2012高考物理总复习单元综合测试14:动量守恒定律
- 格式:doc
- 大小:537.00 KB
- 文档页数:10
高中物理专题复习动量及动量守恒定律一、动量守恒定律的应用1.碰撞1v v1/v2/vA A BAB A BⅠⅡⅢ两个物体在极短时间内发生互相作用,这类状况称为碰撞。
因为作用时间极短,一般都知足内力远大于外力,所以能够以为系统的动量守恒。
碰撞又分弹性碰撞、非弹性碰撞、完整非弹性碰撞三种。
认真剖析一下碰撞的全过程:设圆滑水平面上,质量为m1的物体A以速度v1向质量为m2的静止物体 B 运动, B 的左端连有轻弹簧。
在Ⅰ地点A、B 恰巧接触,弹簧开始被压缩, A 开始减速, B 开始加快;到Ⅱ地点A、B 速度恰巧相等(设为v),弹簧被压缩到最短;再今后A、B 开始远离,弹簧开始恢还原长,到Ⅲ地点弹簧恰巧为原长,A、B 分开,这时 A、B 的速度分别为 v1和 v2。
全过程系统动量必定是守恒的;而机械能能否守恒就要看弹簧的弹性怎样了。
⑴ 弹簧是完整弹性的。
Ⅰ→Ⅱ系统动能减少所有转变成弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少所有转变成动能;所以Ⅰ、Ⅲ状态系统动能相等。
这类碰撞叫做弹性碰撞。
由动量守恒和能量守恒能够证明A、B 的最后速度分别为:v1m1m 2v1 , v 2 2 m 1v1。
m 1m 2m 1 m 2⑵ 弹簧不是完整弹性的。
Ⅰ→Ⅱ系统动能减少,一部分转变成弹性势能,一部分转变成内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转变成动能,部分转变成内能;因为全过程系统动能有损失(一部分动能转变成内能)。
这类碰撞叫非弹性碰撞。
⑶ 弹簧完整没有弹性。
Ⅰ→Ⅱ系统动能减少所有转变成内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;因为没有弹性,A、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。
这类碰撞叫完整非弹性碰撞。
能够证明, A、B 最后的共同速度为v v2m1v。
在完整非弹性碰撞过程中,1m21m1系统的动能损失最大,为:1212m1m2 v12。
高考物理动量守恒定律试题(有答案和解析)一、高考物理精讲专题动量守恒定律1.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数36μ=;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:(1)释放后物块A 和凹槽B 的加速度分别是多大?(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小. 【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m 【解析】 【分析】 【详解】(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1, 解得a 1=5m/s 2凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上; 凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下; 因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0 (2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d 解得v A0=3m/s ;AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ;由能量关系:2220111112222A AB mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块并留在其中,与木块用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧被压缩瞬间的速度,木块、的质量均为.求:•子弹射入木块时的速度;‚弹簧被压缩到最短时弹簧的弹性势能.【答案】22()(2)Mm aM m M m++b【解析】试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A正确;爱因斯坦通过光电效应现象,提出了光子说,B正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E错.(2)1以子弹与木块A组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得:解得:.2弹簧压缩最短时,两木块速度相等,以两木块与子弹组成的系统为研究对象,以木块的初速度方向为正方向,由动量守恒定律得:解得:由机械能守恒定律可知:.考点:本题考查了物理学史和动量守恒定律3.如图所示,在光滑的水平面上放置一个质量为2m的木板B,B的左端放置一个质量为m的物块A,已知A、B之间的动摩擦因数为μ,现有质量为m的小球以水平速度0υ飞来与A物块碰撞后立即粘住,在整个运动过程中物块A始终未滑离木板B,且物块A和小球均可视为质点(重力加速度g).