立体几何三视图问题分类
- 格式:doc
- 大小:1.11 MB
- 文档页数:12
空间几何体的三视图(讲义)知识点睛一、三视图主要类型分为:棱锥类、残缺类、组合类.1.棱锥类特征:俯视图多边形内部或边上有一点呈发散状,并与其他顶点相连,正、侧视图有尖顶.处理步骤:①观察俯视图,结合正、侧视图,判断顶点的位置;②确定线、面位置关系;③根据结构,找数据的对应关系;④计算.2.残缺类特征:有斜线、缺口等.处理步骤:①观察俯视图,结合正、侧视图,判断几何体的类型;②根据图形尝试切割;③根据结构,找数据的对应关系;④计算.3.组合类特征:中间有横线,曲线与直线结合等.处理步骤:①观察特征,从有曲面的图形入手,分离出几何体类型;若没有,根据分割线判断每部分几何体的类型;②确定几何体的位置关系;③根据结构,找数据的对应关系;④计算.二、球经过球面上两点和球心作截面,得到球的一个大圆,大圆上两点之间劣弧的长叫做这两点的球面距离.2.球与多面体的位置关系(1)外接球:多面体的各个顶点都在球面上;(2)内切球:多面体的各个面都与球相切.精讲精练1.某几何体的三视图如图所示,则这个几何体的体积为()2222俯视图正视图 侧视图A.4 B.203C.263D.82.某几何体的三视图如图(单位为m),则该几何体的体积为_____________.俯视图正视图 侧视图1332223.某三棱锥的三视图如图所示,则该三棱锥的表面积是()4俯视图正视图 侧视图A.28+65B.30+65C.56+ 125D.60+1254.如图,网格纸上小正方形的边长为1,粗实线画的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.B.6 C.D.45.一个棱锥的三视图如图,则该棱锥的表面积为()俯视图正视图 侧视图A.B.C.D.6.如图是一个几何体的三视图,则这个几何体的体积是()33俯视图正视图 侧视图A.26 B.27 C.572D.287.若某多面体的三视图如图所示,则此多面体的体积是()俯视图正视图 侧视图12--211112-2112--21A .12B .23C .56D .788.某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为( )俯视图正视图 侧视图A .4B .C .D .89.若某几何体的三视图如图所示,则该几何体的体积为( )正视图 侧视图俯视图2422A .8π3B .3πC .10π3D .6π10.某几何体的三视图如图所示,则该几何体的体积为( )俯视图正视图 侧视图4442222A .16+8πB .8+8πC .16+16πD .8+16π11.已知某几何体的三视图如图,则该几何体的体积为( )俯视图正视图 侧视图211222322A .5π42+B .3π42+C .π42+ D .4π+12.如图是某简单组合体的三视图,则该组合体的体积为( )正视图 侧视图俯视图1212121212 A.π+ B.π2)+C.D.2)+13.若某几何体的三视图(单位:cm )如图所示,则该几何体的体积等于___________cm 3.俯视图正视图 侧视图335414.如图,O 是半径为1的球心,点A ,B ,C 在球面上,OA ,OB ,OC 两两垂直,E ,F 分别是大圆弧AB ,AC 的中点,则点E ,F 的球面距离是( )432415.如图,在半径为3的球面上有A ,B ,C 三点,∠ABC =90°,BA =BC ,球心O 到平面ABC 的距离是2,则B ,C 两点的球面距离是( )A .π3B .πC .4π3D .2π16.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2B .73πa 2C .113πa 2D .5πa 2回顾与思考________________________________________________________ ________________________________________________________ ________________________________________________________ 【参考答案】1.A2.4 m33.B4.B5.A 6.C7.D8.D9.B10.A 11.A12.B13.5014.B15.B 16.B空间几何体的三视图(随堂测试)1.已知某几何体的三视图如图所示,则该几何体的体积为()2221 11正视图 侧视图俯视图A.233B.223C.203D.1432.已知底面边长为1的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A.2π3B.4πC.2πD.4π3【参考答案】1.A 2.D空间几何体的三视图(作业)例1:已知几何体的三视图如图所示,可得这个几何体的体积为______________.123某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是( )A .90 cm 2B .129 cm 2C .132 cm 2D .138 cm 2正视图 侧视图俯视图443333364343⑤ 计算1433335243482S =⨯+⨯+⨯+⨯⨯⨯=左,2(464363)108S =⨯⨯+⨯+⨯=右,2248108233138 (cm )S S S S =+-=+-⨯⨯=左右重表. 故选D .例2: 如图,正四棱锥P -ABCD 的顶点都在同一球面上,若该棱锥的高PO 为4,底面边长为2,则该球的表面积为( )A .81πB .16πC1122俯视图正视图 侧视图17.如图是一个空间几何体的三视图,如果直角三角形的直角边长均为1,那么这个几何体的表面积为( )A .13 B.2 C .16D.2+正视图 侧视图俯视图第1题图 第2题图18.某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积为( )A .3B .2CD .119.已知四棱锥P -ABCD 的三视图如图所示,则四棱锥P -ABCD的四个侧面中的最大面积是_________________.2222433俯视图正视图 侧视图第3题图 第4题图20.某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为___________.11112222侧视图俯视图21.一几何体的三视图如图所示,该几何体的体积为_________.第5题图 第6题图22.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( ) AB.(4π+ CD23.一几何体的三视图如图所示,则该几何体的体积为( )A .200+9πB .200+18πC .196+15πD .140+18π俯视图正视图 侧视图21152632第7题图 第8题图24.一个几何体的三视图如图所示,则该几何体的体积为( )ABCD122俯视图正视图 侧视图5566俯视图正视图 侧视图6俯视图正视图 侧视图3111125.如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727B .59C .1027D .13第9题图 第10题图26.某几何体三视图如图所示,则该几何体的体积为( )A .82π-B .8π-C .π82-D .π84-27.已知某几何体的三视图如图所示,则该几何体的体积是__________.俯视图正视图 侧视图第11题图 第12题图28.一个几何体的三视图如图所示,则该几何体的体积为_________.12211俯视图正视图 侧视图俯视图正视图 侧视图111121129.已知三棱柱ABC-A1B1C1的六个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.2B.C.132D.30.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.6B.6C.3D.1231.如图,已知三点A,B,C在球心为O,半径为3的球面上,且几何体OABC 为正四面体,那么A,B两点的球面距离为_________,点O到平面ABC的距离为____________.【参考答案】1.B2.D3.64.5.2454π6.D7.A8.A9.C10.B11.8π12.22 313.C14.A15.π。
