二次根式全章复习与巩固(基础)知识讲解1(完整资料).doc
- 格式:doc
- 大小:378.50 KB
- 文档页数:6
二次根式【知识回顾】1.二次根式:式子 a (a≥ 0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:a (a> 0 )(1)( a )2= a ( a ≥0);(2)a2 a 0 (a =0);a(a< 0 )5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.ab = a · b (a≥0,b≥0);b b(b≥0,a>0).a a(4)有理数的加法交换律、结合律,都适用于二次根式的运算.【典型例题】1、概念与性质例 1 下列各式 1)1, 2) 5,3)x2 2, 4) 4,5) (1)2 ,6) 1 a,7) a2 2a 1 ,5 3其中是二次根式的是_________(填序号).例 2 、求下列二次根式中字母的取值范围x 512 3 x ;(2)(x - 2)( 1)例 3、在根式 1) a2 b2 ;2) x;3) x2 xy;4) 27abc ,最简二次根式是()5A. 1) 2) B.3) 4)1 C.1) 3) D.1) 4)y 1 8x8 x 1 , 求代数式x y2x y 2的值。
2 y x y x例 4 、已知:例 5 、( 2009 龙岩)已知数a,b,若( a b)2=b-a,则()A. a>bB. a<bC. a≥bD. a≤b2、二次根式的化简与计算例 1 . 将根号外的a移到根号内,得()A. ;B. -1 ;C.-;D.例 2 . 把( a- b)-化成最简二次根式a- b例 3 、计算:例 4 、先化简,再求值:1 1 b ,其中 a= 5 1,b= 5 1.a b b a(a b) 2 2例 5 、如图,实数 a 、 b 在数轴上的位置,化简:a2b2(a b)24、比较数值( 1 )、根式变形法当 a 0,b 0 时,①如果 a b ,则a b ;②如果 a b ,则a b 。
《二次根式》全章复习与巩固(提高)知识讲解责编:杜少波【学习目标】1、理解并掌握二次根式、最简二次根式、同类二次根式的定义和性质.2、熟练掌握二次根式的加、减、乘、除运算,会用它们进行有关实数的四则运算.3、了解代数式的概念,进一步体会代数式在表示数量关系方面的作用. 【知识网络】【要点梳理】知识点一、二次根式的相关概念和性质 1.二次根式形如(0)a a ≥的式子叫做二次根式,如13,,0.02,02等式子,都叫做二次根式.要点诠释:二次根式a 有意义的条件是0a ≥,即只有被开方数0a ≥时,式子a 才是二次根式,a 才有意义.2.二次根式的性质 (1); (2);(3).要点诠释:(1) 一个非负数a 可以写成它的算术平方根的平方的形式,即a 2)a =(0a ≥),如2221122););)33x x ===(0x ≥).(2)a的取值范围可以是任意实数,即不论a.(3a,再根据绝对值的意义来进行化简.(42的异同a可以取任何实数,而2中的a必须取非负数;a,2=a(0a≥).相同点:被开方数都是非负数,当a2.3.最简二次根式(1)被开方数中不含能开得尽方的因数或因式;(2)被开方数中不含有分母;(3)分母中不含有根号.满足这三个条件的二次根式叫做最简二次根式.是最简二次根式.要点诠释:最简二次根式有两个要求:(1)被开方数不含分母;(2)被开方数中每个因式的指数都小于根指数2.4.同类二次根式几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式.要点诠释:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.显然是同类二次根式.知识点二、二次根式的运算1.乘除法(1)乘除法法则:类型法则逆用法则二次根式的乘法0,0)a b=≥≥积的算术平方根化简公式:0,0)a b=≥≥二次根式的除法0,0)a b=≥>商的算术平方根化简公式:0,0)a b=≥>要点诠释:(1)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如=(2)被开方数a、b一定是非负数(在分母上时只能为正数).如-⨯-≠-⨯-.(4)(9)492.加减法将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式.要点诠释:二次根式相加减时,要先将各个二次根式化成最简二次根式,再找出同类二+-=+-=-.次根式,最后合并同类二次根式.如23252(135)22【典型例题】类型一、二次根式的概念与性质1. x是怎样的实数时,下列各式在实数范围内有意义?(1); (2);【答案】(1);(2).【解析】(1) 要使在实数范围内有意义,则必有.∴当时,在实数范围内有意义.(2) 要使在实数范围内有意义,则必有.∴当时,在实数范围内有意义.a≥时a才是二次根【总结升华】本例考查了二次根式成立的条件,要牢记,只有0式.