智能电池测试指导
- 格式:pdf
- 大小:78.04 KB
- 文档页数:23
星恒电池智能测试设备说明书星恒电池智能测试设备说明书1. 产品介绍星恒电池智能测试设备是一种专门用于测试各种电池性能的设备。
它能够自动检测电池的电压、容量、内阻等参数,并提供相应的测试报告。
该设备具有高精度、高效率和易操作的特点,可广泛应用于电池生产、质检、研发等领域。
2. 使用方法2.1 准备工作将智能测试设备连接至电源,并将待测试的电池连接至测试设备的正负极。
确保连接的稳定并正确。
2.2 设备操作启动测试设备,并按照操作界面的指示进行操作。
通常包括选择测试模式、设置测试参数、开始测试等步骤。
测试设备会自动进行电压、容量、内阻等参数的测量,并在完成后提供相应的测试结果。
2.3 结果分析根据测试结果,可以对电池的性能进行评估。
一般来说,电压越高、容量越大、内阻越小的电池,其性能越好。
但具体的评估标准应根据具体的电池类型和应用需求来确定。
3. 注意事项3.1 使用前请仔细阅读本说明书,并按照操作指南正确操作设备。
3.2 请勿将设备与其他高压设备连接,以免发生电流过大的危险。
3.3 请勿将水或其他液体倒入设备,以免发生设备损坏或触电等危险。
3.4 请定期检查设备的安全性能,并保持设备清洁。
3.5 请妥善保管设备,避免碰撞和摔落,以免损坏设备。
3.6 若设备出现故障,请立即停止使用,并联系售后服务人员进行检修。
4. 售后服务如需了解更多关于本产品的信息或遇到使用问题,可以联系我们的售后服务部门,我们将竭诚为您提供帮助和支持。
注:本说明书仅供参考,请在实际使用过程中遵循产品的具体操作指南。
如有任何问题,请咨询售后服务部门或相关专业人士。
星恒电池智能测试设备说明书摘要:1.引言2.设备简介3.设备操作步骤4.设备维护与安全注意事项5.结束语正文:【引言】欢迎使用星恒电池智能测试设备!为了帮助您更好地理解和操作此设备,我们编写了本说明书。
请仔细阅读并按照以下步骤进行操作,以确保设备的正常运行和您的安全。
【设备简介】星恒电池智能测试设备是一款高性能、智能化的电池检测设备,适用于各种类型的电池。
它可以对电池的电压、电流、容量等参数进行精确测量,并具有强大的数据分析和处理功能。
通过本设备,您可以轻松地对电池进行检测和故障诊断。
【设备操作步骤】1.开机:将设备电源开关打开,待设备完全启动后,显示屏上会显示操作界面。
2.连接:将待检测的电池连接到设备的测试端口,确保连接处牢固。
3.选择测试项目:在操作界面上选择需要测试的项目,如电压、电流、容量等。
4.开始测试:点击开始测试按钮,设备将开始对电池进行检测。
在测试过程中,请勿拔掉电池或关闭设备。
5.查看结果:测试完成后,设备会自动保存测试数据,并在显示屏上显示结果。
您可以选择将结果导出到电脑或手机等设备。
6.关闭设备:测试结束后,关闭设备电源开关,拔掉电池连接线,整理好设备。
【设备维护与安全注意事项】1.请勿在设备工作时移动或摔落,以免损坏设备。
2.请勿将设备暴露在高温、潮湿或阳光直射的环境中,以免影响设备性能。
3.请勿使用非专业工具拆卸设备,以免造成设备故障。
4.在设备使用过程中,如出现异常现象,请立即停止使用并联系售后服务。
5.请定期对设备进行维护和检查,确保设备的正常运行。
【结束语】感谢您选择星恒电池智能测试设备!希望本说明书能为您提供帮助。
如果您在使用过程中遇到任何问题,请随时联系我们的售后服务团队。
ZBT3901智能蓄电池内阻测试仪使用手册武汉智能星电气有限公司2012-2-20目录一、概述 (3)二、特点 (3)三、安全信息 (4)四、重要安全指引 (5)五、使用说明 (7)六、技术参数 (8)七、电池内部阻抗 (9)八、操作说明 (10)九、测试功能 (12)十、注意事项 (24)十一、运输、贮存 (24)十二、售后服务 (25)附录:蓄电池状态判断方法及蓄电池内阻列表 (25)ZBT3901智能蓄电池内阻测试仪一、概述蓄电池内阻测试仪结构图关于蓄电池内阻测试仪蓄电池内阻测试仪是一种手持式测试仪,它可以对单节电池的性能进行测试,并可对成组使用的电池进行整体测试,评价整体特性,挑选出落后电池。
二、特点●便携式●用户界面友好●充电电池,待机时间大约为2-4小时●大屏幕点阵LCD显示三、安全信息安全注意事项为了您的安全,在操作蓄电池内阻测试仪前,请先阅读完本说明书中的全部内容。
由于本测试仪的用途广泛,测试对象繁多,我们无法预见所有可能的场合并给出安全忠告。
测量人员应熟悉所测试系统的特点。
采取适当的维修方法和测试步骤,以免造成自身及工作区域其他人的伤害和检测设备的损坏,这一点是非常重要的。
我们假定操作者在使用本测试仪之前,已经对电池、充电系统和设备起动有了一个全面的了解。
在使用本测试仪前,请务必参考并遵守相关的安全注意事项、汽车或被测试设备制造商提供的测试步骤。
安全要点本仪表在连续多次测量电池后,会产生高温。
对此设置了过热保护措施,在温度过高时将禁止测量电池。
出现此情况,冷却数分钟后可继续测量。
如仪表内部发出焦糊气味,且手感仪表温度过高,应立即停止测量,关闭仪表,断开夹具。
完全阅读说明书阅读、理解并遵守本说明书中的安全信息及说明。
安全信息中包含以下警示标志:危险!表示非常紧急的危险情形,如果不设法避免,将可能导致严重的人员伤亡。
警告!表示潜在的危险情形,如果不设法避免,将可能导致严重的人员伤亡。
星恒电池智能测试设备说明书摘要:1.星恒电池智能测试设备说明书概述2.设备主要功能和特点3.设备操作步骤4.设备维护与安全注意事项5.设备常见问题解答正文:一、星恒电池智能测试设备说明书概述星恒电池智能测试设备是一款专业用于检测电池性能的设备,凭借其出色的功能和便捷的操作,成为电池研发、生产和维修领域的理想选择。
本说明书旨在帮助用户更好地了解和操作该设备,确保其发挥最佳性能。
二、设备主要功能和特点1.高精度检测:星恒电池智能测试设备具备高精度的电压、电流检测功能,能够准确测量电池的各项性能参数。
2.多功能测试:设备支持多种电池类型测试,包括锂离子电池、镍氢电池、镍镉电池等,满足不同用户需求。
3.自动化操作:设备具备自动化测试功能,用户只需设置参数,设备即可自动完成测试过程。
4.数据存储与分析:设备能够将测试数据存储在系统中,用户可通过系统进行数据分析和比较,便于优化产品性能。
三、设备操作步骤1.开机准备:确保设备连接到电源,并打开电源开关。
2.参数设置:根据需要测试的电池类型和性能参数,设置相应的测试参数。
3.放置电池:将待测电池放入设备测试槽中,并确保接触良好。
4.开始测试:点击开始测试按钮,设备将自动进行测试。
5.结束测试:测试完成后,设备将自动停止并弹出测试结果。
四、设备维护与安全注意事项1.定期检查设备连接线,确保连接良好,避免因接触不良导致的设备故障。
2.设备工作过程中,请勿触摸测试槽,以免触电。
3.设备非专业人员不得拆卸,如需维修请联系售后服务。
4.请勿在设备附近放置易燃易爆物品,确保设备工作环境安全。
五、设备常见问题解答1.问:灯不亮,无法开机:请检查电源线是否连接好,电源开关是否打开。
2.问:测试数据不准确:请检查测试参数设置是否正确,确保电池接触良好。
3.问:设备无法自动停止:请检查设备连接线是否松动,或联系售后服务。
通过以上详细介绍,相信您已对星恒电池智能测试设备有了充分的了解。
NEPRI-6810智能蓄电池内阻测试仪使用说明书Ver:1.0国科电研(武汉)股份有限公司目录一、概述 (2)1、用途 (2)2、特点 (2)3、四端法测试夹的优点: (2)4、测试探针的优点: (3)5、功能 (3)6、技术参数 (3)二、操作指导 (4)1、仪表开机/关机 (4)2、单节测量 (5)2.1(选配项):带连接电阻的测量说明(成组测量相同) (5)3、成组测量 (6)3.1 自定义标准参数 (6)3.2 标准参数选择 (6)3.3 操作说明 (7)4、数据管理功能 (7)5、时钟设置 (7)6、系统管理 (8)6.1文件管理 (8)6.2语言选择 (8)6.3 测试波形 (9)6.4版本信息 (9)三、仪器结构 (10)1、主机 (10)2、充电器 (10)3、使用说明书 (10)4、工具箱 (10)四、仪表存储说明 (11)1、仪表用FLASH芯片存储数据包括开机画面数据、测量数据等。
(11)2、仪表数据有以下几种: (11)3、仪表数据的操作 (11)五、日常维护 (11)1、清洁维护 (11)2、存放 (11)3、电池维护 (11)一、概述1、用途智能蓄电池内阻测试仪采用先进的交流放电测试方法,能够精确测量蓄电池两端电压和内阻,并以此来判断蓄电池电池容量和技术状态的优劣。
客户可以根据自身情况选择蓄电池的内阻测试、电压测试及容量估算的结果作为新电池配组时内阻匹配的依据;在放电前后测试蓄电池内阻用于鉴别真实落后电池。
2、特点(1)智能化、数字化,全中文操作菜单、准确测量、操作简单。
(2)重量不超过0.45Kg,手持式设计,单人操作,全程自动测量。
(3)满足各种电池内阻检测标准,必须收录齐全的蓄电池内阻参数数据库,并能根据不同电池自己定义蓄电池标准内阻。
(4)测试方法简单,不会影响蓄电池的工作状态,也不会产生安全隐患。
(5)仪表本身可大量存储测试数据,并能在仪表上进行结论性查询和分析,也可将蓄电池测试数据用U 盘导出到计算机软件中生成图表和曲线进行分析。
电池电量检测方法
1. 电池电量检测器:这是一种专门用于检测电池电量的设备,通常可以在设备自带的显示屏上显示电池的电量百分比。
2. 操作系统自带的电池电量检测:大多数笔记本电脑和智能手机都有内置电池电量检测功能。
用户可以通过操作系统的电池电量显示程序快速了解电池电量情况。
3. 使用多用途电池充电器:现在很多多用途充电器都可以检测电池电量。
用户只需要将电池插入充电器中,就能在充电器上看到电池电量的显示。
4. 使用万用表:如果用户手头没有电池电量检测器或多用途充电器,也可以使用万用表来测试电池的电量。