三 视 图 问 题 分 类 解 析三视图问题是近年中考中一类必考题型,它主要考察学生观察问题、分析问题的能力,以及空间想象能力.多以填空题、选择题的形式出现.本文试举数例,进行分类剖析,供同学们参考.基本概念:从不同的方向观察几何体时,可以得到不同的平面图形.1、主视图(正视图):从正面看到的图形,叫做主视图 (新课标北京师大版教材《七年级(上)·数学》);又叫正视图(新课标华东师大版教材《七年级(上)·数学》).2、左视图:从左面看到的图形,叫做左视图 .3、俯视图:从上面看到的图形,叫做俯视图. 一、由几何体画三视图例1.如图1是由6个相同的小立方块搭成的几何体,分别画 出这个几何体的主视图左视图和俯视图.解析:对六个小正方体编号:前排为1, 第二排左起依次为2、3、4,第三排为5,上层为6.画主视图时,小正方体“1”、“5”不起作用,可以将其“移走”,即做到“视而不见”.那么观察由小正方体“2”、“3”、“4” 、“6”块木块,从正面“拍摄”,所得到的“照片”即为 图2-1;画左视图时,可以设想小正方体“2”、“4”不起作用,将其“移走”;将“1”平移至“3”的正面.那么观察由小正方体“1’”、“3”、“5” 、“6”四块立方块,从左面“拍摄”,所得到的“照片”即为 图2-2;画俯视图时,可以设想将第二层、第三层……等依次“移走”(从底层开始数,依次为第一层、第二层,……).在这里,可将小正方体“6”“移走”那么观察余下六块,立方块,从上面“拍摄”,所得到的“照片”即为图2-3.例2. 由几何体画它的的主视图(1) 用三个正方体,一个圆柱体,一个圆锥的积木摆成如图3所示的几何体,其正视图(图2-1 图2-2 图2-3 )A B C D图7为( ) (2007永州)(2)小明从正面观察下图4所示的两个物体,看到的是()(2007临安)解析:(1)画主视图时,小正方体“1”不起作用,可以将其“移走”,即做到“视而不见”.那么观察由小正方体“2”、“3”及圆柱体、圆锥这四块积木,从正面“拍摄”,所得到的“照片”即为 (A).(2) 观察图4中的两个几何体,从正面看时,我们看不到圆柱体顶部的圆,也看不到正方体顶部的正方形.所以得到的主视图为(C).例3.画几何体的俯视图(1)如图5,表示一个用于防震的L形的包装用泡沫塑料,当俯视这一物体时看到的图形形状是()(2007 临沂)(2) 一个全透明的玻璃正方体,上面嵌有一根黑色的金属丝,如图7,金属丝在俯视图中的形状是()(2006荆州)解析:本题中的两个物体,画其俯视图时,可将物体从上往下“挤压”成“薄饼”得到.(1)、(2)分别选择B、C.例4.如图7是由五个大小相同的的正方体搭成的几何体,则关于它的视图,下列说法正A B C D(图5)A BCD(图3)BA C D确的是( ) (2007浙江湖州)A.正视图的面积最小 B .左视图的的面积最小C.俯视图的面积最小D. 三个视图的面积一样大 解析:右图的三个视图分别是:所以,左视图的的面积最小.选(B ). 二、由几何体的三视图还原几何体例5.如图8,是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是( )(2006重庆课改)A.3B.4C. 5D. 6解析:由俯视图可知,原几何体的底层有三块立方体,如图9-1;再由主视图可知,原几何体上下共两层,且第二层只有一块,放在左侧,如图9-2,此图也 符合左视图的要求 .故原几何体即为图(2)所示立方体.有 4块,选(B).例6.某几何体的其主视图、左视图和俯视图如下图10-1所示,则该组视图所对应的几何体是图10-2中的( A )(2007泰安)三、由几何体的俯视图还原几何体(1)已知俯视图中小正方体的数字,画出主视图、左视图(图7 )(图10-1)主视图 左视图 俯视图俯视图左视图主视图图8(图10-2)A .B .C .D .例7.图11是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是( )(2006南宁)解析: 根据题图可画出几何体如图12,所以几何体的 主视图是(B )例8.由一些大小相同的小正方体组成的几何体的俯视图如图 13所示,其中正方形中的数字表示在该位置上的小正方体的 个数,那么,这个几何体的左视图是 ( )(2007河南)解析:根据题图可画出几何体如图14,所以几何体的 左视图是(A )小结:从以上两例,我们可以归纳出根据俯视图中 小正方体的数字画主视图、左视图的简要方法:(1)主视图的列数=俯视图的列数,而主视图该列的高(行数) =俯视图中相应列中最大的数字;(2)左视图的列数=俯视图的行数,而左视图该行的高(行数)=俯视图中相应行中最大的数字.例9.如图15是由小立方块搭成的几何体的俯视图,小正方体 中的数字表示在该位置的小立方块的个数,画出它们的主视图、 左视图.解:由俯视图及小正方形上的个数,这个几何体的主视图和 左视图分别为:A .B .C .D .俯视图 图A.B.C.D.图11 图12(图15)例10.与如图17所示的三视图对应的几何体是( B ) (2007浙江宁波)四、由几何体的二视图(主视图和俯视图)还原不确定的几何体 例11.用小立方块搭成的几何体的主视图和俯视图如图18所示,(1)符合要求的几何体是否唯一?若不唯一,试画出6种以上可能情况的几何体;(2)摆成这样的几何体需要小立方体最少多少块?最多多少块?解:由主视图确定俯视图中小正方体的数字,可以尝试摆出从正面看到的几个小立方体如图19-1,有上下三层,6块;从上面看到的几何体有6块:(1)符合要求的几何体不唯一. 可以画出如下一些几何体(如图20):正面(图19-1)(图17)主视图 俯视图(图18) 上面(图19-2)主视图 左视图(图16)将编号为a 的小立方体移到b 上或c 上,或直接在b 上再放一块,在此前提下,又可画出一些几何体.(2)最少9块,有6种情况,其俯视图如下(图21):最多有14块,其俯视图为(如图22):观察正视图可知,不论怎样摆放,左侧一列,a 、b 、c 三个“柱体”中,必须有一个的高度为“3”; 中间一列,d 、e 两个柱体中,必须有一个柱体的高度为2,f 的高度为1.附:练习题1.将如图所示的Rt △ABC 绕直角边AC 旋转一周,所得几何体的主视图是( D )( 2007重 庆)12块13块14块(图21)(图22)俯视图左视图主视图2.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是( A )(2007山东威海)3.如图,是几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是 (2007宜宾)4.由一些大小相同的小正方形组成的几何 体三视图如图所示,那么,组成这个几何体的小 正方体有 ( B )(2006河南)A .6块B .5块C .4块D .3块俯视图A .B .C .D .主视图左视图俯视图D C B A CBA5 题图(1题图)。