求:①物块A相对B静止后的速度大小;②木板B至少多长.【答案】①0.25v0.②216v Lgμ=【解析】试题分析:(1)设小球和物体A碰撞后二者的速度为v1,三者相对静止后速度为v2,规定向右为正方向,根据动量守恒得,mv0=2mv1,① (2分)2mv1=4mv2② (2分)联立①②得,v2=0.25v0.(1分)(2)当A在木板B上滑动时,系统的动能转化为摩擦热,设木板B的长度为L,假设A刚好滑到B的右端时共速,则由能量守恒得,③ (2分)联立①②③得,L=考点:动量守恒,能量守恒.【名师点睛】小球与 A碰撞过程中动量守恒,三者组成的系统动量也守恒,结合动量守恒定律求出物块A相对B静止后的速度大小;对子弹和A共速后到三种共速的过程,运用能量守恒定律求出木板的至少长度.4.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m、厚度为2d的钢板静止在水平光滑桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv20-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13(26v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV 2=mv 1(1分) 损失的动能为:ΔE′=12mv 21-12×2mV 22(2分) 联立解得:ΔE′=13(1)22+×mv 2因为ΔE′=f·x (1分), 可解得射入第二钢板的深度x 为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解5.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。
高考物理动量守恒定律技巧和方法完整版及练习题及解析一、高考物理精讲专题动量守恒定律1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的,故B的最小速度为零 .考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答2.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。
高考物理动量守恒定律真题汇编(含答案)含解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.3.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。
高考物理动量守恒定律及其解题技巧及练习题(含答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。
P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L 。
物体P 置于P 1的最右端,质量为2m 且可以看作质点。
P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起,P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内)。
P 与P 2之间的动摩擦因数为μ,求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧最大压缩量x 和相应的弹性势能E p 。
【答案】(1) 201v v =,4302v v = (2)L g v x -=μ3220,1620p mv E = 【解析】(1) P 1、P 2碰撞过程,动量守恒,102mv mv =,解得21v v =。
对P 1、P 2、P 组成的系统,由动量守恒定律 ,204)2(mv v m m =+,解得4302v v =(2)当弹簧压缩最大时,P 1、P 2、P 三者具有共同速度v 2,对P 1、P 2、P 组成的系统,从P 1、P 2碰撞结束到P 压缩弹簧后被弹回并停在A 点,用能量守恒定律)(2)2()2(21221221222021x L mg u v m m m mv mv ++++=⨯+⨯ 解得L gv x -=μ3220 对P 1、P 2、P 系统从P 1、P 2碰撞结束到弹簧压缩量最大,用能量守恒定律p 222021))(2()2(21221221E x L mg u v m m m mv mv +++++=+ 最大弹性势能162P mv E =注意三个易错点:碰撞只是P 1、P 2参与;碰撞过程有热量产生;P 所受摩擦力,其正压力为2mg【考点定位】碰撞模型、动量守恒定律、能量守恒定律、弹性势能、摩擦生热。