将万用表的测试笔与电池的正负极相连,就能读取电池的电量值。
BCM166智能电池合路器产品测试指导书版本:V1.0拟制审核批准日期修订记录:BCM166智能电池合路器产品测试指导书关键词:BCM166,电池合路器,测试指导摘要:本文档主要描述了BCM166产品的测试指导要求。
缩略语:目录1.概述 (5)1.1. 本指导书目的 (5)1.2. 版本描述 (5)2. 系统功能描述 (6)2.1. 系统主要功能描述 (6)2.2. 系统主要功能列表 (6)2.3. 系统外观布局 (7)2.4. 测试组网示意 (7)2.5. 测试准备条件 (8)3. 测试用例 (9)3.1. 测试用例1:系统放电管理测试 (9)3.2. 测试用例2:系统充电管理测试 (10)3.3. 测试用例3:电池状态检测测试 (11)3.4. 测试用例4:电池故障检测测试 (11)3.5. 测试用例5:电池共用管理器故障测试 (12)4. 测试目标结果...............................................................................................错误!未定义书签。
1.概述1.1. 本指导书目的本测试指导书主要依据?BCM166电池合路器产品设计规格书?相关规格要求制定。
本测试指导书对BCM166产品的系统化测试操作要求及相关测试工程指标参数要求进行了描述。
本测试指导书是产品开发测试过程中的操作指导依据,同时也是验证测试中判定标准的依据。
1.2. 版本描述V1.0版本:为第一版评审稿。
2. 系统功能描述2.1. 系统主要功能描述1、使用7品牌、不同容量、不同新旧的电池可以同时应用于同一电源系统当中,为基站负载设备提供备电输出;2、使用电池共用管理器后,最多可以支持4组不同品牌、不同容量及新旧的电池接入使用;3、BCM166可支持4组蓄电池分组充电限流管理,自动对各组蓄电池进行轮流充电,可对各组蓄电池的均浮充电压、限流点分别进行设置管理,并自带扩容充电电源,原有电源系统不需要另行增加电源模块配置;4、BCM166可支持电池组主从备电放电管理,第一组蓄电池作为主路备电电池,其他三路作为从路备电电池,按主从顺序进行备电放电输出;5、BCM166可支持电池组分级下电保护管理,二次下电根据电池组容量大小分级进行电池下电保护;2.2. 系统主要功能列表2.3. 系统外观布局图1:BCM166系统外观布局参考示意图2.4. 测试组网示意系统测试组网如以下列图所示:图2:BCM166系统测试组网参考示意图注意:组网接线时,蓄电池接线顺序为先接负极线缆,负极线缆全部接好之后再接电池正极线缆,以免接线过程中负极线缆端子触碰机壳发生打火等危险情况!2.5. 测试准备条件为保证测试顺利进行,以及为保证测试结果准确有效,测试须准备以下必需设备及相关仪器,参考以下清单内容描述:3. 测试用例3.1. 测试用例1:系统放电管理测试3.2. 测试用例2:系统充电管理测试测试操作步骤及结果判定:3.3. 测试用例3:电池状态检测测试测试操作步骤及结果判定:3.4. 测试用例4:电池故障检测测试3.5. 测试用例5:电池共用管理器故障测试测试操作步骤及结果判定:4. 测试目标结果通过本指导书相关测试验证,BCM166最终应具备以下相关技术指标要求:1、通过使用电池共用管理器后,不同品牌、不同容量、不同新旧的电池完全可以同时使用,实现不同品牌电池组的均充、浮充、充电限流、放电均衡的电池管理功能;2、通过使用电池共用管理器后,蓄电池可实现自由灵活扩容,对原有开关电源系统不再需要进行相应的充电功率容量扩充;3、通过电池利旧方案、电池整合方案、电池保护方案、电池滚动扩容方案,实现经济效益最大化;4、使用电池共用管理器,安装改造简单、方便、本钱低;5、使用电池共用管理器后设备发生故障后,不影响开关电源向通讯设备的正常供电,电池管理器将发出告警,直到电池放电至下电电压;。
电池包和电驱动的检测方法及注意事项一、引言在当下充满高科技的社会中,电池包和电驱动技术已经成为了不可或缺的一部分。
它们被广泛应用于电动汽车、无人机、智能手机等各个领域。
然而,随之而来的问题是,如何对电池包和电驱动进行有效的检测,以确保其安全性和性能稳定性?本文将针对这一问题展开讨论,并提出相应的检测方法及注意事项。
二、电池包的检测方法及注意事项1.外观检测我们可以从电池包的外观入手。
检查电池包的外壳是否有变形、裂纹或者渗漏现象,以及连接线是否完好。
这些都是电池包可能存在问题的征兆,需要引起重视。
2.内部结构检测对于电池包的内部结构,可以通过X射线检测或者超声波检测来观察电芯的情况,包括是否有短路、过充、过放等问题。
3.性能测试针对电池包的性能,可以进行放电特性测试,包括循环寿命、充放电效率等方面的检测,以确保电池包的性能稳定性和可靠性。
在进行电池包检测时,需要注意以下几点:- 使用专业的检测设备和仪器,确保测试的准确性和可靠性;- 在检测过程中,遵循相应的安全操作规程,防止发生意外事故;- 对于电池包的检测报告,应该及时进行记录和归档,以备日后查阅。
三、电驱动的检测方法及注意事项1.功能测试对于电驱动器,首先需要进行功能测试,确保其各项功能正常。
包括输入输出性能测试、保护功能测试等。
2.效率测试需要对电驱动器的效率进行测试,包括转换效率、能耗等方面的检测,以保证其工作效率和节能性。
3.稳定性测试还需要对电驱动器的稳定性进行测试,包括温度适应性、负载适应性等方面的检测,以确保其在各种复杂环境下的稳定性。
在进行电驱动的检测时,也需要注意以下几点:- 综合运用多种测试方法和手段,以全面了解电驱动器的工作情况;- 在测试过程中,需要注意对设备的保护,防止过载、过热等情况发生;- 对于测试结果,需要进行准确记录和分析,并提出相应的改进和优化建议。
四、个人观点和总结电池包和电驱动的检测方法及注意事项对于保障电动设备的安全和性能具有重要意义。
SBS Implementers ForumSmart Battery Data AccuracyTesting GuidelinesRevision 2.0March 20, 20012000, 2001Copyright 2000, 2001Duracell, a division of the Gillette Company; Fujitsu Ltd.; Intel Corporation; Linear Technology Inc.; Maxim Integrated Products; Mitsubishi Electric Corporation; Moltech Power Systems; PowerSmart, Inc.;Semtech Corporation; Texas Instruments, Incorporated; Toshiba Battery Co. Ltd.All rights reserved.Questions and comments regarding this guidelines may be forwarded to: Email:questions@ For additional information on Smart Battery System Specifications, visit the SBS Implementers Forum (SBS-IF) at: andTHIS DOUCMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT,FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISEARISING OUT OF ANY PROPOSAL, SPECIFICATION, GUIDELINE OR SAMPLE. THE AUTHORS DISCLAIMS ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, RELATING TO USE OF INFORMATION IN THIS GUIDELINES. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED HEREIN.IN NO EVENT WILL ANY GUIDELINE OR SPECIFICATION CO-OWNER BE LIABLE TO ANY OTHER PARTY FOR ANY LOSS OF PROFITS, LOSS OF USE, INCIDENTAL, CONSEQUENTIAL, INDIRECT OR SPECIAL DAMAGES ARISING OUT OF THIS AGREEMENT, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. FURTHER, NO WARRANTY OR REPRESENTATION IS MADE OR IMPLIED RELATIVE TO FREEDOM FROM INFRINGEMENT OF ANY THIRD PARTY PATENTS WHEN PRACTICING THE GUIDELINE OR SPECIFICATION.Table of Contents1. Introduction to Smart Battery Data Accuracy Measurements 1 1.1 Scope 21.2 Audience 22. References 23. Definitions and Procedures 2 3.1 Definitions 23.1.1 Load-1 23.1.2 Load-2 33.1.3 Full 33.1.4 Empty 43.1.5 Charge-A 43.1.6 Charge-B 43.1.7 Measured Values 43.1.8 