高考有方法——三视图解题超级策略一、三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.二、还原三视图的常用方法1、方体升点法;2、方体去点法(方体切割法);3、三线交汇得顶点法方法一方体升点法例1:(2015·北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B. 2 C. 3 D.2答案 C解析根据三视图,可知该几何体的直观图为如图所示的四棱锥V-ABCD,其中VB⊥平面ABCD,且底面ABCD是边长为1的正方形,VB=1.所以四棱锥中最长棱为VD.连接BD,易知BD=2,在Rt△VBD 中,VD=VB2+BD2= 3.跟踪训练1.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.跟踪训练2.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.跟踪训练3.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.方法二方体去点法例2:如图所示为三棱锥的三视图,主视图、俯视图是直角边长为2 的等腰直角三角形,求三棱锥的表面积或体积.跟踪训练4.如图所示为三棱锥的三视图,主视图、侧视图是直角边长为4,宽为3 的直角三角形,求三棱锥的表面积或体积.跟踪训练5.如图所示为三棱锥的三视图,三视图是直角边长为4 等腰直角三角形,虚线为中线,求三棱锥的表面积或体积.方法三三线交汇得顶点法例3:如图,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是()A.B.6 C.D.4正确答案是B.解:由三视图可知,原几何体的长、宽、高均为4,所以我们可用一个正方体作为载体对三视图进行还原.先画出一个正方体,如图(1):第一步,根据正视图,在正方体中画出正视图上的四个顶点的原象所在的线段,这里我们用红线表示.如图(2),即正视图的四个顶点必定是由图中红线上的点投影而成的.第二步,侧视图有三个顶点,画出它们的原象所在的线段,用蓝线表示,如图(3).第三步,俯视图有三个顶点,画出它们的原象所在的线段,用绿线表示,如图(4).最后一步,三种颜色线的公共点(只有两种颜色线的交点不行)即为原几何体的顶点,连接各顶点即为原几何体,如图(5).至此,易知哪条棱是最长棱,求出即可跟踪训练6.首先在正方体框架中描出主视图,并将轮廓的边界点平行延长,如图.类似地,将俯视图和侧视图也如法炮制.这样就可以找到三个方向的交叉点.由这些交叉点,不难得到直观图.练习1、练习2、练习1答案:练习2答案:跟踪训练7.如图所示为四棱锥的三视图,主视图是直角边长为4 等腰直角三角形,侧视图是边长为4 的正方形,求四棱锥的表面积或体积.跟踪训练8. 如图所示为四棱锥的三视图,主视图是边长为4 的正方形,侧视图是直角边长为4 等腰直角三角形,求四棱锥的表面积或体积.跟踪训练9.如图所示为四棱锥的三视图,主视图是长为4,高为5 的长方形,侧视图的长为3 的长方形,俯视图为直角三角形,求四棱锥的表面积或体积.三视图练习1、若某几何体的三视图如图所示,则此几何体的表面积是_____________.40+2、某几何体的三视图如图所示,则该几何体的体积为_____________.3、如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为( )DA 、8πB 、252π C 、12π D 、414π4、如图是一个四面体的三视图,这三个视图均是腰长为2的等腰直角三角形,正视图和俯视图中的虚线是三角形的中线,则四面体的体积为( )A侧视图俯视图正视图2A 、2B、4 C 、83D 、2 5、一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )D (A )81 (B )71 (C)61 (D )516、如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )C A. 1727 B. 59C. 1027D. 137、一个四面体的顶点在空间直角坐标系O xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )A(A) (B) (C)(D)8、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(B )1()A 6 ()B 9 ()C 12 ()D 189、在一个几何体的三视图中,正视图和俯视图如左图所示,则相应的侧视图可以为( )D10、某几何体的三视图如图所示,则该几何体的体积为_____________.11_____________.20或1612、若某几何体的三视图如图所示,则这个几何体中最长的棱长等于13、某几何体的三视图如图所示,则该几何体的体积为_____________.8314、某几何体的三视图如图所示,则该几何体的体积为_____________.15、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( B ) (A )1 (B )2 (C )4 (D )816、如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( C )A. B. C .6 D .417.某几何体的三视图如图所示,则该几何体的体积为( A ) A .168π+ B .88π+ C .1616π+ D .816π+323。
《三视图》题型分类解析视图是指将物体按正投影向投影面投射所得到的图形。
从不同的方向观察同一物体时,可能看到不同的图形,其中,光线自物体由前向后投射所得投影称为正视图(或主视图)。
光线自物体由上向下投射所得投影称为俯视图。
光线自物体由左向右投射所得投影称为侧视图(左视图)。
三视图画法规则:高平齐:正视图与侧视图的高要保持平齐,长对正:正视图与俯视图的长应对正,宽相等:俯视图与侧视图的宽度应相等.下面让我们一起来探讨一下有关三视图的常考知识点.一. 如何由物体的实物图得到三视图例1.画出图1-1中几何体的三视图.图1-1分析:图中几何体实际为组合体,下部是三个正方体,上部是一个圆柱,按正方体和圆柱的三视图画法画出该组合体的三视图.画图前,想象模型,从三个不同角度各能看到什么形状.解:该几何体的三视图如图1-2.图1-2点拨:画三视图时,要注意将被遮的轮廓用虚线表示.二.由物体的三视图画出它的实物图例2.根据图2-1中的三视图,画出原几何体的草图.图2-1分析:从已知的三视图可以看出,该几何体上部分是正六棱柱,下部分是圆柱.解:这个几何体的图形如图2-2:图2-2点拨:由正前方三视图想象视图中每部分对应的几何体的形状,这就要求我们有很强的空间想象能力.三.由试图判断试图例3.如图3-1中,图(1)是实物,图(2)(3)分别是它的主视图和俯视图,你认为是正确的吗?如果不正确,请指出错误并改正,再画出它的左视图.图3-1分析:先要弄清几何体的组合结构,然后在画图时,注意虚实线的画法.解:主视图正确,俯视图错误,应用虚线画出不可视轮廓线,俯视图和左视图如图4-2.图3-2点拨:画三视图时一定要深入了解几何体的结构特征,注意虚线的应用.四.由三视图探究几何体的组成例 4.一样大小的立方体木块堆放在房间的一角(如图(1)),一共垒了十层,这十层中看不见的木块共有多少个?分析:由于木块是大小一样的正方体,每一层实际上它的表面即为其俯视图,且每一层表面都呈等腰直角三角形,因此每一层的俯视图中去掉斜边上正方形的个数,余下的正方形个数就是看不见的木块的个数解:画出立方体垒的每一层的俯视图,进而看不见的正方体分布如图(2)所示,所以看不见的立方体木块有:例4图(1)0+(0+1)+(0+1+2)+…+(0+1+2+…+8+9)=0+1+3+6+…+45=165个.故看不见的立方体共有165个.点拨:“它山之石,可以攻玉”,人们常说借力。