高考物理《动量守恒定律》真题练习含答案1.[2024·全国甲卷](多选)蹦床运动中,体重为60 kg的运动员在t=0时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示.假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平.忽略空气阻力,重力加速度大小取10 m/s2.下列说法正确的是()A.t=0.15 s时,运动员的重力势能最大B.t=0.30 s时,运动员的速度大小为10 m/sC.t=1.00 s时,运动员恰好运动到最大高度处D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N答案:BD解析:根据牛顿第三定律结合题图可知,t=0.15 s时,蹦床对运动员的弹力最大,蹦床的形变量最大,此时运动员处于最低点,运动员的重力势能最小,故A错误;根据题图可知运动员从t=0.30 s离开蹦床到t=2.3 s再次落到蹦床上经历的时间为2 s,根据竖直上抛运动的对称性可知,运动员上升时间为1 s,则在t=1.3 s时,运动员恰好运动到最大高度处,t=0.30 s时运动员的速度大小v=10×1 m/s=10 m/s,故B正确,C错误;同理可知运动员落到蹦床时的速度大小为10 m/s,以竖直向上为正方向,根据动量定理F·Δt-mg·Δt=mv-(-mv),其中Δt=0.3 s,代入数据可得F=4 600 N,根据牛顿第三定律可知运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N,故D正确.故选BD.2.[2022·山东卷]我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭.如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空.从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量答案:A解析:从火箭开始运动到点火的过程中,火箭先加速运动后减速运动,当加速度为零时,动能最大,A项正确;高压气体释放的能量转化为火箭的动能和重力势能及火箭与空气间因摩擦产生的热量,B项错误;根据动量定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f的冲量矢量和等于火箭动量的变化量,C项错误;根据动能定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f对火箭做的功之和等于火箭动能的变化量,D项错误.3.[2022·湖南卷]1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v1和v2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是()A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案:B解析:设中子质量为m0,被碰粒子质量为m,碰后中子速度为v′0,被碰粒子速度为v,二者发生弹性正碰,由动量守恒定律和能量守恒定律有m 0v 0=m 0v ′0+m v ,12 m 0v 20 =12m 0v ′20 +12 m v 2,解得v ′0=m 0-m m 0+m v 0,v =2m 0m 0+mv 0,因为当被碰粒子分别为氢核(m 0)和氮核(14m 0)时,有v 1=v 0,v 2=215 v 0,故C 、D 项错误;碰撞后氮核的动量为p 氮=14m 0·v 2=2815m 0v 0,氢核的动量为p 氢=m 0·v 1=m 0v 0,p 氮>p 氢,故A 错误;碰撞后氮核的动能为E k 氮=12·14m 0v 22 =28225 m 0v 20 ,氢核的动能为E k 氢=12 ·m 0·v 21 =12m 0v 20 ,E k 氮<E k 氢,故B 正确. 4.[2021·全国乙卷]如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能守恒D .动量不守恒,机械能不守恒答案:B解析:撤去推力后,小车、弹簧和滑块组成的系统所受合外力为零,满足系统动量守恒的条件,故系统动量守恒;由于撤去推力时滑块在车厢底板上有相对滑动,存在摩擦力做功的情况,故系统机械能不守恒,所以选项B 正确.5.[2023·新课标卷](多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N 极正对着乙的S 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等.现同时释放甲和乙,在它们相互接近过程中的任一时刻( )A .甲的速度大小比乙的大B .甲的动量大小比乙的小C .甲的动量大小与乙的相等D .甲和乙的动量之和不为零答案:BD解析:对甲、乙两条形磁铁分别做受力分析,如图所示对于整个系统,由于μm 甲g >μm 乙g ,合力方向向左,合冲量方向向左,所以合动量方向向左,甲的动量大小比乙的小,m 甲v 甲<m 乙v 乙,又m 甲>m 乙,故v 甲<v 乙,B 、D 正确,A 、C 错误.故选BD.6.[2021·全国乙卷](多选)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动.物体通过的路程等于s 0时,速度的大小为v 0,此时撤去F ,物体继续滑行2s 0的路程后停止运动.重力加速度大小为g .则( )A .在此过程中F 所做的功为12m v 20 B .在此过程中F 的冲量大小等于32m v 0 C .物体与桌面间的动摩擦因数等于v 20 4s 0gD .F 的大小等于物体所受滑动摩擦力大小的2倍答案:BC解析:设物体与桌面间的动摩擦因数为μ,根据功的定义,可知在此过程中,F 做的功为W F =Fs 0=12m v 20 +μmgs 0,选项A 错误;物体通过路程s 0时,速度大小为v 0,撤去F 后,由牛顿第二定律有μmg =ma 2,根据匀变速直线运动规律有v 20 =2a 2·2s 0,联立解得μ=v 20 4s 0g ,选项C 正确;水平桌面上质量为m 的物体在恒力F 作用下从静止开始做匀加速直线运动,有F -μmg =ma 1,又v 20 =2a 1s 0,可得a 1=2a 2,可得F =3μmg ,即F 的大小等于物体所受滑动摩擦力大小的3倍,选项D 错误;对F 作用下物体运动的过程,由动量定理有Ft -μmgt=m v 0,联立解得F 的冲量大小为I F =Ft =32m v 0,选项B 正确.。
