高中数学 2.3.2抛物线的简单几何性质 精品导学案(3)新人教A版选修1-1
- 格式:doc
- 大小:198.00 KB
- 文档页数:3
3.3.2 抛物线的简单几何性质【学习目标】1.抛物线的几何性质⎛⎫p ⎛⎫p ⎛⎫p ⎛⎫p 2.直线过抛物线y 2=2px (p >0)的焦点F ,与抛物线交于A (x 1,y 1)、B (x 2,y 2)两点,由抛物线的定义知,|AF |=x 1+p 2,|BF |=x 2+p2,故|AB |= . 3.直线与抛物线的位置关系直线与抛物线有三种位置关系: 、 和 .设直线y =kx +m 与抛物线y 2=2px (p >0)相交于A (x 1,y 1),B (x 2,y 2)两点,将y =kx +m 代入y 2=2px ,消去y 并化简,得k 2x 2+2(mk -p )x +m 2=0. ∈k =0时,直线与抛物线只有 交点;∈k ≠0时,Δ>0∈直线与抛物线 ∈有 公共点. Δ=0∈直线与抛物线 ∈只有 公共点.Δ<0∈直线与抛物线∈ 公共点.【小试牛刀】1.抛物线关于顶点对称.()2.抛物线只有一个焦点,一条对称轴,无对称中心.() 3.抛物线的标准方程虽然各不相同,但是其离心率都相同.() 4.抛物线y2=2px过焦点且垂直于对称轴的弦长是2p.()5.抛物线y=-18x2的准线方程为x=132.()【经典例题】题型一抛物线性质的应用把握三个要点确定抛物线的简单几何性质(1)开口:由抛物线标准方程看图象开口,关键是看准二次项是x还是y,一次项的系数是正还是负.(2)关系:顶点位于焦点与准线中间,准线垂直于对称轴.(3)定值:焦点到准线的距离为p;过焦点垂直于对称轴的弦(又称为通径)长为2p;离心率恒等于1.例1 (1)已知抛物线的顶点在坐标原点,对称轴为x轴且与圆x2+y2=4相交的公共弦长等于23,则抛物线的方程为________.(2)如图,过抛物线y2=2px(p>0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=4,求抛物线的方程.[跟踪训练]1 已知抛物线y2=8x.(1)求出该抛物线的顶点、焦点、准线方程、对称轴、变量x的范围;(2)以坐标原点O为顶点,作抛物线的内接等腰三角形OAB,|OA|=|OB|,若焦点F是∈OAB 的重心,求∈OAB的周长.题型二直线与抛物线的位置关系直线与抛物线交点问题的解题思路(1)判断直线与抛物线的交点个数时,一般是将直线与抛物线的方程联立消元,转化为形如一元二次方程的形式,注意讨论二次项系数是否为0.若该方程为一元二次方程,则利用判别式判断方程解的个数.(2)直线与抛物线有一个公共点时有两种情形:(1)直线与抛物线的对称轴重合或平行;(2)直线与抛物线相切.例2已知直线l:y=kx+1,抛物线C:y2=4x,当k为何值时,l与C:只有一个公共点;有两个公共点;没有公共点.[跟踪训练]2若抛物线y2=4x与直线y=x-4相交于不同的两点A,B,求证OA∈OB.题型三中点弦及弦长公式“中点弦”问题解题方法例3已知抛物线方程为y2=2px(p>0),过此抛物线的焦点的直线与抛物线交于A,B两点,[跟踪训练]3 过点Q(4,1)作抛物线y2=8x的弦AB,恰被点Q所平分,求AB所在直线的方程.题型四 抛物线的综合应用例4 求抛物线y =-x 2上的点到直线4x +3y -8=0的最小距离.[跟踪训练]4 如图所示,抛物线关于x 轴对称,它的顶点为坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上. (1)求抛物线的方程及其准线方程;(2)当P A 与PB 的斜率存在且倾斜角互补时,证明:直线AB 的斜率为定值.【当堂达标】1.在抛物线y 2=16x 上到顶点与到焦点距离相等的点的坐标为( ) A .(42,±2) B .(±42,2) C .(±2,42)D .(2,±42)2.以x 轴为对称轴的抛物线的通径(过焦点且与对称轴垂直的弦)长为8,若抛物线的顶点在坐标原点,则其方程为( ) A .y 2=8xB .y 2=-8xC .y 2=8x 或y 2=-8xD .x 2=8y 或x 2=-8y3.若抛物线y 2=2x 上有两点A 、B 且AB 垂直于x 轴,若|AB |=22,则抛物线的焦点到直线AB 的距离为( )A .12B .14C .16D .184.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA →·AF →=-4,则点A的坐标是()A.(2,±22)B.(1,±2)C.(1,2)D.(2,22)5.过点P(0,1)与抛物线y2=x有且只有一个交点的直线有()A.4条B.3条C.2条D.1条6.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,如果x1+x2=6,则|AB|=________.7.已知AB是过抛物线2x2=y的焦点的弦,若|AB|=4,则AB的中点的纵坐标是________.8.已知抛物线x=-y2与过点(-1,0)且斜率为k的直线相交于A,B两点,O为坐标原点,当∈AOB的面积等于10时,求k的值.9.已知y=x+m与抛物线y2=8x交于A,B两点.(1)若|AB|=10,求实数m的值;(2)若OA∈OB,求实数m的值.10.已知抛物线的顶点在原点,x轴为对称轴,经过焦点且倾斜角为π4的直线l被抛物线所截得的弦长为6,求抛物线的标准方程.【参考答案】【自主学习】x =-p 2 x =p 2 y =-p 2 y =p2 x 轴 y 轴 (0,0) 1 x 1+x 2+p 相离 相切 相交 一个 相交 两个 相切 一个 相离 没有 【小试牛刀】 × √ √ √ × 【经典例题】例1 (1)y 2=3x 或y 2=-3x [根据抛物线和圆的对称性知,其交点纵坐标为±3,交点横坐标为±1,则抛物线过点(1,3)或(-1,3),设抛物线方程为y 2=2px 或y 2=-2px (p >0),则2p =3,从而抛物线方程为y 2=3x 或y 2=-3x .](2)[解] 如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D , 设|BF |=a ,则由已知得:|BC |=2a ,由定义得:|BD |=a ,故∈BCD =30°,在Rt∈ACE 中,∈|AF |=4,|AC |=4+3a ,∈2|AE |=|AC |,∈4+3a =8,从而得a =43,∈BD ∈FG ,∈43p =23,p =2.因此抛物线的方程是y 2=4x .[跟踪训练]1 解 (1)抛物线y 2=8x 的顶点、焦点、准线方程、对称轴、变量x 的范围分别为(0,0),(2,0),x =-2,x 轴,x ≥0.(2)如图所示,由|OA |=|OB |可知AB ∈x 轴,垂足为点M , 又焦点F 是∈OAB 的重心,则|OF |=23|OM |. 因为F (2,0),所以|OM |=32|OF |=3,所以M (3,0).故设A (3,m ),代入y 2=8x 得m 2=24;所以m =26或m =-26,所以A (3,26),B (3,-26),所以|OA |=|OB |=33,所以∈OAB 的周长为233+4 6. 例2 解 联立⎩⎨⎧y =kx +1,y 2=4x ,消去y ,得k 2x 2+(2k -4)x +1=0.(*)当k =0时,(*)式只有一个解x=14,∈y =1,∈直线l 与C 只有一个公共点⎝ ⎛⎭⎪⎫14,1,此时直线l 平行于x 轴.当k ≠0时,(*)式是一个一元二次方程,Δ=(2k -4)2-4k 2=16(1-k ).∈当Δ>0,即k <1,且k ≠0时,l 与C 有两个公共点,此时直线l 与C 相交;∈当Δ=0,即k =1时,l 与C 有一个公共点,此时直线l 与C 相切; ∈当Δ<0,即k >1时,l 与C 没有公共点,此时直线l 与C 相离. 综上所述,当k =1或0时,l 与C 有一个公共点; 当k <1,且k ≠0时,l 与C 有两个公共点; 当k >1时,l 与C 没有公共点.[跟踪训练]2 [证明] 由⎩⎨⎧y 2=4x ,y =x -4,消去y ,得x 2-12x +16=0.∈直线y =x -4与抛物线相交于不同两点A ,B , ∈可设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=12,x 1x 2=16.∈OA →·OB →=x 1x 2+y 1y 2=x 1x 2+(x 1-4)(x 2-4)=x 1x 2+x 1x 2-4(x 1+x 2)+16=16+16-4×12+16=0,∈OA →∈OB →,即OA ∈OB .例3 解 由题意知焦点F ⎝ ⎛⎭⎪⎫p 2,0,设A (x 1,y 1),B (x 2,y 2),若AB ∈x 轴,则|AB |=2p ≠52p ,不满足题意.所以直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2,k ≠0.由⎩⎪⎨⎪⎧y =k ⎝ ⎛⎭⎪⎫x -p 2,y 2=2px ,消去x ,整理得ky 2-2py -kp 2=0.