【第1讲简单几何体及其直观图、三视图】之小船创作一、知识梳理1.空间几何体的结构特征(1)多面体的结构特征(1)画法:常用斜二测画法.(2)规则:①在已知图形中建立直角坐标系xOy,画直观图时,它们分别对应x′轴和y′轴,两轴交于点O′,使x′O′y′=45°,它们确定的平面表示水平平面.②已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x ′轴和y ′轴的线段.③已知图形中平行于x 轴的线段,在直观图中保持原长度不变,平行于y 轴的线段,长度为原来的12. 3.三视图 (1)几何体的三视图包括主视图、左视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法 ①基本要求:长对正,高平齐,宽相等. ②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线.常用结论1.斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变与y 轴平行的线段的长度变为原来的一半图形改变“三不变”⎩⎪⎨⎪⎧平行性不改变与x ,z 轴平行的线段的长度不改变相对位置不改变2.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的主视图和左视图均为全等的等腰三角形.(3)水平放置的圆台的主视图和左视图均为全等的等腰梯形.(4)水平放置的圆柱的主视图和左视图均为全等的矩形.二、教材衍化1.下列说法正确的是( )A.相等的角在直观图中仍然相等B.相等的线段在直观图中仍然相等C.正方形的直观图是正方形D.若两条线段平行,则在直观图中对应的两条线段仍然平行解析:选D.由直观图的画法规则知,角度、长度都有可能改变,而线段的平行性不变.2.在如图所示的几何体中,是棱柱的为________.(填写所有正确的序号)答案:③⑤3.已知如图所示的几何体,其俯视图正确的是________.(填序号)解析:由俯视图定义易知选项③符合题意.答案:③一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( )(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( )(3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是棱台.( )(4)正方体、球、圆锥各自的三视图中,三视图均相同.( )(5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.( )(6)菱形的直观图仍是菱形.( )答案:(1)×(2)×(3)×(4)×(5)×(6)×二、易错纠偏常见误区|K(1)棱柱的概念不清致误;(2)不清楚三视图的三个视图间的关系,想象不出原几何体而出错;(3)斜二测画法的规则不清致误.1.如图,长方体ABCDA′B′C′D′中被截去一部分,其中EH∥A′D′.剩下的几何体是( )A.棱台B.四棱柱C.五棱柱D.六棱柱解析:选C.由几何体的结构特征,剩下的几何体为五棱柱.故选C.2.将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的主视图与俯视图如图所示,则该几何体的左视图为( )解析:选B.先根据主视图和俯视图还原出几何体,再作其左视图.由几何体的主视图和俯视图可知该几何体为图①,故其左视图为图②.故选B.3.在直观图(如图所示)中,四边形O′A′B′C′为菱形且边长为2 cm,则在平面直角坐标系xOy中,四边形ABCO 为________,面积为________cm2.解析:由斜二测画法的特点,知该平面图形的直观图的原图,即在平面直角坐标系xOy中,四边形ABCO是一个长为4 cm,宽为2 cm的矩形,所以四边形ABCO的面积为8 cm2.答案:矩形8空间几何体的几何特征(自主练透) 1.下列说法正确的是( )A.各个面都是三角形的几何体是三棱锥B.夹在圆柱的两个平行截面间的几何体还是一个旋转体C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D.由图知,A不正确.两个平行平面与底面不平行时,截得的几何体不是旋转体,则B不正确.侧棱长与底面多边形的边长相等的棱锥一定不是六棱锥,故C错误.由定义知,D正确.2.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( )A.0 B.1C.2 D.3解析:选B.①不一定,只有这两点的连线平行于旋转轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.3.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.解析:①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体ABCDA1B1C1D1中的三棱锥C1ABC,四个面都是直角三角形.答案:②③④空间几何体概念辨析问题的常用方法空间几何体的三视图(多维探究)角度一已知几何体,识别三视图(1)(2020·宜宾模拟)已知棱长都为2的正三棱柱ABCA1B1C1的直观图如图.若正三棱柱ABCA1B1C1绕着它的一条侧棱所在直线旋转,则它的左视图可以为( )(2)(2020·湖南衡阳二模)如图,正方体ABCDA1B1C1D1的顶点A,B在平面α上,AB= 2.若平面A1B1C1D1与平面α所成角为30°,由如图所示的俯视方向,正方体ABCDA1B1C1D1在平面α上的俯视图的面积为( )A.2 B.1+ 3 C.2 3 D.22【解析】(1)由题知,四个选项的高都是2.若左视图为A,则中间应该有一条竖直的实线或虚线;若左视图为C,则其中有两条侧棱重合,不应有中间竖线;若左视图为D,则长度应为3,而不是1.故选B.(2)由题意得AB在平面α内,且平面α与平面ABCD 所成的角为30°,与平面B1A1AB所成的角为60°,故所得的俯视图的面积S=2×(2cos 30°+2cos 60°)=2(cos 30°+cos 60°)=1+ 3.【答案】(1)B (2)B角度二已知三视图,判断几何体(1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥D.四棱柱(2)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A.1 B.2C.3 D.4【解析】(1)由题三视图得直观图如图所示,为三棱柱,故选B.(2)将三视图还原为直观图,几何体是底面为直角梯形,且一条侧棱和底面垂直的四棱锥,如图所示.易知,BC ∥AD ,BC =1,AD =AB =PA =2,AB ⊥AD ,PA ⊥平面ABCD ,故△PAD ,△PAB 为直角三角形,因为PA ⊥平面ABCD ,BC ⊂平面ABCD ,所以PA ⊥BC ,又BC ⊥AB ,且PA ∩AB =A ,所以BC ⊥平面PAB ,又PB ⊂平面PAB ,所以BC ⊥PB , 所以△PBC 为直角三角形,容易求得PC =3,CD =5,PD =22,故△PCD 不是直角三角形,故选C.【答案】 (1)B (2)C【迁移探究1】 (变问法)在本例(2)条件下,求该四棱锥的所有棱中,最长棱的棱长是多少?解:由三视图可知,PA =AB =AD =2,BC =1,经计算可知,PB =PD =22,PC =3,CD =5,故最长棱为PC ,且|PC |=3.【迁移探究2】 (变问法)在本例(2)条件下,求该四棱锥的五个面中,最小面的面积.解:面积最小的面为面PBC ,且S △PBC =12BC ·PB =12×1×22=2,即最小面的面积为 2. 角度三 已知几何体的某些视图,判断其他视图(1)(2020·福州模拟)如图为一圆柱切削后的几何体及其主视图,则相应的左视图可以是( )(2)(2020·河北衡水中学联考)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈、长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知该楔体的主视图和俯视图如图中粗实线所示,则该楔体的左视图的周长为( )A .3丈B .6丈C .8丈D .(5+13)丈【解析】 (1)圆柱被不平行于底面的平面所截,得到的截面为椭圆,结合主视图,可知左视图最高点在中间,故选B.(2)由题意可知该楔体的左视图是等腰三角形,它的底边长为3丈,相应高为2丈,所以腰长为 22+⎝ ⎛⎭⎪⎪⎫322=52(丈),所以该楔体左视图的周长为3+2×52=8(丈).故选C. 【答案】 (1)B (2)C三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意主视图、左视图和俯视图的观察方向,注意看到的部分用实线表示,看不到的部分用虚线表示.(2)由几何体的部分视图画出剩余的视图.