导数与不等式
- 格式:docx
- 大小:259.85 KB
- 文档页数:7
导数,不等式导数、不等式是数学中的一个重要概念,它涉及到许多其他的概念,如函数、微分、积分、极限等。
本文将详细介绍导数和不等式的定义,以及导数对函数和方程的作用,最后总结一些关于导数和不等式的实用知识,以供参考。
首先,让我们来介绍导数的概念。
导数是一个函数f(x)在特定点处的变化率,即在该点处函数的斜率,可以用公式表示为f(x),用来研究函数变化率的快慢。
例如,当函数f(x)为y=x^2时,它的导数就是f(x)=2x。
其次,说说不等式的概念。
不等式是一个比较符号(小于、小于等于、大于、大于等于)加上一个数学表达式,可以用来表示一个函数的范围。
它可以用来表示函数在某一区间上的取值范围。
例如,不等式x<6表示x在(-∞,6)上的取值范围。
接下来,我们介绍导数在函数和方程中的作用。
对于一个函数f(x),它的导数在某些情况下可以用来判断函数的方向,即f(x)大于0时,函数在x处的变化是上升的,f(x)小于0时,函数在x处的变化是下降的。
而对于某些方程,例如二次方程的根的求解,可以使用导数的概念来求解。
最后,在实际应用中,对于导数和不等式,应该注意以下几点: 1.数可以用来判断函数在某一点处的变化情况,可以用来研究函数在一定区间内的性质;2. 不等式是一个比较符号加上一个数学表达式,可以用来表示一个函数在某一区间上的取值范围;3.于一些方程,例如二次方程的根求解,可以使用导数的概念来求解。
以上就是关于导数、不等式的一些基本知识,希望能够对读者有所帮助。
如果想要更深入地了解,建议可以多看相关书籍,也可以自行上网搜索更多资料,结合实际的例子来熟悉和掌握导数和不等式的一些知识。
导数在证明不等式中的有关应用1.最值的判定导数可以帮助我们判断一个函数在其中一区间的最值。
具体来说,如果在一个区间内,函数的导数恒为零或者导数的正负性在其中一点发生变化,那么在该区间内函数的最值就会出现。
例如,考虑函数$f(x)=x^2-4x+3$。
我们可以通过求取导数$f'(x)=2x-4$,并令其等于零,得到$x=2$。
通过检查导数的符号,可以确认在$x<2$时导数为负,$x>2$时导数为正。
因此,在$x<2$时,函数的导数为负,说明函数在这个区间上是递减的;而在$x>2$时,函数的导数为正,说明函数在这个区间上是递增的。
因此,根据导数的正负性和最值判定原则,我们可以得出结论:函数$f(x)$在区间$(-\infty,2)$上单调递减,在区间$(2,+\infty)$上单调递增。
进一步,我们可以求得函数的最值,即当$x=2$时,函数取得最小值。
因此,我们得到了函数$f(x)$的最值以及最值的取值点。
2.利用导数证明不等式的成立导数可以被用来证明各种类型的不等式。
其中一个常见的方法是使用导数的定义和可微函数的局部性质。
考虑函数$f(x)$在闭区间$[a,b]$上有定义且在开区间$(a,b)$内可微。
如果在$(a,b)$内存在一个点$c$,使得$f'(c)>0$,那么基于导数的定义,我们可以得出结论:对于任意的$x \in (a,b)$,都有$f'(x)>0$。
这意味着$f(x)$在$(a,b)$内是单调递增的。
我们可以进一步得出结论:对于任意的$x \in [a,b]$,都有$f'(x) \geq f'(a)$。
因此,我们可以断定$f(x)$在闭区间$[a,b]$上是凸函数。
根据凸函数的性质,我们可以利用函数的凸性证明各种类型的不等式。
例如,我们可以证明对于任意的$x>0$和$y>0$,成立如下的不等式:$\frac{1}{x}+\frac{1}{y} \geq \frac{4}{x+y}$。
第1课时导数与不等式证明不等式命题点1 构造函数法例1 (2020·赣州模拟)已知函数f (x)=1-,g(x)=+-bx,若曲线y=f (x)与曲线y=g(x)的一个公共点是A(1,1),且在点A 处的切线互相垂直.(1)求a,b的值;(2)证明:当x≥1时,f (x)+g(x)≥.(1)解因为f (x)=1-,x>0,所以f′(x)=,f′(1)=-1.因为g(x)=+-bx,所以g′(x)=---b.因为曲线y=f (x)与曲线y=g(x)的一个公共点是A(1,1),且在点A处的切线互相垂直,所以g(1)=1,且f′(1)·g′(1)=-1,所以g(1)=a+1-b=1,g′(1)=-a-1-b=1,解得a=-1,b=-1.(2)证明由(1)知,g(x)=-++x,则f (x)+g(x)≥⇔1---+x≥0.令h(x)=1---+x(x≥1),则h(1)=0,h′(x)=+++1=++1.因为x≥1,所以h′(x)=++1>0,所以h(x)在[1,+∞)上单调递增,所以当x≥1时,h(x)≥h(1)=0,即1---+x≥0,所以当x≥1时,f (x)+g(x)≥.命题点2 分拆函数法例2 (2019·福州期末)已知函数f (x)=eln x-ax(a∈R).(1)讨论f (x)的单调性;(2)当a=e时,证明:xf (x)-ex+2ex≤0.(1)解f′(x)=-a(x>0).①若a≤0,则f′(x)>0,f (x)在(0,+∞)上单调递增;②若a>0,则当0<x<时,f′(x)>0,当x>时,f′(x)<0,故f (x)在上单调递增,在上单调递减.(2)证明因为x>0,所以只需证f (x)≤-2e,当a=e时,由(1)知,f (x)在(0,1)上单调递增,在(1,+∞)上单调递减.所以f (x)max=f (1)=-e,记g(x)=-2e(x>0),则g′(x)=,所以当0<x<1时,g′(x)<0,g(x)单调递减,当x>1时,g′(x)>0,g(x)单调递增,所以g(x)min=g(1)=-e,综上,当x>0时,f (x)≤g(x),即f (x)≤-2e,即xf (x)-ex+2ex≤0.思维升华(1)利用导数证明不等式的基本思路是依据函数的单调性,求得函数的最值,然后由f (x)≤f (x)max或f (x)≥f (x)min 证得不等式.(2)证明f (x)>g(x),可以构造函数h(x)=f (x)-g(x),然后利用h(x)的最值证明不等式.(3)若直接求导比较复杂或无从下手时,可将待证式进行变形分拆,构造两个函数,从而找到可以传递的中间量,达到证明的目的.跟踪训练1 (1)设函数f (x)=ln x-x+1.①讨论f (x)的单调性;②证明:当x∈(1,+∞)时,1<<x.①解由题设知,f (x)的定义域为(0,+∞),第1课时导数与不等式证明不等式命题点1 构造函数法例1 (2020·赣州模拟)已知函数f (x)=1-,g(x)=+-bx,若曲线y=f (x)与曲线y=g(x)的一个公共点是A(1,1),且在点A处的切线互相垂直.(1)求a,b的值;(2)证明:当x≥1时,f (x)+g(x)≥.(1)解因为f (x)=1-,x>0,所以f′(x)=,f′(1)=-1.因为g(x)=+-bx,所以g′(x)=---b.因为曲线y=f (x)与曲线y=g(x)的一个公共点是A(1,1),且在点A处的切线互相垂直,所以g(1)=1,且f′(1)·g′(1)=-1,所以g(1)=a+1-b=1,g′(1)=-a-1-b=1,解得a=-1,b=-1.(2)证明由(1)知,g(x)=-++x,则f (x)+g(x)≥⇔1---+x≥0.令h(x)=1---+x(x≥1),则h(1)=0,h′(x)=+++1=++1.