由根与系数的关系得y 1+y 2=2pk ,y 1y 2=-p 2.所以|AB |=⎝ ⎛⎭⎪⎫1+1k 2·y 1-y 22=1+1k 2·y 1+y 22-4y 1y 2=2p ⎝ ⎛⎭⎪⎫1+1k 2=52p ,解得k =±2.所以AB 所在的直线方程为2x -y -p =0或2x +y -p =0.[跟踪训练]3 [解] 法一:(点差法)设以Q 为中点的弦AB 的端点坐标为A (x 1,y 1),B (x 2,y 2),则有y 21=8x 1,y 22=8x 2,∈(y 1+y 2)(y 1-y 2)=8(x 1-x 2).又y 1+y 2=2,∈y 1-y 2=4(x 1-x 2),即y 1-y 2x 1-x 2=4,∈k AB =4. ∈AB 所在直线的方程为y -1=4(x -4),即4x -y -15=0.法二:由题意知AB 所在直线斜率存在,设A (x 1,y 1),B (x 2,y 2),弦AB 所在直线的方程为y=k (x -4)+1.联立⎩⎨⎧y 2=8x ,y =k x -4+1,消去x ,得ky 2-8y -32k +8=0,此方程的两根就是线段端点A ,B 两点的纵坐标.由根与系数的关系得y 1+y 2=8k .又y 1+y 2=2,∈k =4.∈AB 所在直线的方程为4x -y -15=0. 例4 解 方法一 设A (t ,-t 2)为抛物线上的点,则点A 到直线4x +3y -8=0的距离d =|4t -3t 2-8|5=|3t 2-4t +8|5=15⎪⎪⎪⎪⎪⎪3⎝⎛⎭⎪⎫t -232-43+8 =15⎪⎪⎪⎪⎪⎪3⎝ ⎛⎭⎪⎫t -232+203=35⎝ ⎛⎭⎪⎫t -232+43. 所以当t =23时,d 有最小值43.方法二 如图,设与直线4x +3y -8=0平行的抛物线的切线方程为4x +3y +m =0,由⎩⎨⎧y =-x 2,4x +3y +m =0,消去y 得3x 2-4x -m =0,∈Δ=16+12m =0,∈m =-43. 故最小距离为⎪⎪⎪⎪⎪⎪-8+435=2035=43.[跟踪训练]4 [解] (1)由题意可设抛物线的方程为y 2=2px (p >0),则由点P (1,2)在抛物线上,得22=2p ×1,解得p =2,故所求抛物线的方程是y 2=4x ,准线方程是x =-1.(2)证明:因为P A 与PB 的斜率存在且倾斜角互补,所以k P A =-k PB ,即y 1-2x 1-1=-y 2-2x 2-1. 又A (x 1,y 1),B (x 2,y 2)均在抛物线上,所以x 1=y 214,x 2=y 224,从而有y 1-2y 214-1=-y 2-2y 224-1,即4y 1+2=-4y 2+2,得y 1+y 2=-4,故直线AB 的斜率k AB =y 1-y 2x 1-x 2=4y 1+y 2=-1. 【当堂达标】1.D [抛物线y 2=16x 的顶点O (0,0),焦点F (4,0),设P (x ,y )符合题意,则有⎩⎨⎧y 2=16x ,x 2+y 2=x -42+y 2∈⎩⎨⎧ y 2=16x ,x =2∈⎩⎨⎧x =2,y =±4 2.所以符合题意的点为(2,±42).] 2. C 解析 设抛物线方程为y 2=2px 或y 2=-2px (p >0),依题意得x =p2,代入y 2=2px 或y 2=-2px 得|y |=p ,∈2|y |=2p =8,p =4. ∈抛物线方程为y 2=8x 或y 2=-8x .3.A [线段AB 所在的直线方程为x =1,抛物线的焦点坐标为⎝ ⎛⎭⎪⎫12,0,则焦点到直线AB 的距离为1-12=12.]4.B [由题意知F (1,0),设A ⎝ ⎛⎭⎪⎫y 204,y 0,则OA →=⎝ ⎛⎭⎪⎫y 204,y 0,AF →=⎝ ⎛⎭⎪⎫1-y 204,-y 0,由OA →·AF →=-4得y 0=±2,∈点A 的坐标为(1,±2),故选B.]5. B 解析 当直线垂直于x 轴时,满足条件的直线有1条; 当直线不垂直于x 轴时,满足条件的直线有2条,故选B.6. 8解析 因为直线AB 过焦点F (1,0),所以|AB |=x 1+x 2+p =6+2=8.7.158 [设A (x 1,y 1),B (x 2,y 2),由抛物线2x 2=y ,可得p =14.∈|AB |=y 1+y 2+p =4,∈y 1+y 2=4-14=154,故AB 的中点的纵坐标是y 1+y 22=158.] 8.解 过点(-1,0)且斜率为k 的直线方程为y =k (x +1)(k ≠0), 由方程组⎩⎨⎧x =-y 2,y =k x +1,消去x 整理得ky 2+y -k =0,Δ=1+4k 2>0,设A (x 1,y 1),B (x 2,y 2),由根与系数之间的关系得y 1+y 2=-1k ,y 1·y 2=-1. 设直线与x 轴交于点N ,显然N 点的坐标为(-1,0). ∈S ∈OAB =S ∈OAN +S ∈OBN =12|ON ||y 1|+12|ON ||y 2|=12|ON ||y 1-y 2|, ∈S ∈AOB =12×1×y 1+y 22-4y 1y 2=12×1k 2+4=10,解得k =±16.9.解 由⎩⎨⎧y =x +m ,y 2=8x ,得x 2+(2m -8)x +m 2=0.由Δ=(2m -8)2-4m 2=64-32m >0,得m <2.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8-2m ,x 1x 2=m 2,y 1y 2=m (x 1+x 2)+x 1x 2+m 2=8m . (1)因为|AB |=1+k 2x 1+x 22-4x 1x 2=2·64-32m =10,所以m =716,经检验符合题意.(2)因为OA ∈OB ,所以x 1x 2+y 1y 2=m 2+8m =0,解得m =-8或m =0(舍去). 所以m =-8,经检验符合题意.10.[解] 当抛物线焦点在x 轴正半轴上时,可设抛物线标准方程为y 2=2px (p >0),则焦点F ⎝ ⎛⎭⎪⎫p 2,0,直线l 的方程为y =x -p 2.设直线l 与抛物线的交点为A (x 1,y 1),B (x 2,y 2),过点A ,B 向抛物线的准线作垂线,垂足分别为点A 1,点B 1,则|AB |=|AF |+|BF |=|AA 1|+|BB 1|=⎝ ⎛⎭⎪⎫x 1+p 2+⎝ ⎛⎭⎪⎫x 2+p 2=x 1+x 2+p =6, ∈x 1+x 2=6-p .∈ 由⎩⎪⎨⎪⎧y =x -p 2,y 2=2px 消去y ,得⎝ ⎛⎭⎪⎫x -p 22=2px ,即x 2-3px +p 24=0.∈x 1+x 2=3p ,代入∈式得3p =6-p ,∈p =32.∈所求抛物线的标准方程是y 2=3x .当抛物线焦点在x 轴负半轴上时,用同样的方法可求出抛物线的标准方程是y 2=-3x .高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
2.3.2 抛物线的简单几何性质(教师用书独具)●三维目标1.知识与技能(1)理解抛物线的几何性质.(2)与抛物线有关的轨迹的求法,直线与抛物线的位置关系.2.过程与方法(1)灵活运用抛物线的性质.(2)培养学生对研究方法的思想渗透及运用数形结合思想解决问题的能力.3.情感、态度与价值观(1)训练学生分析问题、解决问题的能力.(2)培养学生数形结合思想、化归思想及方程的思想,提高学生的综合能力.●重点、难点重点:(1)掌握抛物线的几何性质.(2)根据给出的条件求出抛物线的标准方程.难点:抛物线各个几何性质的灵活应用.(教师用书独具)●教学建议本节课以启发式教学为主,综合运用演示法、讲授法、讨论法、有指导的发现法及练习法等教学方法.先通过多媒体动画演示,创设问题情境,在抛物线简单几何性质的教学过程中,通过多媒体演示,有指导的发现问题,然后进行讨论、探究、总结、运用,最后通过练习加以巩固提高.学法上,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,结合教法和学生的实际,在多媒体辅助教学的基础上,主要采用“复习——类比——探索——应用”的探究式学习方法,增加学生参与的机会,使学生在掌握知识形成技能的同时,培养逻辑推理、理性思维的能力及科学的学习方法,增强自信心.学法指导包括:联想法、观察分析法、练习巩固法.这样,本节课的重点与难点就迎刃而解了. ●教学流程提出问题:你能说出抛物线y 2=2px p >的几何性质吗?⇒引导学生结合图象得出抛物线四种形式的几何性质,并对比它们的区别与联系.⇒通过引导学生回顾直线与椭圆的位置关系问题,引出直线与抛物线的位置关系知识.⇒通过例1及其变式训练,使学生掌握抛物线的性质及应用问题.⇒通过例2及其变式训练,使学生掌握抛物线的焦点弦问题.⇒错误!⇒错误!⇒错误!(对应学生用书第39页)类比椭圆、双曲线的几何性质,结合图象,你能说出抛物线y 2=2px (p >0)的范围、对称性、顶点坐标吗?【提示】 范围x ≥0,关于x 轴对称,顶点坐标(0,0).续表1.直线与抛物线有哪几种位置关系?