Reported Values 53.1.9 Test Environment 5 3.2 Procedures 53.2.1 Charge Battery 53.2.2 Discharge Battery 63.2.3 Rest Battery 63.2.4 Re-Learn Capacity 74. Accuracy Tests 8 4.1 Capacity Estimation Tests 84.1.1 TEST 1A: 3 complete cycles at 35°C using Charge-A and Load-1 84.1.2 TEST 1B: 3 complete cycles at 35°C using Charge-A and Load-2 94.1.3 TEST 1C: 3 complete cycles at 35°C using Charge-A, Load-1, and Load-2 104.1.4 TEST 2A: 5 cycles to 35% at 35°C using Charge-B and Load-1 114.1.5 TEST 2B: 5 cycles to 35% at 35°C using Charge-B and Load-2 124.1.6 TEST 3A: 5 cycles 80% to 30% at 35°C using Charge-A and Load-1 134.1.7 TEST 3B: 5 cycles 80% to 30% at 35°C using Charge-A and Load-2 144.1.8 TEST 4: Storage Test at 40°C 154.1.9 TEST 5: Prolonged Suspend Current 16 4.2 Measurement Accuracy Tests 174.2.1 TEST 6: Temperature(), Voltage(), Current() and AverageCurrent() Accuracy 175. Data Reporting 18 5.1 Test Results Reporting Formats 185.1.1 Report Format for Tests 1 to 5 185.1.2 Report Format for Test 6 19Revision HistoryRevision Number Date Author Notes1.0 12/15/1998 P. Mummah Public release2.0 3/20/2001 SBS IF Accuracy WGPublic release(Friel, Rush, Konaka, Dunstan, Stolitzka, et. al.)1. Introduction to Smart Battery Data Accuracy MeasurementsThe smart battery data accuracy measurements are intended to test the accuracy of the data that a smart battery reports. This information must be accurate if a smart battery powered system is to obtain maximum battery run time and maximum battery life. These data accuracymeasurements consist of six basic tests (some with multiple parts) that reflect how a battery is used in a typical computer laptop environment with a compliant SBS Smart Battery design. The tests are best done in numerical order, however each test procedure is self-contained and may be performed independently.The equipment necessary to complete the tests are:1) A test controller which orchestrates the tests according to the test procedures; initiates andrecords the results of measurements of the battery voltage and current; measures, controlsand records the test environment temperature; and initiates, responds and recordscommunication with the battery’s SMBus interface and Safety Signal.2) A variable/programmable load that is capable of producing constant current, constant power,pulsed current and pulse power loads. The pulsed loading modes require pulse widthresolution of better than 25ms.3) A programmable charge source capable of constant current, constant power, pulsed currentand pulsed power. The pulsed charging modes require pulse width resolution of 25ms.4) Voltage, current, resistance and temperature measurement instrumentation capable ofsampling each value at a 5ms rate by command of the test controller.5) A temperature controlled test environment capable of providing 0°C to 60°C temperatureson command of the test controller, with +/-5°C accuracy and stability. Relative humiditycan be reported if measured.6) An SMBus host port capable of sending and receiving all SMBus protocols required in theSmart Battery Data Specification v1.1. The SMBus port should be fully compliant with the SMBus Specification v1.1.Block Diagram of Test Setup1.1 ScopeThis document specifies a set of guidelines for tests designed to evaluate the integrity andaccuracy of the data returned from a SBS Smart Battery. The scope of the tests is limited to basic data accuracy and do not constitute a complete set of tests that may be required to evaluate battery performance and safety. These tests are designed for notebook computer applications.Manufacturers of Smart Batteries used in other types of electrically powered devices maymodify these tests to meet their specific needs.1.2 AudienceThe audience for this document includes:• Smart Battery System component manufacturers• Smart Battery System designers• Designers of power management systems for Smart Battery powered notebook computers • Designers of BIOS, driver and operating system software2. References• Smart Battery Data Specification, Revision 1.1a, SBS-Implementers Forum, December 1998. Available from .• Smart Battery Charger Specification, Revision 1.1, SBS-Implementers Forum, December 1998. Available from .