举一反三:【变式】已知,求的值.【答案】解:根据二次根式的意义有.将代入已知等式得2.把根号外的因式移到根号内,得( ).A. B.C. D.-,到根号里面要【思路点拨】首先分析出 x的取值范围x<0,然后再向根号里移x变成()2x-.【答案】C.【解析】由二次根式的意义知x<0,则..【总结升华】在利用二次根式性质化简时,要注意其符号,要明确a是非负数,反过来将根号外的因式移到根号内时,也必须向里移非负数.举一反三:【变式】(2015春•绥中县期中)若(3x﹣y+5)2+=0,求x+y的立方根.【答案】解:由题意得(3x﹣y+5)2=0,即 3x﹣y+5=0,=0,即 2x﹣y+3=0,∴解得∴x+y=﹣3,∴x+y的立方根=.3.(2016秋•商水县校级月考)已知a,b,c在数轴上的位置如图,化简:+.【思路点拨】根据数轴得到a<b<0<c,据此来化简二次根式,去绝对值.【答案与解析】解:如图所示:a<b<0<c,则+=|a|+a+b+|c ﹣a+b|+c+b+b =﹣a+a+b+c ﹣a+b+c+b+b =4b+2c ﹣a .【总结升华】本题考查了二次根式的性质与化简,实数与数轴.根据数轴求得a 、b 、c 的取值范围是解题的关键.【高清课堂:二次根式 高清ID 号:388065关联的位置名称:填空题5】 举一反三:【变式】∆ABC 的三边长为a 、b 、c ,则22()()a b c a b c ---+-= . 【答案】22c a -. 类型二、二次根式的运算4.(2015•昆山市一模)计算:(1)()-113232⎛⎫--+- ⎪⎝⎭;(2)()()23+131(3)25---+-.【答案与解析】 解:(1)原式=2﹣1+3=4;(2)原式=2﹣3﹣﹣2=﹣﹣3. 【总结升华】此题考查二次根式的混合运算,正确掌握二次根式的性质化简以及乘法计算公式是解决问题的关键. 举一反三: 【变式】计算:【答案】5.已知a 、b 、c 为△ABC 的三边长,化简:【答案与解析】解:∵a 、b 、c 为△ABC 的三边长,∴原式【总结升华】利用三角形任意两边之和大于第三边和进行化简.6.若0x>,化简___________x xy xy yxy y x xy+-+=+-.【答案】x yxyxy+【解析】【总结升华】把分子分母分别分解因式,然后约分,可以简化化简步骤.举一反三:【变式】当221221123a a a aaa-+-+=--+时,求的值.【答案】解:23,10.23a a==--<+由得将2323a==-+=3.()()()()x x y y x yy x y x x yyxy xxyxvyx yxyxy+-+-==++=原式。
二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.;2.;3.;4.积的算术平方根的性质:;5. 商的算术平方根的性质:.6.假设,那么.知识点二、二次根式的运算1.二次根式的乘除运算(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2)注意每一步运算的算理;2.二次根式的加减运算先化简,再运算,3.二次根式的混杂运算(1) 明确运算的序次,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;(2) 整式、分式中的运算律、运算法那么及乘法公式在二次根式的混杂运算中也同样适用.一. 利用二次根式的双重非负性来解题〔a0 〔a≥0〕,即一个非负数的算术平方根是一个非负数。
〕1.〕。
A、3;B、x ;C、x21;D、x1以下各式中必然是二次根式的是〔2.等式(x 1)2=1- x 成立的条件是 _____________ .3.当 x____________ 时,二次根式2x 3 有意义.4.x 取何值时,以下各式在实数范围内有意义。
〔 1〕〔 2〕1〔3〕5x 2 x1x4〔 4〕假设x( x1)x x1,那么 x 的取值范围是〔 5〕假设x3x3,那么 x 的取值范围是。
x1x16.假设3m 1 有意义,那么m能取的最小整数值是;假设 20m 是一个正整数,那么正整数m的最小值是________.7.当 x 为何整数时,10x11有最小整数值,这个最小整数值为。
8. 假设2004 a a2005a ,那么a2004 2=_____________;假设y x33x 4 ,那么x y9.设 m、n 满足n m299m22mn =。
m 3,那么10. 假设三角形的三边a、 b、 c 满足a24a 4 b 3 =0,那么第三边c的取值范围是11. 假设|4x8 |x y m0 ,且 y 0 时,那么〔〕 A 、0m1 B 、m2C、m 2 D、 m 2利用二次根式的性质2a(a b)(即一个数的平方的算术平方根等于这个数的绝对值)来解题二. a =|a|=0(a0)a(a0)1.x33x2=-x x 3 ,那么〔〕 A.x≤0 B. x≤- 3C. x≥- 3 D.- 3≤x≤ 02.. a<b,化简二次根式 a 3b 的正确结果是〔〕A.a ab B .a ab C. a ab D .a ab3.假设化简 | 1-x |-28x16 的结果为2x-5 那么〔〕 A 、 x 为任意实数B、1≤ x≤ 4C、 x≥1 D 、x≤ 4 x4. a, b, c 为三角形的三边,那么(a b c)2(b c a) 2(b c a) 2=5.当 -3<x<5 时,化简26921025 =。