先根据已知的一部分视图,还原、推测其直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为直观图.1.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )解析:选A.由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.2.(2020·安徽宣城二模)一个几何体的三视图如图所示,在该几何体的各个面中,面积最大面的面积是( ) A.2 B.2 2 C.2 3 D.4解析:选C.如图所示,由三视图可知该几何体是四棱锥PABCD截去三棱锥PABD后得到的三棱锥PBCD.其中四棱锥中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AB=2,易知面积最大面为面PBD,面积为34×(22)2=2 3.故选C.3.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在主视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N 的路径中,最短路径的长度为( )A.217 B.2 5 C.3 D.2解析:选B.由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN,则MS=2,SN=4,则从M到N 的路径中,最短路径的长度为MS2+SN2=22+42=2 5.故选B.空间几何体的直观图(自主练透) 1.如图所示为一个平面图形的直观图,则它的实际形状四边形ABCD为( )A.平行四边形B.梯形C.菱形D.矩形解析:选D.由斜二测画法可知在原四边形ABCD中DA⊥AB,并且AD∥BC,AB∥CD,故四边形ABCD为矩形.2.已知等边三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为( )A.34a2B.38a2C.68a2D.616a2解析:选D.如图①②所示的实际图形和直观图,由②可知,A′B′=AB=a,O′C′=12OC=34a,在图②中作C′D′⊥A′B′于点D′,则C′D′=22O′C′=68a.所以S△A′B′C′=12A′B′·C′D′=12×a×68a=616a2.故选D.3.在等腰梯形ABCD中,上底CD=1,腰AD=CB=2,下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.解析:因为OE=(2)2-12=1,所以O′E′=12,E′F′=24.所以直观图A′B′C′D′的面积为S′=12×(1+3)×24=22.答案:22(1)斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变与y 轴平行的线段的长度变为原来的一半图形改变“三不变”⎩⎪⎨⎪⎧平行性不改变与x ,z 轴平行的线段的长度不改变相对位置不改变(2)平面图形直观图与原图形面积间的关系对于几何体的直观图,除掌握斜二测画法外,记住原图形面积S 与直观图面积S ′之间的关系S ′=24S ,能更快捷地进行相关问题的计算.构造法求解三视图问题的三个步骤三视图问题(包括求解几何体的表面积、体积等)是培养和考查空间想象能力的好题目,是高考的热点.由三视图还原几何体是解决这类问题的关键,而由三视图还原几何体只要按照以下三个步骤去做,基本都能准确还原出来.这三个步骤是:第一步,先画长(正)方体,在长(正)方体中画出俯视图;第二步,在三个视图中找直角;第三步,判断直角位置,并向上(或向下)作垂线,找到顶点,连线即可.一个几何体的三视图如图所示,图中直角三角形的直角边长均为1,则该几何体的体积为( ) A.16 B .26 C.36D .12【解析】 几何体还原说明:①画出正方体,俯视图中实线可以看作正方体的上底面及底面对角线.②俯视图是正方形,有四个直角,主视图和左视图中分别有一个直角.主视图和左视图中的直角对应上底面左边外侧顶点(图中D 点上方顶点),将该顶点下拉至D 点,连接DA ,DB ,DC 即可.该几何体即图中棱长为1的正方体中的四面体ABCD ,其体积为13×12×1×1×1=16.故选A. 【答案】 A如图是一个四面体的三视图,三个三角形均是腰长为2的等腰直角三角形,还原其直观图.【解】 第一步,根据题意,画正方体,在正方体内画出俯视图,如图①.第二步,找直角,在俯视图、主视图和左视图中都有直角.第三步,将俯视图的直角顶点向上拉起,与三视图中的高一致,连线即可.所求几何体为三棱锥ABCD,如图②.[基础题组练]1.如图所示是水平放置的三角形的直观图,点D是△ABC的BC边的中点,AB,BC分别与y′轴,x′轴平行,则在原图中三条线段AB,AD,AC中( )A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AC,最短的是AD解析:选 B.由条件知,原平面图形中AB⊥BC,从而AB<AD<AC.2.如图所示的几何体由一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得,现用一个竖直的平面去截这个几何体,则截面图形可能是( ) A.①② B.②③ C.③④D.①⑤解析:选D.圆锥的轴截面为等腰三角形,此时①符合条件;当截面不过旋转轴时,圆锥的轴截面为双曲线的一支,此时⑤符合条件;故截面图形可能是①⑤.3.(2020·陕西彬州质检)一个几何体的三视图如图所示,其中主视图中△ABC 是边长为1的等边三角形,左视图为正六边形,那么该几何体的左视图的面积为( ) A.38 B .34 C .1 D .32 解析:选A.由三视图可知该几何体为正六棱锥,其直观图如图所示.该正六棱锥的底面正六边形的边长为12,侧棱长为1,高为32.左视图的底面边长为正六边形的高,为32,则该几何体的左视图的面积为12×32×32=38,故选A. 4.(2020·江西省名校学术联盟质检)如图所示,边长为1的正方形网格中粗线画出的是某几何体的三视图,则该几何体所有棱长组成的集合为( )A .{1,5}B .{1,6}C .{1,2,5}D .{1,2,22,6}解析:选B.如图所示,该几何体是四棱柱,底面是边长为1的正方形,侧棱长为6,故选B.5.(一题多解)(2020·河南非凡联盟4月联考)某组合体的主视图和左视图如图(1)所示,它的俯视图的直观图是图(2)中粗线所表示的平面图形,其中四边形O ′A ′B ′C ′为平行四边形,D ′为C ′B ′的中点,则图(2)中平行四边形O′A′B′C′的面积为( )A.12 B.3 2 C.6 2 D.6解析:选B.法一:由题图易知,该几何体为一个四棱锥(高为23,底面是长为4,宽为3的矩形)与一个半圆柱(底面圆半径为2,高为3)的组合体,所以其俯视图的外侧边沿线组成一个长为4,宽为3的矩形,其面积为12,由斜二测知识可知四边形O′A′B′C′的面积为4×32sin 45°=3 2.法二:由斜二测画法可先还原出俯视图的外轮廓是长为4,宽为3的矩形,其面积为4×3=12,结合直观图面积是原图形面积的24,即可得结果.6. 某多面体的三视图如图所示,其中主视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为________.解析:由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12.答案:127.一个圆台上、下底面的半径分别为3 cm和8 cm,若两底面圆心的连线长为12 cm,则这个圆台的母线长为______cm.解析:如图,过点A作AC⊥OB,交OB于点C.在Rt△ABC中,AC=12(cm),BC=8-3=5(cm).所以AB=122+52=13(cm).答案:138.已知正四棱锥VABCD中,底面面积为16,一条侧棱的长为211,则该棱锥的高为________.解析:如图,取正方形ABCD的中心O,连接VO,AO,则VO就是正四棱锥VABCD的高.因为底面面积为16,所以AO=2 2.因为一条侧棱长为211,所以VO=VA2AO2=44-8=6.所以正四棱锥VABCD的高为6.