第七章动量守恒定律考点一:动量、动量变化量与冲量、动量定理1. (多选)如图所示,两个质量相等的物体在同一高度沿倾角不同的两个光滑斜面由静止开始自由下滑,不计空气阻力,在它们到达斜面底端的过程中()A.重力的冲量相同B.斜面弹力的冲量不同C.斜面弹力的冲量均为零D.合力的冲量不同答案BD2.(多选)质量为m的物块以初速度v0从光滑斜面底端向上滑行,到达最高位置后再沿斜面下滑到底端,则物块在此运动过程中()A.上滑过程与下滑过程中物块所受重力的冲量相同B.整个过程中物块所受弹力的冲量为零C.整个过程中物块合外力的冲量为零D.若规定沿斜面向下为正方向,则整个过程中物块合外力的冲量大小为2mv0 答案AD3.如图所示,质量为m的物体,在大小确定的水平外力F作用下,以速度v沿水平面匀速运动,当物体运动到A点时撤去外力F,物体由A点继续向前滑行的过程中经过B点,则物体由A点到B点的过程中,下列说法正确的是()A.v越大,摩擦力对物体的冲量越大,摩擦力做功越多B.v越大,摩擦力对物体的冲量越大,摩擦力做功与v的大小无关C.v越大,摩擦力对物体的冲量越小,摩擦力做功越少D.v越大,摩擦力对物体的冲量越小,摩擦力做功与v的大小无关答案D4. (多选)几个水球可以挡住一颗子弹?《国家地理频道》的实验结果是:四个水球足够!完全相同的水球紧挨在一起水平排列,子弹在水球中沿水平方向做匀变速直线运动,恰好能穿出第4个水球,则可以判断的是()A.子弹在每个水球中的速度变化相同B.子弹在每个水球中运动的时间不同C.每个水球对子弹的冲量不同D.子弹在每个水球中的动能变化相同答案BCD5. (多选)一质量为2 kg的物块在合外力F的作用下从静止开始沿直线运动。
F随时间t变化的图线如图所示,则() 答案ABA.t=1 s时物块的速率为1 m/sB.t=2 s时物块的动量大小为4 kg·m/sC.t=3 s时物块的动量大小为5 kg·m/sD.t=4 s时物块的速度为零6. (多选)一质点静止在光滑水平面上,现对其施加水平外力F,力F随时间按正弦规律变化,如图5所示,下列说法正确的是()A.第2 s 末,质点的动量为0B.第4 s 末,质点回到出发点C.在0~2 s 时间内,力F 的功率先增大后减小D.在1~3 s 时间内,力F 的冲量为0 答案 CD7.质量为1 kg 的物体做直线运动,其速度—时间图象如图所示。
高考物理动量守恒定律及其解题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。
某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为M=l kg ,点火后全部压缩气体以v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有2m∆ 的压缩气体,每级总质量均为2M,点火后模型后部第一级内的全部压缩气体以速度v o 从底部喷口在极短时间内竖直向下喷出,喷出后经过2s 时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。
喷气过程中的重力和整个过程中的空气阻力忽略不计,g 取10 m /s 2,求两种模型上升的最大高度之差。
【答案】116.54m【解析】对模型甲: ()00M m v mv =-∆-∆甲21085=200.5629v h m m g =≈甲甲对模型乙第一级喷气: 10022m mM v v ∆∆⎛⎫=-- ⎪⎝⎭乙 解得: 130m v s=乙2s 末: ‘11=10m v v gt s-=乙乙22111'=402v v h m g-=乙乙乙对模型乙第一级喷气:‘120=)2222M M m m v v v ∆∆--乙乙( 解得: 2670=9mv s 乙 22222445=277.10281v h m m g =≈乙乙可得: 129440+=116.5481h h h h m m ∆=-≈乙乙甲。
2.如图所示,一辆质量M=3 kg 的小车A 静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