因为x≥1,所以h′(x)=++1>0,所以h(x)在[1,+∞)上单调递增,所以当x≥1时,h(x)≥h(1)=0,即1---+x≥0,所以当x≥1时,f (x)+g(x)≥.命题点2 分拆函数法例2 (2019·福州期末)已知函数f (x)=eln x-ax(a∈R).(1)讨论f (x)的单调性;(2)当a=e时,证明:xf (x)-ex+2ex≤0.(1)解f′(x)=-a(x>0).①若a≤0,则f′(x)>0,f (x)在(0,+∞)上单调递增;②若a>0,则当0<x<时,f′(x)>0,当x>时,f′(x)<0,故f (x)在上单调递增,在上单调递减.(2)证明因为x>0,所以只需证f (x)≤-2e,当a=e时,由(1)知,f (x)在(0,1)上单调递增,在(1,+∞)上单调递减.所以f (x)max=f (1)=-e,记g(x)=-2e(x>0),则g′(x)=,所以当0<x<1时,g′(x)<0,g(x)单调递减,当x>1时,g′(x)>0,g(x)单调递增,所以g(x)min=g(1)=-e,综上,当x>0时,f (x)≤g(x),即f (x)≤-2e,即xf (x)-ex+2ex≤0.思维升华(1)利用导数证明不等式的基本思路是依据函数的单调性,求得函数的最值,然后由f (x)≤f (x)max或f (x)≥f (x)min证得不等式.(2)证明f (x)>g(x),可以构造函数h(x)=f (x)-g(x),然后利用h(x)的最值证明不等式.(3)若直接求导比较复杂或无从下手时,可将待证式进行变形分拆,构造两个函数,从而找到可以传递的中间量,达到证明的目的.跟踪训练1 (1)设函数f (x)=ln x-x+1.①讨论f (x)的单调性;②证明:当x∈(1,+∞)时,1<<x.①解由题设知,f (x)的定义域为(0,+∞),。
导数,不等式《导数,不等式》在数学中,“导数”和“不等式”是两个重要的概念,对于深入理解数学原理,它们都具有重要的意义。
本文将就导数和不等式的定义及其应用等问题进行详细介绍,以便使读者有个清晰的认识。
一、导数的定义导数实际上是一种函数的变化率。
如果把一个函数的定义域内的点看作时间,则导数表示函数值随时间的变化的程度。
具体来说,对于函数 y = f(x),当x的增量为Δx时,它在x处的导数就是指函数的y值随着x的变化而发生的变化率,记为:dy/dx = lim(Δx0)[ (f(x +x) - f(x)) /x - f(x) ]。
二、不等式的定义不等式是数学中的一个重要概念,它是指两个数或多个数之间的特定比较关系,如大于、小于、不等于等。
不等式通常用符号表示,例如“a > b”表示“a大于b”,“a < b”表示“a小于b”,以及“a b”表示“a不小于b”等。
三、导数和不等式的应用1、导数的应用(1)求极值问题:利用求导的方法可以快速求出函数的极值,并且可以判断此极值点是极大值点还是极小值点;(2)求曲线积分:利用导数的定义可以快速求出某函数在某段区间内的积分,从而方便地求出曲线下两定点间的面积;(3)求解微分方程:利用导数可以快速解决一些常见的微分方程,如欧拉方程,常微分方程等。
2、不等式的应用(1)实际问题的数学模型:利用不等式可以表示实际问题的约束条件,可以构建出实际问题的数学模型,从而方便求解;(2)多元函数的极大值和极小值问题:利用不等式可以受限多元函数的极大值和极小值问题;(3)群论中的应用:不等式可以用来表示群论中元素的性质,从而更加直观地理解群论中的概念。
四、结论以上就是本文关于导数和不等式的相关内容,可以看出,它们在数学中都具有重要的意义,且应用十分广泛,可以更好地理解数学原理,帮助更快地求解数学问题。
导数在不等式证明中的应用在数学中,导数是一种评估函数变化速度的工具。
它可以用于证明不等式,特别是在优化问题中非常有用。
本文将探讨导数在不等式证明中的应用,并通过例子来说明其重要性。
在证明不等式时,我们通常需要使用比较函数值的差异来推断函数的相对值。
导数的主要作用是帮助我们研究函数的增减性质,进而推导出不等式。
首先,我们来看一个简单的例子。
假设我们需要证明当$x>0$时,函数$f(x) = \ln(x)$是递增的。
我们可以通过求导来证明。
首先,求导$f'(x)$:$$f'(x) = \frac{1}{x}$$我们可以发现,$f'(x)>0$对于$x>0$始终成立。
这意味着函数$f(x)$在该区间是递增的。
因此,我们可以得出结论:当$x>0$时,函数$f(x) = \ln(x)$是递增的。
这个例子展示了导数在证明函数性质中的应用。
接下来,我们将探讨导数在不等式证明中的更广泛应用。
一种常见的应用是利用导数研究函数的凹凸性质。
如果一个函数在一些区间上是凹的,那么它的导数在该区间上是递增的。
反之,如果函数在一些区间上是凸的,那么它的导数在该区间上是递减的。
考虑一个例子:证明函数$f(x)=x^2$在$x>0$时是凹的。
首先,求导$f'(x)$:$$f'(x)=2x$$然后,求二阶导数$f''(x)$:$$f''(x)=2$$我们可以看到$f''(x)>0$,对于$x>0$恒成立。
这意味着函数$f(x)$在该区间上是凹的。
因此,我们可以得出结论:当$x>0$时,函数$f(x)=x^2$是凹的。
这个例子显示了利用导数来证明函数的凹凸性质的方法。
凹凸性质在不等式证明中非常有用,因为它可以帮助我们推断函数值的大小关系。
另一个应用是利用导数求解优化问题中的最值。
如果一个函数在一些点处取得极小值,那么它的导数在该点处为零或不存在。
导数与不等式证明(绝对精华)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March二轮专题 (十一) 导数与不等式证明【学习目标】1. 会利用导数证明不等式.2. 掌握常用的证明方法.【知识回顾】一级排查:应知应会1.利用导数证明不等式要考虑构造新的函数,利用新函数的单调性或最值解决不等式的证明问题.比如要证明对任意∈x [b a ,]都有)()(x g x f ≤,可设)()()(x g x f x h -=,只要利用导数说明)(x h 在[b a ,]上的最小值为0即可.二级排查:知识积累利用导数证明不等式,解题技巧总结如下:(1)利用给定函数的某些性质(一般第一问先让解决出来),如函数的单调性、最值等,服务于第二问要证明的不等式.(2)多用分析法思考.(3)对于给出的不等式直接证明无法下手,可考虑对不等式进行必要的等价变形后,再去证明.例如采用两边取对数(指数),移项通分等等.要注意变形的方向:因为要利用函数的性质,力求变形后不等式一边需要出现函数关系式.(4)常用方法还有隔离函数法,max min )()(x g x f ≥,放缩法(常与数列和基本不等式一起考查),换元法,主元法,消元法,数学归纳法等等,但无论何种方法,问题的精髓还是构造辅助函数,将不等式问题转化为利用导数研究函数的单调性和最值问题.(5)建议有能力同学可以了解一下罗必塔法则和泰勒展开式,有许多题都是利用泰勒展开式放缩得来.三极排查:易错易混用导数证明数列时注意定义域.