答案:69.如图所示的三个图中,上面是一个长方体截去一个角所得多面体的直观图,它的主视图和左视图如图所示(单位:cm).(1)在主视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积.解:(1)如图.(2)所求多面体的体积V =V 长方体-V 正三棱锥=4×4×6-13×(12×2×2)×2=2843(cm 3). 10.已知正三棱锥V ABC 的主视图和俯视图如图所示.(1)画出该三棱锥的直观图和左视图;(2)求出左视图的面积.解:(1)如图.(2)左视图中VA =42-⎝ ⎛⎭⎪⎪⎫23×32×232=12=2 3. 则S △VBC =12×23×23=6. [综合题组练]1.(2020·河南开封一模)如图,在一个正方体内放入两个半径不相等的球O 1,O 2,这两个球外切,且球O 1与正方体共顶点A 的三个面相切,球O 2与正方体共顶点B 1的三个面相切,则两球在正方体的面AA 1C 1C 上的正投影是( )解析:选B.由题意可以判断出两球在正方体的面AA 1C 1C 上的正投影与正方形相切,排除C ,D.由于两球不等,把其中一个球扩大为与正方体相切,则另一个球被挡住一部分,所以排除A.B 正确.2.某几何体的三视图如图所示,则该几何体的左视图中的虚线部分是( )A.圆弧B.抛物线的一部分C.椭圆的一部分D.双曲线的一部分解析:选D.根据几何体的三视图可得,左视图中的虚线部分是由平行于旋转轴的平面截圆锥所得,故左视图中的虚线部分是双曲线的一部分,故选D.3.如图,在正方体ABCDA1B1C1D1中,点P是线段A1C1上的动点,则三棱锥PBCD的俯视图与主视图面积之比的最大值为( )A.1 B.2C. 3 D.2解析:选D.主视图,底面B,C,D三点,其中D与C重合,随着点P的变化,其主视图均是三角形且点P在主视图中的位置在边B1C1上移动,由此可知,设正方体的棱长为a,则S主视图=12×a2;设A1C1的中点为O,随着点P的移动,在俯视图中,易知当点P在OC1上移动时,S俯视图就是底面三角形BCD的面积,当点P在OA1上移动时,点P越靠近A1,俯视图的面积越大,当到达A1的位置时,俯视图为正方形,此时俯视图的面积最大,S俯视图=a2,所以S俯视图S主视图的最大值为a212a2=2,故选D.4.(2020·河北衡水二模)某几何体的三视图如图所示,三视图中的点P ,Q 分别对应原几何体中的点A ,B ,在此几何体中从点A 经过一条侧棱上点R 到达点B 的最短路径的长度为( )A .aB .2a C.52a D .3a解析:选D.由几何体的三视图可知,该几何体为棱长为a 的正四面体(如图1),将侧面三角形CDB 绕CD 翻折到与面ACD 在同一平面内(如图2),连接AB 与CD 交于一点R ,该点即为使路径最短的侧棱上的点R ,且最短路径为AB 长,在△ACB 中,由余弦定理易知AB =a 2+a 2-2a ·a ·cos 120°=3a .故选D.5.已知正方体ABCD A 1B 1C 1D 1的体积为1,点M 在线段BC 上(点M 异于B ,C 两点),点N 为线段CC 1的中点,若平面AMN 截正方体ABCD A 1B 1C 1D 1所得的截面为四边形,则线段BM 的取值范围为( )A.⎝⎛⎦⎥⎥⎤0,13 B .⎝ ⎛⎦⎥⎥⎤0,12 C.⎣⎢⎢⎡⎭⎪⎪⎫12,1 D .⎣⎢⎢⎡⎦⎥⎥⎤12,23 解析:选B.由题意,正方体ABCD A 1B 1C 1D 1的棱长为1,如图所示,当点M为线段BC的中点时,截面为四边形AMND1,当0<BM≤12时,截面为四边形,当BM>12时,截面为五边形,故选B.6.已知直三棱柱ABCA1B1C1的侧棱长为6,且底面是边长为2的正三角形,用一平面截此棱柱,与侧棱AA1,BB1,CC1分别交于三点M,N,Q,若△MNQ为直角三角形,则该直角三角形斜边长的最小值为( )A.2 2 B.3C.2 3 D.4解析:选C.如图,不妨设N在B处,AM=h,CQ=m,则MB2=h2+4,BQ2=m2+4,MQ2=(h-m)2+4,由MB2=BQ2+MQ2,得m2-hm+2=0.Δ=h2-8≥0即h2≥8,该直角三角形斜边MB=4+h2≥2 3.故选C.7.某几何体的主视图和左视图如图(1),它的俯视图的直观图是矩形O1A1B1C1,如图(2),其中O1A1=6,O1C1=2,则该几何体的侧面积为________.解析:由题图(2)及斜二测画法可知原俯视图为如图所示的平行四边形OABC,设CB与y轴的交点为D,则易知CD=2,OD=2×22=42,所以CO=CD2+OD2=6=OA,所以俯视图是以6为边长的菱形,由三视图知几何体为一个直四棱柱,其高为4,所以该几何体的侧面积为4×6×4=96.答案:968.(2019·高考全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一,印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有________个面,其棱长为________.解析:依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x,则22x+x+22x=1,解得x=2-1,故题中的半正多面体的棱长为2-1.答案:26 2-1。
高考数学:立体几何——三视图——命题类型规律和解题技巧三视图问题是高考中的重要题型。
此类问题要求学生有较强的空间想象能力,因此成为很多考生做题的难点。
下面将三视图考题的出题规律和解题技巧,归结如下。
根据高考所考查几何体的结构特征,其出题类型分为三种:单体型、组合型和切削型,现逐一分析。
一、单体型所谓单体型,即根据三视图还原后的几何体是一个我们常见的基本几何体,如长方体、三棱锥、圆锥、三棱柱、球等。
一般情况下,我们可以根据下列结论来判断所求几何体的结构特征:(1)三视图为三个三角形,对应三棱锥;(2)三视图为两个三角形和一个四边形,对应四棱锥;(3)三视图为两个三角形和一个圆,对应圆锥;(4)三视图为一个三角形和两个四边形,对应三棱柱;(5)三视图为两个四边形和一个圆,对应圆柱。
二、组合型所谓组合型,即根据三视图还原后的几何体是两个或两个以上的几何单体组合而成的,此时我们只需根据三视图看懂相应部分对应的每个单体的结构特征即可。
三、切削型所谓切削型.即根据三视图还原后的几何体可以看成是从某一熟悉的几何单体(我们可以将其看成所求几何体的载体)中截去一部分后得到的。
对于此类问题,我们的解决方案是:先画出所求几何体的载体,再根据题意截去其中一部分,最后根据题目中的位置关系和数量关系进行推理和计算。
例1:[2018全国卷Ⅲ,3,5分]中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()思路分析:根据题意画出带卯眼的木构件的直观图,借助直观图判断俯视图。
解析:由题意带卯眼的木构件的直观图如下图所示,由直观图知其俯视图应选A。
答案:A注意:不要忽视木构件俯视图中的虚线。
例2:[2018北京卷,5,5分]某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为()A.1 B.2 C.3 D.4思路分析:根据还原出来几何体的形状,判断直角三角形的个数。
高一学生学立体几何必须熟练的八个典型的三视图问题
三视图这个问题,小学生就开始接触。
当然小学生接触到的与高中学习的还是有一定区别,这个区别就是:
小学生接触的大多是“中心投影”,就是光线是从一个点出发的,看下面这个试题,是小学生的。
而高中学的三视图是平行光线,现在是个重难点了,很多学生在三视图这里懵圈。
怎么解决?我们强烈建议先掌握下面8个典型的三视图问题,积累经验,这样你就可以解决很多问题了。
其中有一个三视图出现了点小问题,您能发现吗?。
重难点展示:一.多面体1、棱柱特征:(1)有两个底面相互平行;(2)其余各面每相邻两个四边形的公共边都互相平行。
性质:(1)侧棱都相等,侧面是平行四边形;(2)两个底面与平行于底面的截面是全等的多边形;(3)过不相邻的两条侧棱的截面是平行四边形。