【提示】三种:相离、相切、相交.2.若直线与抛物线只有一个交点,直线与抛物线一定相切吗?【提示】不一定,当平行或重合于抛物线的对称轴的直线与抛物线相交时,也只有一个交点.直线与抛物线的位置关系与公共点(对应学生用书第40页)图2-3-3是抛物线上的一点,其横坐标为4,且在x 轴的上方,点A 到抛物线的准线的距离等于5,过A 作AB ⊥y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)过M 作MN ⊥FA ,垂足为N ,求直线MN 的方程. 【思路探究】 (1)根据题意你能求出p 的值吗? (2)M 点的坐标是多少?直线MN 的斜率呢?【自主解答】 (1)抛物线y 2=2px (p >0)的准线为x =-p2,于是4+p2=5,p =2,∴抛物线的方程为y 2=4x .(2)由题意知A (4,4),B (0,4),M (0,2),F (1,0), ∴k FA =43.又MN ⊥FA ,∴k MN =-34,则直线FA 的方程为y =43(x -1),直线MN 的方程为y -2=-34x ,即3x +4y -8=0.研究抛物线的性质时要注意它们之间的关系:抛物线的焦点始终在对称轴上,顶点就是抛物线与对称轴的交点,准线始终与对称轴垂直,准线与对称轴的交点和焦点关于顶点对称,离心率不变总为1.已知抛物线的焦点F 在x 轴上,直线l 过F 且垂直于x 轴,l 与抛物线交于A 、B 两点,O 为坐标原点,若△OAB 的面积等于4,求此抛物线的标准方程.【解】 由题意,抛物线方程为y 2=2px (p ≠0),焦点F ⎝ ⎛⎭⎪⎫p 2,0,直线l :x =p2,∴A 、B 两点坐标为⎝ ⎛⎭⎪⎫p 2,p ,⎝ ⎛⎭⎪⎫p2,-p ,∴|AB |=2|p |. ∵△OAB 的面积为4,∴12·⎪⎪⎪⎪⎪⎪p 2·2|p |=4,∴p =±2 2. ∴抛物线标准方程为y 2=±42x .(1)一个公共点;(2)两个公共点;(3)没有公共点?【思路探究】 (1)联立直线l 与抛物线C 的方程,得到的关于x 的方程是什么形式?(2)能直接用判别式法判断公共点的情况吗?【自主解答】 由⎩⎪⎨⎪⎧y =kx +1,y 2=4x ,得k 2x 2+(2k -4)x +1=0.(*)当k =0时,方程变为-4x +1=0,x =14,此时y =1.∴直线l 与C 只有一个公共点(14,1),此时直线l 平行于x 轴.当k ≠0时,方程(*)是一个一元二次方程: Δ=(2k -4)2-4k 2×1=16-16k①当Δ>0,即k <1,且k ≠0时,l 与C 有两个公共点,此时l 与C 相交; ②当Δ=0,即k =1时,l 与C 有一个公共点,此时l 与C 相切; ③当Δ<0,即k >1时,l 与C 没有公共点,此时l 与C 相离. 综上所述,(1)当k =1或k =0时,直线l 与C 有一个公共点; (2)当k <1,且k ≠0时,直线l 与C 有两个公共点; (3)当k >1时,直线l 与C 没有公共点.1.直线与抛物线的位置关系判断方法.通常使用代数法:将直线的方程与抛物线的方程联立,整理成关于x 的方程ax 2+bx +c =0.(1)当a ≠0时,利用判别式解决.Δ>0⇒相交;Δ=0⇒相切;Δ<0⇒相离.(2)当a =0时,方程只有一解x =-cb,这时直线与抛物线的对称轴平行或重合. 2.直线与抛物线相切和直线与抛物线公共点的个数的关系:直线与抛物线相切时,只有一个公共点,但是不能把直线与抛物线有且只有一个公共点统称为相切,这是因为平行于抛物线的对称轴的直线与抛物线只有一个公共点,而这时抛物线与直线是相交的.若过点(-3,2)的直线与抛物线y 2=4x 有两个公共点,求直线的斜率k 的取值范围. 【解】 设直线方程为y -2=k (x +3).由⎩⎪⎨⎪⎧y -2=kx +y 2=4x消去x ,整理得ky 2-4y +8+12k =0.①(1)当k =0时,方程①化为y =2,直线y =2与抛物线y 2=4x 相交,有一个公共点,不合要求; (2)当k ≠0时,Δ=16-4k (8+12k )>0. ∴-1<k <13,因此-1<k <13且k ≠0.综上可知,斜率k 的取值范围为{k |-1<k <13且k ≠0}.已知抛物线的顶点在原点,x 轴为对称轴,经过焦点且倾斜角为4的直线l 被抛物线所截得的弦长为6,求抛物线方程.【思路探究】 (1)焦点在x 轴上的抛物线方程如何设?(2)过焦点且倾斜角为π4的直线方程怎么求?它被抛物线截得的弦长问题能联系抛物线的定义吗?【自主解答】 当抛物线焦点在x 轴正半轴上时, 可设抛物线标准方程是y 2=2px (p >0), 则焦点F (p 2,0),直线l 为y =x -p2.设直线l 与抛物线的交点为A (x 1,y 1),B (x 2,y 2),过A 、B 分别向抛物线的准线作垂线AA 1、BB 1,垂足分别为A 1、B 1.则|AB |=|AF |+|BF |=|AA 1|+|BB 1|=(x 1+p 2)+(x 2+p2)=x 1+x 2+p =6,∴x 1+x 2=6-p .①由⎩⎪⎨⎪⎧y =x -p 2,y 2=2px ,消去y ,得(x -p2)2=2px ,即x 2-3px +p 24=0.∴x 1+x 2=3p ,代入①式得3p =6-p ,∴p =32.∴所求抛物线标准方程是y 2=3x .当抛物线焦点在x 轴负半轴上时,用同样的方法可求出抛物线的标准方程是y 2=-3x .1.本题是通过抛物线的性质求其方程的典型例题,抛物线的方程有两种形式,解答时切勿漏掉.2.过焦点F 和抛物线相交的弦叫做抛物线的焦点弦,在解决与焦点弦有关的问题时,一是注意用焦点弦所在的直线方程和抛物线方程联立得方程组,再结合根与系数关系解题,二是注意抛物线定义的灵活运用,特别应注意整体代入的方法.本例中,若把直线的倾斜角改为135°,被抛物线截得的弦长改为8,其他条件不变,试求抛物线的方程.【解】 如图,依题意当抛物线方程设为y 2=2px (p >0)时, 抛物线的准线为l ,则直线方程为y =-x +12p .设直线交抛物线于A (x 1,y 1),B (x 2,y 2),则由抛物线定义得|AB |=|AF |+|FB |=|AC |+|BD |=x 1+p 2+x 2+p2,即x 1+p 2+x 2+p2=8.①又A (x 1,y 1),B (x 2,y 2)是抛物线和直线的交点,由⎩⎪⎨⎪⎧y =-x +12p ,y 2=2px ,消去y 得x 2-3px +p 24=0.于是x 1+x 2=3p .将其代入①得p =2. 故所求抛物线方程为y 2=4x .当抛物线方程设为y 2=-2px (p >0)时,同理可求得抛物线方程为y 2=-4x . 综上所述,抛物线的方程为y 2=4x 或y 2=-4x .(对应学生用书第41页)忽略特殊直线致误求过定点P (0,1),且与抛物线y 2=2x 只有一个公共点的直线方程. 【错解】 设直线方程为y =kx +1,由⎩⎪⎨⎪⎧y =kx +1,y 2=2x得k 2x 2+2(k -1)x +1=0.当k =0时,解得y =1,即直线y =1与抛物线只有一个公共点; 当k ≠0时,Δ=4(k -1)2-4k 2=0,解得k =12,即直线y =12x +1与抛物线只有一个公共点.综上所述,所求的直线方程为y =1或y =12x +1.【错因分析】 本题直接设出了直线的点斜式方程,而忽视了斜率不存在的情况,从而导致漏解.【防范措施】 在解直线与抛物线的位置关系时,往往直接把直线方程设成点斜式方程,这样就把范围缩小了,而应先看斜率不存在的情况是否符合要求,直线斜率为0的情况也容易被忽略,所以解决这类问题时特殊情况要优先考虑,画出草图是行之有效的方法.【正解】 如图所示,若直线的斜率不存在, 则过点P (0,1)的直线方程为x =0, 由⎩⎪⎨⎪⎧x =0,y 2=2x得⎩⎪⎨⎪⎧x =0,y =0,即直线x =0与抛物线只有一个公共点.若直线的斜率存在,则由错解可知,y =1或y =12x +1为所求的直线方程.故所求的直线方程为x =0或y =1或y =12x +1.1.讨论抛物线的几何性质,一定要利用抛物线的标准方程;利用几何性质,也可以求出抛物线的方程.2.解决焦点弦问题时,抛物线的定义有广泛的应用,求焦点弦长,一般不用弦长公式. 3.直线和抛物线的位置关系问题的通法与椭圆、双曲线一样,即联立方程消未知数,产生一元二次方程,用判别式Δ、根与系数关系解决问题.(对应学生用书第42页)1.抛物线y 2=ax (a ≠0)的对称轴为( ) A .y 轴 B .x 轴 C .x =-a2D .x =-a4【解析】 形如y 2=±2px (p >0)的抛物线的对称轴为x 轴. 【答案】 B2.顶点在原点,对称轴是y 轴,并且顶点与焦点的距离等于3的抛物线的标准方程( ) A .x 2=±3yB .y 2=±6xC .x 2=±12yD .x 2=±6y【解析】 依题意,p2=3,∴p =6.∴抛物线的标准方程为x 2=±12y . 【答案】 C3.抛物线y =ax 2的准线方程是y =-12,则a =________.【解析】 抛物线方程可化为x 2=1a y ,由题意14a =12,∴a =12.