【课堂探究】一、作差(商)法例1、证明下列不等式:①1+≥x e x ②1ln -≤x x ③xx 1-1ln ≥④1x 1)-2(x ln +≥x )1(≥x ⑤)2,0(,2sin ππ∈>x x x二、利用max min )()(x g x f ≥证明不等式例2、已知函数.22)(),,(,ln )1(1)(e x e x g R b a x a b x ax x f +-=∈+-+-= (1)若函数2)(=x x f 在处取得极小值0,求b a ,的值;(2)在(1)的条件下,求证:对任意的],[,221e e x x ∈,总有)()(21x g x f >.变式:证明:对一切),0(+∞∈x ,都有ex ex x 21ln ->成立.三、构造辅助函数或利用主元法 例3、已知n m ,为正整数,且,1n m <<求证:m n n m )1()1(+>+.变式:设函数x x f ln )(=,22)(-=x x g (1≥x ).(1)试判断)()()1()(2x g x f x x F -+=在定义域上的单调性;(2)当b a <<0时,求证22)(2)()(ba ab a a f b f +->-.四、分析法证明不等式例4、设1>a ,函数a e x x f x -+=)1()(2.若曲线()y f x 在点P 处的切线与x 轴平行, 且在点(,)M m n 处的切线与直线OP 平行(O 是坐标原点),证明:123--≤e a m .变式:已知函数x x x f ln )(2=.(Ⅰ)求函数)(x f 的单调区间;(Ⅱ)证明:对任意的0>t ,存在唯一的s ,使)(s f t =.(Ⅲ)设(Ⅱ)中所确定的s 关于t 的函数为)(t g s =,证明:当2e t >时,有21ln )(ln 52<<t t g .五、隔离函数例5、已知函数)ln()(m x e x f x +-=. (Ⅰ)设0=x 是)(x f 的极值点,求m 并讨论)(x f 的单调性; (Ⅱ)当2≤m 时,证明:)(x f 0>.变式:已知函数,,)(R x x nx x f n ∈-=其中*∈N n ,且2≥n .(1)讨论)(x f 的单调性;(2)设曲线)(x f y =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为)(x g y =,求证:对于任意的正实数x ,都有)()(x g x f ≤;(3)若关于x 的方程)()(为实数a a x f =有两个正实数根21,x x ,求证:.2112+-<-na x x六、与数列结合例6、已知函数3ln )(--=ax x a x f )(R a ∈.(1)求函数)(x f 的单调区间;(2)求证:)2(1ln 44ln .33ln .22ln ≥*∈<n N n nn n ,变式:(1)已知),0(+∞∈x ,求证:xx x x 11ln 11<+<+; (2)求证:)2(1131211ln 1413121≥*∈-++++<<++++n N n n n n , .【巩固训练】1. 已知函数,ln 21)(2x x x f +=求证:在区间),1(+∞上,函数)(x f 的图像在函数332)(x x g =的图像的下方.2.已知函数()1ln 1x f x x +=-. (Ⅰ)求曲线()y f x =在点()()00f ,处的切线方程;(Ⅱ)求证:当()01x ∈,时,()323x f x x ⎛⎫>+ ⎪⎝⎭; (Ⅲ)设实数k 使得()33x f x k x ⎛⎫>+ ⎪⎝⎭对()01x ∈,恒成立,求k 的最大值.3.已知210x x <<,求证:nn n x x x x ⎪⎭⎫ ⎝⎛+>+222121.4. 设函数)0()1ln()(>+=x x x x f .(1)判断)(x f 的单调性;(2)证明:e n n <+)11((e 为自然对数,*N n ∈).5.已知函数.)(x e x f x -=(1)求函数)(x f 的最小值;(2)设不等式ax x f >)(的解集为P ,且P ⊆]2,0[,求实数a 的取值范围;(3)设*∈N n ,证明:1321-<⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛e e n n n n n nn n n .6.已知)0()1ln()(2≤++=a ax x x f .(1) 讨论)(x f 的单调性;(2)证明:)(4211+)(4311+)(411n + e <(e 为自然对数,*N n ∈,2≥n ).7. 已知函数x x x g x x x f ln )(,)1ln()(=-+=(1)求函数)(x f 的最大值;(2)设b a <<0,证明 :2ln )()2(2)()(0a b b a g b g a g -<+-+<.8.设函数x be x ae x f x x 1ln )(-+=,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+.(Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.9. 已知函数()ax e x f x -=(a 为常数)的图像与y 轴交于点A ,曲线()x f y =在点A 处的切线斜率为-1.(Ⅰ)求a 的值及函数()x f 的极值; (Ⅱ)证明:当0>x 时,x e x <2;(Ⅲ)证明:对任意给定的正数c ,总存在0x ,使得当()∞+∈,0x x ,恒有x ce x <2.10.(选作)已知.1)1()(--=x e x x f (1)证明:当0>x 时,0)(<x f ; (2)数列}{n x 满足,1,111=-=+x e e x n n x x n 求证:}{n x 递减,且n n x 21>.。
导数与不等式综合应用在数学中,导数是指函数在某一点上的变化率。
而不等式则是用于比较两个数或者两个函数之间的关系。
导数与不等式的综合应用则指的是利用导数的性质来解决不等式问题。
本文将探讨导数与不等式的综合应用,为读者提供相关知识与解决问题的方法。
一、导数与单调性导数可以表示函数在某一点上的变化趋势,从而可以帮助我们确定函数的单调性。
对于一个定义在区间(a, b)上的函数f(x),如果在该区间的每个点x处,f'(x)>0,那么我们可以得出函数f(x)是递增的结论。
如果在该区间的每个点x处,f'(x)<0,那么函数f(x)是递减的结论。
利用这个性质,我们可以解决一些不等式问题。
例如,对于不等式f(x)>0,我们可以通过求解方程f(x)=0找出函数的零点,再根据导数的正负来确定函数在零点两侧的正负号,从而判断不等式的解集。
二、导数与最值对于一个定义在闭区间[a, b]上的函数f(x),如果在开区间(a, b)内,f(x)的导数存在且在x=c处导数为零,那么点c就是函数f(x)的一个临界点。
根据函数的单调性,我们可以得知,在c的左侧,f(x)是递增的,在c的右侧,f(x)是递减的。
利用这个性质,我们可以解决求最值的问题。
例如,对于一个定义在闭区间[a, b]上的连续函数f(x),要求其在该区间上的最大值或最小值,我们可以进行以下步骤:1. 求出函数f(x)的导数f'(x);2. 求出导数f'(x)的零点,即f'(x)=0的解;3. 将求得的零点与区间的端点a、b比较,求出最值。
三、导数与不等式导数还可以帮助我们解决不等式问题。
根据导数的符号,我们可以确定函数的增减性质。
例如,如果在一个区间内,f'(x)>0,那么可以得出函数f(x)在该区间上是递增的。
如果在一个区间内,f'(x)<0,那么可以得出函数f(x)在该区间上是递减的。
