六年级数学总复习《正比例与反比例》
- 格式:ppt
- 大小:526.00 KB
- 文档页数:24
六年级下册数学教案:总复习《正比例反比例》含教学反思北师大版教学目标:1. 让学生理解和掌握正比例与反比例的概念,能识别并区分两种比例关系。
2. 培养学生运用比例知识解决实际问题的能力。
3. 通过复习,让学生对比例有更深入的理解,形成系统的知识结构。
教学内容:1. 正比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量。
2. 反比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的乘积一定,这两种量就叫做成反比例的量。
3. 判断正反比例的方法:关键是看这两种相关联的量中相对应的两个数是商一定还是积一定,如果商一定,就成正比例关系;如果积一定,就成反比例关系。
教学重点与难点:重点:让学生能根据正反比例的意义,辨识两种相关联的量是否成正比例或反比例。
难点:辨识两种相关联的量是否成正比例或反比例,关键看这两个量是对应的比值一定,还是对应的乘积一定,再做判断。
教具与学具准备:1. 教具:PPT、黑板、粉笔。
2. 学具:笔记本、笔。
教学过程:1. 导入:通过生活中的实例,让学生回顾正比例和反比例的概念。
2. 新授:详细讲解正比例和反比例的定义,通过具体例子让学生理解两种比例关系的区别。
3. 案例分析:让学生分组讨论,分析一些实际问题,判断是否为正比例或反比例关系。
4. 练习:让学生独立完成一些练习题,巩固所学知识。
板书设计:1. 正比例关系:定义、特点、例子。
2. 反比例关系:定义、特点、例子。
3. 判断方法:看商是否一定或积是否一定。
作业设计:1. 完成课后练习题。
2. 结合生活实际,找出一个正比例和一个反比例的例子,并解释原因。
课后反思:通过本节课的教学,发现学生对正比例和反比例的概念有了更深入的理解,但在实际应用中,仍有一部分学生对两种比例关系的辨识存在困难。
在今后的教学中,我将加强对学生的个别辅导,帮助他们更好地理解和掌握这部分知识。
《正比例与反比例》复习课(教案)六年级下册数学北师大版作为一名经验丰富的教师,我将以第一人称,我的口吻,为你呈现一堂六年级下册数学北师大版的《正比例与反比例》复习课教案。
一、教学内容今天我们要复习的是北师大版六年级下册数学的第100页至102页的正比例与反比例相关内容。
这部分主要包括正比例和反比例的定义、性质以及它们在实际问题中的应用。
二、教学目标通过本节课的复习,使学生能够熟练掌握正比例和反比例的定义及性质,提高他们在实际问题中应用数学知识解决问题的能力。
三、教学难点与重点本节课的重点是正比例和反比例的定义及性质,难点是正比例和反比例在实际问题中的应用。
四、教具与学具准备为了帮助学生更好地理解和应用正比例和反比例知识,我准备了PPT、黑板、粉笔以及一些实际问题相关的道具。
五、教学过程1. 情景引入:我拿出两样物品,一个是一本书,另一个是一个苹果,让学生观察它们之间的比例关系。
2. 讲解正比例:我通过PPT展示正比例的定义和性质,然后用黑板和粉笔举例说明。
3. 讲解反比例:我同样通过PPT展示反比例的定义和性质,然后用黑板和粉笔举例说明。
4. 实践环节:我给学生发放一些实际问题,让他们分组讨论并解决这些问题,运用正比例和反比例知识。
6. 随堂练习:我给出一些关于正比例和反比例的题目,让学生在课堂上完成。
六、板书设计我在黑板上设计了一个简单的板书,包括正比例和反比例的定义、性质以及一些实际问题中的应用。
七、作业设计(1)一个长方形的长是10cm,宽是5cm,求它的面积。
答案:面积 = 长× 宽= 10cm × 5cm = 50cm²(2)一个人以6km/h的速度走了30分钟,他走了多远?答案:距离 = 速度× 时间= 6km/h × 0.5h = 3km(1)一个水果店以每公斤10元的价格进货,以每公斤15元的价格出售,请问该水果店的利润是多少?答案:利润 = (售价进价) × 销售量 = (15元/公斤 10元/公斤) × 销售量(2)一个水池,注水时每小时注水200升,排水时每小时排水100升,请问水池排水多长时间才能排空?答案:排水时间 = 排水量 / 排水速度 = 200升 / 100升/小时= 2小时八、课后反思及拓展延伸本节课通过复习正比例和反比例的知识,使学生能够更好地理解和应用这些知识。