动量守恒定律【学习目标】1.能用牛顿运动定律推导动量守恒定律;2.知道动量守恒定律的适用条件和适用范围;3.进一步理解动量守恒定律,知道定律的适用条件和适用范围,会用动量守恒定律解释现象、解决问题.【要点梳理】要点一、动量守恒定律1.系统 内力和外力在物理学中,把几个有相互作用的物体合称为系统,系统内物体间的相互作用力叫做内力,系统以外的物体对系统的作用力叫做外力.2.动量守恒定律(1)内容:如果一个系统不受外力或者所受外力的矢量和为零,那么这个系统的总动量保持不变.(2)动量守恒定律的数学表达式:①p p ='.即系统相互作用前的总动量p 和相互作用后的总动量p '大小相等,方向相同.系统总动量的求法遵循矢量运算法则.②0p p p ∆==-'.即系统总动量的增量为零.③12p p ∆∆=-.即将相互作用的系统内的物体分为两部分,其中一部分动量的增加量等于另一部分动量的减少量. ④当相互作用前后系统内各物体的动量都在同一直线上时,动量守恒定律可表示为代数式:11221122m v m v m v m v +=+''.应用此式时,应先选定正方向,将式中各矢量转化为代数量,用正、负号表示各自的方向.式中12v v 、为初始时刻的瞬时速度,12v v 、''为末时刻的瞬时速度,且它们一般均以地球为参照物.(3)动量守恒定律成立的条件:①系统不受外力作用时,系统动量守恒;②若系统所受外力之和为零,则系统动量守恒;③系统所受合外力虽然不为零,但系统的内力远大于外力时,如碰撞、爆炸等现象中,系统的动量可看成近似守恒;④系统总的来看不符合以上三条中的任意一条,则系统的总动量不守恒.但是,若系统在某一方向上符合以上三条中的某一条,则系统在该方向上动量守恒.要点诠释:为了方便理解和记忆,我们把以上四个条件简单概括为:①②为理想条件,③为近似条件,④为单方向的动量守恒条件.3.动量守恒定律的适用范围它是自然界最普遍、最基本的规律之一.不仅适用于宏观、低速领域,而且适用于微观、高速领域.小到微观粒子,大到天体,无论内力是什么性质的力,只要满足守恒条件,动量守恒定律总是适用的.4.运用动量守恒定律解题的基本步骤和方法(1)分析题意,确定研究对象.在选择研究对象时,应将运动过程的分析与系统的选择统一考虑. 动量守恒定律的研究对象是系统,为了满足守恒条件,系统的划分非常重要,往往通过适当变换划入系统的物体,可以找到满足守恒条件的系统.(2)对系统内物体进行受力分析,分清内力、外力,判断所划定的系统在其过程中是否满足动量守恒的条件,若满足则进行下一步列式,否则需考虑修改系统的划定范围(增减某些物体)或改变过程的起点或终点,再看能否满足动量守恒条件,若始终无法满足动量守恒条件,则应考虑采取其他方法求解.(3)明确所研究的相互作用过程的始、末状态,规定正方向,确定始、末状态的动量值表达式.(4)根据题意,选取恰当的动量守恒定律的表达形式,列出方程.(5)合理进行运算,得出最后的结果,并对结果进行讨论,如求出其速度为负值,说明该物体的运动方向与规定的正方向相反.要点二、与动量守恒定律有关的问题1.由牛顿定律导出动量守恒定律的表达式以两球碰撞为例:光滑水平面上有两个质量分别是1m 和2m 的小球,分别以速度1v 和2v (1v >2v )做匀速直线运动。
单元综合测试十四(动量守恒定律)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,试卷满分为100分.考试时间为90分钟.第Ⅰ卷(选择题,共40分)一、选择题(本题共10小题,每题4分,共40分.有的小题只有一个选项正确,有的小题有多个选项正确,把正确选项前的字母填在题后的括号内)图11.如图1所示,质量分别为m1、m2的两个小球A、B,带有等量异种电荷,通过绝缘轻弹簧相连接,置于绝缘光滑的水平面上.突然加一水平向右的匀强电场后,两球A、B将由静止开始运动.对两小球A、B和弹簧组成的系统,在以后的运动过程中,以下说法正确的是(设整个过程中不考虑电荷间库仑力的作用且弹簧不超过弹性限度)()A.系统机械能不断增加B.系统机械能守恒C.系统动量不断增加D.系统动量守恒解析:对A、B组成的系统,所受电场力为零,这样系统在水平方向上所受外力为零,系统的动量守恒;对A、B及弹簧组成的系统,有动能、弹性势能、电势能三者的相互转化,故机械能不守恒.答案:D2.在下列几种现象中,所选系统动量守恒的有()A.原来静止在光滑水平面上的车,从水平方向跳上一个人,人车为一系统B.运动员将铅球从肩窝开始加速推出,以运动员和铅球为一系统C.从高空自由落下的重物落在静止于地面上的车厢中,以重物和车厢为一系统D.光滑水平面上放一斜面,斜面也光滑,一个物体沿斜面滑下,以重物和斜面为一系统解析:判断动量是否守恒的方法有两种:第一种,从动量守恒的条件判定,动量守恒定律成立的条件是系统受到的合外力为零,故分析系统受到的外力是关键.第二种,从动量的定义判定.B选项叙述的系统,初动量为零,末动量不为零.C选项末动量为零而初动量不为零.D选项,在物体沿斜面下滑时,向下的动量增大等.答案:A图23.如图2所示,小车的上面是中突的两个对称的曲面组成,整个小车的质量为m,原来静止在光滑的水平面上.今有一个可以看作质点的小球,质量也为m,以水平速度v从左端滑上小车,恰好到达小车的最高点后,又从另一个曲面滑下.关于这个过程,下列说法正确的是( )A .小球滑离小车时,小车又回到了原来的位置B .小球在滑上曲面的过程中,对小车压力的冲量大小是m v 2C .小球和小车作用前后,小车和小球的速度可能没有变化D .车上曲面的竖直高度不会大于v 24g解析:小球滑上曲面的过程,小车向右运动,小球滑下时,小车还会继续前进,故不会回到原位臵,A 错.由小球恰好到最高点,知道两者有共同速度,对于车、球组成的系统,由动量守恒定律列式为m v=2m v ′,得共同速度v ′=v 2.小车动量的变化为m v 2,显然,这个增加的动量是小球压力作用的结果,故B 对.对于C ,由于满足动量守恒定律,系统机械能又没有增加,所以是可能的,两曲面光滑时会出现这个情况.