• Smart Battery System Manager Specification, Revision 1.1, SBS-Implementers Forum, December 1998. Available from .• System Management Bus Specification, Revision 1.1, SBS-Implementers Forum, December 1998. Available from .• ACPI Specifications, Version 1.0b, Intel Corporation, Microsoft Corporation, Toshiba Corp., July 1998 (Available at: /~acpi)3. Definitions and Procedures3.1 Definitions3.1.1 LOAD-1Constant power P/2 load, where P = DesignCapacity() [mWh]. Load current must not exceed manufacturer’s recommended maximum discharge rate.NOTE: The Smart Battery Data Specification defines various capacity functions, such asRemainingCapacity(), FullChargeCapacity(), etc. at a P/5 mWh or C/5 mAh rate which isdifferent than the P/2 mWh rate defined by this LOAD-1. This difference must be considered when comparing test equipment reported data with Smart Battery reported data.3.1.2 LOAD-2Load profile to approximate a running notebook load’s frequency and power characteristics. Maximum discharge rate not to exceed manufacturer’s recommended limit.Repetitive load definition: Discharge Current Duration 90% of maximum 3125 msec 10 mA 5225 msec C/3 125 msec90 mA 325 msec3125 msIf the C rate is not supplied in mAh by the pack manufacturer, then the C rate will be calculated by:DesignCapacity()[mWh] / DesignVoltage()[mV]3.1.3 END OF CHARGE CYCLEThe battery is considered at an END OF CHARGE CYCLE when it has been charged until a combination of the following bits in the AlarmWarning() or BatteryStatus() values are set: FULLY_CHARGED and/or TERMINATE_CHARGE_ALARMand/or OVERCHARGED_ALARMand/or ChargingCurrent() value is zero.Any combination of the above bits may indicate that charging is complete. Note that thecombination of bits used in the test may simply indicate that charging is to be stopped but that the Smart Battery is not yet “full.” Refer to the Smart Battery Data Specification for the correct way to set or clear BatteryStatus() values to specify a “full” battery.The specific combination used for the particular Smart Battery being tested must be documented in the test report.3.1.4 END OF DISCHARGE CYCLEThe battery is considered at an END OF DISCHARGE CYCLE when it has been discharged until a combination of the following bits in AlarmWarning() or BatteryStatus() values are set: FULLY_DISCHARGEDand/or TERMINATE_DISCHARGE_ALARMAny combination of the above bits used in the test may indicate that discharging cycle iscomplete at the present discharge rate. Note that the combination of bits used in the test may simply indicate that discharging is to be stopped but that the Smart Battery is not yet “empty.”Refer to the Smart Battery Data Specification for the correct way to set or clear BatteryStatus() values to specify an “empty” battery.The specific combination used for the particular Smart Battery being tested must be documented in the test report.3.1.5 CHARGE-ACharge at the rate specified by ChargingCurrent() and ChargingVoltage() values read from the battery or broadcast by the battery. CHARGE-A is complete when the battery indicates that it has reached an END OF CHARGE CYCLE or it has reached the value ofRelativeStateOfCharge() specified in the test definition. The charge current and voltage may not exceed the manufacturer’s maximum charge limits.3.1.6 CHARGE-BCharge at 0.5C rate. If the 0.5C rate is not supplied in mAh by the pack manufacturer, then the0.5C rate will be calculated by the equation:0.5 * DesignCapacity()[mWh] / DesignVoltage()[mV]The charge current and voltage may not exceed the manufacturer’s maximum charge limits or exceed the values of ChargingCurrent() and ChargingVoltage() values read from the battery or broadcast by the battery. CHARGE-B is complete when the battery indicates that it has reached an END OF CHARGE CYCLE or it has reached the value of RelativeStateOfCharge() as specified in the test definition.3.1.7 MEASURED VALUESPack voltage, current and test environment temperature as measured by the test system. Pack voltage must be measured at the pack terminals. The test system must be able to supply and deliver the specified energy values. This value may be supplied by the test system itself or by a connected device such as a PC.Accuracy requirements of the test equipment measured