【答案】 124.若抛物线y 2=x 上一点P 到准线的距离等于它到顶点的距离,求点P 的坐标.【解】 根据题意可知:|PF |=|PO |,其中O 为原点,F 为焦点,∴x P =x F 2=18,∴y P =±18=±122=±24,∴P (18,±24).(对应学生用书第101页)一、选择题1.(2013·泰安高二检测)已知抛物线的顶点在原点,以x 轴为对称轴,焦点为F ,过F 且垂直于x 轴的直线交抛物线于A 、B 两点,且|AB |=8,则抛物线的标准方程为( )A .y 2=8x B .y 2=-8x C .y 2=±8xD .x 2=±8y【解析】 由抛物线的定义知,|AB |=|AF |+|BF |=2p =8,∴p =4,故标准方程为y 2=±8x .【答案】 C2.抛物线y =ax 2+1与直线y =x 相切,则a 等于( ) A.18 B.14C.12D .1【解析】 由⎩⎪⎨⎪⎧y =ax 2+1,y =x ,消y 得ax 2-x +1=0.∵直线y =x 与抛物线y =ax 2+1相切, ∴方程ax 2-x +1=0有两相等实根. ∴判别式Δ=(-1)2-4a =0,∴a =14.【答案】 B3.(2013·长沙高二检测)过点M (2,4)与抛物线y 2=8x 只有一个公共点的直线共有( )A .1B .2C .3D .4【解析】 由于M (2,4)在抛物线上,故满足条件的直线共有2条,一条是与x 轴平行的线,另一条是过M 的切线,如果点M 不在抛物线上,则有3条直线.【答案】 B4.探照灯反射镜的纵断面是抛物线的一部分,光源在抛物线的焦点处,灯口直径为60 cm ,灯深40 cm ,则光源到反射镜顶点的距离是( )A .11.25 cmB .5.625 cmC .20 cmD .10 cm【解析】 如图建立直角坐标系,则A (40,30),设抛物线方程为y 2=2px (p >0),将点(40,30)代入得p =454,所以p2=5.625即光源到顶点的距离.【答案】 B5.若点P 在y 2=x 上,点Q 在(x -3)2+y 2=1上,则|PQ |的最小值为( ) A.3-1 B.102-1 C .2 D.112-1 【解析】 设圆(x -3)2+y 2=1的圆心为Q ′(3,0),要求|PQ |的最小值,只需求|PQ ′|的最小值.设P 点坐标为(y 20,y 0),则|PQ ′|=y 20-2+y 2=y 202-5y 20+9=y 20-522+114. ∴|PQ ′|的最小值为112, 从而|PQ |的最小值为112-1. 【答案】 D 二、填空题6.(2013·台州高二检测)设抛物线y 2=16x 上一点P 到对称轴的距离为12,则点P 与焦点F 的距离|PF |=______.【解析】 设P (x,12),代入到y 2=16x 得x =9, ∴|PF |=x +p2=9+4=13.【答案】 137.设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2),若线段FA 的中点B 在抛物线上,则点B 到该抛物线准线的距离为________.【解析】 由已知得点B 的纵坐标为1,横坐标为p 4,即B (p4,1)将其代入y 2=2px 得p=2,则点B 到准线的距离为p 2+p 4=34p =342.【答案】342 8.(2012·北京高考)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点.其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为________.【解析】 ∵y 2=4x 的焦点为F (1,0),又直线l 过焦点F 且倾斜角为60°,故直线l 的方程为y =3(x -1),将其代入y 2=4x 得3x 2-6x +3-4x =0, 即3x 2-10x +3=0. ∴x =13或x =3.又点A 在x 轴上方,∴x A =3.∴y A =2 3. ∴S △OAF =12×1×23= 3.【答案】 3三、解答题9.若抛物线的顶点在原点,开口向上,F 为焦点,M 为准线与y 轴的交点,A 为抛物线上一点,且|AM |=17,|AF |=3,求此抛物线的标准方程.【解】 设所求抛物线的标准方程为x 2=2py (p >0),A (x 0,y 0),由题知 M (0,-p2).∵|AF |=3,∴y 0+p2=3,∵|AM |=17, ∴x 20+(y 0+p2)2=17,∴x 20=8,代入方程x 20=2py 0得, 8=2p (3-p2),解得p =2或p =4.∴所求抛物线的标准方程为x 2=4y 或x 2=8y .10.已知A ,B 两点在抛物线C :x 2=4y 上,点M (0,4)满足MA →=λMB →(λ≠0),求证:OA→⊥OB →.【证明】 设A (x 1,y 1)、B (x 2,y 2).∵MA →=λMB →,∴M 、A 、B 三点共线,即直线AB 过点M . 设l AB ∶y =kx +4(易知斜率存在),与x 2=4y 联立得,x 2-4kx -16=0,Δ=(-4k )2-4×(-16) =16k 2+64>0,由根与系数的关系得x 1+x 2=4k ,x 1x 2=-16, ∴OA →·OB →=x 1x 2+y 1y 2 =x 1x 2+(kx 1+4)(kx 2+4) =(1+k 2)x 1x 2+4k (x 1+x 2)+16=(1+k 2)·(-16)+4k ·(4k )+16=0, ∴OA →⊥OB →.11.(2013·泰州高二检测)已知抛物线x 2=ay (a >0),点O 为坐标原点,斜率为1的直线与抛物线交于A ,B 两点.(1)若直线l 过点D (0,2)且a =4,求△AOB 的面积;(2)若直线l 过抛物线的焦点且OA →·OB →=-3,求抛物线的方程. 【解】 (1)依题意,直线l 的方程为y =x +2,抛物线方程x 2=4y ,由⎩⎪⎨⎪⎧x 2=4y ,y =x +2,消去y ,得x 2-4x -8=0.则Δ=16-4×(-8)=48>0恒成立.设l 与抛物线的交点坐标为A (x 1,y 1),B (x 2,y 2),x 1<x 2. ∴x 1=2-23,x 2=2+2 3. 则|x 2-x 1|=4 3.∴S △AOB =12·|OD |·|x 2-x 1|=12×2×43=4 3.(2)依题意,直线l 的方程为y =x +a4.⎩⎪⎨⎪⎧y =x +a 4,x 2=ay ,⇒x 2-ax -a 24=0,∵Δ>0,设直线l 与抛物线交点A (x 1,y 1),B (x 2,y 2). ∴x 1+x 2=a ,x 1x 2=-a 24.又已知OA →·OB →=-3, 即x 1x 2+y 1y 2=-3,∴x 1x 2+(x 1+a 4)(x 2+a4)=-3,∴2x 1x 2+a 4(x 1+x 2)+a 216=-3, ∵a >0,∴a =4.∴所求抛物线方程为x 2=4y .(教师用书独具)已知抛物线y 2=2x ,(1)设点A 的坐标为(23,0),求抛物线上距离点A 最近的点P 的坐标及相应的距离|PA |;(2)在抛物线上求一点P ,使P 到直线x -y +3=0的距离最短,并求出距离的最小值. 【解】 (1)设抛物线上任一点P 的坐标为(x ,y ), 则|PA |2=(x -23)2+y 2=(x -23)2+2x=(x +13)2+13.∵x ≥0,且在此区间上函数单调递增, ∴当x =0时,|PA |min =23,距点A 最近的点的坐标为(0,0).(2)法一 设点P (x 0,y 0)是y 2=2x 上任一点, 则P 到直线x -y +3=0的距离为 d =|x 0-y 0+3|2=|y 22-y 0+3|2=y 0-2+5|22,当y 0=1时,d min =522=524,∴点P 的坐标为(12,1).法二 设与直线x -y +3=0平行的抛物线的切线为x -y +t =0,与y 2=2x 联立,消去x 得y 2-2y +2t =0,由Δ=0得t =12,此时y =1,x =12,∴点P 坐标为(12,1),两平行线间的距离就是点P 到直线的最小距离, 即d min =524.已知抛物线y 2=4x 与直线x +y -2=0的交点为A 、B ,抛物线的顶点为O ,在AOB 上求一点C ,使△ABC 的面积最大,并求出这个最大面积.【解】 设与直线AB 平行且与抛物线相切的直线方程为x +y -b =0,将它与抛物线方程y 2=4x 联立,消去x 得方程y 2=4(b -y ),即y 2+4y -4b =0.由Δ=42-4(-4b )=0得b =-1,故切线为x +y +1=0. 求得切点C (1,-2).因直线x +y +1=0与x +y -2=0的距离d =|1+2|2=322.由⎩⎪⎨⎪⎧x +y -2=0,y 2=4x ,解得交点坐标为A (4+23,-2-23)、B (4-23,-2+23). ∴|AB |=4 6.于是S △ABC =12|AB |·d =12×46×322=6 3.所以当C 点为(1,-2)时,S△ABC的最大值为6 3.。