二次根式全章复习一. 教学衔接二. 教学内容知识点一:二次根式的概念及意义考点1:二次根式的概念:一般地,形如a (a≥0)的式子叫做二次根式,其中“”叫做二次根号,a叫做被开方数。
考点2.二次根式的非负性:当a>0时,a 表示a的算术平方根,因此a >0;当a=0时,a 表示0的算术平方根,因此a =0,所以a (a≥0)总是非负数,即a ≥0。
例1.下列各式中,是二次根式的是( ) A.34 B.35)(- C.a D.21 例2.下列各式中,是二次根式的有( )① x ;②2;③12+x ;④兀;⑤4;⑥39;⑦35-;⑧72;⑨100-. A.3个 B.4个 C.5个 D.6个规律小结:判断一个式子是不是二次根式,要看它是否同时具备两个特征: (1)带有二次根号“”; (2)被开方数为非负数。
例3.根式3-x 中x的取值范围是( ) A.x≥3 B.x≤3 C.x<3 D.x>3例4.若2-a +3-b =0,则a2-2b=.例5.已知y=52-x +x 25-+3,则2xy的值为( )A.-15 B.15 C.-215 D.215 规律小结:二次根式中涉及两类非负数问题: (1)二次根式a 中被开方数a必须是一个非负数,即a≥0; (2)二次根式a (a≥0)本身的值也是一个非负数,即a ≥0(a≥0).随堂练习:1.当x为何值时,下列二次根式在实数范围内有意义?(1)24-x ; (2)x 3-; (3)x 58-;(4)1222+x ; (5)52--x ; (6)x x 2+.2.使式子2x -有意义的未知数x有( )A.0个 B.1个 C.2个 D.无数个3.下列式子122++x x ,22+x ,x ,33,5-,9,32中,哪些是二次根式?4.1+x +(y-2013)2=0,则xy =.5.若x,y为实数,且y=x x 4312-++3412-+x x +1,求x+xy+x2y的值。
第一部分:知识回顾知识点1.二次根式:式子a(a≥0)叫做二次根式。
知识点2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
知识点3.同类二次根式二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
知识点4.二次根式的性质(1)(a)2=a(a≥0);(2)知识点5.二次根式的运算a(a>0)==aa2a-(a<0)0 (a=0);二次根式总复习⑴二次根式的加减运算:先把二次根式化成最简二次根式,然后合并同类二次根式即可。
⑵二次根式的乘除运算:①ab =b a •(a ≥0,b ≥0); ②()0,0>≥=b a ba b a1.,则x 的取值范围是( )A.x >-5B.x <-5C.x ≠-5D.x ≥-52.若,则的取值范围是()A.B.C.D.3.x有()个.A.0 B.1 C.2 D.无数8-的结果是()4.计算2A.6B.6C.2D.25.下列根式中属最简二次根式的是()6.下列各式中与是同类二次根式的是()A.2B.C.D.7.已知二次根式与是同类二次根式,则的α值可以是( )A.5B.6C.7D.8 8.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N9.如果代数式mnm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 10.2x -x 的取值范围是11.中,自变量的取值范围是12.在根式)(2,4,26,27,21,3222y x x a xy +中,最简二次根式有_________13.化简:(1=___; (2=_____; (3____;(40,0)x y ≥≥=____; (5)_______420=-。
(5=_______14.233与12中较大的是_____15.已知直角三角形两边x 、y 的长满足|x 2-4|+652+-y y =0,则第三边长为16.如图,实数a 、b 在数轴上的位置,化简 :222()a b a b ---17.已知a 、b 为实数,且5a -+2102a -=b+4,求a 、b 的值.18.已知1x y -++3x -=0,求x y 的值。
