半径为2,所以弓形ADB 的面积为12×23π×2-12×2×3=23π-3,所以向圆(x -2)2+(y -3)2=4内随机投掷一点,则该点落在x 轴下方的概率P =16-34π.答案:16-34π[课时跟踪检测]A 级1.(2019·衡水联考)2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币.如图所示是一枚8克圆形金质纪念币,直径22 mm ,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( )A.363π10 mm 2B.363π5 mm 2C.726π5mm 2D.363π20mm 2 解析:选A 向硬币内投掷100次,恰有30次落在军旗内,所以可估计军旗的面积大约是S =30100×π×112=363π10(mm 2).2.(2019·漳州一模)甲、乙、丙、丁、戊5名同学参加“《论语》知识大赛”,决出第1名到第5名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说“虽然你的成绩比乙好,但是你俩都没得到第一名”;对乙说“你当然不会是最差的”,从上述回答分析,丙是第一名的概率是( )A.15B.13C.14D.16解析:选B 由于甲和乙都不可能是第一名,所以第一名只可能是丙、丁或戊.又因为所有的限制条件对丙、丁或戊都没有影响,所以这三个人获得第一名是等可能事件,所以丙是第一名的概率是13.3.(2019·郑州模拟)现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完结束的概率为( )A.110B.15C.310D.25解析:选C 将5张奖票不放回地依次取出共有A 55=120(种)不同的取法,若活动恰好在第四次抽奖结束,则前三次共抽到2张中奖票,第四次抽到最后一张中奖票,共有C 23C 12A 33=36(种)取法,所以P =36120=310.4.(2019·长沙模拟)如图是一个边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自黑色区域的概率为( )A.π8B.π16C.1-π8D.1-π16解析:选C 正方形的面积为82,正方形的内切圆半径为4,中间黑色大圆的半径为2,黑色小圆的半径为1,所以白色区域的面积为π×42-π×22-4×π×12=8π,所以黑色区域的面积为82-8π.在正方形图案上随机取一点,则该点取自黑色区域的概率为P =82-8π82=1-π8.5.(2019·郑州模拟)已知圆C :x 2+y 2=1,直线l :y =k (x +2),在[-1,1]上随机选取一个数k ,则事件“直线l 与圆C 相离”发生的概率为( )A.12 B.2-22C.3-33D.2-32解析:选C 圆C :x 2+y 2=1的圆心C (0,0),半径r =1,圆心到直线l :y =k (x +2)的距离d =|0×k -0+2k |k 2+(-1)2=2|k |k 2+1,直线l 与圆C 相离时d >r ,即2|k |k 2+1>1,解得k <-33或k >33,故所求的概率P =2×⎝⎛⎭⎫1-331-(-1)=3-33.6.从1~9这9个自然数中任取7个不同的数,则这7个数的平均数是5的概率为________.解析:从1~9这9个自然数中任取7个不同的数的取法共有C 79=36种,从(1,9),(2,8),(3,7),(4,6)中任选3组,有C 34=4种选法,故这7个数的平均数是5的概率P =436=19. 答案:197.一个三位数的百位,十位,个位上的数字依次为a ,b ,c ,当且仅当有两个数字的和等于第三个数字时称这个三位数为“好数”(如213,134),若a ,b ,c ∈{1,2,3,4},且a ,b ,c 互不相同,则这个三位数为“好数”的概率是________.解析:从1,2,3,4中任选3个互不相同的数并进行全排列,共组成A 34=24个三位数,而“好数”的三个位置上的数字为1,2,3或1,3,4,所以共组成2A 33=12个“好数”,故所求概率P =1224=12.答案:128.太极图是以黑白两个鱼形纹组成的圆形图案,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在如图所示的平面直角坐标系中,圆O 被函数y =3sin π6x 的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为________.解析:根据题意,大圆的直径为函数y =3sin π6x 的最小正周期T ,又T =2ππ6=12,所以大圆的面积S =π·⎝⎛⎭⎫1222=36π,一个小圆的面积S ′=π·12=π,故在大圆内随机取一点,此点取自阴影部分的概率P =2S ′S =2π36π=118.