第4讲导数与不等式问题高考定位导数经常作为高考的压轴题,能力要求非常高.作为导数综合题,主要是涉及利用导数求最值解决恒成立问题、利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在.真题感悟(2016·无锡高三期末)已知函数f (x)=ln x+a+e-2x(a>0).(1)当a=2时,求出函数f (x)的单调区间;(2)若不等式f (x)≥a对于x>0的一切值恒成立,求实数a的取值范围. 解(1)由题意知函数f (x)的定义域为(0,+∞).当a=2时,函数f (x)=ln x+e x,所以f ′(x)=1x-ex2=x-ex2,所以当x∈(0,e)时,f′(x)<0,函数f (x)在(0,e)上单调递减;当x∈(e,+∞)时,f′(x)>0,函数f (x)在(e,+∞)上单调递增.(2)由题意知ln x+a+e-2x≥a恒成立.等价于x ln x+a+e-2-ax≥0在(0,+∞)上恒成立.令g(x)=x ln x+a+e-2-ax,则g′(x)=ln x+1-a,令g′(x)=0,得x=e a-1.列表如下:X (0,e a-1)e a-1(e a-1,+∞)g′(x)-0+g(x)极小值所以g(x)的最小值为g(e a-1)=(a-1)e a-1+a+e-2-a e a-1=a+e-2-e a-1,令t(x)=x+e-2-e x-1(x>0),则t′(x)=1-e x-1,令t′(x)=0,得x=1.列表如下:所以当a∈(0,1)时,g(x)的最小值为t(a)>t(0)=e-2-1e=-2)-1e>0,符合题意;当a∈[1,+∞)时,g(x)的最小值为t(a)=a+e-2-e a-1≥0=t(2),所以a∈[1,2].综上所述,a∈(0,2].考点整合1.解决函数的实际应用题,首先考虑题目考查的函数模型,并要注意定义域,其解题步骤是:(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答.2.利用导数解决不等式恒成立问题的“两种”常用方法(1)分离参数后转化为函数最值问题:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,f (x)≥a恒成立,只需f (x)min≥a即可;f (x)≤a恒成立,只需f (x)max≤a即可. (2)转化为含参函数的最值问题:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),伴有对参数的分类讨论,然后构建不等式求解.3.常见构造辅助函数的四种方法(1)直接构造法:证明不等式f (x)>g(x)(f (x)<g(x))的问题转化为证明f (x)-g(x)>0(f (x)-g(x)<0),进而构造辅助函数h(x)=f (x)-g(x).(2)构造“形似”函数:稍作变形后构造.对原不等式同解变形,如移项、通分、取对数,把不等式转化为左右两边是相同结构的式子的结构,根据“相同结构”构造辅助函数.(3)适当放缩后再构造:若所构造函数最值不易求解,可将所证明不等式进行放缩,再重新构造函数.(4)构造双函数:若直接构造函数求导,难以判断符号,导数的零点也不易求得,因此单调性和极值点都不易获得,从而构造f (x)和g(x),利用其最值求解.4.不等式的恒成立与能成立问题(1)f (x)>g(x)对一切x∈[a,b]恒成立⇔[a,b]是f (x)>g(x)的解集的子集⇔[f (x)-g(x)]min>0(x∈[a,b]).(2)f (x)>g(x)对x∈[a,b]能成立⇔[a,b]与f (x)>g(x)的解集的交集不是空集⇔[f (x)-g(x)]max>0(x∈[a,b]).(3)对∀x1,x2∈[a,b]使得f (x1)≤g(x2)⇔f (x)max≤g(x)min.(4)对∀x1∈[a,b],∃x2∈[a,b]使得f (x1)≥g(x2)⇔f (x)min≥g(x)min.热点一利用导数证明不等式【例1】(2017·全国Ⅱ卷)已知函数f (x)=ax2-ax-x ln x,且f (x)≥0.(1)求a;(2)证明:f (x)存在唯一的极大值点x0,且e-2<f (x0)<2-2.(1)解 f (x)的定义域为(0,+∞),设g(x)=ax-a-ln x,则f (x)=xg(x),f (x)≥0等价于g(x)≥0,因为g(1)=0,g(x)≥0,故g′(1)=0,而g′(x)=a-1x,g′(1)=a-1,得a=1.若a=1,则g′(x)=1-1 x.当0<x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增,所以x=1是g(x)的极小值点,故g(x)≥g(1)=0.综上,a=1.(2)证明由(1)知f (x)=x2-x-x ln x,f′(x)=2x-2-ln x,设h(x)=2x-2-ln x,则h′(x)=2-1 x.当x ∈⎝ ⎛⎭⎪⎫0,12时,h ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫12,+∞时,h ′(x )>0.所以h (x )在⎝ ⎛⎭⎪⎫0,12上单调递减,在⎝ ⎛⎭⎪⎫12,+∞上单调递增. 又h (e -2)>0,h ⎝ ⎛⎭⎪⎫12<0,h (1)=0,所以h (x )在⎝ ⎛⎭⎪⎫0,12有唯一零点x 0,在⎣⎢⎡⎭⎪⎫12,+∞有唯一零点1,且当x ∈(0,x 0)时,h (x )>0;当x ∈(x 0,1)时,h (x )<0;当x ∈(1,+∞)时,h (x )>0. 因为f ′(x )=h (x ),所以x =x 0是f (x )的唯一极大值点. 由f ′(x 0)=0得ln x 0=2(x 0-1),故f (x 0)=x 0(1-x 0). 由x 0∈(0,1)得f (x 0)<14.因为x =x 0是f (x )在(0,1)的最大值点, 由e -1∈(0,1),f ′(e -1)≠0得f (x 0)>f (e -1)=e -2. 所以e -2<f (x 0)<2-2.探究提高 (1)证明f (x )≥g (x )或f (x )≤g (x ),可通过构造函数h (x )=f (x )-g (x ),将上述不等式转化为求证h (x )≥0或h (x )≤0,从而利用求h (x )的最小值或最大值来证明不等式.或者,利用f (x )min ≥g (x )max 或f (x )max ≤g (x )min 来证明不等式. (2)在证明不等式时,如果不等式较为复杂,则可以通过不等式的性质把原不等式变换为简单的不等式,再进行证明.【训练1】 设函数f (x )=a e x ln x +b ex -1x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2. (1)求a ,b ; (2)证明:f (x )>1.(1)解 函数f (x )的定义域为(0,+∞), f ′(x )=a e x ln x +a x e x -b x 2e x -1+bx e x -1.由题意可得f (1)=2,f ′(1)=e.故a =1,b =2. (2)证明 由(1)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e . 设函数g (x )=x ln x ,则g ′(x )=1+ln x .