分类:(1)按底面多边形的边数分为:三棱柱、四棱柱等;(2)按侧棱与底面的位置关系分为:⎧⎪⎧⎨⎨⎪⎩⎩斜棱柱正棱柱直棱柱一般棱柱 说明:深刻理解棱柱的特征及性质,才能准确地应对概念题,才能准确地判断棱柱中的线线、线面、面面关系。
2、棱锥特征:(1)有一个面是多边形;(2)其余各面是有一个公共顶点的三角形。
一般棱锥的截面性质:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们的面积比等于截得的棱锥的高与已知棱锥的高的平方比。
如果一个棱锥的底面是正多边形,并且水平放置,它的顶点又在多边形中心的铅垂线上,则这个棱锥叫做正棱锥。
正棱锥的性质:(1)各侧棱相等,各侧面都是全等的等腰三角形;(2)棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;(3)棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形。
掌握正棱锥的概念,特别是其中的几个直角三角形,可求高、斜高、侧棱长等;另外,还要熟悉一条侧棱垂直底面的棱锥,此两点是高考中常见考点。
3、棱台特征:(1)圆棱锥的底面和与其平行的截面分别叫做棱台的下底面、上底面;(2)其他各面叫做棱台的侧面;(3)相邻两侧面的公共边叫做棱台的侧棱;(4)当棱台的底面水平放置时,铅垂线与两底面交点间的线段或距离叫做棱台的高;由正棱锥截得的棱台叫做正棱台。
正棱台的性质:(1)各侧棱相等,侧面是全等的等腰梯形;(2)两底面以及平行于底面的截面是相似多边形;(3)两底面中心两线、相应的边心距和斜高组成一个直角梯形;(4)正棱台的上下底面中心的连线是棱台的高;(5)正棱台各侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高。
高考热点:三视图原还方法归类与题型总结,最全类型都在此了三视图几乎可以说是高考的必考题,一般在选择题中,此类题看上去简单,实际上有些题型很容易失分,很难搞定,今天我们从基础题型出发,重点分析切割类型的三视图还原问题。
1三视图还原基础题同学们要做到对一些常规立体图形非常熟悉,柱、锥、台、球体,它们规律如下:1.三视图中如果有两个识图是矩形,那么该几何体为柱体。
若第三个视图是圆形,则为圆柱,否则就是棱柱;2.三视图中如果有两个视图是三角形,那么该几何体为锥体。
若第三个视图是圆形,则为圆锥,否则为棱锥;3.三视图中如果有两个视图是梯形,那么该几何体为台体,若第三个视图是圆形,则为圆台,否则为棱台,球体的三视图都是圆形,最容易识别;根据此三点可以快速还原几何体。
题型1.直接还原此题明显是直接还原的题型,还原并不难大多数同学是可以搞定的此题还原也并不困难,锥体顶点的位置要结合三个视图进行,P点在底面上的投影在BC中点上。
题型2直接切割型一般是由一个几何体切割一部分而形成的立体图形“实线表示当面切割,虚线表示背后切割”例1直接在三棱柱中进行切割,由于是实线切割,难度不大。
例2此题可以直观得出是一个三棱锥,但是直接去还原时,很多同学还原不出来。
此时可以借助长方体或者正方体进行切割,如下图所示:例3大家可以先思考此题,此题是一个正方切被一个平面截去一部分得到的三视图,答案看结尾处题型3背面切割一般三视图中有虚线部分,也即从某一方向上看不到的切割,此类还原有时有一定的难度此题依旧可以借助长方体来进行切割,但是俯视图中的实线与虚线怎么还原是难点,虚线是背面切割,实线是正面切割。
还原图如下所示。
七年级三视图问题解析修水县第一中学蒋俊三视图的问题是一个看起来简单,但是学生不好解题,教师不好讲,又很重要一个问题。
初中的三视图的问题是以后高中学习三视图的基础,是以后学习机械制图中三视图的初步。
它的重要性在历年的中考试题中也可以体现出来。
三视图是指从正面(平视)、左面(平视)、上面(俯视)看一个立体图形所得到的三个平面图形,分别是主视图、左视图、俯视图。
解三视图的问题就是把一个立体图形抽象成平面图形的过程。
很多七年级的同学对立体图形还没有足够的认识,头脑中还未建立形象的空间想象能力,没有空间思维。
所以在碰到三视图中的一些较难问题时就显得没有办法了。
而老师在讲课的时候也很难让没有空间思维的同学能很快掌握解决三视图问题的技巧。
这样一来对于刚步入七年级的同学来说在学习上就会有不同程度的打击,影响他们对学习数学的兴趣。
这样的话对于他们今后的学习是很不利的。
只有让学生多接触、了解立体图型,建立、训练空间想象能力,培养、开拓空间思维才是解决这一问题“治本”的方法。
在这里笔者介绍的是能让学生很快掌握解决三视图问题的“治标”的方法。
一、严格遵循画三视图作图的基本要求,养成良好的绘图习惯(一)用直尺画图(二)主视图、左视图、俯视图都是平面图形,不可以画成立体图形。
(三)所画的三视图中的方格要大小一样或所画图形的大小要和原立体图形保持一致。
很多情况下,就是因为学生在解题过程中绘制草图不遵循基本要求,导致辅助图不够标准,出现解题误导,最终造成不应该的错误。
因此要让学生在平时作业、训练中养成良好的绘图习惯,在任何时候都确保作出准确规范的图形,正确解题。
二、三视图的题型在七年级主要类型七年接数学知识体系中,三视图属于较重要的难点,考核角度比较多。
通过对主要题型的分析,笔者归纳了七年级比较常见的三视图命题角度,笔者通过例题分析来进一步展示三类题:(一)给出立体图形,要求画出主视图、左视图、俯视图。
例1 如右图所示画出这个几何体的左视图,正视图,俯视图.答:该类题型通常采用投影法。
立体几何三视图问题分类一、由空间图形画三视图1、一几何体的直观图如图,下列给出的四个俯视图中正确( )解析由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接的两个三角形.答案 B2、在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )【解析】由正视图和俯视图知几何体的直观图是由一个半圆锥和一个三棱锥组合而成的,故侧视图选D.3、如图,△ ABC为三角形,AA'//BB'//CC',CC'CC'⊥平面ABC 且3AA'=32BB'=CC' =AB,则多面体△ABC -A B C'''CC'的正视图(也称主视图)是()【答案】D4.一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该集合体的俯视图为:答案:C二、正方体5.如图所示,E,F分别为正方体ABCD-A1B1C1D1的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的正投影可能是________(填序号).解析由正投影的定义,四边形BFD1E在面AA1D1D与面BB1C1C上的正投影是图③;其在面ABB1A1与面DCC1D1上的正投影是图②;其在面ABCD与面A1B1C1D1上的正投影也是②,故①④错误.答案②③6.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A.108cm3B.100cm3C.92cm3D.84cm3【解题指南】根据几何体的三视图,还原成几何体,再求体积.【解析】选B.由三视图可知原几何体如图所示,所以111111ABCD A B C D M A D N V V V --=-1166334410032=⨯⨯-⨯⨯⨯⨯=. 第8题图7.已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于( ) A .32B.1C.212+D.2【解题指南】根据面积关系得出,侧视图就是正方体的一个对角面,则正视图也是一个对角面 【解析】选D ,根据条件得知正视图和侧视图一样,是正方体的一个对角面,故面积相等8、如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( ) A .6 2 B .4 2 C .6D .4解析 如图,设辅助正方体的棱长为4,三视图对应的多面体为三棱锥A -BCD ,最长的棱为AD =(42)2+22=6,选C.9、一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为 ( )【解析】选A.