由于小球原来的动能为m v 22,小球到最高点时系统的动能为12×2m ×(v 2)2=m v 24,所以系统动能减少了m v 24,如果曲面光滑,则减少的动能等于小球增加的重力势能,即m v 24=mgh ,得h =v 24g.显然,这是最大值,如果曲面粗糙,高度还要小些.答案:BCD图34.如图3所示.用轻弹簧相连的物块A 和B 放在光滑的水平面上,物块A 紧靠竖直墙壁,一颗子弹沿水平方向射入物体B 并留在其中.在下列依次进行的四个过程中,由子弹、弹簧和A 、B 物块组成的系统,动量不守恒但机械能守恒的是:①子弹射入木块的过程;②B 物块载着子弹一起向左运动的过程;③弹簧推载着子弹的B 物块向右运动,直到弹簧恢复原长的过程;④B 物块因惯性继续向右运动,直到弹簧伸长最大的过程.( )A .①②B .②③C .③④D .①④解析:子弹射入木块过程系统无外力,所以动量守恒;由于有热产生,所以机械能不守恒;B 物块因惯性继续向右运动,直到弹簧伸长最大的过程动量守恒,机械能也守恒.答案:B5.动能相同的A 、B 两球(m A >m B )在光滑的水平面上相向运动,当两球相碰后,其中一球停止运动,则可判定( )A .碰撞前A 球的速度小于B 球的速度B .碰撞前A 球的动量大于B 球的动量C .碰撞前后A 球的动量变化大于B 球的动量变化D .碰撞后,A 球的速度一定为零,B 球朝反方向运动解析:A 、B 两球动能相同,且m A >m B ,可得v B >v A ,再由动量和动能关系可得p A >p B ;由动量守恒得,碰撞前后A 球的动量变化等于B 球的动量变化,碰撞后,A 球的速度一定为零,B 球朝反方向运动,所以A 、B 、D 对.答案:ABD6.两辆质量相同的小车,置于光滑的水平面上,有一人静止在小车A 上,两车静止,如图4所示.当这个人从A 车跳到B 车上,接着又从B 车跳回A 车并与A 车保持相对静止,则A 车的速率图4( )A .等于零B .小于B 车的速率C .大于B 车的速率D .等于B 车的速率解析:选A 车、B 车和人作为系统,两车均臵于光滑的水平面上,在水平方向上无论人如何跳来跳去,系统均不受外力作用,故满足动量守恒定律.设人的质量为m ,A 车和B 车的质量均为M ,最终两车速度分别为v A 和 v B .由动量守恒定律得0=(M +m )v A -M v B ,则v A v B =M M +m,即v A <v B .故选项B 正确. 答案:B图57.如图5所示,一沙袋用无弹性轻细绳悬于O 点.开始时沙袋处于静止,此后弹丸以水平速度击中沙袋后均未穿出.第一次弹丸的速度为v 1,打入沙袋后二者共同摆动的最大摆角为30°.当他们第1次返回图示位置时,第2粒弹丸以水平速度v 2又击中沙袋,使沙袋向右摆动且最大摆角仍为30°.若弹丸质量是沙袋质量的140倍,则以下结论中正确的是( ) A .v 1∶v 2=41∶42B .v 1∶v 2=41∶83C .v 2=v 1D .v 1∶v 2=42∶41解析:根据摆动过程中机械能守恒和两次击中沙袋摆动的角度相等可知,两次击中沙袋后的速度相同,设为v ,用M 表示沙袋的质量,m 表示弹丸的质量,由动量守恒得:第一次:m v 1=(M +m )v第二次:m v 2-(M +m )v =(M +2m )v可以解得v1∶v2=41∶83.答案:B图68.一轻质弹簧,上端悬挂于天花板上,下端系一质量为M的平板,处在平衡状态.一质量为m的均匀环套在弹簧外,与平板的距离为h,如图6所示.让环自由下落,撞击平板.已知碰后环与板以相同的速度向下运动,使弹簧伸长()A.若碰撞时间极短,则碰撞过程中环与板的总动量守恒B.若碰撞时间极短,则碰撞过程中环与板的总机械能守恒C.环撞击板后,板的新平衡位置与h的大小无关D.在碰后板和环一起下落的过程中,它们减少的动能等于克服弹簧弹力所做的功解析:若环与板碰撞时间极短,则它们受到的重力和弹簧的弹力的冲量可忽略,而除了重力和弹簧的弹力以外,没有别的外力,所以可以认为环与板的总动量守恒,故A正确.碰撞中只有完全弹性碰撞才是机械能守恒的,而题中环与板的碰撞是完全非弹性碰撞,所以碰撞时机械能不守恒,故B不正确.板的新平衡位臵是指弹簧对板的弹力与环和板的重力相平衡的位臵,由弹簧的劲度系数和环与板的重力决定,与环的下落高度h无关,故C正确.碰后板和环一起下落的过程中,系统机械能守恒,减少的动能和减少的重力势能之和才等于克服弹簧弹力所做的功,故D错误.答案:AC图79.矩形滑块由不同材料的上下两层粘结在一起组成,将其放在光滑的水平面上,如图7所示,质量为m的子弹以速度v水平射入滑块,若射击上层,则子弹刚好不穿出;若射击下层,整个子弹刚好嵌入,则上述两种情况相比较()A.两次子弹对滑块做的功一样多B.两次滑块受的冲量一样大C.子弹射入下层过程中克服阻力做功较少D.子弹射入上层过程中系统产生的热量较多解析:由水平方向动量守恒可以知道,两种情况对应的末速度是一样的,系统动能的减少也是一样的,系统产生的热量也一样多,D错误,由动能定理可知,子弹克服阻力做功相同,子弹对滑块做功相同,A 对C错,由动量定理可以分析,两次滑块所受冲量一样大,B也正确.答案:AB10.向空中发射一物体,不计空气阻力,当物体的速度恰好沿水平方向时,物体炸裂为a、b两块.若质量较大的a块的速度方向仍沿原来的方向,则()A.b的速度方向一定与原速度方向相反B.从炸裂到落地这段时间里,a飞行的水平距离一定比b的大C.a、b一定同时到达地面D.