六年级数学下册正比例和反比例知识点一、内容概要正比例和反比例是六年级数学下册的重要知识点,简单来说正比例表示两个量成正比关系,当一个量增加时,另一个量也会增加,反之亦然。
好比速度和时间是常见的正比例例子,当速度加快时,需要的时间就会减少。
反比例则是当两个量中的其中一个增加时,另一个会减少。
像是你在爬山过程中体力消耗与海拔高度的关系,海拔越高体力消耗越大,反之越省力就是反比例的例子。
掌握这些知识可以帮助我们更好地理解生活中的各种现象,接下来我们将详细解析这两个概念的应用和解题方法。
1. 回顾数学基础知识,为学习正比例和反比例做铺垫亲爱的小朋友们,转眼间我们已经进入了六年级的数学之旅,那么今天我们来一起回顾一下前面学过的数学知识,为接下来要学习的正比例和反比例知识点做好铺垫吧!数学的世界总是充满了神奇的奥秘,让我们一步步走进这个奇妙的世界。
我们知道数学是生活中的一把钥匙,它能帮助我们解决很多有趣的问题。
在学习正比例和反比例之前,我们要先打好基础。
回顾一下我们之前学过的关于数量和数量之间的关系的知识,比如当我们买文具时,文具的数量和总价之间就有一种特殊的关系。
买一支笔和买十支笔的价格是不一样的,这就是数量和价格之间的关系。
这就是我们接下来要学习的正比例和反比例的基础,你们准备好了吗?接下来我们要更深入地去探索这种关系的奥秘!2. 简述正比例和反比例的概念及其在实际生活中的应用反比例呢?它与正比例相反,当一个量变大时,另一个量就会变小。
比如说你在调节电视机的音量和亮度时,通常音量越大,电视屏幕的亮度就越低,因为电视的音量和亮度就是一对反比例关系。
再如开车的时候,车速越慢反而里程消耗越多;一个钟表转得越慢它行走的总圈数就越大等生活中都可以发现反比例的例子。
明白正比例和反比例的概念后,我们就可以更好地理解和解决生活中的很多问题啦!二、正比例知识点我们知道生活中有很多事物之间是有关系的,比如你吃的零食越多,肚子就越容易饱。
完整版)六年级数学正反比例正,反比例正比例和反比例是初中数学中的重要概念。
下面我们来整理一下相关知识点。
判断两种量是否成正比例,需要看它们是否相关联,一种量变化时,另一种量是否随之变化,以及它们的比值是否一定。
我们可以用字母x和y表示这两种量,用k表示它们的比值,正比例关系可以用y=kx表示。
判断两种量是否成反比例,同样需要看它们是否相关联,一种量变化时,另一种量是否随之变化,以及它们的乘积是否一定。
我们可以用字母x和y表示这两种量,用k表示它们的乘积,反比例关系可以用xy=k表示。
常见的正反比例题型包括圆的周长和半径、圆的面积和半径、平行四边形面积一定时的底和高等。
下面是一些典型例题:例1:某车间造纸时间和造纸总吨数的数据如下表所示。
我们可以在坐标系中描出对应的点,并根据图像的特点判断它们成正比例关系。
例2:这道题列举了多种量的情况,需要判断它们是否成比例,如果成比例,是正比例还是反比例。
例3:这道题给出了3:A = 5:B的比例关系,需要求出A与B的比例关系。
根据比例的性质,可以得出A与B成反比例关系。
2.如果3:B = A:5,则A与B成什么比例?为什么?根据题意,可以得到以下等式:3:B = A:5将等式两边乘以5,得到:15:B = A因此,A与B成15:B的比例。
这是因为等式中的比例关系是等价的,即3:B与A:5是等价的,所以它们的比例关系也是等价的。
因此,可以通过等式中的比例关系来确定A与B之间的比例关系。
举一反三:1.a和b相关联的两种量,下面哪个式子表示a和b成正比例?⑤b=7a因为当a增加时,b也会增加,且它们之间的比例关系保持不变,因此a和b成正比例。
2.x、y、z是三种相关联的量,已知x×y=z。
当(x+z)一定时,(y+z)和(y-x)成正比例。
拓展提升:1.如果ab=24,那么a和b成反比例;如果a÷b=18,那么a和b成正比例。