《二次根式》全章复习与巩固--知识讲解(提高)【知识网络】【要点梳理】知识点一、二次根式的相关概念和性质 1. 二次根式形如(0)a a ≥的式子叫做二次根式,如13,,0.02,02等式子,都叫做二次根式.要点诠释:二次根式a 有意义的条件是0a ≥,即只有被开方数0a ≥时,式子a 才是二次根式,a 才有意义.2.二次根式的性质 (1); (2);(3).要点诠释:(1) 一个非负数a 可以写成它的算术平方根的平方的形式,即a 2)a =(0a ≥),如2221122););)33x x ===(0x ≥).(2)2a a 的取值范围可以是任意实数,即不论a 取何值,2a . (32a a ,再根据绝对值的意义来进行化简.(42的异同a 可以取任何实数,而2中的a 必须取非负数;a ,2=a (0a ≥).相同点:被开方数都是非负数,当a 2.3. 最简二次根式1)被开方数是整数或整式;2)被开方数中不含能开方的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式.都是最简二次根式.要点诠释:最简二次根式有两个要求:(1)被开方数不含分母;(2)被开方数中每个因式的指数都小于根指数2. 4.同类二次根式几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式.要点诠释:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.根式.知识点二、二次根式的运算 1. 乘除法(1)乘除法法则:类型 法则 逆用法则二次根式的乘法0,0)a b =≥≥积的算术平方根化简公式:0,0)a b =≥≥二次根式的除法0,0)a b =≥>商的算术平方根化简公式:0,0)a b=≥>要点诠释:(1)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如= (2)被开方数a 、b 一定是非负数(在分母上时只能为正数).如.2.加减法将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式.要点诠释:二次根式相加减时,要先将各个二次根式化成最简二次根式,再找出同类二次根式,最后合并同类二次根式.如23252(135)22+-=+-=-. 【典型例题】类型一、二次根式的概念与性质1. x 是怎样的实数时,下列各式在实数范围内有意义? (1); (2).举一反三: 【变式】已知,求的值.2.把根号外的因式移到根号内,得( ).A .B .C .D .举一反三:【变式】已知x 为奇数,且=,求•.3. 实数,,a b c 在数轴上对应的点如图:22()1()a c c b a b c --+++. 举一反三:【变式】∆ABC 的三边长为a 、b 、c 22()()a b c a b c --+-= .类型二、二次根式的运算 4.(2015•昆山市一模)计算 (1)(2)(2).举一反三:【变式】计算5.已知a 、b 、c 为△ABC 的三边长,化简6.若0x >___________x xy xy y xy yx xy+-=+-.举一反三:【变式】当221221123a a a a a a -+-+=-+.《二次根式》全章复习与巩固--巩固练习(提高)一、选择题1.x 是怎样的实数时,212x x --在实数范围内有意义?( ) A. 122x x >≠且 B. 122x x ≥≠±且 C. 122x x ≠≠±且 D. 122x x ≥≠且2.若,则( ).A .b >3B .b <3C .b ≥3D .b ≤33.已知443253x <<+-,那么满足上述条件的整数x 的个数是( ).A .4 B. 5 C. 6 D. 74.若x <0,则的结果是( ).A .0B .-2C .0或-2D .2 5.5220,x y x y-++=-若则的值是( ).A .-7B .-5C .3D .76.下列计算正确的是( )A.B.=2C.()﹣1=D.(﹣1)2=27.小明的作业本上有以下四题:①;②;③;④. 做错的题是( ).A .①B .②C .③D .④ 8.()2220,a a a a ≥--时,和相比较,下面四个选项中正确的是( ).A.()222a a a =-≥- B. ()222a a a >->-C. ()222a a a <-<- D. ()222a a a ->=-二. 填空题9. 计算=___________.10. 若的整数部分是a ,小数部分是b ,则___________. 11.比较大小①______;②___.(用>或<填空)12. 已知最简根式232a b a b -+-+-2a+b-1与b-2a 是同类根式,则b aa b +的值为___________. 13.若m <0,则=___________.14.已知实数a 满足20102011a a a -+-=,则22010a -=____________.15.已知数,,a b c 在数轴上的位置如图所示:则22()a a c c b b -++---=__________. 16.已知x=,则x 2+x+1= .三 综合题 17. 计算: (1) ()ab bab a b a ab--÷-+ (2)18 已知:,求的值.19已知:20.(2014秋•德惠市期末)某号台风的中心位于O 地,台风中心以25千米/小时的速度向西北方向移动,在半径为240千米的范围内将受影响、城市A 在O 地正西方向与O 地相距320千米处,试问A 市是否会遭受此台风的影响?若受影响,将有多少小时?。