炸裂的过程中,a、b中受到的爆炸力的冲量大小一定相等解析:物体炸裂过程发生在物体沿水平方向运动时,由于物体沿水平方向不受外力,所以沿水平方向动量守恒,根据动量守恒定律有:(m A+m B)v=m A v A+m B v B当v A与原来速度v同向时,v B可能与v A反向;另外一种情况是由v A的大小没有确定,题目只讲a的质量较大,但若v A很小,则m A v A还可能小于原动量(m A+m B)v,这时v B的方向会与v A方向一致,即与原来方向相同,所以选项A错误.a、b两块在水平飞行的同时,竖直方向做自由落体运动,即做平抛运动,落地时间由高度决定,所以选项C是正确的.由于水平飞行距离x=v·t,a、b两块炸裂后的速度v A、v B不一定相等,而落地时间t 又相等,所以水平飞行距离无法比较大小,所以选项B错误.根据牛顿第三定律,a、b所受爆炸力F A=-F B,力的作用时间相等,所以冲量I=F·t的大小一定相等,所以选项D是正确的.综合上述分析.可知正确答案是C、D答案:CD第Ⅱ卷(非选择题,共60分)二、填空题(本题共2小题,每题8分,共16分)11.(2009·四川高考)气垫导轨(如图8甲)工作时,空气从导轨表面的小孔喷出,在导轨表面和滑块内表面之间形成一层薄薄的空气层,使滑块不与导轨表面直接接触,大大减小了滑块运动时的阻力.为了验证动量守恒定律,在水平气垫导轨上放置两个质量均为a的滑块,每个滑块的一端分别与穿过打点计时器的纸带相连,两个打点计时器所用电源的频率均为b.气垫导轨正常工作后,接通两个打点计时器的电源,并让两滑块以不同的速度相向运动,两滑块相碰后粘在一起继续运动.图乙为某次实验打出的、点迹清晰的纸带的一部分,在纸带上以同间距的6个连续点为一段划分纸带,用刻度尺分别量出其长度s1、s2和s3.若题中各物理量的单位均为国际单位,那么,碰撞前两滑块的动量大小分别为________、________,两滑块的总动量大小为________;碰撞后两滑块的总动量大小为________.重复上述实验,多做几次.若碰撞前、后两滑块的总动量在实验误差允许的范围内相等,则动量守恒定律得到验证.图8 解析:由图乙结合实际情况可以看出,s 1和s 3是两物体相碰前打出的纸带,s 2是相碰后打出的纸带.所以碰撞前物体的速度分别为v 1=s 1t =s 15T =0.2s 1b ,v 2=s 3t =0.2s 3b ,碰撞后两物体共同速度v =s 2t=0.2s 2b ,所以碰前两物体动量分别为p 1=m v 1=0.2abs 1,p 2=m v 2=0.2abs 3,总动量p =p 1-p 2=0.2ab (s 1-s 3);碰后总动量p ′=2m v =0.4abs 2.答案:0.2abs 1 0.2abs 3 0.2ab (s 1-s 3) 0.4abs 212.气垫导轨是常用的一种实验仪器,它是利用气泵使带孔的导轨与滑块之间形成气垫,使滑块悬浮在导轨上,滑块在导轨上的运动可视为没有摩擦.我们可以用带竖直挡板C 和D 的气垫导轨以及滑块A 和B 来探究碰撞中的不变量,实验装置如图9所示(弹簧的长度忽略不计),采用的实验步骤如下:图9a .用天平分别测出滑块A 、B 的质量m A 、m B .b .调整气垫导轨,使导轨处于水平.c .在A 和B 间放入一个被压缩的轻弹簧,用电动卡销锁定,静止地放置在气垫导轨上.d .用刻度尺测出A 的左端至C 板的距离L 1.e .按下电钮放开卡销,同时使分别记录滑块A 、B 运动时间的计时器开始工作.当A 、B 滑块分别碰撞C 、D 挡板时停止计时,记下A 、B 分别到达C 、D 的运动时间t 1和t 2.(1)实验中还应测量的物理量是____________________________________________.(2)利用上述测量的实验数据,得出关系式________成立,即可得出碰撞中守恒的量是m v 的矢量和,上式中算得的A 、B 两滑块的动量大小并不完全相等,产生误差的原因是__________________________.解析:(1)本实验要测量滑块B 的速度,由公式v =L t可知,应先测出滑块B 的位移和发生该位移所用的时间t ,而滑块B 到达D 端所用时间t 2已知,故只需测出B 的右端至D 板的距离L 2.(2)碰前两物体均静止,即系统总动量为零.则由动量守恒可知0=m A ·L 1t 1-m B ·L 2t 2即m A L 1t 1=m B L 2t 2产生误差的原因有:测量距离、测量时间不准确;由于阻力、气垫导轨不水平等造成误差.答案:见解析三、计算题(本题共4小题,13、14题各10分,15、16题各12分,共44分,计算时必须有必要的文字说明和解题步骤,有数值计算的要注明单位)13.如图10所示,在光滑的水平桌面上有一长为L =2 m 的木板C ,它的两端各有一块挡板,C 的质量为m C =5 kg ,在C 的中央并排放着两个可视为质点的滑块A 与B ,其质量分别为m A =1 kg 、m B =4 kg ,开始时A 、B 、C 均处于静止状态,并且A 、B 间夹有少许炸药,炸药爆炸使得A 以v A =6 m/s 的速度水平向左运动,不计一切摩擦,两滑块中任一块与挡板碰撞后就与挡板合成一体,爆炸与碰撞时间不计,求:图10(1)当两滑块都与挡板碰撞后,板C 的速度多大?(2)从爆炸开始到两个滑块都与挡板碰撞为止,板C 的位移多大?方向如何?解析:炸药爆炸,滑块A 与B 分别获得向左和向右的速度,由动量守恒可知,A 的速度较大(A 的质量小),A 、B 均做匀速运动,A 先与挡板相碰合成一体(满足动量守恒)一起向左匀速运动,最终B 也与挡板相碰合成一体(满足动量守恒),整个过程满足动量守恒.