答案:1189.(2018·天津高考)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.①试用所给字母列举出所有可能的抽取结果;②设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.解:(1)因为甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,所以应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2)①从抽取的7名同学中随机抽取2名同学的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{A ,G },{B ,C },{B ,D },{B ,E },{B ,F },{B ,G },{C ,D },{C ,E },{C ,F },{C ,G },{D ,E },{D ,F },{D ,G },{E ,F },{E ,G },{F ,G },共21种.②由①,不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种.所以事件M 发生的概率P (M =521.10.在某大型活动中,甲、乙等五名志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A 岗位服务的概率; (2)求甲、乙两人不在同一个岗位服务的概率; (3)求五名志愿者中仅有一人参加A 岗位服务的概率.解:(1)记“甲、乙两人同时参加A 岗位服务”为事件E A ,那么P (E A )=A 33C 25A 44=140,即甲、乙两人同时参加A 岗位服务的概率是140.(2)记“甲、乙两人同时参加同一岗位服务”为事件E ,那么P (E )=A 44C 25A 44=110,所以甲、乙两人不在同一岗位服务的概率是P (E )=1-P (E )=910.(3)因为有两人同时参加A 岗位服务的概率P 2=C 25A 33C 25A 44=14,所以仅有一人参加A 岗位服务的概率P 1=1-P 2=34.B 级1.(2019·太原联考)甲、乙二人约定7:10在某处会面,甲在7:00~7:20内某一时刻随机到达,乙在7:05~7:20内某一时刻随机到达,则甲至少需等待乙5分钟的概率是( )A.18 B.14 C.38D.58解析:选C 建立平面直角坐标系如图,x ,y 分别表示甲、乙二人到达的时刻,则坐标系中每个点(x ,y )可对应甲、乙二人到达时刻的可能性,则甲至少等待乙5分钟应满足的条件是⎩⎪⎨⎪⎧y -x ≥5,0≤x ≤20,5≤y ≤20,其构成的区域为如图阴影部分,则所求的概率P =12×15×1520×15=38.2.(2019·开封模拟)如图,某建筑工地搭建的脚手架局部类似于一个2×2×3的长方体框架,一个建筑工人欲从A 处沿脚手架攀登至B 处,则其最近的行走路线中不连续向上攀登的概率为( )A.17 B.27 C.37D.47解析:选B 根据题意,最近路线就是不能走回头路,不能走重复的路,∴一共要走3次向上,2次向右,2次向前,共7次,∴最近的行走路线共有A 77=5 040(种).∵不能连续向上,∴先把不向上的次数排列起来,也就是2次向右和2次向前全排列为A 44.接下来,就是把3次向上插到4次不向上之间的空当中,5个位置排3个元素,也就是A 35,则最近的行走路线中不连续向上攀登的路线共有A 44A 35=1 440(种),∴其最近的行走路线中不连续向上攀登的概率P =1 4405 040=27.故选B.3.已知等腰直角△ABC 中,∠C =90°,在∠CAB 内作射线AM ,则使∠CAM <30°的概率为________.解析:如图,在∠CAB 内作射线AM 0,使∠CAM 0=30°,于是有P (∠CAM <30°)=∠CAM 0∠CAB =3045=23.答案:234.已知P 是△ABC 所在平面内一点,且PB ―→+PC ―→+2P A ―→=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( )A.14B.13C.12D.23解析:选C 以PB ,PC 为邻边作平行四边形PBDC ,连接PD 交BC 于点O ,则PB ―→+PC ―→=PD ―→. ∵PB ―→+PC ―→+2P A ―→=0,∴PB ―→+PC ―→=-2P A ―→,即PD ―→=-2P A ―→,由此可得,P 是BC 边上的中线AO 的中点,点P 到BC 的距离等于点A 到BC 的距离的12,∴S △PBC =12S △ABC ,∴将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率P =S △PBC S △ABC =12. 