二次根式复习专题讲义一、二次根式的概念:1.二次根式:a ≥0)的式子叫做二次根式,“”称为二次根号。
①.式子中,被开方数(式)必须大于等于零。
②.a ≥0)是一个非负数。
③.2=a (a ≥0)(a ≥0)2.二次根式的乘:①.②. 3.二次根式的除:①. 一般地,对二次根式的除法规定:②. 4. 二次根式的加减法则:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。
典型例题分析:例1. 下列式子,哪些是二次根式,哪些不是二次根式:、1xx>0)1x y+x ≥0,y•≥0).例2.当x+11x+在实数范围内有意义?变式题1:当x在实数范围内有意义?变式题2:①.当x2在实数范围内有意义?例3.①.已知,求xy的值.②.=0,求a2004+b2004的值.③.,求x y的值.例4.计算1.22.()23.24.(2)2例5. 计算1.2(x≥0)2.23.24.2变式题:计算1.(-)22.例6.在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3例7.化简(2(3(4(1例8.填空:当a≥0时,=_____;当a<0时,=_______,•并根据这一性质回答下列问题.(1,则a可以是什么数?(2,则a可以是什么数?(3,则a可以是什么数?例9.当x>2.例10.先化简再求值:当a=9时,求的值,甲乙两人的解答如下:甲的解答为:原式=a+(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.=a,求a-19952的值.变式题1.若│1995-a│变式题2.若-3≤x≤2时,试化简│x-2│。
(2(3(4)(1a≥0,b≥0)计算即可.分析:(2(3(4例12 .化简(2(3(1(5(4例13 .判断下列各式是否正确,不正确的请予以改正:(1=4(2变式题1:和,•那么此直角三角形斜边长是().变式题2:化简a)..√169×6变式题3变式题5:探究过程:观察下列各式及其验证过程.(1)验证:(2)验证:同理可得:,……通过上述探究你能猜测出:a=_______(a>0),并验证你的结论.例14.计算:(1(2÷(3÷(4)例15.化简:(1(2(3(4例16.,且x为偶数,求(1+x的值.变式题1.的结果是().变式题2.阅读下列运算过程:,化”).变式题3.已知x=3,y=4,z=5,是_______.变式题4.有一种房梁的截面积是一个矩形,且矩形的长:1,•现用直径为的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?变式题5.计算(1·(m>0,n>0)(2)(a>0)例17.把它们化成最简二次根式:(1)3; (2)总结:二次根式有如下两个特点:1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.例18.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.B A C例19.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:-1,=,,……从计算结果中找出规律,并利用这一规律计算++(+1)的值.练习:一、选择题1(y>0)是二次根式,那么,化为最简二次根式是().y>0) B y>0) C y>0)AD.以上都不对2.把(a-1中根号外的(a-1)移入根号内得().C. D.ABA=a2DC4的结果是()B.C.D.A.二、填空题1.(x≥0)2.化简二次根式号后的结果是_________.三、综合提高题1.已知a 过程,请判断是否正确?若不正确,•请写出正确的解答过程:2.若x 、y 为实数,且y=y x y -的值.例20.计算 (1(2总结:二次根式加减时,可以先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.例21.计算(1)(2))+例22.已知4x 2+y 2-4x-6y+10=0,求(23+y-(x -5x)的值.练习: 一、选择题1中,与是同类二次根式的是( ).A .①和②B .②和③C .①和④D .③和④ 2.下列各式:①3+3=6;②17=1;③=;④,其中错误的有( ).A .3个B .2个C .1个D .0个 二、填空题1、、与是同类二次根式的有________.2.计算二次根式5-3-7+9的最后结果是________.三、综合提高题1.已知≈2.236,求(-)-+)的值.(结果精确到0.01) 2.先化简,再求值.()-(,其中x=32,y=27.例23.