2.3.2 抛物线的简单几何性质学习目标核心素养1.掌握抛物线的几何性质.(重点)2.掌握直线与抛物线的位置关系的判断及相关问题.(重点)3.能利用方程及数形结合思想解决焦点弦、弦中点等问题.(难点)1.借助直线与抛物线的位置关系,培养学生的直观想象和数学运算的素养.2.借助抛物线的几何性质解题,提升逻辑推理的素养.1.抛物线的几何性质标准方程y2=2px(p>0) y2=-2px(p>0) x2=2py(p>0) x2=-2py (p>0) 图形性质焦点⎝⎛⎭⎫p2,0⎝⎛⎭⎫-p2,0⎝⎛⎭⎫0,p2⎝⎛⎭⎫0,-p2准线x=-p2x=p2y=-p2y=p2范围x≥0,y∈R x≤0,y∈R y≥0,x∈R y≤0,x∈R性质对称轴x轴y轴顶点(0,0)离心率e=1直线过抛物线y2=2px(p>0)的焦点F,与抛物线交于A(x1,y1),B(x2,y2)两点,由抛物线的定义知,|AF|=x1+p2,|BF|=x2+p2,故|AB|=x1+x2+p.3.直线与抛物线的位置关系直线y=kx+b与抛物线y2=2px(p>0)的交点个数决定于关于x的方程组⎩⎪⎨⎪⎧y=kx+b,y2=2px解的个数,即二次方程k2x2+2(kb-p)x+b2=0解的个数.当k≠0时,若Δ>0,则直线与抛物线有两个不同的公共点;若Δ=0时,直线与抛物线有一个公共点;若Δ<0时,直线与抛物线没有公共点.当k=0时,直线与抛物线的对称轴平行或重合,此时直线与抛物线有一个公共点.思考:直线与抛物线只有一个公共点,那么直线与抛物线一定相切吗?[提示] 可能相切,也可能相交,当直线与抛物线的对称轴平行或重合时,直线与抛物线相交且只有一个公共点.1.设抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程是( ) A .y 2=-8x B .y 2=-4x C .y 2=8xD .y 2=4xC [由准线方程为x =-2,可知抛物线的焦点在x 轴正半轴上,且p =4,所以抛物线的方程为y 2=2px =8x .]2.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,若x 1+x 2=6,则|AB |=( )A .10B .8C .6D .4B [|AB |=x 1+x 2+p =6+2=8.]3.直线y =2x -1与抛物线x 2=12y 的位置关系是( )A .相切B .相交C .相离D .不确定 C [由⎩⎪⎨⎪⎧y =2x -1,x 2=12y ,得2x 2-2x +1=0,即Δ=4-8<0, ∴y =2x -1与x 2=12y 无交点,故选C .]抛物线的几何性质求出抛物线的方程,并指出它的焦点坐标和准线方程.[解] 当焦点在x 轴的正半轴上时,设方程为y 2=2px (p >0). 当x =p2时,y =±p ,由|AB |=2p =8,得p =4.故抛物线方程为y 2=8x ,焦点坐标为(2,0),准线方程为x =-2. 当焦点在x 轴的负半轴上时,设方程y 2=-2px (p >0).由对称性知抛物线方程为y 2=-8x , 焦点坐标为(-2,0),准线方程为x =2.抛物线各元素间的关系抛物线的焦点始终在对称轴上,顶点就是抛物线与对称轴的交点,准线始终与对称轴垂直,准线与对称轴的交点和焦点关于顶点对称,顶点到焦点的距离等于顶点到准线的距离,为p 2.[跟进训练]1.边长为1的等边三角形AOB ,O 为坐标原点,AB ⊥x 轴,以O 为顶点且过A ,B 的抛物线方程是( )A .y 2=36x B .y 2=-33x C .y 2=±36xD .y 2=±33xC [设抛物线方程为y 2=ax (a ≠0).又A ⎝⎛⎭⎫±32,12(取点A 在x 轴上方),则有14=±32a ,解得a =±36,所以抛物线方程为y 2=±36x .故选C .]抛物线的焦点弦问题(1)若直线l 的倾斜角为60°,求|AB |的值;(2)若|AB |=9,求线段AB 的中点M 到准线的距离.[思路点拨] (1)设出l 的方程,与抛物线联立,消去y 得关于x 的一元二次方程,利用|AB |=x A +x B +p 求解.(2)由代数法或几何法求解.[解] (1)因为直线l 的倾斜角为60°, 所以其斜率k =tan 60°=3, 又F ⎝⎛⎭⎫32,0.所以直线l 的方程为y =3⎝⎛⎭⎫x -32. 联立⎩⎪⎨⎪⎧y 2=6x ,y =3⎝⎛⎭⎫x -32,消去y 得x 2-5x +94=0.设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=5,而|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=x 1+x 2+p ,∴|AB |=5+3=8.(2)法一:设A (x 1,y 1),B (x 2,y 2),由抛物线定义知|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=x 1+x 2+p =x 1+x 2+3=9,所以x 1+x 2=6,于是线段AB 的中点M 的横坐标是3, 又准线方程是x =-32,所以M 到准线的距离等于3+32=92.法二:如图,作AC ⊥l ,BD ⊥l ,ME ⊥l ,易知|ME |=12(|AC |+|BD |)=12(|AF |+|BF |)=12|AB |=12×9=92.1.已知AB 是过抛物线y 2=2px (p >0)的焦点的弦,F 为抛物线的焦点,A (x 1,y 1),B (x 2,y 2),则:(1)y 1y 2=-p 2,x 1x 2=p 24; (2)|AB |=x 1+x 2+p =2psin 2 θ(θ为直线AB 的倾斜角); (3)S △ABO =p 22sin θ(θ为直线AB 的倾斜角);(4)1|AF |+1|BF |=2p; (5)以AB 为直径的圆与抛物线的准线相切.2.当直线经过抛物线的焦点,且与抛物线的对称轴垂直时,直线被抛物线截得的线段称为抛物线的通径,显然通径长等于2p .[跟进训练]2.过抛物线C :y 2=2px (p >0)的焦点F 的直线交抛物线于A ,B 两点,且A ,B 两点的纵坐标之积为-4,求抛物线C 的方程.[解] 由于抛物线的焦点F ⎝⎛⎭⎫p 2,0,故可设直线AB 的方程为x =my +p 2.由⎩⎪⎨⎪⎧x =my +p 2,y 2=2px ,得y 2-2pmy -p 2=0, 设A (x 1,y 1),B (x 2,y 2), 则y 1y 2=-p 2, ∴-p 2=-4. 由p >0,可得p =2. ∴抛物线C 的方程为y 2=4x .直线与抛物线的位置关系1.过点(1,1)与抛物线y 2=x 有且只有一个公共点的直线有几条? 提示:两条,如图.2.借助直线与抛物线的方程组成的方程组解的个数能否说明直线与抛物线的位置关系? 提示:不一定.当有两解或无解时,可以说明两者的关系,但只有一解时,需分清相交还是相切.【例3】 已知直线l :y =kx +1,抛物线C :y 2=4x ,当k 为何值时,直线l 与抛物线C 有:(1)一个公共点? (2)两个公共点?(3)没有公共点? [思路点拨]联立方程组――→消元关于x 的方程――――――――――――→讨论x 最高项的系数再分Δ>0,Δ=0,Δ<0三类求解[解] 将直线l 和抛物线C 的方程联立得⎩⎪⎨⎪⎧y =kx +1,y 2=4x ,消去y ,得k 2x 2+(2k -4)x +1=0.(*)当k =0时,方程(*)只有一个解,为x =14,此时y =1.∴直线l 与抛物线C 只有一个公共点⎝⎛⎭⎫14,1,此时直线l 平行于x 轴. 当k ≠0时,方程(*)为一元二次方程,Δ=(2k -4)2-4k 2,①当Δ>0,即k <1且k ≠0时,直线l 与抛物线C 有两个公共点,此时直线l 与抛物线C 相交;②当Δ=0,即k =1时,直线l 与抛物线C 有一个公共点,此时直线l 与抛物线C 相切; ③当Δ<0,即k >1时,直线l 与抛物线C 没有公共点,此时直线l 与抛物线C 相离. 综上所述,(1)当k =1或k =0时,直线l 与抛物线C 有一个公共点; (2)当k <1且k ≠0时,直线l 与抛物线C 有两个公共点; (3)当k >1时,直线l 与抛物线C 没有公共点.直线与抛物线位置关系的判断方法设直线l :y =kx +b ,抛物线:y 2=2px (p >0),将直线方程与抛物线方程联立消元得:k 2x 2+(2kb -2p )x +b 2=0.(1)若k 2=0,此时直线与抛物线有一个交点,该直线平行于抛物线的对称轴或与对称轴重合.(2)若k 2≠0,当Δ>0时,直线与抛物线相交,有两个交点; 当Δ=0时,直线与抛物线相切,有一个交点; 当Δ<0时,直线与抛物线相离,无公共点.[跟进训练]3.求过定点P (0,1),且与抛物线y 2=2x 只有一个公共点的直线方程. [解] 如图所示,若直线的斜率不存在, 则过点P (0,1)的直线方程为x =0,由⎩⎪⎨⎪⎧ x =0,y 2=2x ,得⎩⎪⎨⎪⎧x =0,y =0,即直线x =0与抛物线只有一个公共点.