values:Voltage: +/- 0.1 % of full scaleCurrent: +/- 0.2 % of full scaleTemperature: +/- 0.5 °CCapacity Integration: +/- 0.5 % of full scale (requires accurate measurement and calculation)3.1.8 REPORTED VALUESThe following Smart Battery Data Specification data functions must be reported for the tests, unless otherwise directed by each test: Temperature(), Voltage(), Current(), AverageCurrent(), RemainingCapacity() [mWh], FullChargeCapacity() [mWh], BatteryStatus(),RunTimeToEmpty(), AverageTimeToEmpty(), AverageTimeToFull(), CycleCount(),RelativeStateOfCharge(), and MaxError(). These values will be plotted as part of the test report.NOTE: Although not all Smart Battery Data Specification data value functions are required for these tests, they are still required for Smart Battery Data compliance. Data functions such as AtRate(), AtRateTimeToEmpty(), etc. are important for predictive power management in Smart Battery Systems. Future versions of these guidelines may include tests for these functions.The Smart Battery must be set to 10mWh mode for all tests by setting the CAPACITY_MODE bit in the BatteryMode() function. If the 10mWh CAPACITY_MODE operation is not possible, it must be noted in the test log as differing from the procedures.3.1.9 TEST ENVIRONMENTTesting must be performed at the environmental temperature specified in the test definition witha tolerance of +/-5°C. The MEASURED temperature value should be measured with thetemperature sensing device within 10mm of the battery pack. When setting the temperature during a test, the test environment must be allowed to stabilize before continuing with the next test step. Pressure and humidity are assumed to be 1 atmosphere at sea level non-condensing.Abnormal altitude or humidity conditions should be noted on the test log.The maximum allowable skew between data collected from the test equipment and data read from the Smart Battery must be less than +/-5 seconds. Retries within the maximum skew period are allowed.3.2 Procedures3.2.1 CHARGE BATTERYCharge the battery using CHARGE-A or CHARGE-B. While charging the battery, the test system must record and timestamp MEASURED and REPORTED values at a minimum rate of once per minute while RelativeStateOfCharge() < 90% and once every 10 seconds whileRelativeStateOfCharge() => 90%.The CHARGE BATTERY procedure is complete when the battery has reached an END OF CHARGE CYCLE unless one of the following conditions is specified in the test definition: • RelativeStateOfCharge() reaches the specified value• A specified time period expires• The battery terminal voltage reaches the maximum value specified by the manufacturer. (A test stopped due to manufacturer limits must be noted in the test log since this is a non-expected operation.)If one of the above conditions is specified, the charge must be stopped when the specifiedcondition is reached.The data collection rate may be changed in any procedure by specifying a new collection rate.The new rate will apply regardless of the RelativeStateOfCharge() value, as long as the new rate is higher than the original rate. The SMBus clock and data lines must be held high in the idle periods between communication transactions.Smart Batteries with internal chargers may not be able to use the Charge-A or -B rates.Alternate test criteria must be specifically noted in the test log when these systems are tested.3.2.2 DISCHARGE BATTERYDischarge the battery using LOAD-1, LOAD-2, or a specified power or current. Whiledischarging the battery, the test system must record and timestamp MEASURED andREPORTED values at a minimum rate of once per minute while RelativeStateOfCharge() >= 10% and once every 10 seconds while RelativeStateOfCharge() < 10%.The DISCHARGE BATTERY procedure is complete when the battery indicates that it has reached an END OF DISCHARGE CYCLE unless one of the following conditions is specified in the test definition:• RelativeStateOfCharge() reaches a specified value• A specified time period expires• The battery terminal voltage reaches a minimum value specified by the manufacturer. (A test stopped due to manufacturer limits must be noted in the test log since this is a non-expected operation.)If one of the above conditions is specified, the