如图所示的Rt △ABC 中,∠B=90°,点P 从点B 开始沿BA 边以1厘米/•秒的速度向点A 移动;同时,点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点C 移动.问:几秒后△PBQ 的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示)BAC QP例23.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m )?例24.若最简根式3是同类二次根式,求a 、b 的值.(•同类二次根式就是被开方数相同的最简二次根式)练习: 一、选择题1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为( ).(•结果用最简二次根式) A .BC .D .以上都不对2.小明想自己钉一个长与宽分别为30cm 和20cm 的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为()米.(结果同最简二次根式表示)A.. D.二、填空题1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m2,•鱼塘的宽是_______m.(结果用最简二次根式)2.,•那么这简二次根式)三、综合提高题1.若最简二次根式与n是同类二次根式,求m、n的值.2.同学们,我们以前学过完全平方公式a2±2ab+b2=(a ±b)2,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=)2,5=(2,你知道是谁的二次根式呢?下面我们观察:-1)2=)2-2·1+12+1=3-2反之,∴-1求:(1(2;(3吗?(√3-1)(4,则m 、n 与a 、b 的关系是什么?并说明理由.例25.计算: (1)+(2)(4)÷例26.计算 (1))(3-) (2)))例27.已知xba-=2-xa b-,其中a 、b 是实数,且a+b ≠0,练习: 一、选择题1.).AC2( ).A.2 B.3 C.4 D.1二、填空题+)2的计算结果(用最简根式表示)是 1.(-12________.)()-()2的计算结果(用最简2.(二次根式表示)是_______.-1,则x2+2x+1=________.3.若4.已知a=3+2,,则a2b-ab2=_________.三、综合提高题12.当+的值.(结果用最简二次根式表示)课外知识1.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,•这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式.练习:下列各组二次根式中,是同类二次根式的是().AC2.互为有理化因式:•互为有理化因式是指两个二次根式的乘积可以运用平方差公式(a+b)(a-b)=a2-b2,同时它们的积是有理数,不含有二次根式:如x+1-与x+1+与也是互为有理化因式.+的有理化因式是________;的有理化因式是_________._______.3.分母有理化是指把分母中的根号化去,通常在分子、•分母上同乘以一个二次根式,达到化去分母中的根号的目的.练习:把下列各式的分母有理化(1(2;(3(44.其它材料:如果n是任意正整数,=_____=_______.例28.-1的大小。
【最新整理,下载后即可编辑】二次根式知识点归纳定义:一般的,式子a( a ≥0 ) 叫做二次根式。
其中“”叫做二次根号,二次根号下的a叫做被开方数。
性质:1、a(a≥0)是一个非负数.即a≥02、2a=│a│即a≥0,等于a;a<0,等于-a3、4、a·b=ab.(a≥0,b≥0)反过来: ab=a·b(a≥0,b≥0)5、ab =ab(a≥0,b>0)反过来,ab =ab(a≥0,b>0)61.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.7、同类二次根式:几个二次根次化成最简二次根式以后如果被开数相同,这几个二次根式就叫做同类二次根式8、数的平方根与二次根式的区别:①4的平方根为±2,算术平方根为2;②4=2,二次根式即是算术平方根9、二次根式化运算及化简:①先化成最简②合并同类项二次根式中考试题精选一.选择题:1.【05宜昌】化简20的结果是().A. 25 B.52 C. 10. D.542.【05南京】9的算术平方根是().A.-3B.3C.±3D.813.【05南通】已知2x<,244x x-+).A、2x-B、2x+C、2x--D、2x-4.【05泰州】下列运算正确的是().(a)2=a(a≥0)A .a 2+a 3=a 5B .(-2x)3=-2x 3C .(a -b)(-a +b)=-a 2-2ab -b 2D .2832+=5.【05无锡】下列各式中,与y x 2是同类项的是( )A 、2xyB 、2xyC 、-y x 2D 、223y x 6.【05武汉】若a ≤1,则化简后为( ).A.B.C.D.7.