2.一个比例式,两个外项之和是37,差是13,两个比的比值是2.5,那么比例式为5:2.3.甲乙两人步行速度之比是7:5,甲乙分别从a、b两地同时出发,如果相向而行,0.5小时后相遇,如果他们同向而行,那么甲追上乙需要多长时间?题型一:按要求选四个数字组成各一个比例式子12的因数有1、2、3、4、6、12,选四个数字可以得到比例式1:2:3:4.举一反三:1.从36的因数有1、2、3、4、6、9、12、18、36,选四个数字可以得到比例式1:2:3:6.2.写出一个比值是24的比例式是3:1.题型五:人员调配问题一个车间有两个小组,第一个小组与第二个小组的人数比是5:3.如果第一个小组的14人到了第二个小组时,第一小组与第二小组的人数比是1:2,原来两个小组各有多少人?设第一个小组原来有5x人,第二个小组原来有3x人,则有以下等式:5x-14 : 3x+14 = 1 : 2解方程得到x=14,因此第一个小组原来有70人,第二个小组原来有42人。
(8)代数初步(二)正比例与反比例上课解决方案教案设计课前准备教具准备多媒体课件教学过程⊙回顾与整理1.(1)举例说一说什么是比,什么是比例,什么是比例尺以及它们的应用。
预设生1:两个数相除又叫作两个数的比。
(如5÷2,可以写成5∶2)生2:表示两个比相等的式子叫作比例。
(如8∶4=24∶12)生3:图上距离与实际距离的比叫作比例尺,比例尺可分为数值比例尺和线段比例尺。
(如一幅地图的比例尺是1200000)生4:配制农药会应用到比的知识;地图上一般都有比例尺。
(2)出示教材83页回顾与交流2题。
学生独立完成,思考比、分数、除法之间的关系,并全班交流。
预设生1:除法算式中的被除数相当于分数的分子,相当于比的前项;除法算式中的除数相当于分数的分母,相当于比的后项;除号相当于分数的分数线,相当于比的比号。
生2:除法算式的商相当于分数的分数值,相当于比的比值。
强调:因为0不能做除数,所以,所有分数的分母及比的后项都不能为0。
(3)想一想什么是比的基本性质,然后应用比的基本性质化简下面的比。
30∶1201∶34610∶0.123∶102.5∶60.5∶3.225∶5634∶32先思考比的基本性质,然后交流,最后独立完成,集体订正。
(4)复习按比例分配问题。
①什么是按比例分配应用题?(引导理解:把一个数量按照一定的比进行分配的问题,叫作按比例分配应用题)②按比例分配应用题有什么特点?预设生1:用比或者连比反映各部分占总数量的份数。
生2:直接给出各部分占总数量的份数。
③按比例分配应用题的一般解题步骤是什么?预设生1:找出或求出要分配的总数;生2:根据已知的比求总份数;生3:按照要分配的各部分数量占总数的几分之几,分别求出每一部分数量是多少。
(5)完成教材83页3题。
学生独立完成,然后交流订正,并说一说解决问题时都用到了哪些知识。
2.(1)说一说。
师:我们学习了正比例和反比例的知识,请你回忆一下,然后说一说你对这部分内容的了解。
北师大版六年级数学下册总复习——式与方程正比例与反比例正比例和反比例是数学中重要的概念,在解决很多实际问题和数学题目中经常会遇到。
在六年级数学下册总复习中,我们需要掌握正比例和反比例的概念、性质以及解题方法。
1. 正比例关系:正比例关系是指两个变量之间的比例是恒定的,当其中一个变量增加时,另一个变量也随之增加;当其中一个变量减少时,另一个变量也随之减少。
例如:如果一个物体的重量和体积成正比,那么当体积增加时,重量也会增加;当体积减少时,重量也会减少。
正比例关系可以用一个等式来表示:y = kx,其中y和x是两个变量,k称为比例系数。
比例系数k表示两个变量之间的比例关系,是一个常数,永远不会变化。
解题方法:当已知比例关系中的一个变量和比例系数时,可以根据等式求解另一个变量。
如果已知有三个数a、b、c满足比例关系a:b = c:x,可以用等式a/b = c/x来求解x 的值。
2. 反比例关系:反比例关系是指两个变量之间的乘积是恒定的,当其中一个变量增加时,另一个变量会相应地减少;当其中一个变量减少时,另一个变量会相应地增加。
例如:一个车以恒定的速度行驶,在相同的时间内,行驶的距离与速度成反比。
速度越快,行驶的距离越短;速度越慢,行驶的距离越长。
反比例关系可以用一个等式来表示:y = k/x,其中y和x是两个变量,k称为比例系数。
和正比例关系一样,比例系数k是一个常数,永远不会变化。
解题方法:当已知反比例关系中的一个变量和比例系数时,可以根据等式求解另一个变量。
如果已知有三个数a、b、c满足反比例关系a:b = c:x,可以用等式a/b = c/x来求解x的值。
总结:在解决正比例问题时,常用的解题方法是根据已知的比例系数和一个变量求解另一个变量;在解决反比例问题时,常用的解题方法是根据已知的比例系数和一个变量求解另一个变量。