(1)整个过程A 、B 、C 系统动量守恒,有:0=(m A +m B +m C )v ,所以v =0.(2)炸药爆炸,A 、B 获得的速度大小分别为v A 、v B .以向左为正方向,有:m A v A -m B v B =0,解得:v B =1.5 m/s ,方向向右然后A 向左运动,与挡板相撞并合成一体,共同速度大小为v AC ,由动量守恒,有:m A v A =(m A +m C )v AC ,解得:v AC =1 m/s此过程持续的时间为:t 1=L 2v A =16s 此后,设经过t 2时间B 与挡板相撞并合成一体,则有:L 2=v AC t 2+v B (t 1+t 2),解得:t 2=0.3 s 所以,板C 的总位移为:x C =v AC t 2=0.3 m ,方向向左.答案:(1)0 (2)0.3 m 方向向左图1114.(2009·辽宁/宁夏高考)两个质量分别为M 1和M 2的劈A 和B ,高度相同,放在光滑水平面上.A 和B 的倾斜面都是光滑曲面,曲面下端与水平面相切,如图11所示.一质量为m 的物块位于劈A 的倾斜面上,距水平面的高度为h .物块从静止开始滑下,然后又滑上劈B .求物块在B 上能够达到的最大高度.解析:设物块到达劈A 的底端时,物块和A 的速度大小分别为v 和V ,由机械能守恒和动量守恒得mgh =12m v 2+12M 1V 2①M 1V =m v ②设物块在劈B 上达到的最大高度h ′,此时物块和B 的共同速度大小为V ′,由机械能守恒和动量守恒得mgh ′+12(M 2+m )V ′2=12m v 2③ m v =(M 2+m )V ′④联立①②③④式得h ′=M 1M 2(M 1+m )(M 2+m )h .⑤ 答案:M 1M 2(M 1+m )(M 2+m )h图1215.如图12所示,甲车质量m 1=m ,在车上有质量为M =2m 的人,甲车(连同车上的人)从足够长的斜坡上高h 处由静止滑下,到水平面上后继续向前滑动,此时质量m 2=2m 的乙车正以v 0的速度迎面滑来,已知h =2v 02g,为了使两车不可能发生碰撞,当两车相距适当距离时,人从甲车跳上乙车,试求人跳离甲车的水平速度(相对地面)应满足什么条件?不计地面和斜坡的摩擦,小车和人均可看作质点.解析:设甲车(包括人)滑下斜坡后速度v 1,由机械能守恒定律得12(m 1+M )v 12=(m 1+M )gh 得:v 1=2gh =2v 0设人跳出甲车的水平速度(相对地面)为v ,在人跳离甲车和人跳上乙车过程中各自动量守恒,设人跳离甲车和跳上乙车后.两车的速度分别为v ′1和v ′2,则人跳离甲车时:(M +m 1)v 1=M v +m 1v ′1即(2m +m )v 1=2m v +m v ′1①人跳上乙车时:M v -m 2v 0=(M +m 2)v ′2即(2m +2m )v ′2=2m v -2m v 0②解得v ′1=6v 0-2v ③v ′2=12v -12v 0④ 两车不可能发生碰撞的临界条件是:v ′1=±v ′2当v ′1=v ′2时,由③④解得v =135v 0 当v ′1=-v ′2时,由③④解得v =113v 0故v 的取值范围为:135v 0≤v ≤113v 0. 答案:135v 0≤v ≤113v 0 16.(2009·广东高考)如图13所示,水平地面上静止放置着物块B 和C ,相距l =1.0 m .物块A 以速度v 0=10 m/s 沿水平方向与B 正碰.碰撞后A 和B 牢固地粘在一起向右运动,并再与C 发生正碰,碰后瞬间C 的速度v =2.0 m/s.已知A 和B 的质量均为m ,C 的质量为A 质量的k 倍,物块与地面的动摩擦因数μ=0.45.(设碰撞时间很短,g 取10 m/s 2)图13(1)计算与C 碰撞前瞬间AB 的速度;(2)根据AB 与C 的碰撞过程分析k 的取值范围,并讨论与C 碰撞后AB 的可能运动方向.解析:设物块A 、B 的质量分别为m A 和m B ,A 与B 发生完全非弹性碰撞后的共同速度为v 1,取向右为速度正方向,由动量守恒定律m A v 0=(m A +m B )v 1①v 1=m A m A +m B v 0=5.0 m/s 设AB 运动到C 时的速度为v 2,由动能定理12(m A +m B )v 22-12(m A +m B )v 12=-μ(m A +m B )gl ② v 2=v 12-2μgl =4.0 m/s ③(2)设与C 碰撞后AB 的速度为v 3,碰撞过程中动量守恒,有(m A +m B )v 2=(m A +m B )v 3+m C v ④碰撞过程中,应有碰撞前的动能大于或等于碰撞后的动能,即12(m A +m B )v 22≥12(m A +m B )v 32+12m C v 2⑤ 由④式,得v 3=(m A +m B )v 2-m C v m A +m B=(4-k ) m/s ⑥ 联立⑤和⑥式,得0<k ≤6即:当k =6时,碰撞为弹性碰撞;当0<k <6时,碰撞为非弹性碰撞.碰撞后AB 向右运动的速度不能大于C 的速度.由⑥式,得4-k ≤2,k ≥2所以k 的合理取值范围是6≥k ≥2综上得到:当取k =4时,v 3=0,即与C 碰后AB 静止当取4>k ≥2时,v 3>0,即与C 碰后AB 继续向右运动当取6≥k >4时,v 3<0,即碰后AB 被反弹向左运动.答案:见解析。