5.点集Ω={(x ,y )|0≤x ≤e ,0≤y ≤e},A ={(x ,y )|y ≥e x ,(x ,y )∈Ω},在点集Ω中任取一个元素a ,则a ∈A 的概率为( )A.1eB.1e 2C.e -1eD.e 2-1e2解析:选B 如图,根据题意可知Ω表示的平面区域为正方形BCDO ,面积为e 2,A 表示的区域为图中阴影部分,面积为∫10 (e -e x)d x =(e x -e x )|10=(e -e)-(-1)=1,根据几何概型可知a ∈A 的概率P =1e 2.故选B. 6.如图,来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则( )A.p 1=p 2B.p 1=p 3C.p 2=p 3D.p 1=p 2+p 3解析:选A 不妨设△ABC 为等腰直角三角形, AB =AC =2,则BC =22, 所以区域Ⅰ的面积即△ABC 的面积, 为S 1=12×2×2=2,区域Ⅱ的面积S 2=π×12-⎣⎢⎡⎦⎥⎤π×(2)22-2=2, 区域Ⅲ的面积S 3=π×(2)22-2=π-2.根据几何概型的概率计算公式,得p 1=p 2=2π+2,p 3=π-2π+2,所以p 1≠p 3,p 2≠p 3,p 1≠p 2+p 3,故选A .7.双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),其中a ∈{1,2,3,4},b ∈{1,2,3,4},且a ,b 取到其中每个数都是等可能的,则直线l :y =x 与双曲线C 的左、右支各有一个交点的概率为( )A.14 B.38 C.12D.58解析:选B 直线l :y =x 与双曲线C 的左、右支各有一个交点,则ba >1,总基本事件数为4×4=16,满足条件的(a ,b )的情况有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个,故概率为38.8.在区间[0,1]上随机取两个数a ,b ,则函数f (x )=x 2+ax +14b 有零点的概率是________.解析:函数f (x )=x 2+ax +14b 有零点,则Δ=a 2-b ≥0,∴b ≤a 2,∴函数f (x )=x 2+ax+14b 有零点的概率P =∫10a 2d a1×1=13. 答案:13。
古典概型和几何概型的意义和主要区别
在初中阶段的教学过程中,作为教师,理解古典概型和几何概型的意义和主要区别,有利于从事相应的教学。
几何概型是在学习了古典概型之后,将等可能事件的概念从有限向无限的延伸,这两种概型,在初中阶段都呈现了出来,作为教师,理解古典概型和几何概型的意义和主要区别,有利于培养学生的建模能力、逻辑推理能力和空间观念,下面我就两种概型的意义、两种概型的主要区别以及怎样应用它们发展学生的诸多能力加以简单介绍。
一、古典概型和几何概型的意义
(一).几何概型的定义:
如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
1.几何概型的特点:
(1)试验中所有可能出现的基本事件有无限多个
.....
(2)每个基本事件出现的可能性相等
......
2.几何概型求事件A的概率公式:
P(A)=构成事件A的区域长度(面积或体积)/ 实验的全部结果所构成的区域长度(面积或体积)
(二)古典概型的意义大家都很熟知,此处不在介绍
1. 古典概型的特点:
(1)试验中所有可能出现的基本事件只有有限个
....
(2)每个基本事件出现的可能性相等
......
2. 古典概型求事件A的概率公式:
P(A)=事件A可能发生的结果数/实验发生的所有等可能的结果数二. 古典概型与几何概型的主要区别
几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子。
三.利用不同概率模型,培养学生的建模能力及实际应用能力(一)结合实例进行建模
题组一:
情境1、抛掷两颗骰子,求出现两个“6点”的概率
情景2、1号口袋中装有两只红球一只白球,2号口袋中装有一只红球一只白球,这些球处颜色不同外,其他都相同,小明从两个袋各摸一球,问摸出的两球异色的概率是多少?
情景3、一口袋中装有3只红球2只白球,小明从口袋里摸出一球放回去,摇匀后,在摸出一球,问两次摸出的球为异色的概率是多少?
情景4、一口袋中装有3只红球2只白球,小明从口袋里一次摸出2球,问两球异色的概率是多少?