【05绵阳52-时,甲的解法是:52-3(52)(52)(52)+-+52,乙的52-(52)(52)52+--52 ).A. 甲的解法正确,乙的解法不正确B. 甲的解法不正确,乙的解法正确C. 甲、乙的解法都正确D. 甲、乙的解法都不正确8.【05杭州】设32,23,52a b c ===,则,,a b c 的大小关系是: ( ). (A)a b c >> (B)a c b >> (C)c b a >> (D)b c a >> 9.【05丰台】4的平方根是( ).A. 8B. 2C. ±2D. ±210.【05北京】下列根式中,与3是同类二次根式的是( ). A.24B. 12C.32D. 1811.【05南平】下列各组数中,相等的是( ).A.(-1)3和1B.(-1)2和-1C.|-1|和-1D.2(1)-和1 12.【05宁德】下列计算正确的是( ).A 、x 2·x 3=x 6B 、(2a 3)2=4a 6C 、(a -1)2=a 2-1D 、 4 =±2 13.【05毕节2(3)a -―a 的正整数a 的值有( ). A .1个 B .2个 C .3个 D .4个14.【05黄岗】已知y x ,为实数,且()02312=-+-y x ,则y x -的值为( ). A .3 B .– 3 C .1 D .– 115.【05湘潭】下列算式中,你认为错误的是 ( ).A .a a b ++b a b +=1B .1÷b a ×ab =1 C .21-=2+1 D .21()a b +·22a b a b --=1a b+ 二、填空题1.【05连云港】计算:)13)(13(-+= .2.【05南京】10在两个连续整数a 和b 之间,a<10<b, 那么a , b 的值分别是 。
二次根式复习提纲知识点一:二次根式的概念【知识要点】 二次根式的定义: 形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.【典型例题】【例11xx>0)、1x y +(x ≥0,y ≥0).其中是二次根式的是_________(填序号).举一反三:1、下列各式中,一定是二次根式的是( ) ABCD【例2有意义,则x 的取值范围是举一反三:1、使代数式43--x x 有意义的x 的取值范围是( )A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠43、如果代数式mn m 1+-有意义,那么,mn 的取值范围【例3】若y=5-x +x -5+2009,则x+y=解题思路:式子a ≥0),50,50x x -≥⎧⎨-≥⎩ 5x =,y=2009,则x+y=2014举一反三:1、若x 、y 都是实数,且y=4x 233x 2+-+-,求xy 的值2、当a 1取值最小,并求出这个最小值。
知识点二:二次根式的性质【知识要点】1. 非负性:a a ()≥0是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.2.()()a a a 20=≥. 注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:a a a =≥()()23.a a a a a a 200==≥-<⎧⎨⎩||()()注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.4. 公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a a a 20=≥的区别与联系(1)a 2表示求一个数的平方的算术根,a 的范围是一切实数. (2)()a 2表示一个数的算术平方根的平方,a 的范围是非负数. (3)a 2和()a 2的运算结果都是非负的.【典型例题】【例4】若()2240a c --=,则=+-c b a .举一反三:1、若0)1(32=++-n m ,则m n +的值为 。
【最新整理,下载后即可编辑】
《二次根式》全章复习与巩固--知识讲解(基础)【学习目标】
1、理解并掌握二次根式、最简二次根式、同类二次根式的定义和
性质.
2、熟练掌握二次根式的加、减、乘、除运算,会用它们进行有关
实数的四则运算.
3、了解代数式的概念,进一步体会代数式在表示数量关系方面的
作用.
【知识网络】
【要点梳理】
要点一、二次根式的相关概念和性质
1.二次根式
等式子,都形如(0)
a a≥的式子叫做二次根式,如1
3,,0.02,0
2
叫做二次根式.
要点诠释:二次根式a有意义的条件是0
a≥,即只有被开方数0
a≥时,式子a才是二次根式,a才有意义.
2.二次根式的性质
(1);
(2);
(3).
要点诠释:(1) 一个非负数a 可以写成它的算术平方根的平方的
形式,即
a 2=(0a ≥),如22212;;3x ===(0x ≥).
(2)
a 的取值范围可以是任意实数,即不论a 一定有意义.
(3
a ,再根据绝对值的意义来进行化简.