discharge must be stopped when the specified condition is reached.The data collection rate may be increased in any procedure by specifying a new collection rate.The new rate will apply regardless of the RelativeStateOfCharge() value, as long as the new rate is higher than the original rate. The SMBus clock and data lines must be held high in the idle periods between communication transactions.3.2.3 REST BATTERYDisconnect only loads and sources between the battery and test system for specified time period and record and timestamp MEASURED and REPORTED values at a minimum rate of once per minute. The SMBus clock and data lines must be held high in the idle periods betweencommunication transactions.3.2.4 RE-LEARN CAPACITYCapacity self re-learn by battery electronics1. Set TEST ENVIRONMENT to 25°C (allow temperature to stabilize)2. CHARGE BATTERY using CHARGE-B until END OF CHARGE CYCLE *3. REST BATTERY for 60 minutes4. DISCHARGE BATTERY using LOAD-1 until END OF DISCHARGE CYCLE *5. REST BATTERY for 60 minutes6. CHARGE BATTERY using CHARGE-B until END OF CHARGE CYCLE *7. REST BATTERY for 60 minutes* Note: If, in order to cause a capacity re-learn, the above conditions are different, then they should be noted on the test log.CYCLECYCLEEstimated time: __>7__ hours4. TestProcedures4.1 Capacity Estimation Tests Capacity Test MatrixTest Name & Description ChargeProcedureDischargeCycling LoadFinal Discharge LoadTEST 1A (Full to Empty) Charge-A Load-1 Load-1 TEST 1B Charge-A Load-2 Load-2TEST 1C Charge-A Load-2 Load-1TEST 2A (Full to 35%) Charge-B Load-1 Load-1 TEST 2B Charge-B Load-2 Load-2TEST 3A (80% to 30%) Charge-A Load-1 Load-1 TEST 3B Charge-A Load-2 Load-24.1.1 TEST 1A: 3 complete cycles at 35°C using Charge-A and Load-1Full cycle capacity measurement accuracy test 1AProcedure1. RE-LEARN CAPACITY2. Set TEST ENVIRONMENT to 35°C (allow temperature to stabilize)3. DISCHARGE BATTERY using LOAD-1 until END OF DISCHARGE CYCLE4. REST BATTERY for 60 minutes5. CHARGE BATTERY using CHARGE-A until END OF CHARGE CYCLE6. REST BATTERY for 60 minutes7. DISCHARGE BATTERY using LOAD-1 until END OF DISCHARGE CYCLE8. REST BATTERY for 60 minutes9. CHARGE BATTERY using CHARGE-A until END OF CHARGE CYCLE10. REST BATTERY for 60 minutes11. DISCHARGE BATTERY using LOAD-1 until END OF DISCHARGE CYCLE12. REST BATTERY for 60 minutes13. CHARGE BATTERY using CHARGE-A until END OF CHARGE CYCLE14. REST BATTERY for 60 minutes15. Separately record capacity readings for both Smart Battery (X0) and test equipment (Y0)before the beginning of the final discharge.16. DISCHARGE BATTERY using LOAD-1 until END OF DISCHARGE CYCLE17. Separately record the final capacity readings for both Smart Battery (X1) and test equipment(Y1). Report “single number” result for this test as |X1-X0| - |Y1-Y0| to represent the error in the final discharge (Step 16) only. (Depending on the test equipment capacity reportingmethod, the equation may be different.)Estimated time: ______ hours + RE-LEARN time of __>7__ hours4.1.2 TEST 1B: 3 complete cycles at 35°C using Charge-A and Load-2Full cycle capacity measurement accuracy test 1BProcedure1. RE-LEARN CAPACITY2. Set TEST ENVIRONMENT to 35°C (allow temperature to stabilize)3. DISCHARGE BATTERY using LOAD-2 until END OF DISCHARGE CYCLE4. REST BATTERY for 60 minutes5. CHARGE BATTERY using CHARGE-A until END OF CHARGE CYCLE6. REST BATTERY for 60 minutes7. DISCHARGE BATTERY using LOAD-2 until END OF DISCHARGE CYCLE8. REST BATTERY for 60 minutes9. CHARGE BATTERY using CHARGE-A until END OF CHARGE CYCLE10. REST BATTERY for 60 minutes11. DISCHARGE BATTERY using LOAD-2 until END OF DISCHARGE CYCLE12. REST BATTERY for 60 minutes13. CHARGE BATTERY using CHARGE-A until END OF CHARGE CYCLE14. REST BATTERY for 60 minutes15. Separately record capacity readings for both Smart Battery (X0) and test equipment (Y0)before the beginning of the final discharge.16. DISCHARGE BATTERY using LOAD-2 until END OF DISCHARGE CYCLE17. Separately record the final capacity readings for both Smart Battery (X1) and test equipment(Y1). Report “single number” result for this test as |X1-X0| - |Y1-Y0| to represent the error in the final discharge (Step 16) only. (Depending on the test equipment capacity