所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0.故g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增,从而g (x )在(0,+∞)上的最小值为g ⎝ ⎛⎭⎪⎫1e =-1e .设函数h (x )=x e -x -2e ,则h ′(x )=e -x (1-x ). 所以当x ∈(0,1)时,h ′(x )>0; 当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 从而h (x )在(0,+∞)上的最大值为h (1)=-1e . 综上,当x >0时,g (x )>h (x ),即f (x )>1. 热点二 利用导数解决不等式恒成立问题【例2】 (2017·南京、盐城模拟)已知函数f (x )=axe x 在x =0处的切线方程为y =x .(1)求实数a 的值;(2)若对任意的x ∈(0,2),都有f (x )<1k +2x -x 2成立,求实数k 的取值范围.解 (1)由题意得f ′(x )=a (1-x )e x, 因为函数在x =0处的切线方程为y =x ,所以f ′(0)=1,解得a =1. (2)由题知f (x )=xe x <1k +2x -x2对任意x ∈(0,2)都成立,所以k +2x -x 2>0,即k >x 2-2x 对任意x ∈(0,2)都成立,从而k ≥0.不等式整理可得k <e x x +x 2-2x ,令g (x )=e x x +x 2-2x ,所以g ′(x )=e x (x -1)x 2+2(x -1)=(x -1)⎝ ⎛⎭⎪⎫e xx 2+2=0,解得x =1,当x ∈(1,2)时,g ′(x )>0,函数g (x )在(1,2)上单调递增, 同理可得函数g (x )在(0,1)上单调递减.所以k<g(x)min=g(1)=e-1,综上所述,实数k的取值范围是[0,e-1).探究提高(1)利用最值法解决恒成立问题的基本思路是:先找到准确范围,再说明“此范围之外”不适合题意(着眼于“恒”字,寻找反例即可).(2)对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.【训练2】(2014·江苏卷)已知函数f (x)=e x+e-x,其中e是自然对数的底数.(1)证明:f (x)是R上的偶函数;(2)若关于x的不等式mf (x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f (x0)<a(-x30+3x0)成立.试比较e a-1与a e-1的大小,并证明你的结论.(1)证明因为对任意x∈R,都有f (-x)=e-x+e-(-x)=e-x+e x=f (x),所以f (x)是R上的偶函数.(2)解由条件知m(e x+e-x-1)≤e-x-1在(0,+∞)上恒成立.令t=e x(x>0),则t>1,所以m≤-t-1 t2-t+1=-1t-1+1t-1+1对任意t>1成立.因为t-1+1t-1+1≥2(t-1)·1t-1+1=3,所以-1t-1+1t-1+1≥-13,当且仅当t=2,即x=ln 2时等号成立.因此实数m 的取值范围是(-∞,-13]. (3)解 令函数g (x )=e x +1e x -a (-x 3+3x ), 则g ′(x )=e x-1e x +3a (x 2-1).当x ≥1时,e x -1e x >0,x 2-1≥0,又a >0,故g ′(x )>0.所以g (x )是[1,+∞)上的单调增函数,因此g (x )在[1,+∞)上的最小值是g (1)=e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+3x 0)<0成立,当且仅当最小值g (1)<0.故e +e -1-2a <0,即a >e +e -12.令函数h (x )=x -(e -1)ln x -1,则h ′(x )=1-e -1x .令h ′(x )=0,得x =e -1,当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调减函数; 当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时, h (e -1)≤h (x )<h (1)=0.当x ∈(e -1,e)⊆(e -1,+∞)时,h (x )<h (e)=0. 所以h (x )<0对任意的x ∈(1,e)成立. ①当a ∈⎝ ⎛⎭⎪⎫e +e -12,e ⊆(1,e)时,h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1; ②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0, 即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝ ⎛⎭⎪⎫e +e -12,e时,e a -1<a e -1; 当a =e 时,e a -1=a e -1; 当a ∈(e ,+∞)时,e a -1>a e -1.热点三 利用导数解决能成立问题【例3】 (2017·南通模拟)已知函数f (x )=x -(a +1)ln x -a x (a ∈R ),g (x )=12x 2+e x -x e x .(1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)恒成立,求a 的取值范围.解 (1)f (x )的定义域为(0,+∞),f ′(x )=(x -1)(x -a )x 2.① 若a ≤1,当x ∈[1,e]时,f ′(x )≥0, 则f (x )在[1,e]上为增函数,f (x )min =f (1)=1-a . ② 若1<a <e ,当x ∈[1,a ]时,f ′(x )≤0,f (x )为减函数; 当x ∈[a ,e]时,f ′(x )≥0,f (x )为增函数. 所以f (x )min =f (a )=a -(a +1)ln a -1.③ 若a ≥e ,当x ∈[1,e]时,f ′(x )≤0,f (x )在[1,e]上为减函数,f (x )min =f (e)=e -(a +1)-ae .综上,当a ≤1时,f (x )min =1-a ; 当1<a <e 时,f (x )min =a -(a +1)ln a -1; 当a ≥e 时,f (x )min =e -(a +1)-ae .(2)由题意知:f (x )(x ∈[e ,e 2])的最小值小于g (x )(x ∈[-2,0])的最小值. 由(1)知f (x )在[e ,e 2]上单调递增, f (x )min =f (e)=e -(a +1)-ae .g ′(x )=(1-e x )x . 当x ∈[-2,0]时,g ′(x )≤0,g (x )为减函数, g (x )min =g (0)=1,所以e -(a +1)-ae <1, 即a >e 2-2e e +1,所以a 的取值范围为⎝⎛⎭⎪⎫e 2-2e e +1,1.探究提高 存在性问题和恒成立问题的区别与联系存在性问题和恒成立问题容易混淆,它们既有区别又有联系:若g (x )≤m 恒成立,则g (x )max ≤m ;若g (x )≥m 恒成立,则g (x )min ≥m ;若g (x )≤m 有解,则g (x )min ≤m ;若g (x )≥m 有解,则g (x )max ≥m .