若直线的斜率存在,设为k ,则过P 的直线方程为y =kx +1.由方程组⎩⎪⎨⎪⎧y =kx +1,y 2=2x ,消去y 得k 2x 2+2(k -1)x +1=0, 当k =0时,得x =12,y =1.故直线y =1与抛物线相交,只有一个公共点. 当k ≠0时,由直线与抛物线只有一个公共点, 则Δ=4(k -1)2-4k 2=0,∴k =12,此时直线y =12x +1与抛物线相切,只有一个公共点.∴y =1或y =12x +1为所求的直线方程.故所求的直线方程为x =0或y =1或y =12x +1.1.讨论抛物线的几何性质,一定要利用抛物线的标准方程;利用几何性质,也可以根据待定系数法求抛物线的方程.2.直线与抛物线的相交弦问题共有两类,一类是过焦点的弦,一类是不过焦点的弦.解决弦的问题,大多涉及到抛物线的弦长、弦的中点、弦的斜率.常用的办法是将直线方程与抛物线方程联立,转化为关于x 或y 的一元二次方程,然后利用根与系数的关系,这样避免求交点.尤其是弦的中点问题,还应注意“点差法”的运用.3.判断直线与抛物线位置关系的两种方法(1)几何法:利用图象,数形结合,判断直线与抛物线的位置关系,但有误差影响判断的结果.(2)代数法:设直线l 的方程为y =kx +m ,抛物线的方程为y 2=2px (p >0),将直线方程与抛物线方程联立整理成关于x (或y )的一元二次方程形式:Ax 2+Bx +C =0(或Ay 2+By +C =0).相交:①有两个交点⎩⎪⎨⎪⎧A ≠0,Δ>0;②有一个交点:A =0(直线与抛物线的对称轴平行或重合,即相交);相切:有一个公共点,即⎩⎪⎨⎪⎧A ≠0,Δ=0;相离:没有公共点,即⎩⎪⎨⎪⎧A ≠0,Δ<0.直线与抛物线有一个交点,是直线与抛物线相切的必要不充分条件.1.判断正误(1)在抛物线y 2=2px (p >0)中,p 值越大,抛物线的开口越开阔,p 值越小,开口越扁狭.( ) (2)抛物线既是轴对称图形也是中心对称图形. ( ) (3)抛物线的顶点一定在过焦点且与准线垂直的直线上. ( ) (4)直线与抛物线只有一个公共点,则直线与抛物线相切. ( ) (5)直线与抛物线相交时,直线与抛物线不一定有两个公共点. ( )[答案] (1)√ (2)× (3)√ (4)× (5)√2.若抛物线y 2=2x 上有两点A ,B 且AB 垂直于x 轴,若|AB |=22,则抛物线的焦点到直线AB 的距离为( )A .12B .14C .16D .18A [线段AB 所在的直线的方程为x =1,抛物线的焦点坐标为⎝⎛⎭⎫12,0,则焦点到直线AB 的距离为1-12=12.]3.如图,过抛物线y 2=2px (p >0)焦点F 的直线交抛物线于点A ,B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( )A .y 2=3xB .y 2=9xC .y 2=32xD .y 2=92xA [过A 、B 作l 的垂线,分别交l 于A 1、B 1点. 因为|BB 1|=|BF |,|BC |=2|BF |,所以∠B 1BC =60°, 所以∠A 1AF =60°,又因为|AA 1|=|AF |,所以|A 1F |=3, 所以|O 1F |=32=p ,所以抛物线的方程为y 2=3x .]4.已知抛物线C 的顶点在原点,焦点在x 轴上,且抛物线上有一点P (4,m )到焦点的距离为6.(1)求抛物线C 的方程;(2)若抛物线C 与直线y =kx -2相交于不同的两点A ,B ,且AB 中点横坐标为2,求k 的值.[解] (1)由题意设抛物线方程为y 2=2px (p >0),其准线方程为x =-p2,因为P (4,m )到焦点的距离等于P 到其准线的距离,所以4+p2=6,所以p =4,所以抛物线C 的方程为y 2=8x .(2)由⎩⎪⎨⎪⎧y 2=8x ,y =kx -2,消去y ,得k 2x 2-(4k +8)x +4=0.因为直线y =kx -2与抛物线相交于不同的两点A ,B ,则有k ≠0,Δ=64(k +1)>0, 解得k >-1且k ≠0. 又x 1+x 22=2k +4k2=2,解得k =2或k =-1(舍去),所以k 的值为2.。
编号:gswhsxxx1-1----02-06文华高中高二数学选修1-1§2.3.2《抛物线的简单几何性质》导学案学习目标1.掌握抛物线的几何性质;2.根据几何性质确定抛物线的标准方程并解决简单问题。
重点难点重点:抛物线的几何性质难点:根据几何抛物线的标准方程 学习方法在对抛物线的几何性质的讨论中,注意数与形的结合与转化。
情感态度与价值观通过坐标系把数与形有机联系起来,通过研究几种圆锥曲线的方程和图像,得到圆锥曲线的几何性质,形成研究曲线的一般方法学习过程一、自学探究(预习教材60页)通过对照完成下表 1.范围 因为p >0,由方程y 2=2px (p >0)可知,这条抛物线上任意一点M 的坐标(x ,y ),0x ≥.所以这条抛物线在y 轴的___侧;当x 的值增大时,|y |也,这说明抛物线向右上方和右下方无限延伸,它开口 __。
2.对称性 以-y 代y ,方程y 2=2px (p >0)不变,因此这条抛物线是以x 轴为对称轴的标准方程焦点坐标准线方程图形 顶 点 范围 对称轴离心率 )0(22>=p pxy)0(22>-=p px y)0(22>=p py x)0(22>-=p py xyMOxB'A'lxyo FBA轴对称图形,抛物线的对称轴叫做抛物线的 ____ ____。
3.顶点 抛物线和它的轴的交点叫做抛物线的 _ .在方程y 2=2px (p >0)中,当y =0时,x =0,因此这条抛物线的顶点就是 ___。
4.离心率 抛物线上的点与焦点和准线的距离的比,叫做抛物线的 ,用e 表示,按照抛物线的定义,e = 。
二、例题探究题型一:由抛物线的几何性质求抛物线方程例1:已知抛物线关于x 轴对称,它的顶点在坐标原点,并且经过点(2,22)M -,求它的标准方程.(教材60页例3)思考:对于上例中,若对称轴不确定时,应如何考虑?变式:顶点在坐标原点,对称轴是坐标轴,并且经过点(2,22)M -的抛物线有几条?求出它们的标准方程.小结:从方程形式上看,求抛物线标准方程只需确定一个待定系数p ,但在实际问题中要根据草图对开口方向和p 进行讨论。
抛物线的简单几何性质课前预习学案一、 预习目标回顾抛物线的定义及抛物线的标准方程,预习抛物线的范围、对称性、顶点、离心率等几何性质 二、 预习内容 1、复习回顾(1) 抛物线定义叫作抛物线; 叫做抛物线的焦点。
叫做抛物线的准线图形xyOFlxyOFl方程焦点准线xyO FlxyOFl(2)抛物线的标准方程 ①相同点 ; ②不同点 ; (3)回顾练习①已知抛物线y 2=2px 的焦点为F ,准线为l ,过焦点F 的弦与抛物线交于A 、B 两点,过A 、B 分别作AP⊥l ,BQ⊥l ,M 为PQ 的中点,求证:MF ⊥AB②在抛物线y 2=2x 上方有一点M (3,310),P 在抛物线上运动,|PM|=d 1,P 到准线的距离为d 2,求当d 1 +d 2最小时,P 的坐标。
2、预习新知(1)根据抛物线图像探究抛物线的简单几何性质 ①范围:; ②对称性:; ③顶l yP A MO F x Q B图①点:; ④离心率:; (2)自我检测:1.已知点1(,0)4F -,直线l :41=x ,点B 是直线l 上的动点,若过B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 所在曲线是( )()A 圆 ()B 椭圆 ()C 双曲线 ()D 抛物线2.设抛物线22y x =的焦点为F ,以9(,0)2P 为圆心,PF 长为半径作一圆,与抛物线在x 轴上方交于,M N ,则||||MF NF +的值为 ( )()A 8 ()B 18 ()C 22 ()D 43.过点(3,--的抛物线的标准方程是 . 焦点在10x y --=上的抛物线的标准方程是 .4.抛物线28y x =的焦点为F ,(4,2)A -为一定点,在抛物线上找一点M ,当||||MA MF +为最小时,则M 点的坐标 ,当||||MA M F -为最大时,则M 点的坐标 . 三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标1.掌握抛物线的范围、对称性、顶点、离心率等几何性质;2.能根据抛物线的几何性质对抛物线方程进行讨论,在此基础上列表、描点、画抛物线图形;3.在对抛物线几何性质的讨论中,注意数与形的结合与转化二、学习过程1、定义;2、标准方程;3、几何性质①范围 :; ②对称性:; ③顶点:; ④离心率:; 4、完成下表 标准方程图形顶点对称轴焦点准线离心率()022>=p pxy()0,02px -= 1=exyO Fl()0,0x 轴 ⎪⎭⎫⎝⎛-0,2p1=e()022>=p pyx()0,02py -= 1=e()0,0y 轴1=e思考问题:抛物线是双曲线的一支吗?为什么? 5、分析例题例1 已知抛物线关于x 轴为对称,它的顶点在坐标原点,并且经过点)22,2(-M ,求它的标准方程,并用描点法画出图形. 