由题意可知,该四面体为正四面体,其中一个顶点在坐标原点,另外三个顶点分别在三个坐标平面内,所以以zOx 平面为投影面,则得到的正视图可以为选项A 中的图.10、一个多面体的三视图如图所示,则该多面体的表面积为( ) A .21+ 3 B .18+ 3 C .21 D .18解析 (1)由三视图可知该几何体是棱长为2的正方体从后面右上角和前面左下角分别截去一个小三棱锥后剩余的部分(如图所示),其表面积为S =6×4-12×6+2×34×(2)2=21+ 3.11、一个空间几何体的三视图如图所示,则该几何体的表面积为( )A .48B .32+817C .48+817D .80解析:由三视图可知本题所给的是一个底面为等腰梯形的放倒的直四棱柱,所以该直四棱柱的表面积为S =2×12×(2+4)×4+4×4+2×4+2×1+16×4=48+817. 答案:C12、某几何体三视图如图所示,则该几何体的体积为( ) A .8-2π B .8-π C .8-π2 D .8-π4解析:直观图为棱长为2的正方体割去两个底面半径为1的14圆柱,所以该几何体的体积为23-2×π×12×2×14=8-π. 三、三棱柱13、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于 ( ) A .3 B .2C .23D .6【答案】D【解析】由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,所以底面积为324234⨯⨯=,侧面积为3216⨯⨯=,选D .14、 一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如图所示,左视图是一个矩形,则这个矩形的面积是________.【解析】由俯视图知该正三棱柱的直观图为图1-6,其中M ,N 是中点,矩形MNC 1C 为左视图.由于体积为23,所以设棱长为a ,则12×a 2×sin60°×a =23,解得a =2.所以CM =3,故矩形MNC 1C 面积为2 3.15、若某空间几何体的三视图如图所示,则该几何体的体积是[B](A )2 (B )1(C )23(D )13【答案】 B解析:本题考查立体图形三视图及体积公式 如图,该立体图形为直三棱柱所以其体积为122121=⨯⨯⨯四、四棱柱16、一个几何体的三视图如图所示,则这个几何体的体积为 。
【解析】由俯视图可知该几何体的底面为直角梯形,则正视图和俯视图可知该几何体的高为1,结合三个试图可知该几何体是底面为直角梯形的直四棱柱,所以该几何题的体积为1+=2⨯⨯(12)213 正视图和侧视图的高是几何体的高,由俯视图可以确定几何体底面的形状,本题也可以将几何体看作是底面是长为3,宽为2,高为1的长方体的一半。
17、如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为( )221A .6 3B .9 3C .12 3D .18 3【解析】 由三视图知该几何体为棱柱,h =22-1=3,S 底=3×3, 所以V =9 3. 五、三棱锥18、某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是( )A .3B .2 C. 3D .1解析 由俯视图可知,三棱锥底面是边长为2的等边三角形.由侧视图可知,三棱锥的高为 3.故该三棱锥的体积V =13×12×2×3×3=1.答案 D19、 某四面体的三视图如图1-3所示,该四面体四个面的面积中最大的是( )A .8B .6 2C .10D .8 2【解析】 由三视图可知,该四面体可以描述为SA ⊥平面ABC ,∠ABC =90°, 且SA =AB =4,BC =3,所以四面体四个面的面积分别为10,8,6,62, 从而面积最大为10,故应选C.20、一个棱锥的三视图如图,则该棱锥的全面积(单位:2cm )为(A )48122+ (B )48242+ (C )36122+ (D )36242+【解析】棱锥的直观图如右,则有PO =4,OD =3,由勾股定理,得PD =5,AB =62,全面积为:21×6×6+2×21×6×5+21×62×4=48+122,故选.A 。
21、某三棱锥的三视图如图所示,该三棱锥的表面积是( )A .2865+B .3065+C .56125+D .60125+解析:从所给的三视图可以得到该几何体为三棱锥,如图所示,图中蓝色数字所表示的为直接从题目所给三视图中读出的长度,黑色数字代表通过勾股定理的计算得到的边长。
本题所求表面积应为三棱锥四个面的面积之和,利用垂直关系和三角形面积公式,可得:10=底S ,10=后S ,10=右S ,56=左S ,因此该几何体表面积5630+=+++=左右后底S S S S S ,故选B 。
【答案】B 22、设某几何体的三视图如下(尺寸的长度单位为m )。
则该几何体的体积为 3m【解析】这是一个三棱锥,高为2,底面三角形一边为4,这边上的高为3, 体积等于16×2×4×3=4【答案】4六、四棱锥23、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______. 【答案】23【解析】由三视图可知,此多面体是一个底面边长为2的正方形且有一条长为2的侧棱垂直于底面的四棱锥,所以最长棱长为22222223++=24、一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形,则用________个这样的几何体可以拼成一个棱长为4的正方体.[答案] 325、如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )A .4 3B .4C .2 3D .2解析:由题意知该几何体为如图所示的四棱锥,底面为菱形,且AC =23,BD =2,高QP =3,其体积V =13×(12×23×2)×3=2 3.答案:C26、某四棱锥的三视图如图所示,该四棱锥的体积为 .【解析】此棱锥底面是边长为3的正方形,高为1,所以体积为213133⨯⨯=。
27、一个四棱锥的三视图如图所示,其左视图是等边三角形,该四棱锥的体积等于A .3B .23C .33D .63解析:由题意得,根据三视图的规则得,棱锥以俯视图为底面, 以侧视图的高为高,由于侧视图是以2为边长的等边三角形,所以3h =,结合三视图中的数据,底面积为1(12)232S =⨯+⨯=, 所以几何体的体积为1133333V Sh ==⨯⨯=,故选A 。
28、已知四棱锥P ABCD -的三视图如右图所示,其中主视图、侧视图是直角三角形,俯视图是有一条对角线的正方形.E 是侧棱PC 上的动点.(Ⅰ)求证:BD AE ⊥(Ⅱ)若E 为PC 的中点,求直线BE 与平面PBD 所成角的正弦值;(Ⅲ)若五点,,,,A B C D P 在同一球面上,求该球的体积.(1)证明:由已知,PC BC PC DC PC ABCD ⊥⊥⇒⊥面BD ABCD BD PC ⊂⇒⊥面,又因为BD AC ⊥,,.BD PAC AE PAC BD AE ∴⊥⊂∴⊥面又面(2)连AC 交BD 于点O ,连PO ,由(1)知BD PAC ⊥面,BED PAC ⇒⊥面面,AE EH PO H ⊥过点作于,则EH PBD ⊥面,EBH ∴∠为BE 与平面PBD 所成的角. 13EH =,2,BE =则123sin 62EBH ∠== (3)解:以正方形ABCD 为底面,PC 为高补成长方体,此时对角线PA 的长为球的直径,21146R PA ∴==++=3463V R π球==七、四棱台29、某四棱台的三视图如图所示,则该四棱台的体积是( )A .4B .143C .163D .6【解析】选B. 四棱台的上下底面均为正方形,两底面边长和高分别为1,2,2,111414142333V S S S S h =++=+⨯=下下棱台上上()().八、圆柱、圆锥圆台30、某几何体的三视图如图所示, 则其体积为 .【解析】立体图为半个圆锥体,底面是半径为1的半圆,高为2。