【训练3】 (2016·四川卷)设函数f (x )=ax 2-a -ln x ,其中a ∈R . (1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得 f (x )>1x -e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数). 解 (1)f ′(x )=2ax -1x =2ax 2-1x (x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0,有x =12a. 此时,当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增. (2)令g (x )=1x -1e x -1,s (x )=e x -1-x .则s ′(x )=e x -1-1.而当x >1时,s ′(x )>0, 所以s (x )在区间(1,+∞)内单调递增.又由s (1)=0,有s (x )>0,从而当x >1时,g (x )>0. 当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a >1.由(1)有f ⎝⎛⎭⎪⎫12a <f (1)=0,而g ⎝ ⎛⎭⎪⎫12a >0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立. 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x >x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)上单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立. 综上,a ∈⎣⎢⎡⎭⎪⎫12,+∞.1.不等式恒成立、能成立问题常用解法有:(1)分离参数后转化为最值,不等式恒成立问题在变量与参数易于分离的情况下,采用分离参数转化为函数的最值问题,形如a >f (x )max 或a <f (x )min . (2)直接转化为函数的最值问题,在参数难于分离的情况下,直接转化为含参函数的最值问题,伴有对参数的分类讨论. (3)数形结合.2.利用导数证明不等式的基本步骤 (1)作差或变形. (2)构造新的函数h (x ).(3)利用导数研究h (x )的单调性或最值. (4)根据单调性及最值,得到所证不等式. 3.导数在综合应用中转化与化归思想的常见类型 (1)把不等式恒成立问题转化为求函数的最值问题; (2)把证明不等式问题转化为函数的单调性问题; (3)把方程解的问题转化为函数的零点问题.一、填空题1.设f (x )是定义在R 上的奇函数,当x <0时,f ′(x )>0,且f (0)=0,f ⎝ ⎛⎭⎪⎫-12=0,则不等式f (x )<0的解集为________.解析 如图所示,根据图象得不等式f (x )<0的解集为⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫0,12.答案 ⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫0,12 2.(2017·苏北四市调研)若不等式2x ln x ≥-x 2+ax -3恒成立,则实数a 的取值范围为________.解析 条件可转化为a ≤2ln x +x +3x 恒成立.设f (x )=2ln x +x +3x ,则f ′(x )=(x +3)(x -1)x 2(x >0). 当x ∈(0,1)时,f ′(x )<0,函数f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,函数f (x )单调递增,所以f (x )min =f (1)=4.所以a ≤4.答案 (-∞,4]3.若存在正数x 使2x (x -a )<1成立,则a 的取值范围是________.解析 ∵2x (x -a )<1,∴a >x -12x .令f (x )=x -12x ,∴f ′(x )=1+2-x ln 2>0.∴f (x )在(0,+∞)上单调递增,∴f (x )>f (0)=0-1=-1,∴a 的取值范围为(-1,+∞).答案 (-1,+∞)4.(2015·全国Ⅱ卷改编)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是________.解析令F(x)=f(x)x,因为f (x)为奇函数,所以F(x)为偶函数,由于F′(x)=x f′(x)-f(x)x2,当x>0时,x f′(x)-f (x)<0,所以F(x)=f(x)x在(0,+∞)上单调递减,根据对称性,F(x)=f(x)x在(-∞,0)上单调递增,又f (-1)=0,f (1)=0,数形结合可知,使得f (x)>0成立的x的取值范围是(-∞,-1)∪(0,1).答案(-∞,-1)∪(0,1)5.已知不等式e x-x>ax的解集为P,若[0,2]⊆P,则实数a的取值范围是________.解析由题意知不等式e x-x>ax在x∈[0,2]上恒成立.当x=0时,显然对任意实数a,该不等式都成立.当x∈(0,2]时,原不等式即a<e xx-1,令g(x)=e xx-1,则g′(x)=e x(x-1)x2,当0<x<1时,g′(x)<0,g(x)单调递减,当1<x<2时,g′(x)>0,g(x)单调递增,故g(x)在(0,2]上的最小值为g(1)=e-1,故a的取值范围为(-∞,e-1).答案(-∞,e-1)6.设函数f (x)=3sin πxm.若存在f (x)的极值点x0满足x2+[f (x0)]2<m2,则m的取值范围是________.解析∵f (x)=3sin πxm的极值为±3,即[f (x 0)]2=3.又|x 0|≥|m |2,∴x 20+[f (x 0)]2≥m 24+3,∴m 24+3<m 2,解得m >2或m <-2.答案 (-∞,-2)∪(2,+∞)7.已知函数f (x )=ln x -a ,若f (x )<x 2在(1,+∞)上恒成立,则实数a 的取值范围是________.解析 ∵函数f (x )=ln x -a ,且f (x )<x 2在(1,+∞)上恒成立,∴a >ln x -x 2,x ∈(1,+∞).令h (x )=ln x -x 2,有h ′(x )=1x -2x .∵x >1,∴1x -2x <0,∴h (x )在(1,+∞)上为减函数,∴当x ∈(1,+∞)时,h (x )<h (1)=-1,∴a ≥-1.答案 [-1,+∞)8.(2017·泰州模拟)已知函数f (x )=13x 3-x 2-3x +43,直线l :9x +2y +c =0,若当x ∈[-2,2]时,函数y =f (x )的图象恒在直线l 下方,则c 的取值范围是________.解析 根据题意知13x 3-x 2-3x +43<-92x -c 2在x ∈[-2,2]上恒成立,则-c 2>13x 3-x 2+32x +43,设g (x )=13x 3-x 2+32x +43,则g ′(x )=x 2-2x +32,则g ′(x )>0恒成立,所以g (x )在[-2,2]上单调递增,所以g (x )max =g (2)=3,则c <-6.