例 2 探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处,已知灯的圆的直径60cm ,灯深为40cm ,求抛物线的标准方程和焦点位置.例3 过抛物线px y 22=的焦点F 任作一条直线m ,交这抛物线于A 、B 两点,求证:以AB 为直径的圆和这抛物线的准线相切.例4. 已知抛物线24x y =与圆2232x y +=相交于,A B 两点,圆与y 轴正半轴交于C 点,直线l 是圆的切线,交抛物线与,M N ,并且切点在ACB 上.(1)求,,A B C 三点的坐标.(2)当,M N 两点到抛物线焦点距离和最大时,求直线l 的方程.课后练习与提高1.过抛物线x y 42=的焦点作直线交抛物线于()11,y x A ,()22,y x B 两点,如果621=+x x ,那么||AB =( B )(A )10 (B )8 (C )6 (D ) 4xyE OF B ADC H2.已知M 为抛物线x y 42=上一动点,F 为抛物线的焦点,定点()1,3P ,则||||MF MP +的最小值为( B )(A )3 (B )4 (C )5 (D )63.过抛物线()02>=a ax y 的焦点F 作直线交抛物线于P 、Q 两点,若线段PF 、QF 的长分别是p 、q ,则qp 11+=( C ) (A )a 2 (B )a 21 (C )a 4 (D )a44.过抛物线x y 42=焦点F 的直线l 它交于A 、B 两点,则弦AB 的中点的轨迹方程是 ______ (答案:()122-=x y )5.定长为3的线段AB 的端点A 、B 在抛物线x y =2上移动,求AB 中点M到y 轴距离的最小值,并求出此时AB 中点M 的坐标(答案:⎪⎪⎭⎫ ⎝⎛±22,45M , M 到y 轴距离的最小值为45) 6.根据下列条件,求抛物线的方程,并画出草图.(1)顶点在原点,对称轴是x 轴,顶点到焦点的距离等于8. (2)顶点在原点,焦点在y 轴上,且过P (4,2)点.(3)顶点在原点,焦点在y 轴上,其上点P (m ,-3)到焦点距离为5.7.过抛物线焦点F 的直线与抛物线交于A 、B 两点,若A 、B 在准线上的射影是A 2,B 2,则∠A 2FB 2等于8.抛物线顶点在原点,以坐标轴为对称轴,过焦点且与y 轴垂直的弦长为16,求抛物线方程.9.以椭圆1522=+y x 的右焦点,F 为焦点,以坐标原点为顶点作抛物线,求抛物线截椭圆在准线所得的弦长.10.有一抛物线型拱桥,当水面距拱顶4米时,水面宽40米,当水面下降1米时,水面宽是多少米?抛物线的简单几何性质教学目的:1.掌握抛物线的范围、对称性、顶点、离心率等几何性质;2.能根据抛物线的几何性质对抛物线方程进行讨论,在此基础上列表、描点、画抛物线图形;3.在对抛物线几何性质的讨论中,注意数与形的结合与转化教学重点:抛物线的几何性质及其运用教学难点:抛物线几何性质的运用授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:“抛物线的简单几何性质”是课本第八章最后一节,它在全章占有重要的地位和作用本节知识在生产、生活和科学技术中经常用到,也是大纲规定的必须掌握的内容,还是将来大学学习的基础知识之一对于训练学生用坐标法解题,本节一如前面各节一样起着相当重要的作用研究抛物线的几何性质和研究椭圆、双曲线的几何性质一样,按范围、对称性、顶点、离心率顺序来研究,完全可以独立探索得出结论已知抛物线的标准方程,求它的焦点坐标和准线方程时,首先要判断抛物线的对称轴和开口方向,一次项的变量如果为x(或y),则x轴(或y轴)是抛物线的对称轴,一次项的符号决定开口方向,由已知条件求抛物线的标准方程时,首先要根据已知条件确定抛物线标准方程的类型,再求出方程中的参数p本节分两课时进行教学 第一课时内容主要讲抛物线的四个几何性质、抛物线的画图、例1、例2、及其它例题;第二课时主要内容焦半径公式、通径、例3教学过程: 一、复习引入: 1.抛物线定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线 定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线2.抛物线的标准方程:图形xyOFlxyOFl方程 )0(22>=p px y )0(22>-=p px y )0(22>=p py x )0(22>-=p py x焦点 )0,2(p)0,2(p- )2,0(p )2,0(p -准线2p x -= 2p x =2p y -= 2p y =xyO FlxyOFl相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称 它们到原点的距离都等于一次项系数绝对值的41,即242p p = 不同点:(1)图形关于X 轴对称时,X 为一次项,Y 为二次项,方程右端为px 2±、左端为2y ;图形关于Y 轴对称时,X 为二次项,Y 为一次项,方程右端为py 2±,左端为2x (2)开口方向在X 轴(或Y轴)正向时,焦点在X 轴(或Y 轴)的正半轴上,方程右端取正号;开口在X 轴(或Y 轴)负向时,焦点在X 轴(或Y 轴)负半轴时,方程右端取负号二、讲解新课: 抛物线的几何性质 1.范围因为p >0,由方程()022>=p px y 可知,这条抛物线上的点M 的坐标(x ,y)满足不等式x≥0,所以这条抛物线在y 轴的右侧;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸. 2.对称性以-y 代y ,方程()022>=p px y 不变,所以这条抛物线关于x 轴对称,我们把抛物线的对称轴叫做抛物线的轴. 3.顶点抛物线和它的轴的交点叫做抛物线的顶点.在方程()022>=p px y 中,当y=0时,x=0,因此抛物线()022>=p px y 的顶点就是坐标原点. 4.离心率抛物线上的点M 与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e 表示.由抛物线的定义可知,e=1. 对于其它几种形式的方程,列表如下: 标准方程图形顶点对称轴焦点准线离心率()022>=p pxyxyO Fl()0,0x 轴⎪⎭⎫⎝⎛0,2p 2p x -= 1=e()022>-=p pxyxyO Fl()0,0 x 轴 ⎪⎭⎫⎝⎛-0,2p 2p x =1=e()022>=p pyx()0,0y 轴⎪⎭⎫⎝⎛2,0p 2p y -= 1=e()022>-=p pyx()0,0y 轴 ⎪⎭⎫⎝⎛-2,0p 2py =1=e注意强调p 的几何意义:是焦点到准线的距离抛物线不是双曲线的一支,抛物线不存在渐近线通过图形的分析找出双曲线与抛物线上的点的性质差异,当抛物线上的点趋向于无穷远时,抛物线在这一点的切线斜率接近于对称轴所在直线的斜率,也就是说接近于和对称轴所在直线平行,而双曲线上的点趋向于无穷远时,它的切线斜率接近于其渐近线的斜率附:抛物线不存在渐近线的证明.(反证法)假设抛物线y 2=2px 存在渐近线y =mx+n ,A (x ,y )为抛物线上一点,A 0(x ,y 1)为渐近线上与A 横坐标相同的点如图,则有px y 2±=和y 1=mx +n . ∴ px n mx y y 21 +=-xpx n m x 2 +⋅=当m ≠0时,若x →+∞,则+∞→-y y 1当m =0时,px n y y 21 =-,当x →+∞,则+∞→-y y 1 这与y =mx +n 是抛物线y 2=2px 的渐近线矛盾,所以抛物线不存在渐近线三、讲解范例:例1 已知抛物线关于x 轴为对称,它的顶点在坐标原点,并且经过点)22,2(-M ,求它的标准方程,并用描点法画出图形. 分析:首先由已知点坐标代入方程,求参数p .解:由题意,可设抛物线方程为px y 22=,因为它过点)22,2(-M , 所以 22)22(2⋅=-p ,即 2=p 因此,所求的抛物线方程为x y 42=.将已知方程变形为x y 2±=,根据x y 2=计算抛物线在0≥x 的范围内几个点的坐标,得xyA 0AOx 0 1 2 3 4 … y22.83.54…描点画出抛物线的一部分,再利用对称性,就可以画出抛物线的另一部分点评:在本题的画图过程中,如果描出抛物线上更多的点,可以发现这条抛物线虽然也向右上方和右下方无限延伸,但并不能像双曲线那样无限地接近于某一直线,也就是说,抛物线没有渐近线. 例 2 探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处,已知灯的圆的直径60cm ,灯深为40cm ,求抛物线的标准方程和焦点位置.分析:这是抛物线的实际应用题,设抛物线的标准方程后,根据题设条件,可确定抛物线上一点坐标,从而求出p 值.解:如图,在探照灯的轴截面所在平面内建立直角坐标系,使反光镜的顶点(即抛物线的顶点)与原点重合,x 轴垂直于灯口直径.设抛物线的标准方程是px y 22= (p >0).