说明:第一组题是古典概型,(1)通过解题让学生从多角度理解古典概型的特征;(2)通过作树状图,让学生领略各题之间存在的不同;(3)体会应用古典概型解决实际问题时应注意的事项(如:元素是否重复利用、元素间有无顺序;实验出现的结果确保等可能性)。
题组二:
情境1、如图转盘上有6个面积相等的扇形,转动转盘,求转盘停止转动时指针落在阴影部分的概率。
情境2、在区间(0,10)内的所有实数中随机取一个实数a,则这个实数a>7的概率为
情境3、在1L高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10mL,含有麦锈病种子的概率是多少。
说明:第二组题是几何概型,通过这组题引导学生从多角度认识、理解几何概型。
并感知几何概率只与事件A的区域所占的比例有关,而与事件A的区域的形状、位置无关。
(1)分析:指针落在转盘上任何位置的机会是等可能的,且所在的位置有无限多个的,(符合几何概型),阴影部分的区域可视作d,整个转盘区域可视作D.
解:阴影部分的面积/整个转盘的面积=2/6=1/3
(说明:由于所分成的6个扇形的面积相等,此题也可转化为古典概型来完成)。
(2)分析:实数a取到(0,10)内的任意一个数是等可能的,(且取到的数有无限多个),可以利用几何概型。
解:P=7~10之间的长度/0~10之间的长度=3/10=0.3
(3)分析:锈病种子在这1L种子中任何位置的机会是等可能的,且所在的位置有无限多个的,(符合几何概型),取得10mL 种子可视作区域d,所有种子可视为区域D. 利用体积的比便求得答案
解:P(A)=取出种子的体积/所有种子的体积=10/1000=0.01
问题1.上述解决问题的方法相同吗?你能说出它们的异同点
吗?(设计此问题的目的,是让学生感悟概型并建立概型).
(二)思维拓展:
例题1:某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率.
分析: 收音机每小时报时一次,某人午觉醒来的时刻在两次整点报时之间都是等可能的,且醒来的时刻有无限多个的,因而适合几何概型。
引导学生求解:设A={等待的时间不多于10分钟}.事件A恰好是打开
音机的时刻位于[50,60]时间段内事件A发生。
法一:(利用利用[50,60]时间段所占的弧长):
P(A)=A所在扇形区域的弧长/圆周长=1/6
法二:(利用[50,60]时间段所占的面积):
P(A)=A所在扇形的面积/整个圆的面积=10/60=1/6
法三:(利用[50,60]时间段所占的圆心角):
P(A)=A所在圆心的大小/圆周角=1/6
法四:将时间转化成长60的线段,研究事件A位于[50,60]之间的线段的概率:
P(A)=(60-50)/60=1/6
问题1:你能设计一个转盘来模拟这个试验,并得到结果吗?(设计意图:前后呼应,帮助学生建立模型,让学生逐步渗透用随机模拟的方法来处理问题的思想)。
例2. 在等腰直角三角形ABC中,在斜边AB上任取一点M,求AM 小于AC的概率.
分析 :此题符合几何概型,可利用线段长度的比来求解.(答案:√2/2)
解在AB上截取AC/=AC.于是
P(AM﹤AC)=P(AM ﹤AC/)= AC//AB=AC/AB=√2/2
变式 : 在等腰直角三角形中ABC中,过直角顶点C在∠ABC内部任作一条射线CM,与线段AB交于点M,求AM小于AC的概率.
分析:此题仍符合几何概型,画图观察将会发现,可利用面积的比来求解.
解:由题意,射线CM在∠ACB内等可能分布的(符合几何概型),在AB上取AC/=AC,则∠ACA/=67.50,故满足条件的概率
为:67.5/90=3/4.(借助此题培养学生数学思维的深刻性、广阔性等思维品质)
再思考:如图所示,撒一粒豆子在正方形中,
(1)豆子撒在P点的概率是?(答案:0)
(2)豆子撒在P点外的概率是?(答案:1)
(目的是让学生了解一下,概率为0的事件不一定是不可能事件;概率为1的事件不一定为必然事件)。