答案 (-∞,-6)二、解答题9.(2016·全国Ⅲ卷)设函数f (x )=ln x -x +1.(1)讨论函数f (x )的单调性;(2)证明当x ∈(1,+∞)时,1<x -1ln x <x ;(3)设c >1,证明当x ∈(0,1)时,1+(c -1)x >c x .(1)解 由f (x )=ln x -x +1(x >0),得f ′(x )=1x -1.令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )单调递增.当x >1时,f ′(x )<0,f (x )单调递减.因此f (x )在(0,1)上是增函数,在x ∈(1,+∞)上为减函数.(2)证明 由(1)知,函数f (x )在x =1处取得最大值f (1)=0.∴当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x -1,即1<x -1ln x <x .(3)证明 由题设c >1,设g (x )=1+(c -1)x -c x ,则g ′(x )=c -1-c x ln c .令g ′(x )=0,解得x 0=ln c -1ln c ln c .当x <x 0时,g ′(x )>0,g (x )单调递增;当x >x 0时,g ′(x )<0,g (x )单调递减.由(2)知1<c -1ln c <c ,故0<x 0<1.又g (0)=g (1)=0,故当0<x <1时,g (x )>0.∴当x ∈(0,1)时,1+(c -1)x >c x .10.(2017·衡水中学质检)已知函数f (x )=x +a e x .(1)若f (x )在区间(-∞,2)上为单调递增函数,求实数a 的取值范围;(2)若a =0,x 0<1,设直线y =g (x )为函数f (x )的图象在x =x 0处的切线,求证: f (x )≤g (x ).(1)解 易知f ′(x )=-x -(1-a )e x, 由已知得f ′(x )≥0对x ∈(-∞,2)恒成立,故x ≤1-a 对x ∈(-∞,2)恒成立,∴1-a ≥2,∴a ≤-1.即实数a 的取值范围为(-∞,-1].(2)证明 a =0,则f (x )=x e x .函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0). 令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0),x ∈R ,则h ′(x )=f ′(x )-f ′(x 0)=1-x e x -1-x 0e x 0=(1-x )e x 0-(1-x 0)e xe x +x 0. 设φ(x )=(1-x )e x 0-(1-x 0)e x ,x ∈R ,则φ′(x )=-e x 0-(1-x 0)e x ,∵x 0<1,∴φ′(x )<0,∴φ(x )在R 上单调递减,而φ(x 0)=0,∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0,∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0,∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数, ∴x ∈R 时,h (x )≤h (x 0)=0,∴f (x )≤g (x ).11.(2017·南通调研)已知函数f (x )=ln x +x 2-ax (a 为常数).(1)若x =1是函数f (x )的一个极值点,求a 的值;(2)当0<a ≤2时,试判断f (x )的单调性;(3)若对任意的a ∈(1,2),x 0∈[1,2],不等式f (x 0)>m ln a 恒成立,求实数m 的取值范围.解 f ′(x )=1x +2x -a .(1)由已知得:f ′(1)=0,所以1+2-a =0,所以a =3,经验证符合题意.(2)当0<a ≤2时,f ′(x )=1x +2x -a =2x 2-ax +1x=2⎝ ⎛⎭⎪⎫x -a 42+1-a 28x .。
导数与不等式证明导数是微积分中的重要概念,它描述了函数在某一点的变化率。
而不等式是数学中常用的一种关系,用于比较两个数或表达变量之间的大小关系。
本文将探讨导数与不等式之间的关系,并通过具体的例子来证明与应用。
一、导数的定义与性质首先,我们回顾导数的定义:对于函数f(x),在点x处的导数可以表示为lim(h->0)(f(x+h)-f(x))/h。
简单来说,导数就是函数在某一点的斜率。
导数具有以下性质:1. 导数存在性:如果函数在某一点可导,则该点的导数存在。
2. 导数与函数图像:导数可以帮助我们理解函数图像的特性,如切线与曲线的关系、函数的增减性等。
3. 导数的计算:可以通过求导法则,例如常数法则、幂函数法则、链式法则等,来计算导数。
二、不等式的基本性质接下来,我们简要介绍不等式的基本性质。
不等式常见的有大于号(>)、小于号(<)、大于等于号(≥)、小于等于号(≤)等。
对于不等式的证明,通常有以下方法:1. 同向性:如果a>b,那么对于任意正数c,ac>bc。
这个性质可以用于不等式的乘法性质证明。
2. 等价性:如果两个不等式的左边和右边分别相等,则两个不等式等价。
这个性质可以用于不等式的代换和变形。
三、导数与不等式之间的关系导数在不等式的证明中具有重要作用。
通过对比函数在不同区间的导数值以及函数图像的特征,可以得出不等式的结论。
下面通过两个具体的例子来说明导数与不等式之间的关系。
例1:证明函数f(x)=x²在区间(0,∞)上是递增的。
解:首先计算f(x)=x²的导数:f'(x)=2x。
由于导数描述了函数的变化率,当导数大于0时,函数是递增的。
因此,我们需要证明2x>0在区间(0,∞)上成立。
由于x大于0,所以2x大于0,即导数大于0,因此函数f(x)=x²在区间(0,∞)上是递增的。
例2:证明函数f(x)=eˣ在任意区间上是递增的。
导数与不等式 Prepared on 22 November 2020
1.已知函数f (x )=x 2-ax -a ln x (a ∈R ).
(1)若函数f (x )在x =1处取得极值,求a 的值;
(2)在(1)的条件下,求证:f (x )≥-x 33+5x 22-4x +116
. 2.(2016·烟台模拟)已知函数f (x )=x 2-ax ,g (x )=ln x ,h (x )=f (x )+g (x ).
(1)若函数y =h (x )的单调减区间是⎝ ⎛⎭
⎪⎫12,1,求实数a 的值; (2)若f (x )≥g (x )对于定义域内的任意x 恒成立,求实数a 的取值范围.
3.(2016·山西四校联考)已知f (x )=ln x -x +a +1.
(1)若存在x ∈(0,+∞),使得f (x )≥0成立,求a 的取值范围;
(2)求证:在(1)的条件下,当x >1时,12x 2+ax -a >x ln x +12
成立. 4.已知函数f (x )=(2-a )ln x +1x
+2ax . (1)当a <0时,讨论f (x )的单调性;
(2)若对任意的a ∈(-3,-2),x 1,x 2∈[1,3],恒有(m +ln 3)a -2ln
3>|f (x 1)-f (x 2)|成立,求实数m 的取值范围.