reportingmethod, the equation may be different.)Estimated time: ______ hours + RE-LEARN time of __>7__ hoursExample Waveform: Tests 1A, 1B, 1CCYCLECYCLE4.1.3 Test 1C: 3 complete cycles at 35°C using Charge-A, Load-2, and Load-1Full cycle capacity measurement accuracy test 1CProcedure1. RE-LEARN CAPACITY2. Set TEST ENVIRONMENT to 35°C (allow temperature to stabilize)3. DISCHARGE BATTERY using LOAD-2 until END OF DISCHARGE CYCLE4. REST BATTERY for 60 minutes5. CHARGE BATTERY using CHARGE-A until END OF CHARGE CYCLE6. REST BATTERY for 60 minutes7. DISCHARGE BATTERY using LOAD-2 until END OF DISCHARGE CYCLE8. REST BATTERY for 60 minutes9. CHARGE BATTERY using CHARGE-A until END OF CHARGE CYCLE10. REST BATTERY for 60 minutes11. DISCHARGE BATTERY using LOAD-2 until END OF DISCHARGE CYCLE12. REST BATTERY for 60 minutes13. CHARGE BATTERY using CHARGE-A until END OF CHARGE CYCLE14. REST BATTERY for 60 minutes15. Separately record capacity readings for both Smart Battery (X0) and test equipment (Y0)before the beginning of the final discharge.16. DISCHARGE BATTERY using LOAD-1 until END OF DISCHARGE CYCLE17. Separately record the final capacity readings for both Smart Battery (X1) and test equipment(Y1). Report “single number” result for this test as |X1-X0| - |Y1-Y0| to represent the error in the final discharge (Step 16) only. (Depending on the test equipment capacity reportingmethod, the equation may be different.)Estimated time: ______ hours + RE-LEARN time of __>7__ hoursPartial discharge, full charge capacity measurement accuracy test 2AProcedure1. RE-LEARN CAPACITY2. Set TEST ENVIRONMENT to 35°C (allow temperature to stabilize)3. DISCHARGE BATTERY using LOAD-1 until RelativeStateOfCharge()=35%4. REST BATTERY for 60 minutes5. CHARGE BATTERY using CHARGE-B until END OF CHARGE CYCLE6. REST BATTERY for 60 minutes7. DISCHARGE BATTERY using LOAD-1 until RelativeStateOfCharge()=35%8. REST BATTERY for 60 minutes9. CHARGE BATTERY using CHARGE-B until END OF CHARGE CYCLE10. REST BATTERY for 60 minutes11. DISCHARGE BATTERY using LOAD-1 until RelativeStateOfCharge()=35%12. REST BATTERY for 60 minutes13. CHARGE BATTERY using CHARGE-B until END OF CHARGE CYCLE14. REST BATTERY for 60 minutes15. DISCHARGE BATTERY using LOAD-1 until RelativeStateOfCharge()=35%16. REST BATTERY for 60 minutes17. CHARGE BATTERY using CHARGE-B until END OF CHARGE CYCLE18. REST BATTERY for 60 minutes19. DISCHARGE BATTERY using LOAD-1 until RelativeStateOfCharge()=35%20. REST BATTERY for 60 minutes21. CHARGE BATTERY using CHARGE-B until END OF CHARGE CYCLE22. REST BATTERY for 60 minutes23. Separately record capacity readings for both Smart Battery (X0) and test equipment (Y0)before the beginning of the final discharge.24. DISCHARGE BATTERY using LOAD-1 until END OF DISCHARGE CYCLE25. Separately record the final capacity readings for both Smart Battery (X1) and test equipment(Y1). Report “single number” result for this test as |X1-X0| - |Y1-Y0| to represent the error in the final discharge (Step 24) only. (Depending on the test equipment capacity reporting method, the equation may be different.)Estimated time: ______ hours + RE-LEARN time of __>7__ hoursPartial discharge, full charge capacity measurement accuracy test 2BProcedure1. RE-LEARN CAPACITY2. Set TEST ENVIRONMENT to 35°C (allow temperature to stabilize)3. DISCHARGE BATTERY using LOAD-2 until RelativeStateOfCharge()=35%4. REST BATTERY for 60 minutes5. CHARGE BATTERY using CHARGE-B until END OF CHARGE CYCLE6. REST BATTERY for 60 minutes7. DISCHARGE BATTERY using LOAD-2 until RelativeStateOfCharge()=35%8. REST BATTERY for 60 minutes9. CHARGE BATTERY using CHARGE-B until END OF CHARGE CYCLE10. REST BATTERY for 60 minutes11. DISCHARGE BATTERY using LOAD-2 until RelativeStateOfCharge()=35%12. REST BATTERY for 60 minutes13. CHARGE BATTERY using CHARGE-B until END OF CHARGE CYCLE14. REST BATTERY for 60 minutes15. DISCHARGE BATTERY using LOAD-2 until RelativeStateOfCharge()=35%16. REST BATTERY for 60 minutes17. CHARGE BATTERY using CHARGE-B until END OF CHARGE CYCLE18. REST BATTERY for 60 minutes19. DISCHARGE BATTERY using LOAD-2 until RelativeStateOfCharge()=35%20. REST BATTERY for 60 minutes21. CHARGE BATTERY using CHARGE-B until END OF CHARGE CYCLE22. REST BATTERY