(4
2的异同
a 可以取任何实数,而2中的a 必须取非负数;
a ,2=a (0a ≥).
相同点:被开方数都是非负数,当
a 2. 3. 最简二次根式
(1)被开方数是整数或整式;
(2)被开方数中不含能开方的因数或因式.
满足上述两个条件的二次根式,叫做最简二次根式.如
.
要点诠释:最简二次根式有两个要求:(1)被开方数不含分母;(2)被开方数中每个因式的指数都小于根指数2. 4.同类二次根式
几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式.
要点诠释:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.
,
与
. 要点二、二次根式的运算 1. 乘除法
(1)乘除法法则:
类型 法则 逆用法则
二次根式
的乘法
0,0)a b =≥≥ 积的算术平方根化简
公式:
0,0)a b =≥≥
二次根式的除法
=(0,0)a a
a b b b
≥>
商的算术平方根化简
公式:
(0,0)
a a
a b b b
=
≥> 要点诠释:
(1)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如a b c d ac bd ⋅=.
(2)被开方数a 、b 一定是非负数(在分母上时只能为正数).如(4)(9)49-⨯-≠-⨯-. 2.加减法
将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式. 要点诠释:
二次根式相加减时,要先将各个二次根式化成最简二次根式,再找出同类二次根式,最后合并同类二次根式.如23252(135)22+-=+-=-. 【典型例题】
类型一、二次根式的概念与性质
1. 当________3x -在实数范围内有意义.
【答案】x ≥3.
【解析】根据二次根式的性质,必须3x -≥0才有意义.
【总结升华】本例考查了二次根式成立的条件,要牢记,只有0a ≥a .
举一反三 【变式】①242x x =-成立的条件是 . ②
22
33x x x x
--=--成立的条件
是 .
【答案】① x ≤0;(
2422x x x x ==-∴≤0.)
② 2≤3x <.(20,30,x x -->∴≥2≤3x <)
2.当0≤x <1时,化简21x x +-的结果是__________.
【答案】 1.
【解析】因为x ≥0,所以2x =x ;又因为x <1,即x -1<0,所以
1(1)1x x x -=--=-,
所以21x x +-=x +1-x =1.
【总结升华】利用二次根式的性质化简二次根式,即2a =a ,同时联系绝对值的意义正确解答. 举一反三
【变式】已知0a <,化简二次根式3a b -的正确结果是( ).
A.a
ab --
B. a ab -
C.
a ab
D.a ab -
【答案】A.
3.下列二次根式中属于最简二次根式的是( ). A.
14 B. 48 C.
a b
D. 44a +
【答案】A.
【解析】选项B :48=43;选项C :有分母;选项D :44a +=21a +,
所以选A.
【总结升华】本题考查了最简二次根式的定义.最简二次根式要满足:(1)被开方数是整数或是整式; (2)被开方数中不含能开方的因式或因数. 类型二、二次根式的运算
4.下列计算错误的是( ). A. 14772= B. 60523= C. 9258a a a =
D.
3223=
【答案】 D.
【解析】选项A : 14714727772⨯=⨯=⨯⨯= 故正确;
选项B :605605123423÷=÷==⨯=,故正确; 选项C
925358a a a a a +=+=故正确;
选项D :32222-= 故错误.
【总结升华】本题主要考查了二次根式的加减乘除运算,属于基
础性考题. 举一反三
【变式】计算:48
(54453)833
-+⨯ 【答案】24
3610-.
5.化简20102011(
32)(32)+⋅-.
【答案与解析】
201020102010
=(32)(32)(32)(32)(32)(32)
1(32)3 2.
+⋅-⋅-⎡⎤=+⋅-⋅-⎣⎦=⋅-=-原式
【总结升华】本题的求解用到了积的乘方的性质,乘法运算律,平方差公式及根式的性质,是一道综合运算题型.
6
已知2
2
31,12x x x x =-+求
.
【答案与解析】
2231,1=30,(1)1333
31=
33
x x x x
x x x =+∴->∴=
--+==
原式当时,原式
【总结升华】 化简求值时要注意x 的取值范围,如果未确定要注意分类讨论. 举一反三
【变式】已知a b +=-3, ab =1,求
a
b
b a +的值.
【答案】∵a b +=-3,ab =1,∴<0a ,<0b
11++)=-=3a b b a ab
∴原式.。