5.(2017·福州质检)设函数f (x )=e x -ax -1.
(1)当a >0时,设函数f (x )的最小值为g (a ),求证:g (a )≤0;
(2)求证:对任意的正整数n ,都有1n +1+2n +1+3n +1+…+n n +1<(n +1)n +1. 答案精析
1.(1)解 f ′(x )=2x -a -a x
,由题意可得f ′(1)=0,解得a =1.经检验,a =1时f (x )在x =1处取得极值,所以a =1.
(2)证明 由(1)知,f (x )=x 2-x -ln x ,
令g (x )=f (x )-⎝ ⎛⎭⎪⎫-x 33
+5x 22-4x +116 =x 33-3x 22+3x -ln x -116, 由g ′(x )=x 2-3x +3-1x =x 3-1x -3(x -1)=(x -1)3x (x >0),可知g (x )在(0,1)上是减函数,
在(1,+∞)上是增函数,所以g (x )≥g (1)=0,所以f (x )≥-x 33+5x 22
-4x +116
成立. 2.解 (1)由题意可知,h (x )=x 2-ax +ln x (x >0),
由h ′(x )=2x 2-ax +1x
(x >0), 若h (x )的单调减区间是⎝ ⎛⎭
⎪⎫12,1,
由h ′(1)=h ′⎝ ⎛⎭
⎪⎫12=0,解得a =3, 而当a =3时,h ′(x )=2x 2-3x +1x =(2x -1)(x -1)x
(x >0). 由h ′(x )<0,解得x ∈⎝ ⎛⎭
⎪⎫12,1, 即h (x )的单调减区间是⎝ ⎛⎭
⎪⎫12,1, ∴a =3.
(2)由题意知x 2-ax ≥ln x (x >0),
∴a ≤x -ln x x
(x >0). 令φ(x )=x -ln x x
(x >0), 则φ′(x )=x 2+ln x -1x 2, ∵y =x 2+ln x -1在(0,+∞)上是增函数,且x =1时,y =0.
∴当x ∈(0,1)时,φ′(x )<0;
当x ∈(1,+∞)时,φ′(x )>0,
即φ(x )在(0,1)上是减函数,在(1,+∞)上是增函数,
∴φ(x )min =φ(1)=1,故a ≤1.
即实数a 的取值范围为(-∞,1].
3.(1)解 原题即为存在x >0,
使得ln x -x +a +1≥0,
∴a ≥-ln x +x -1,
令g (x )=-ln x +x -1,
则g ′(x )=-1x +1=x -1x
. 令g ′(x )=0,解得x =1.
∵当0<x <1时,g ′(x )<0,g (x )为减函数,
当x >1时,g ′(x )>0,g (x )为增函数,
∴g (x )min =g (1)=0,a ≥g (1)=0.
故a 的取值范围是[0,+∞).
(2)证明 原不等式可化为12x 2+ax -x ln x -a -12
>0(x >1,a ≥0). 令G (x )=12x 2+ax -x ln x -a -12
,则G (1)=0. 由(1)可知x -ln x -1>0,
则G ′(x )=x +a -ln x -1≥x -ln x -1>0,
∴G (x )在(1,+∞)上单调递增,
∴G (x )>G (1)=0成立,
∴12x 2+ax -x ln x -a -12
>0成立, 即12x 2+ax -a >x ln x +12
成立. 4.解 (1)求导可得f ′(x )=2-a x -1x 2+2a =(2x -1)(ax +1)x 2, 令f ′(x )=0,得x 1=12,x 2=-1a
, 当a =-2时,f ′(x )≤0,函数f (x )在定义域(0,+∞)内单调递减;
当-2<a <0时,在区间(0,12),(-1a
,+∞)上f ′(x )<0,f (x )单调递减,
在区间(12,-1a
)上f ′(x )>0,f (x )单调递增; 当a <-2时,在区间(0,-1a ),(12
,+∞)上f ′(x )<0,f (x )单调递减,在区间(-1a ,12
)上f ′(x )>0,f (x )单调递增. (2)由(1)知当a ∈(-3,-2)时,函数f (x )在区间[1,3]上单调递减,
所以当x ∈[1,3]时,f (x )max =f (1)=1+2a ,f (x )min =f (3)=(2-a )ln 3+13
+6a .
问题等价于:对任意的a ∈(-3,-2),恒有(m +ln 3)a -2ln 3>1+2a -
(2-a )ln 3-13-6a 成立,即am >23
-4a , 因为a <0,所以m <23a
-4, 因为a ∈(-3,-2),
所以只需m ≤(23a
-4)min , 所以实数m 的取值范围为(-∞,-133
]. 5.证明 (1)由a >0及f ′(x )=e x -a 可得,函数f (x )在(-∞,ln a )上单调递减,
在(ln a ,+∞)上单调递增,
故函数f (x )的最小值为g (a )=f (ln a )=e ln a -a ln a -1=a -a ln a -1,则g ′(a )=-ln a ,
故当a ∈(0,1)时,g ′(a )>0;
当a ∈(1,+∞)时,g ′(a )<0,
从而可知g (a )在(0,1)上单调递增,
在(1,+∞)上单调递减,且g (1)=0,故g (a )≤0.
(2)由(1)可知,当a =1时,总有f (x )=e x -x -1≥0,
当且仅当x =0时等号成立,即当x >0时,总有e x >x +1.
于是,可得(x +1)n +1<(e x )n +1=e (n +1)x .
令x +1=1n +1,即x =-n n +1,可得⎝ ⎛⎭
⎪⎫1n +1n +1<e -n ; 令x +1=2n +1,即x =-n -1n +1,可得⎝ ⎛⎭
⎪⎫2n +1n +1<e -(n -1); 令x +1=3n +1,即x =-n -2n +1,可得⎝ ⎛⎭
⎪⎫3n +1n +1<e -(n -2); …
令x +1=n
n +1,即x =-1n +1,可得⎝ ⎛⎭⎪⎫n n +1n +1<e -1. 对以上各式求和可得:
⎝ ⎛⎭⎪⎫1n +1n +1+⎝ ⎛⎭⎪⎫2n +1n +1+⎝ ⎛⎭⎪⎫3n +1n +1+…+⎝ ⎛⎭
⎪⎫n n +1n +1<e -n +e -(n -1)+e -(n -2)+…+e -1 =e -n (1-e n )1-e =e -n -11-e =1-e -n e -1<1e -1
<1. 故对任意的正整数n ,都有1n +1+2n +1+3n +1+…+n n +1<(n +1)n +1.。