由已知条件可得点A 的坐标是(40,30),代入方程,得402302⨯=p ,即 445=p 所求的抛物线标准方程为x y 2452=.例3 过抛物线px y 22=的焦点F 任作一条直线m ,交这抛物线于A 、B 两点, 求证:以AB 为直径的圆和这抛物线的准线xyE OF B ADC H相切.分析:运用抛物线的定义和平面几何知识来证比较简捷.证明:如图.设AB 的中点为E ,过A 、E 、B 分别向准线l 引垂线AD ,EH ,BC ,垂足为D 、H 、C ,则|AF |=|AD |,|BF |=|BC |∴|AB |=|AF |+|BF |=|AD |+|BC |=2|EH | 所以EH 是以AB 为直径的圆E 的半径,且EH ⊥l ,因而圆E 和准线l 相切.四、课堂练习:1.过抛物线x y 42=的焦点作直线交抛物线于()11,y x A ,()22,y x B 两点,如果621=+x x ,那么||AB =( B )(A )10 (B )8 (C )6 (D )42.已知M 为抛物线x y 42=上一动点,F 为抛物线的焦点,定点()1,3P ,则||||MF MP +的最小值为( B )(A )3 (B )4 (C )5 (D )63.过抛物线()02>=a ax y 的焦点F 作直线交抛物线于P 、Q 两点,若线段PF 、QF 的长分别是p 、q ,则qp 11+=( C ) (A )a 2 (B )a 21 (C )a 4 (D )a44.过抛物线x y 42=焦点F 的直线l 它交于A 、B 两点,则弦AB 的中点的轨迹方程是 ______ (答案:()122-=x y )5.定长为3的线段AB 的端点A 、B 在抛物线x y =2上移动,求AB 中点M到y 轴距离的最小值,并求出此时AB 中点M 的坐标(答案:⎪⎪⎭⎫⎝⎛±22,45M , M 到y 轴距离的最小值为45)五、小结 :抛物线的离心率、焦点、顶点、对称轴、准线、中心等 六、课后作业:1.根据下列条件,求抛物线的方程,并画出草图.(1)顶点在原点,对称轴是x 轴,顶点到焦点的距离等于8. (2)顶点在原点,焦点在y 轴上,且过P (4,2)点.(3)顶点在原点,焦点在y 轴上,其上点P (m ,-3)到焦点距离为5.2.过抛物线焦点F 的直线与抛物线交于A 、B 两点,若A 、B 在准线上的射影是A 2,B 2,则∠A 2FB 2等于3.抛物线顶点在原点,以坐标轴为对称轴,过焦点且与y 轴垂直的弦长为16,求抛物线方程.4.以椭圆1522=+y x 的右焦点,F 为焦点,以坐标原点为顶点作抛物线,求抛物线截椭圆在准线所得的弦长.5.有一抛物线型拱桥,当水面距拱顶4米时,水面宽40米,当水面下降1米时,水面宽是多少米? 习题答案:1.(1)y 2=±32x (2)x 2=8y (3)x 2=-8y 2.90° 3.x 2=±16 y4.545.520米七、板书设计(略)八、课后记:。
课题:2.3.2抛物线的简单几何性质(第1课时)教学目标:知识和技能目标:理解并掌握抛物线的几何性质,并能从抛物线的标准方程出发,推导这些性质.过程与方法目标:能根据抛物线的几何性质对抛物线方程进行讨论情感态度与价值观目标:培养合作学习的意识,通过对抛物线几何性质的讨论体会成功,注意数与形的结合与转化的喜悦。
教学重点、难点重点:能够推导抛物线的性质并掌握抛物线性质的应用难点:利用抛物线的几何性质求抛物线的标准方程及解决其它问题教学模式:启发探究式教学辅助手段:多媒体辅助教学教学过程(一)、提出问题我们已经学习了椭圆及双曲线的几何性质,请同学们回忆一下,是从哪几个方向研究的?(二)、新课教学探究:类比椭圆、双曲线几何性质,探究抛物线的几何性质以y2=2px(p>0)为例推导抛物线的简单几何性质,其余3种情况由学生推导(三)、思考交流1、抛物线的几何性质与椭圆、双曲线的几何性质有什么区别?2、椭圆的圆扁程度,双曲线的张口大小用离心率e来刻画,那么抛物线的开口大小由什么决定?(在同一坐标系中画出抛物线比较开口)(四)、基本例题分析例1、已知抛物线以x轴为对称轴,顶点是坐标原点,并且经过点M(2,-22),求抛物线的准线方程。
变式1:已知顶点在原点,对称轴为坐标轴,且过点M(2,-22),求抛物线方程。
规律方法:从方程形式上看,求抛物线标准方程只需确定一个待定系数p ,但在实际问题中要根据草图对开口方向和p 进行讨论。
例2、已知抛物线y 2=4x ,过焦点F 且垂直于对称轴的直线交抛物线于A 、B 两点,求AB 。
补充说明2p 的几何意义:2p 是通径的长度变式1:斜率为1的直线l 经过抛物线x y 42=的焦点F ,且与抛物线相交于A 、B 两点,求线段AB 的长。
结论:直线l 经过抛物线px y 22=(0>p )的焦点交抛物线于A (11,y x )、B ()22,y x 两点,则线段AB 的长度为 (用含p x x ,,21的式子表达)。
湖南省邵阳市隆回县第二中学高中数学 2.3.2抛物线的简单几何性质(3)导学案新人教A版选修1-1
【学习目标】
1.掌握抛物线的几何性质;
2.抛物线与直线的关系.
【自主学习】
复习1:已知抛物线22(0)
y px p
=->的焦点恰好是椭圆
22
1
1612
x y
+=的左焦点,则
p=.
复习2:抛物线22(0)
y px p
=>上一点的横坐标为6,这点到焦点距离为10,则:
①这点到准线的距离为;
②焦点到准线的距离为;
③抛物线方程;
④这点的坐标是;
⑤此抛物线过焦点的最短的弦长为.
【合作探究】
例1(教材P62例5)已知抛物线的方程24
y x
=,直线l过定点(2,1)
P-,斜率为k k为何值时,直线l与抛物线24
y x
=:只有一个公共点;有两个公共点;没有公共点?
小结:
① 直线与抛物线的位置关系:相离、相交、相切 ;
②直线与抛物线只有一个公共点时, 它们可能相切,也可能相交.
【目标检测】
1.过抛物线22(0)y px p =>焦点的直线交抛物线于A ,B 两点,则AB 的最小值为( ).
A. 2
p B. p C. 2p D. 无法确定
2.过点(0,1)且与抛物线24y x =只有一个公共点的直线有( )
A .1条
B .2条
C .3条
D .0条
3.与直线240x y -+=平行的抛物线2
y x =的切线方程为( )
A. 230x y -+=
B. 230x y --=
C. 210x y -+=
D. 210x y --=
4、已知直线l :1y x =-+和抛物线C :24y x =,设直线与抛物线的交点为A 、B , 求AB 的长.
教师个人研修总结
在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。
所以在学习上级的精神下,本期个人的研修经历如下:
1.自主学习:我积极参加网课和网上直播课程.认真完成网课要求的各项工作.教师根据自己的专业发展阶段和自身面临的专业发展问题,自主选择和确定学习书目和学习内容,认真阅读,记好读书笔记;学校每学期要向教师推荐学习书目或文章,组织教师在自学的基础上开展交流研讨,分享提高。
2.观摩研讨:以年级组、教研组为单位,围绕一定的主题,定期组织教学观摩,开展以课例为载体的“说、做、评”系列校本研修活动。
3.师徒结对:充分挖掘本校优秀教师的示范和带动作用,发挥学校名师工作室的作用,加快新教师、年轻教师向合格教师和骨干教师转化的步伐。
4.实践反思:倡导反思性教学和教育叙事研究,引导教师定期撰写教学反思、教育叙事研究报告,并通过组织论坛、优秀案例评选等活动,分享教育智慧,提升教育境界。
5.课题研究:立足自身发展实际,学校和骨干教师积极申报和参与各级教育科研课题的研究工作,认真落实研究过程,定期总结和交流阶段性研究成果,及时把研究成果转化为教师的学习反思:本节课我学到了什么?本节课我的学习效率如何?本节课还有哪些我没学懂?
教育教学实践,促进教育质量的提高和教师自身的成长。
6.专题讲座:结合教育教学改革的热点问题,针对学校发展中存在的共性问题和方向性问题,进行专题理论讲座。
7.校干引领:从学校领导开始,带头出示公开课、研讨课,参与本校的教学观摩活动,进行教学指导和引领。
8.网络研修:充分发挥现代信息技术,特别是网络技术的独特优势,借助教师教育博客等平台,促进自我反思、同伴互助和专家引领活动的深入、广泛开展。
我们认识到:一个学校的发展,将取决于教师观念的更新,人才的发挥和校本培训功能的提升。
多年来,我们学校始终坚持以全体师生的共同发展为本,走“科研兴校”的道路,坚持把校本培训作为推动学校建设和发展的重要力量,进而使整个学校的教育教学全面、持续、健康发展。
反思本学期的工作,还存在不少问题。
很多工作在程序上、形式上都做到了,但是如何把工作做细、做好,使之的目的性更加明确,是继续努力的方向。
另外,我校的研修工作压力较大,各学科缺少领头羊、研修氛围有待加强、师资缺乏等各类问题摆在我们面前。
缺乏专业人员的引领,各方面的工作开展得还不够规范。
相信随着课程改革的深入开展,在市教育教学研究院的领导和专家的亲临指导下,我校校本研修工作一定能得以规范而全面地展开。
“校本研修”这种可持续的、开放式的继续教育模式,一定能使我校的教育教学工作又上一个台阶。