for 60 minutes23. Separately record capacity readings for both Smart Battery (X0) and test equipment (Y0)before the beginning of the final discharge.24. DISCHARGE BATTERY using LOAD-2 until END OF DISCHARGE CYCLE25. Separately record the final capacity readings for both Smart Battery (X1) and test equipment(Y1). Report “single number” result for this test as |X1-X0| - |Y1-Y0| to represent the error in the final discharge (Step 24) only. (Depending on the test equipment capacity reportingmethod, the equation may be different.)Estimated time: ______ hours + RE-LEARN time of __>7__ hoursExample Waveform: Tests 2A and 2B:4.1.6 TEST 3A: 5 cycles from 80% to 30% at 35°C using Charge-A and Load-1Partial charge, partial discharge capacity measurement accuracy test 3AProcedure1. RE-LEARN CAPACITY2. Set TEST ENVIRONMENT to 35°C (allow temperature to stabilize)3. DISCHARGE BATTERY using LOAD-1 until RelativeStateOfCharge()=30%4. REST BATTERY for 60 minutes5. CHARGE BATTERY using CHARGE-A until RelativeStateOfCharge()=80%6. REST BATTERY for 60 minutes7. DISCHARGE BATTERY using LOAD-1 until RelativeStateOfCharge()=30%8. REST BATTERY for 60 minutes9. CHARGE BATTERY using CHARGE-A until RelativeStateOfCharge()=80%10. REST BATTERY for 60 minutes11. DISCHARGE BATTERY using LOAD-1 until RelativeStateOfCharge()=30%12. REST BATTERY for 60 minutes13. CHARGE BATTERY using CHARGE-A until RelativeStateOfCharge()=80%14. REST BATTERY for 60 minutes15. DISCHARGE BATTERY using LOAD-1 until RelativeStateOfCharge()=30%16. REST BATTERY for 60 minutes17. CHARGE BATTERY using CHARGE-A until RelativeStateOfCharge()=80%18. REST BATTERY for 60 minutes19. DISCHARGE BATTERY using LOAD-1 until RelativeStateOfCharge()=30%20. REST BATTERY for 60 minutes21. CHARGE BATTERY using CHARGE-A until RelativeStateOfCharge()=80%22. REST BATTERY for 60 minutes23. Separately record capacity readings for both Smart Battery (X0) and test equipment (Y0)before the beginning of the final discharge.24. DISCHARGE BATTERY using LOAD-1 until END OF DISCHARGE CYCLE25. Separately record the final capacity readings for both Smart Battery (X1) and test equipment(Y1). Report “single number” result for this test as |X1-X0| - |Y1-Y0| to represent the error in the final discharge (Step 24) only. (Depending on the test equipment capacity reportingmethod, the equation may be different.)Estimated time: ______ hours + RE-LEARN time of __>7__ hours4.1.7 TEST 3B: 5 cycles from 80% to 30% at 35°C using Charge-A and Load-2Partial charge, partial discharge capacity measurement accuracy test 3BProcedure1. RE-LEARN CAPACITY2. Set TEST ENVIRONMENT to 35°C (allow temperature to stabilize)3. DISCHARGE BATTERY using LOAD-2 until RelativeStateOfCharge()=30%4. REST BATTERY for 60 minutes5. CHARGE BATTERY using CHARGE-A until RelativeStateOfCharge()=80%6. REST BATTERY for 60 minutes7. DISCHARGE BATTERY using LOAD-2 until RelativeStateOfCharge()=30%8. REST BATTERY for 60 minutes9. CHARGE BATTERY using CHARGE-A until RelativeStateOfCharge()=80%10. REST BATTERY for 60 minutes11. DISCHARGE BATTERY using LOAD-2 until RelativeStateOfCharge()=30%12. REST BATTERY for 60 minutes13. CHARGE BATTERY using CHARGE-A until RelativeStateOfCharge()=80%14. REST BATTERY for 60 minutes15. DISCHARGE BATTERY using LOAD-2 until RelativeStateOfCharge()=30%16. REST BATTERY for 60 minutes17. CHARGE BATTERY using CHARGE-A until RelativeStateOfCharge()=80%18. REST BATTERY for 60 minutes19. DISCHARGE BATTERY using LOAD-2 until RelativeStateOfCharge()=30%20. REST BATTERY for 60 minutes21. CHARGE BATTERY using CHARGE-A until RelativeStateOfCharge()=80%22. REST BATTERY for 60 minutes23. Separately record capacity readings for both Smart Battery (X0) and test equipment (Y0)before the beginning of the final discharge.24. DISCHARGE BATTERY using LOAD-2 until END OF DISCHARGE CYCLE25. Separately record the final capacity readings for both Smart Battery (X1) and test equipment(Y1). Report “single number” result for this test as |X1-X0| - |Y1-Y0| to represent the error in the final discharge (Step 24) only. (Depending on the test equipment capacity reportingmethod, the equation may be different.)Estimated time: ______ hours + RE-LEARN time of __>7__ hoursExample Waveform: Tests 3A and 3B:。